WorldWideScience

Sample records for numerical study aimed

  1. Numerical modeling of working of a multicellular proportional counter aimed to individual dosimetry of neutrons

    International Nuclear Information System (INIS)

    Bordy, J.M.; Barthe, J.; Boutruche, B.

    1993-01-01

    The use of a personal dosimeter imposes severe constraints, particularly for tension of polarization and tolerable dimensions. That why a numerical modeling of this detector working is an appreciable help for conception. It allows to determine quickly the influence of modification of different parameters (nature and pressure of gas, dimension of electrodes, dimension of channels, tension of polarization,...) without having to make new prototypes. The aim of this report is to give some numerical results got with a multicellular counter with a cylindrical geometry. 6 figs

  2. Collection and valuation of numerical models with the aim to investigate the impact of aircraft emissions

    International Nuclear Information System (INIS)

    Dameris, M.

    1993-01-01

    Numerical models which are used to simulate the dynamics and chemistry of the Earth atmosphere are an important expedient to improve the knowledge of atmospheric processes. With such models it is possible to investigate single effects separately and to estimate their meaning for the whole system. It is possible to make sensitivity studies as well as calculations of different scenarios. This paper aims to describe different models which are available in the present time and which can be used for investigations dealing with the impact of aircraft emission on the Earth climate. Actual deficits of the modelling of atmospheric processes are discussed and the subsequent conclusions are presented. (orig.) 49 refs [de

  3. Discrimination and the aim of proportional representation

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2008-01-01

    Many organizations, companies, and so on are committed to certain representational aims as regards the composition of their workforce. One motivation for such aims is the assumption that numerical underrepresentation of groups manifests discrimination against them. In this article, I articulate...... representational aims in a way that best captures this rationale. My main claim is that the achievement of such representational aims is reducible to the elimination of the effects of wrongful discrimination on individuals and that this very important concern is, in principle, compatible with the representation...... of discrimination against numerically overrepresented groups, or overlook the innocently different ambitions of some numerically underrepresented groups. In relation to the latter point, I appeal to the fact that many luck egalitarians think justice should be ambition sensitive (but endowment insensitive). Also...

  4. Quantitative study on the statistical properties of fibre architecture of genuine and numerical composite microstructures

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE’s for represent......A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE...

  5. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  6. Interdisciplinary Study of Numerical Methods and Power Plants Engineering

    Directory of Open Access Journals (Sweden)

    Ioana OPRIS

    2014-08-01

    Full Text Available The development of technology, electronics and computing opened the way for a cross-disciplinary research that brings benefits by combining the achievements of different fields. To prepare the students for their future interdisciplinary approach,aninterdisciplinary teaching is adopted. This ensures their progress in knowledge, understanding and ability to navigate through different fields. Aiming these results, the Universities introduce new interdisciplinary courses which explore complex problems by studying subjects from different domains. The paper presents a problem encountered in designingpower plants. The method of solvingthe problem isused to explain the numerical methods and to exercise programming.The goal of understanding a numerical algorithm that solves a linear system of equations is achieved by using the knowledge of heat transfer to design the regenerative circuit of a thermal power plant. In this way, the outcomes from the prior courses (mathematics and physics are used to explain a new subject (numerical methods and to advance future ones (power plants.

  7. Study and simulation of a parallel numerical processing machine

    International Nuclear Information System (INIS)

    Bel Hadj, Slaheddine

    1981-12-01

    This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr

  8. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  9. Discrimination and the aim of proportional representation

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2008-01-01

    Many organizations, companies, and so on are committed to certain representational aims as regards the composition of their workforce. One motivation for such aims is the assumption that numerical underrepresentation of groups manifests discrimination against them. In this article, I articulate r...

  10. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  11. Numerical study of wave propagation around an underground cavity: acoustic case

    Science.gov (United States)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  12. Experimental and numerical study of the MYRRHA control rod system dynamics

    International Nuclear Information System (INIS)

    Kennedy, G.; Lamberts, D.; Van Tichelen, K.; Profir, M.; Moreau, V.

    2017-01-01

    This paper presents an experimental and numerical investigation of the buoyancy driven MYRRHA control rod (CR) insertion during an emergency SCRAM. The study aimed to support the MYRRHA reactor design and characterise the hydrodynamic behaviour of the CR system while demonstrating the proof-of-principle. A full-scale mock-up test section of the MYRRHA CR was constructed to test the hydrodynamics in Lead Bismuth Eutectic over a wide range of operating conditions, to provide experimental data for the qualification of the CR system. A numerical CFD model of the CR test section was also setup in STAR-CCM+. The simulations make use of the recently developed overset mesh method to simulate the dynamic two-way coupling between the moving CR bundle and the fluid domain. The numerical methodology and post-test simulation results are validated against the experimental results. The steady state hydraulic results and the transient insertion results from both the experimental and numerical efforts are presented. The influence of the global process conditions on the CR insertion time are presented as well. This investigation successfully demonstrates the CR insertion proof-of-principle during a SCRAM. (author)

  13. Rayleigh-Benard convection in a Hele-Shaw cell - a numerical study

    International Nuclear Information System (INIS)

    Guenther, C.; Mueller, U.

    1987-05-01

    Free convection in narrow vertical gaps heated from below gives rise to several different flow patterns as has been demonstrated by previous experimental investigations. A numerical study is presented aimed at simulating the observed flow phenomena in Hele-Shaw cells of small lateral extend. The numerical study is based on the assumption that the flow is essentially two-dimensional. This allows an approach using a one-term Galerkin approximation with respect to the direction perpendicular to the gap and a finite difference scheme with regard to the coordinates in the plane of the gap. The calculations result in realistic values of the critical Rayleigh numbers for the onset of steady and oscillatory convection. Most of the observed unsteady flow patterns can be simulated numerically. It is shown that five different stable flow patterns can occur at one particular Rayleigh number. The different stable flow patterns are coupled by a variety of complex transitions. Moreover the calculations show that a realistic description of the observed flow phenomena can not be obtained by a simplified model using the Darcy law in the momentum equation and implying slip flow at the small confining boundaries. (orig.) [de

  14. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Uwe

    2010-11-18

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  15. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Sander, Uwe

    2010-01-01

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  16. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  17. Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study

    Energy Technology Data Exchange (ETDEWEB)

    Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.

  18. Numerical MHD study for plasmoid instability in uniform resistivity

    Science.gov (United States)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  19. Parametrical analysis on the diffuse ceiling ventilation by experimental and numerical studies

    DEFF Research Database (Denmark)

    Zhang, Chen; Kristensen, Martin Heine; Jensen, Jakob Sølund

    2016-01-01

    This paper aims to investigate the performance of diffuse ceiling ventilation in a classroom. An experimental study is carried out in a test chamber to examine the impact of diffuse ceiling opening area on the system cooling capacity and thermal comfort. The results indicate that diffuse ceiling ....... The numerical results reveal that even distribution of heat sources gives a lower draught risk environment than centralized distribution. In addition, there is a significant increase on the draught risk with increase of room height....

  20. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Experimental and numerical study of Bondura® 6.6 PIN joints

    Science.gov (United States)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  2. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    Science.gov (United States)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  3. Analytic and numerical studies of Scyllac equilibrium

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.; Dagazian, R.Y.; Freidberg, J.P.; Schneider, W.; Betancourt, O.; Garabedian, P.

    1976-01-01

    The results of both numerical and analytic studies of the Scyllac equilibria are presented. Analytic expansions are used to derive equilibrium equations appropriate to noncircular cross sections, and compute the stellarator fields which produce toroidal force balance. Numerical algorithms are used to solve both the equilibrium equations and the full system of dynamical equations in three dimensions. Numerical equilibria are found for both l = 1,0 and l= 1,2 systems. It is found that the stellarator fields which produce equilibria in the l = 1.0 system are larger for diffuse than for sharp boundary plasma profiles, and that the stability of the equilibria depends strongly on the harmonic content of the stellarator fields

  4. Numerical studies of fermionic field theories at large-N

    International Nuclear Information System (INIS)

    Dickens, T.A.

    1987-01-01

    A description of an algorithm, which may be used to study large-N theories with or without fermions, is presented. As an initial test of the method, the spectrum of continuum QCD in 1 + 1 dimensions is determined and compared to previously obtained results. Exact solutions of 1 + 1 dimensional lattice versions of the free fermion theory, the Gross-Neveu model, and QCD are obtained. Comparison of these exact results with results from the numerical algorithm is used to test the algorithms, and more importantly, to determine the errors incurred from the approximations used in the numerical technique. Numerical studies of the above three lattice theories in higher dimensions are also presented. The results are again compared to exact solutions for free fermions and the Gross-Neveu model; perturbation theory is used to derive expansions with which the numerical results for QCD may be compared. The numerical algorithm may also be used to study the euclidean formulation of lattice gauge theories. Results for 1 + 1 dimensional euclidean lattice QCD are compared to the exact solution of this model

  5. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  6. Early Numerical Competence and Number Line Task Performance in Kindergarteners

    Science.gov (United States)

    Fanari, Rachele; Meloni, Carla; Massidda, Davide

    2017-01-01

    This work aims to evaluate the relationship between early numerical competence in kindergarteners and their numerical representations as measured by the number line task (NLT). Thirty-four 5-year-old children participated in the study. Children's early performance on symbolic and non-symbolic numerical tasks was considered to determine which was a…

  7. Numerical study on lateral wall displacement of deep excavation supported by IPS earth retention system

    Directory of Open Access Journals (Sweden)

    Tugen Feng

    2017-12-01

    Full Text Available The objective of this study is to investigate the 3D behavior characteristics of an excavation supported by an innovative prestressed support (IPS earth retention system. A numerical simulation was conducted in order to provide insight into the IPS system behavior by using the FLAC3D package. Prior to the parametric study, validation work was conducted by means of a comparison of the deformation between the field test data and numerical analysis results, and strong agreement was obtained. The reasonable excavation location, layered excavation thickness, and blocked excavation sequence are presented according to variable parameter analysis. In view of the previous findings, certain measurements are proposed in order to control the foundation pit deformation. The results indicate that prestress compensation has a significant effect on the IPS system behavior, while an optimized excavation sequence slightly improves its behavior. With the conclusion proposed based on the numerical results, the aim is to provide reference data for optimization design and the construction sequence. Keywords: FLAC3D, IPS system, Prestress compensation, Layered excavation, Blocked excavation, Deformation control

  8. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  9. Numerical distance protection

    CERN Document Server

    Ziegler, Gerhard

    2011-01-01

    Distance protection provides the basis for network protection in transmission systems and meshed distribution systems. This book covers the fundamentals of distance protection and the special features of numerical technology. The emphasis is placed on the application of numerical distance relays in distribution and transmission systems.This book is aimed at students and engineers who wish to familiarise themselves with the subject of power system protection, as well as the experienced user, entering the area of numerical distance protection. Furthermore it serves as a reference guide for s

  10. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  11. Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2017-01-01

    The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated ignit...... serve as an important tool for the simulation of spray flames in marine diesel engines, where fuel injectors with different nozzle diameters are applied for pilot and main injections.......The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated...... ignition delay times are consistently overestimated, the relative differences remain below 28%. Furthermore, the change of the averaged pressure rise with respect to the variation of nozzle diameter is captured by the model. The simulated flame lift-off lengths also agree with the measurements...

  12. Numerical study of time domain analogy applied to noise prediction from rotating blades

    Science.gov (United States)

    Fedala, D.; Kouidri, S.; Rey, R.

    2009-04-01

    Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.

  13. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam

    2012-09-13

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  14. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam; Zygalakis, Konstantinos C.

    2012-01-01

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  15. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2016-01-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute

  16. Numerical Simulation and Experimental Study of Deep Bed Corn Drying Based on Water Potential

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2015-01-01

    Full Text Available The concept and the model of water potential, which were widely used in agricultural field, have been proved to be beneficial in the application of vacuum drying model and have provided a new way to explore the grain drying model since being introduced to grain drying and storage fields. Aiming to overcome the shortcomings of traditional deep bed drying model, for instance, the application range of this method is narrow and such method does not apply to systems of which pressure would be an influential factor such as vacuum drying system in a way combining with water potential drying model. This study established a numerical simulation system of deep bed corn drying process which has been proved to be effective according to the results of numerical simulation and corresponding experimental investigation and has revealed that desorption and adsorption coexist in deep bed drying.

  17. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  18. Retrospective study of thyroid cancer treatment: aims and data

    International Nuclear Information System (INIS)

    Vosmikova, K.; Hermanska, J.; Jirsa, L.; Karny, M.; Samal, M.

    1998-01-01

    Although opinions preferring individual administration of activity in the treatment of thyroid cancer with 131 I predominate, sufficient quantitative arguments in favor of this approach are unavailable as yet. Therefore, a retrospective study involving statistical processing was proposed with the aim to evaluate the relations between available data of the patients and success of treatment. Ideally, recommendations regarding activity to be administered in dependence on the biophysical status of the patient should emerge from the study

  19. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  20. The measurement of statistical reasoning in verbal-numerical and graphical forms: a pilot study

    International Nuclear Information System (INIS)

    Agus, M; Penna, M P; Peró-Cebollero, M; Guàrdia-Olmos, J

    2013-01-01

    Numerous subjects have trouble in understanding various conceptions connected to statistical problems. Research reports how students' ability to solve problems (including statistical problems) can be influenced by exhibiting proofs. In this work we aim to contrive an original and easy instrument able to assess statistical reasoning on uncertainty and on association, regarding two different forms of proof presentation: pictorial-graphical and verbal–numerical. We have conceived eleven pairs of simple problems in the verbal–numerical and pictorial–graphical form and we have presented the proofs to 47 undergraduate students. The purpose of our work was to evaluate the goodness and reliability of these problems in the assessment of statistical reasoning. Each subject solved each pair of proofs in the verbal-numerical and in the pictorial–graphical form, in different problem presentation orders. Data analyses have highlighted that six out of the eleven pairs of problems appear to be useful and adequate to estimate statistical reasoning on uncertainty and that there is no effect due to the order of presentation in the verbal–numerical and pictorial–graphical form

  1. Numerical study of the aerodynamics of sound sources in a bass-reflex port

    Directory of Open Access Journals (Sweden)

    V.M. Garcia-Alcaide

    2017-01-01

    Full Text Available The aim of this paper is to study the aerodynamics phenomena of a bass-reflex port that causes noise in the audible frequency range. After discarding structural and mechanical vibration issues, the hypothesis considered is that vortex shedding is the source of the noise. Experimental and numerical evidences of the vortex, an analysis of its noise and the similarities between real and simulated performance are presented. The numerically simulated cases with the original geometry are excited at different frequencies and with modifications of the port geometry. Likewise, the internal performance of an enclosure with a closed port was simulated. The simulations have been performed with axisymmetrical geometries using the open-source OpenFOAM® toolbox. Moreover, experimental measurements were carried out. First, acoustic signal experiments were done to analyse the response of the bass-reflex ports. Secondly, a structure vibration measurement was conducted in order to exclude the cabinet structure vibration as a source of the noise in question. A good agreement was found between numerical and experimental results, especially in the frequency band of the detected noise, i.e. the 1000–1500 Hz range. Despite no remarkable improvement being made with the geometry changes explored, the presented CFD approach has proved a useful and cost-effective tool to address this kind of phenomenon.

  2. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.

    Directory of Open Access Journals (Sweden)

    Tim Wehner

    Full Text Available Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE models. This yielded values for Young's moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and

  3. A numerical and experimental study of stress and crack development in kiln-dried wood

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2012-01-01

    Numerical and experimental investigations were carried out on well defined log-disc samples of Norway spruce consisting of both heartwood and sapwood, with the aim of gaining more adequate knowledge of stress and fracture generation during the drying process. Use of thin discs enabled a well-controlled...... and simplified drying history of the samples to be obtained. Experiments supported by the numerical model showed the heartwood to dry below the fibre saturation point, much earlier than the sapwood, and thus to start shrinking at a much earlier stage....

  4. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Park, Joo Hwan

    2010-09-01

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect numerical computations on the detailed shape of rod bundle due to challenges with computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers and bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve complex geometry such as a fuel rod bundle. Before applying a solution to the problem of the 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to simple geometry. The split channel method has been proposed with the aim of computing the fully shaped CANDU fuel channel with detailed components. The validity was tested by applying the method to the single channel problem. The average temperature have similar values for the considered two methods, while the local temperature shows a slight difference by the effect of conduction heat transfer in the solid region of a rod. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for future work

  5. Guadalupe River, California, Sedimentation Study. Numerical Model Investigation

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2002-01-01

    A numerical model study was conducted to evaluate the potential impact that the Guadalupe River flood-control project would have on channel stability in terms of channel aggradation and degradation...

  6. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part I Analysis and Validation

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid has been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phases. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows using an Eulerian two-fluid model with RNG based k-emodel as the turbulent closure. An additional kinetic energy equation to better represent the combined fluid-particle behaviour is also employed in the current set of simulations. In the first part of this two part series, experimental results of Fessler and Eaton (1995 for Gas-Particle (GP flow and that of Founti and Klipfel (1998 for Liquid-Particle (LP flow have been compared and analysed. This forms the basis of the current study which aims to look at the particulate behaviour under the influence of two carrier phases. Further numerical simulations were carried out to test whether the current numerical formulation can used to simulate these varied type of flows and the same were validated against the experimental data of both GP as well LP flow. Qualitative results have been obtained for both these classes of flows with their respective experimental data both at the mean as well as at the turbulence level for carrier as well as the dispersed phases.

  7. Numerical study of effect of oxygen fraction on local entropy ...

    Indian Academy of Sciences (India)

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  8. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  9. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Bae, Jun Ho; Park, Joo Hwan

    2010-01-01

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect the detailed shape of rod bundle on the numerical computation due to a lot of computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers, bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve the complex geometry such as a fuel rod bundle. In front of applying the method to the problem of 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to the simple geometry. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for the future works

  10. A review of intervention studies aimed at household energy conservation

    NARCIS (Netherlands)

    Abrahamse, W; Steg, L; Vlek, C; Rothengatter, T; Rothengatter, J.A.

    This article reviews and evaluates the effectiveness of interventions aiming to encourage households to reduce energy consumption. Thirty-eight studies performed within the field of (applied) social and environmental psychology are reviewed, and categorized as involving either antecedent strategies

  11. Numerical and Experimental Study of Pump Sump Flows

    Directory of Open Access Journals (Sweden)

    Wei-Liang Chuang

    2014-01-01

    Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.

  12. Numerical study of jets secondary instabilities

    International Nuclear Information System (INIS)

    Brancher, Pierre

    1996-01-01

    The work presented in this dissertation is a contribution to the study of the transition to turbulence in open shear flows. Results from direct numerical simulations are interpreted within the framework of hydrodynamic stability theory. The first chapter is an introduction to the primary and secondary instabilities observed in jets and mixing layers. The numerical method used in the present study is detailed in the second chapter. The dynamics of homogeneous circular jets subjected to stream wise and azimuthal perturbations are investigated in the third chapter. A complete scenario describing the evolution of the jet is proposed with emphasis on the dynamics of vorticity within the flow. In the fourth chapter a parametric study reveals a three-dimensional secondary instability mainly controlled in the linear regime by the Strouhal number of the primary instability. In the nonlinear regime the dynamics of the azimuthal harmonies are described by means of model equations and are linked to the formation of stream wise vortices in the braid. The fifth chapter is dedicated to the convective or absolute nature of the secondary instabilities in plane shear layers. It is shown that there are flow configurations for which the two-dimensional secondary instability (pairing) is absolute even though the primary instability (Kelvin-Helmholtz) is convective. Some preliminary results concerning the three-dimensional secondary instabilities arc presented at the end of this chapter. The last chapter summarizes the main results and examines possible extensions of this work. (author) [fr

  13. Numerical and Experimental Studies of Transient Natural Convection with Density Inversion

    Science.gov (United States)

    Mizutani, Satoru; Ishiguro, Tatsuji; Kuwahara, Kunio

    1996-11-01

    In beer manufacturing process, we cool beer in storage tank down from 8 to -1 ^circC. The understanding of cooling process is very important for designing a fermentation tank. In this paper, flow and temperature distribution in a rectangular enclosure was studied. The unsteady incompressible Navier-Stokes equations were integrated by using the multi-directional third-order upwind finite difference method(MUFDM). A parabolic density-temperature relationship was assumed in water which has the maximum density at 3.98 ^circC. Cooling down from 8 to 0 ^circC of water in 10 cm cubical enclosure (Ra=10^7) was numerically done by keeping a vertical side wall at 0 ^circC. Vortex was caused by density inversion of water which was cooled bellow 4 ^circC, and it rose near the cold wall and reached water surface after 33 min from the start of cooling. Finally, cooling proceeded from upper surface. At the aim of verifing the accuracy of the numerical result, temperature distribution under the same condition was experimentally visualized using temperature sensitive liquid crystal. The results will be presented by using video movie. Comparison between the computation and the experiment showed that the present direct simulation based on the MUFDM was powerful tool for the understanding of the natural convection with density inversion and the application of cooling phenomenon to the design of beer storage tanks.

  14. A numerical study on the mechanical properties and the processing behaviour of composite high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Muenstermann, Sebastian [RWTH Aachen (Germany). Dept. of Ferrous Metallurgy; Vajragupta, Napat [RWTH Aachen (Germany). Materials Mechanics Group; Weisgerber, Bernadette [ThyssenKrupp Steel Europe AG (Germany). Patent Dept.; Kern, Andreas [ThyssenKrupp Steel Europe AG (Germany). Dept. of Quality Affairs

    2013-06-01

    The demand for lightweight construction in mechanical and civil engineering has strongly promoted the development of high strength steels with excellent damage tolerance. Nowadays, the requirements from mechanical and civil engineering are even more challenging, as gradients in mechanical properties are demanded increasingly often for components that are utilized close to the limit state of load bearing capacity. A metallurgical solution to this demand is given by composite rolling processes. In this process components with different chemical compositions were jointed, which develop after heat treatment special properties. These are actually evaluated in order to verify that structural steels with the desired gradients in mechanical properties can be processed. A numerical study was performed aiming to numerically predict strenght and toughness properties, as well as the procesing behaviour using Finite Element (FE) simulations with damage mechanics approaches. For determination of mechanical properties, simulations of tensile specimen, SENB sample, and a mobile crane have been carried out for different configurations of composite rolled materias out of high strebght structural steels. As a parameter study, both the geometrical and the metallurgical configurations of the composite rolled steels were modified. Thickness of each steel layer and materials configuration have been varied. Like this, a numerical procedure to define optimum tailored configurations of high strenght steels could be established.

  15. Numerical simulation support to the ESA/THOR mission

    Science.gov (United States)

    Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.

    2016-12-01

    THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence

  16. Numerical study of a hybrid jet impingement/micro-channel cooling scheme

    International Nuclear Information System (INIS)

    Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes

    2012-01-01

    A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.

  17. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  18. Analytical and numerical studies of creation probabilities of hierarchical trees

    Directory of Open Access Journals (Sweden)

    S.S. Borysov

    2011-03-01

    Full Text Available We consider the creation conditions of diverse hierarchical trees both analytically and numerically. A connection between the probabilities to create hierarchical levels and the probability to associate these levels into a united structure is studied. We argue that a consistent probabilistic picture requires the use of deformed algebra. Our consideration is based on the study of the main types of hierarchical trees, among which both regular and degenerate ones are studied analytically, while the creation probabilities of Fibonacci, scale-free and arbitrary trees are determined numerically.

  19. Numerical study of thermal test of a cask of transportation for radioactive material

    International Nuclear Information System (INIS)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E.

    2017-01-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations

  20. Study on the groundwater sustainable problem by numerical ...

    Indian Academy of Sciences (India)

    Pengpeng Zhou

    2017-10-07

    Oct 7, 2017 ... system in Zhanjiang, China, this paper presents a numerical modelling study to research groundwater sustainability of ... bility is a feasible method for solving the sus- ...... Singh A 2010 Decision support for on-farm water man-.

  1. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    DEFF Research Database (Denmark)

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid......, alternative end products - ethanol, acetic acid and formic acid - are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food...

  2. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Science.gov (United States)

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  3. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  4. Numerical study on discharge process of microcavity plasma

    International Nuclear Information System (INIS)

    Xia Guangqing; Xue Weihua; Wang Dongxue; Zhu Guoqiang; Zhu Yu

    2012-01-01

    The evolution of plasma parameters during high pressure discharge in the microcavity with a hollow anode was numerically studied, with a two-dimensional self-consistent fluid model. The simulations were performed with argon at 13.3 kPa. The numerical results show that during the discharge the electric field around the cathode transforms from an axial field to a radial field, the plasma density gets the maximum value on the central line of the cavity and the location of the maximum density moves from the region near anode at the initial stage to the cathode vicinity at the stable stage, and the maximum electron temperature occurs in the ring sheath of cathode. (authors)

  5. Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding

    International Nuclear Information System (INIS)

    Borel, Damien

    2013-01-01

    The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)

  6. Numerical simulation of gas metal arc welding parametrical study

    International Nuclear Information System (INIS)

    Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.

    2002-01-01

    The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW

  7. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  8. Numerical studies on divertor experiments

    International Nuclear Information System (INIS)

    Ueda, N.; Itoh, K.; Itoh, S.-I.; Tanaka, M.; Hasegawa, M.; Shoji, T.; Sugihara, M.

    1988-04-01

    Numerical analysis on the divertor experiments such as JFT-2M tokamak is made by use of the two-dimensional time-dependent simulation code. The plasma in the scrape-off layer (SOL) and divertor region is solved for the given particle and heat sources from the main plasma, Γ p and Q T . Effect of the direction of the toroidal magnetic field is studied. It is found that the heat flux which is proportional to b vector x ∇T i has influences on the divertor plasmas, but has a small effect on the parameters on the midplane in the framework of the fluid model. Parameter survey on Γ p and Q T is made. The transient response of the SOL/divertor plasma to the sudden change of Γ p and Q T is studied. Time delay in the SOL and divertor region is calculated. (author)

  9. Numerical and experimental studies of droplet-gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Joesang, Aage Ingebret

    2002-07-01

    This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational

  10. The Adriatic response to the bora forcing. A numerical study

    International Nuclear Information System (INIS)

    Rachev, N.

    2001-01-01

    This paper deals with the bora wind effect on the Adriatic Sea circulation as simulated by a 3-D numerical code (the DieCAST model). The main result of this forcing is the formation of intense upwelling along the eastern coast in agreement with previous theoretical studies and observations. Different numerical experiments are discussed for various boundary and initial conditions to evaluate their influence on both circulation and upwelling patterns

  11. Experimental and numerical study of an autonomous flap

    NARCIS (Netherlands)

    Bernhammer, L.O.; Navalkar, S.T.; Sodja, J.; De Breuker, R.; Karpel, M.

    2015-01-01

    This paper presents the experimental and numerical study of an autonomous load alleviation concept using trailing edge flaps. The flaps are autonomous units, which for instance can be used for gust load alleviation. The unit is self-powered and self-actuated through trailing edge tabs which are

  12. Biofouling in forward osmosis systems: An experimental and numerical study.

    Science.gov (United States)

    Bucs, Szilárd S; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2016-12-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard

    2016-09-20

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. © 2016 Elsevier Ltd

  14. Analytical and Numerical Studies of Sloshing in Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Solaas, F

    1996-12-31

    For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.

  15. Analytical and Numerical Studies of Sloshing in Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Solaas, F.

    1995-12-31

    For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.

  16. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  17. On the Numerical and Experimental Study of Spray Cooling

    Directory of Open Access Journals (Sweden)

    M.R. Guechi

    2013-12-01

    Full Text Available The spraying of an impinging jet is an effective way to cool heated surfaces. The objective of this study is to develop a numerical model to predict the heat transfer with phase change between a hot plate surface and a two-phase impinging jet. Different two-phase modeling approaches (Lagrangian and Eulerian methods are compared. The influence of the spray nozzle operating conditions and of the distance between the nozzle exit and the surface impact is analyzed. The numerical results are compared with measurements obtained on an experimental test bench. The confrontation numerical/experimental is carried out by comparing the distribution of temperature at the surface of the plate and the heat transfer coefficient. This comparison shows that it is the Eulerian model which seems most capable to take into account the evaporation of the droplets in contact with the heated plate. However, the simulation performed with this model show a strong dependence of the results to the turbulence model used.

  18. NUMERICAL SIMULATION OF ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM AND STUDY OF APPROACH BASED ON FINITE VOLUME METHOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Sherina

    2014-01-01

    Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.

  19. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  20. Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation

    Science.gov (United States)

    Wardhani, Puteri Kusuma; Watanabe, Masaji

    2016-02-01

    The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.

  1. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  2. Experimental and numerical study of the migration of gas bubbles through an interface between two liquids

    International Nuclear Information System (INIS)

    Bonhomme, R.

    2012-01-01

    In order to predict the evolution of a hypothetical accident in pressurized water nuclear reactors, this study aims to understand the dynamics of gas bubbles ascending in a stratified mixture made of two superimposed liquids. To this aim, an experimental device equipped with two high-speed video cameras was designed, allowing us to observe isolated air bubbles and bubble trains crossing a horizontal interface separating two Newtonian immiscible liquids initially at rest. The size of the bubbles and the viscosity contrast between the two liquids were varied by more than one and four orders of magnitude respectively, making it possible to observe a wide variety of flow regimes. In some situations, small millimetric bubbles remain trapped at the liquid-liquid interface, whereas larger bubbles succeed in crossing the interface and tow a significant column of lower fluid behind them. After the influence of the physical parameters was qualitatively established thanks to simple models, direct numerical simulations of several selected experimental situations were performed with two different approaches. These are both based on the incompressible Navier-Stokes equations, one making use of an interface capturing technique, the other of a diffuse Cahn-Hilliard description. Comparisons between experimental and numerical results confirmed the reliability of the computational approaches in most situations but also highlighted the need for improvements to capture small-scale physical phenomena especially those related to film drainage. (author)

  3. The Use of Numerical Applications in the Study of Dental Contacts

    Directory of Open Access Journals (Sweden)

    Rodica LUCA

    2010-06-01

    Full Text Available This paper seeks to explore the numerical analysis methods used in dentistry in general and those regarding teeth contacts, in particular. Typically, such an analysis consists of the following steps: modelling the actual object, mesh generation, numerical modelling and computer programming. The best known and mostly used of all is the finite element method. The paper also presents other more refined methods, for instance: CATIA and fast Fourier transform. The study of the living tissue based on numerical analysis exceeds the limitations of in vivo experiments but computers can never replicate the body adaptation capacity.

  4. Numerical model for the thermal behavior of thermocline storage tanks

    Science.gov (United States)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  5. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  6. Numerical study of turbulent diffusion

    International Nuclear Information System (INIS)

    McCoy, M.G.

    1975-01-01

    The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested

  7. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  8. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  9. Numerical and experimental study of two turbulent opposed plane jets

    Energy Technology Data Exchange (ETDEWEB)

    Besbes, Sonia; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, UNIMECA, Technopole de Chateau-Gombert, 60 rue Joliot-Curie, 13453 Marseille (France)

    2003-09-01

    The turbulent interaction between two opposed plane jets separated by a distance H is experimentally studied by using a PIV (Particle Image Velocimetry) method and numerically investigated by means of a finite volume code. Two turbulence models have been tested: the standard k-{epsilon} model and a second-order model. The validation of the numerical study was performed by comparing the results with experimental data obtained for the case of two interacting opposed jets at ambient temperature (isothermal case). The effect of the angle of inclination of the jets is studied. Conclusions of the validation are then used to study the interaction between two jets, one being maintained at ambient temperature whereas the other is heated. Results show that the stagnation point moves towards the heated jet. It is shown that the heating induces a stabilizing effect on the flow. (orig.)

  10. Assessing mental stress from the photoplethysmogram: a numerical study

    Science.gov (United States)

    Charlton, Peter H; Celka, Patrick; Farukh, Bushra; Chowienczyk, Phil; Alastruey, Jordi

    2018-01-01

    Abstract Objective: Mental stress is detrimental to cardiovascular health, being a risk factor for coronary heart disease and a trigger for cardiac events. However, it is not currently routinely assessed. The aim of this study was to identify features of the photoplethysmogram (PPG) pulse wave which are indicative of mental stress. Approach: A numerical model of pulse wave propagation was used to simulate blood pressure signals, from which simulated PPG pulse waves were estimated using a transfer function. Pulse waves were simulated at six levels of stress by changing the model input parameters both simultaneously and individually, in accordance with haemodynamic changes associated with stress. Thirty-two feature measurements were extracted from pulse waves at three measurement sites: the brachial, radial and temporal arteries. Features which changed significantly with stress were identified using the Mann–Kendall monotonic trend test. Main results: Seventeen features exhibited significant trends with stress in measurements from at least one site. Three features showed significant trends at all three sites: the time from pulse onset to peak, the time from the dicrotic notch to pulse end, and the pulse rate. More features showed significant trends at the radial artery (15) than the brachial (8) or temporal (7) arteries. Most features were influenced by multiple input parameters. Significance: The features identified in this study could be used to monitor stress in healthcare and consumer devices. Measurements at the radial artery may provide superior performance than the brachial or temporal arteries. In vivo studies are required to confirm these observations. PMID:29658894

  11. Experimental and numerical study of the flow field around a small car

    Directory of Open Access Journals (Sweden)

    Dobrev Ivan

    2017-01-01

    Full Text Available This paper presents the aerodynamic study of a small car, which participated in Shell Ecomarathon Europe competition in the Urban Concept Hydrogen class. The goal is to understand the flow field around the vehicle. First, the flow is studied numerically using computational aerodynamics. The numerical simulation is carried out by means of CFD Fluent in order to obtain the drag force experienced by the vehicle and also the flow field. Then the flow field around the car is studied in a wind tunnel by means of particle image velocimetry (PIV. The comparison of the flow fields obtained numerically and experimentally shows good correspondence. The obtained results are very helpful for future car development and permit to improve the drag and to obtain a good stability.

  12. A numerical study on RCCI engine fueled by biodiesel/methanol

    International Nuclear Information System (INIS)

    Zhou, D.Z.; Yang, W.M.; An, H.; Li, J.; Shu, C.

    2015-01-01

    Highlights: • Numerical study is done to investigate RCCI engine fueled by biodiesel/methanol. • A new biodiesel/methanol dual-fuel chemical reaction mechanism is developed. • Engine performance is improved with fuel reactivity stratification formed. • Soot and NO x significant reduce with methanol induction and fuel reactivity stratification. - Abstract: A 3-D numerical simulation platform based on the KIVA4-CHEMKIN code was constructed by incorporating a newly developed skeletal chemical kinetics mechanism to study the reactivity controlled compression ignition (RCCI) engine performance, combustion and emission characteristics. In the present study, methanol is assumed to be induced into the engine through the intake port, while biodiesel is directly injected into the engine by the end of the compression stroke. The skeletal biodiesel and methanol dual fuel chemical reaction mechanism coupled with CO, NO x and soot formation mechanisms was developed and validated by comparing the ignition delay predicted by the developed mechanism with that of the detailed biodiesel and methanol mechanisms, and also by comparing the simulation results of KIVA-CHEMKIN with the experimental results under different engine operating conditions. A good agreement has been achieved in terms of ignition delay, in-cylinder pressure and heat release rate (HRR). The methanol mass fraction was varied from 0% to 80% at an interval of 20% to form different reactivity stratification. Simulation results revealed that under 10% load conditions, the increasing methanol reduced the peak pressure and heat release rate, whereas under 50% and 100% loads, the peak pressure both appeared at 60% methanol induction. Also, the reactivity distribution and ringing intensity were discussed, aiming at investigating the fuel gradient effects and knocking level, respectively. For the emissions, a general decreasing trend on CO emission was observed at both 50% and 100% loads while at 10% load, a slight

  13. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  14. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics

    KAUST Repository

    Sparber, Christof; Markowich, Peter; Huang, Zhongyi

    2010-01-01

    We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.

  15. Numerical study of dense adjoint 2-color matter

    International Nuclear Information System (INIS)

    Hands, S.; Scorzato, L.; Oevers, M.

    2000-11-01

    We study the global symmetries of SU(2) gauge theory with N flavors of staggered fermions in the presence of a chemical potential. We motivate the special interest of the case N=1 (staggered) with fermions in the adjoint representation of the gauge group. We present results from numerical simulations with both hybrid Monte Carlo and the two-step multi-bosonic algorithm. (orig.)

  16. Numerical study of cosmic censorship in string theory

    International Nuclear Information System (INIS)

    Gutperle, Michael; Kraus, Per

    2004-01-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  17. Numerical study of cosmic censorship in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Gutperle, Michael E-mail: gutperle@physics.ucla.edu; Kraus, Per

    2004-04-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  18. Numerical and experimental study of bistable plates for morphing structures

    Science.gov (United States)

    Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.

    2017-04-01

    This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.

  19. R. S. Peters and J. H. Newman on the Aims of Education

    Science.gov (United States)

    Ozolins, Janis T.

    2013-01-01

    R. S. Peters never explicitly talks about wisdom as being an aim of education. He does, however, in numerous places, emphasize that education is of the whole person and that, whatever else it might be about, it involves the development of knowledge and understanding. Being educated, he claims, is incompatible with being narrowly specialized.…

  20. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor

    2015-01-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  1. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  2. F.B.R. Core mock-up RAPSODIE - II - numerical models

    International Nuclear Information System (INIS)

    Brochard, D.; Hammami, L.; Gantenbein, F.

    1990-01-01

    To study the behaviour of LMFBR cores excited by a seism, tests have been performed on the RAPSODIE core mock-up. The aim of this paper is to present the numerical models used to interprete these tests and the comparisons between calculations and experimental results

  3. Numerical studies of film formation in context of steel coating

    Science.gov (United States)

    Aniszewski, Wojciech; Zaleski, Stephane; Popinet, Stephane

    2017-11-01

    In this work, we present a detailed example of numerical study of film formation in the context of metal coating. Liquid metal is drawn from a reservoir onto a retracting solid sheet, forming a coating film characterized by phenomena such as longitudinal thickness variation (in 3D) or waves akin to that predicted by Kapitza and Kapitza (visible in two dimensions as well). While the industry standard configuration for Zinc coating is marked by coexistence of medium Capillary number (Ca = 0.03) and film Reynolds number above 1000, we present also parametric studies in order to establish more clearly to what degree does the numerical method influence film regimes obtained in the target configuration. The simulations have been performed using Basilisk, a grid-adapting, strongly optimized code derived from Gerris . Mesh adaptation allows for arbitrary precision in relevant regions such as the contact line or the meniscus, while a coarse grid is applied elsewhere. This adaptation strategy, as the results indicate, is the only realistic approach for numerical method to cover the wide range of necessary scales from the predicted film thickness (hundreds of microns) to the domain size (meters).

  4. Excel spreadsheet in teaching numerical methods

    Science.gov (United States)

    Djamila, Harimi

    2017-09-01

    One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.

  5. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  6. Evaluation and Visualization of Surface Defects - a Numerical and Experimental Study on Sheet-Metal Parts

    International Nuclear Information System (INIS)

    Andersson, A.

    2005-01-01

    The ability to predict surface defects in outer panels is of vital importance in the automotive industry, especially for brands in the premium car segment. Today, measures to prevent these defects can not be taken until a test part has been manufactured, which requires a great deal of time and expense. The decision as to whether a certain surface is of acceptable quality or not is based on subjective evaluation. It is quite possible to detect a defect by measurement, but it is not possible to correlate measured defects and the subjective evaluation. If all results could be based on the same criteria, it would be possible to compare a surface by both FE simulations, experiments and subjective evaluation with the same result.In order to find a solution concerning the prediction of surface defects, a laboratory tool was manufactured and analysed both experimentally and numerically. The tool represents the area around a fuel filler lid and the aim was to recreate surface defects, so-called 'teddy bear ears'. A major problem with the evaluation of such defects is that the panels are evaluated manually and to a great extent subjectivity is involved in the classification and judgement of the defects. In this study the same computer software was used for the evaluation of both the experimental and the numerical results. In this software the surface defects were indicated by a change in the curvature of the panel. The results showed good agreement between numerical and experimental results. Furthermore, the evaluation software gave a good indication of the appearance of the surface defects compared to an analysis done in existing tools for surface quality measurements. Since the agreement between numerical and experimental results was good, this indicates that these tools can be used for an early verification of surface defects in outer panels

  7. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    FAROUK TAHROUR

    2015-11-01

    Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.

  8. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    International Nuclear Information System (INIS)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-01-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall

  9. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    Science.gov (United States)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-07-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards [1]. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards [1] seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall.

  10. Numerical study of two dimensional disordered systems in an external magnetic field

    International Nuclear Information System (INIS)

    Jana, Debnarayan

    2000-01-01

    We study here 2d tight-binding disordered model in an external magnetic field. By numerically diagonalizing the Hamiltonian, we characterize the eigenstates by Generalized Inverse Participation Ratio (GIPR). The properties of the eigenstates have been studied in case of random flux model as well as with the strength of disorder. Simple theoretical arguments are given in support of the numerical observation. Finally, we have also studied the multifractality of the eigenstates. All these study may shed light on the eigenstates in the center of the band in case of Integer Quantum Hall Effect (IQHE). (author)

  11. Numerical studies of unsteady coherent structures and transport in two-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Hesthaven, J.S.

    1995-08-01

    The dynamics of unsteady two-dimensional coherent structures in various physical systems is studied through direct numerical solution of the dynamical equations using spectral methods. The relation between the Eulerian and the Lagrangian auto-correlation functions in two-dimensional homogeneous, isotropic turbulence is studied. A simple analytic expression for the Eulerian and Lagrangian auto-correlation function for the fluctuating velocity field is derived solely on the basis of the one-dimensional power spectrum. The long-time evolution of monopolar and dipolar vortices in anisotropic systems relevant for geophysics and plasma physics is studied by direct numerical solution. Transport properties and spatial reorganization of vortical structures are found to depend strongly on the initial conditions. Special attention is given to the dynamics of strong monopoles and the development of unsteady tripolar structures. The development of coherent structures in fluid flows, incompressible as well as compressible, is studied by novel numerical schemes. The emphasis is on the development of spectral methods sufficiently advanced as to allow for detailed and accurate studies of the self-organizing processes. (au) 1 ill., 94 refs.

  12. A student's guide to numerical methods

    CERN Document Server

    Hutchinson, Ian H

    2015-01-01

    This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introdu...

  13. The role of similarity in updating numerical information in working memory: decomposing the numerical distance effect.

    Science.gov (United States)

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa

    2014-01-01

    The present study investigates the process of updating representations in working memory (WM) and how similarity between the information involved influences this process. In WM updating tasks, the similarity in terms of numerical distance between the number to be substituted and the new one facilitates the updating process. We aimed to disentangle the possible effect of two dimensions of similarity that may contribute to this numerical effect: numerical distance itself and common digits shared between the numbers involved. Three experiments were conducted in which different ranges of distances and the coincidence between the digits of the two numbers involved in updating were manipulated. Results showed that the two dimensions of similarity had an effect on updating times. The greater the similarity between the information maintained in memory and the new information that substituted it, the faster the updating. This is consistent both with the idea of distributed representations based on features, and with a selective updating process based on a feature overwriting mechanism. Thus, updating in WM can be understood as a selective substitution process influenced by similarity in which only certain parts of the representation stored in memory are changed.

  14. Experimental/numerical acoustic correlation of helicopter unsteady MANOEUVRES

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Hartjes, S.; Scandroglio, Alessandro; Riviello, Luca; Paolone, Enrico

    2016-01-01

    This paper presents one of the main objective of WP1 of Clean Sky GRC5 MANOEUVRES project, which consists in the correlation of ground noise data measured during flight tests, with numerical predictions obtained by a numerical process aimed at the analysis of the acoustic field emitted by

  15. Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Youngin; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer.

  16. Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Youngin; Kim, Keung Koo

    2014-01-01

    In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer

  17. Numerical Study of Focusing Effects of Microwaves inside Wood Due to Timber Ring Structure

    Directory of Open Access Journals (Sweden)

    Rocio Sanchez-Montero

    2018-02-01

    Full Text Available The aim of this study is the detailed calculation of microwave propagation inside raw timber in cylindrical configurations. Two different approaches have been used. The first one uses an exact formulation and analytical approximations in order to explore the electromagnetic field distribution inside dry wood. The introduction of conductivity in the exact model makes it so complex that the equations are unsuitable for analytical manipulation. In order to further explore the effect of moisture in cylindrical wood structures, a full scale numerical simulation using commercial software has been performed. The results show that for microwave frequencies in the 3 GHz range and for typical wood parameters, a cylindrical log behaves as a kind of Fresnel lens. This work has important applications in microwave treatment and sensing of wood.

  18. Numerical study of the propagation of high power microwave pulses in air breakdown environment

    International Nuclear Information System (INIS)

    Kim, J.; Kuo, S.P.

    1992-01-01

    A theoretical model based on a set of two modal equations has been developed to describe self-consistently the propagation of an intense microwave pulse in an air breakdown environment. It includes Poynting's equation for the continuity of the power flux of the pulse and the rate equation of the electron density. A forward wave approximation is used to simplify Poynting's equation and a semi-empirical formula for the ionization frequency as a function of the wave field amplitude is adopted for this model. In order to improve the numerical efficiency of the model in terms of the required computation time and available subroutines for numerical analysis of pulse propagation over a long distance, a transformation to the frame of local time of the pulse is introduced. The effect of space-time dependence of the group velocity of the pulse is included in this properly designed transformation. The inhomogeneous feature of the background pressure is also preserved in the model. The resultant equations are reduced to the forms which can be solved directly by the available subroutine of ODE solver. In this work, a comprehensive numerical analysis of the propagation of high power microwave pulse through the atmosphere is performed. It is shown that the pulse energy can severely be attenuated by the self-generated plasma. Therefore, the aim of the present study is to identify the optimum parameters of the pulse so that the energy loss of the pulse before reaching the destination can be minimized. These parameters include the power, frequency, shape and length of the pulse. The conditions for maximizing the ionization at a destinated region in the upper atmosphere will also be determined

  19. Numerical analysis of data in dynamic function studies

    International Nuclear Information System (INIS)

    Riihimaeki, E.

    1975-01-01

    Relations between tracer theories, models for organ function and the numerical solution of parameters from tracer experiments are reviewed. A unified presentation is given in terms of systems theory. Dynamic tracer studies should give the flow and volume of the tracer and, possibly, indications of the internal structure of the organ studied. Proper program writing will facilitate the exchange of the programs between the users and thereby avoid duplication of effort. An important attribute in this respect is machine independence of the programs which is achieved by the use of a high-level language. (author)

  20. Numerical Study of Thermal Stresses for the Semiconductor CdZnTe in Vertical Bridgman

    OpenAIRE

    Jamai , Hanen; El Ganaoui , M.; Sammouda , Habib; Pateyron , Bernard

    2015-01-01

    International audience; The aim of this work is to present a numerical simulation of thermal stress in directional solidification of CdZnTe in vertical Bridgman apparatus. Especial attention will be attributed to show the importance of cooling temperature and time's growth affecting the thermal stress. Furthermore, we will focus on investigating the thermal stress' components and their distribution in crystal, which gives a detailed about the stress distribution and consequently on the distri...

  1. Pilot Study for Managing Complex Chronic Care Medicaid Patients With Diabetes Using a Mobile Health Application Achieves "Triple Aim" Improvement in a Primary Care Setting.

    Science.gov (United States)

    Bovbjerg, Marit L; Lee, Jenney; Wolff, Rosa; Bangs, Bobby; May, Michael A

    2017-10-01

    IN BRIEF Cost-effective innovations to improve health and health care in patients with complex chronic diseases are urgently needed. Mobile health (mHealth) remote monitoring applications (apps) are a promising technology to meet this need. This article reports on a study evaluating patients' use of a tablet device with an mHealth app and a cellular-enabled glucose meter that automatically uploaded blood glucose values to the app. Improvements were observed across all three components of the Patient Protection and Affordable Care Act's "triple aim." Self-rated wellness and numerous quality-of-care metrics improved, billed charges and paid claims decreased, but no changes in clinical endpoints were observed.

  2. Numerical study of ion thermal gradient driven modes

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Samain, A.

    1987-01-01

    Anomalous ion thermal confinement has been observed in tokamaks (1). The ion temperature gradient driven modes could provide a possible explanation of this fact. The goal of this paper is to examine the stability of such modes by a linear, analytical and numerical study. The value of the threshold parameter and the radial profiles of the modes are computed. The effects of the particles vertical drift due to the field curvature are discussed

  3. Mathematical study and numerical simulations of bi-kinetic plasma sheaths

    International Nuclear Information System (INIS)

    Badsi, Mehdi

    2016-01-01

    This thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampere systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambi-polarity. Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambi-polarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampere system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field. We determine incoming particles distributions and a wall potential so that the ambi-polarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results. (author)

  4. Experimental and numerical study of light gas dispersion in a ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Gelain, Thomas, E-mail: thomas.gelain@irsn.fr; Prévost, Corinne

    2015-11-15

    Highlights: • Presentation of many experimental local data for different configurations. • Highlight of the influence of numerical parameters used in the CFD code. • Validation of the CFD code ANSYS CFX on the basis of experimental data. - Abstract: The objective of this study is to validate the ANSYS CFX version 12 computational code on the basis of light gas dispersion tests performed in two ventilated rooms. It follows an initial study on heavy gas dispersion carried out by Ricciardi et al. (2008). First, a study of sensitivity to various numerical parameters allows a set of reference data to be developed and the influence of the numerical scheme of advection to be revealed. Second, two helium (simulating hydrogen) dispersion test grids are simulated for the two rooms studied, and the results of the calculations are compared with experimental results. The very good agreement between these results allows the code and its dataset to be validated for this application. In future, a study with higher levels of helium (on the order of 4% vol at equilibrium) is envisaged in the context of safety analyses related to the hydrogen risk, these levels representing the lower explosive limit (LEL) of hydrogen.

  5. Experimental and numerical study of a printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Shi, Shanbin; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • A dynamic model is developed for transient analysis of the straight-channel PCHE. • Transient scenarios of the straight-channel PCHE subject to helium temperature and mass flow rate variations are numerically investigated. • Steady-state temperature distribution inside the straight-channel PCHE is obtained in calculation. • Experiments are conducted to study the dynamic behavior of the straight-channel PCHE. - Abstract: Printed circuit heat exchangers (PCHEs) are promising to be employed in very-high-temperature gas-cooled reactors (VHTRs) due to their high robustness for high-temperature, high-pressure applications and high compactness. PCHEs typically serve as intermediate heat exchangers (IHXs) that isolate the secondary loop from the reactor’s primary system and hence must be sufficiently robust to maintain the system integrity during normal and off-normal conditions. In addition, the performance of the PCHE-type IHX could considerably affect the nuclear power plant overall operation since any transients on the secondary side would be propagated back to the reactor’s primary coolant system via the IHX. It is therefore imperative to understand how the PCHE would dynamically respond to a variety of transients. In the current study, experiments were first conducted to examine the steady-state thermal performance of a reduced-scale straight-channel PCHE. A dynamic model benchmarked in a previous study was then used to predict the steady-state and transient behavior of the PCHE. The steady-state temperature profiles of the working fluids on both the hot and cold sides and in the solid plates of the heat exchanger were obtained, which served as the initial condition for the transient simulations. The detailed dynamic response of the straight-channel PCHE, subject to inlet temperature variations, helium mass flow variations, and combinations of the two, was simulated and analyzed. In addition, two sets of transient tests, one for helium inlet

  6. Interpretive Research Aiming at Theory Building: Adopting and Adapting the Case Study Design

    Science.gov (United States)

    Diaz Andrade, Antonio

    2009-01-01

    Although the advantages of case study design are widely recognised, its original positivist underlying assumptions may mislead interpretive researchers aiming at theory building. The paper discusses the limitations of the case study design for theory building and explains how grounded theory systemic process adds to the case study design. The…

  7. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  8. Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators

    Directory of Open Access Journals (Sweden)

    Byoung-Kwon Ahn

    2010-03-01

    Full Text Available Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT.

  9. A Numerical Study of Quantization-Based Integrators

    Directory of Open Access Journals (Sweden)

    Barros Fernando

    2014-01-01

    Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.

  10. Improving eco-sustainable characteristics and energy efficiency of evaporative fluid cooler via experimental and numerical study

    Directory of Open Access Journals (Sweden)

    Rašković Predrag O.

    2008-01-01

    Full Text Available This paper presents an on-going research project that aims to identify possibilities for wider use of evaporative cooling in process industry, especially the use of evaporative fluid cooler units. Experimental study is performed on small scale evaporative fluid cooler, while the correlation based model has been carried out to explore the detailed heat and mass transfer processes inside this unit. Numerical integration of mathematical model is executed by new approach, based on differential, collocation Simpson method. Proposed models have been verified by comparing the computed results with those obtained by the experimental measurements. The results of research will enable the creation of more comprehensive simulation software, with wider range of operating and construction parameters.

  11. A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

    Directory of Open Access Journals (Sweden)

    Sungwook Lee

    2015-05-01

    Full Text Available In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV is presented. Planar Motion Mechanism (PMM captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

  12. Numerical Studies of Magnetohydrodynamic Activity Resulting from Inductive Transients. Final Report

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2005-01-01

    This report describes results from numerical studies of transients in magnetically confined plasmas. The work has been performed by University of Wisconsin graduate students James Reynolds and Giovanni Cone and by the Principal Investigator through support from contract DE-FG02-02ER54687, a Junior Faculty in Plasma Science award from the DOE Office of Science. Results from the computations have added significantly to our knowledge of magnetized plasma relaxation in the reversed-field pinch (RFP) and spheromak. In particular, they have distinguished relaxation activity expected in sustained configurations from transient effects that can persist over a significant fraction of the plasma discharge. We have also developed the numerical capability for studying electrostatic current injection in the spherical torus (ST). These configurations are being investigated as plasma confinement schemes in the international effort to achieve controlled thermonuclear fusion for environmentally benign energy production. Our numerical computations have been performed with the NIMROD code (http://nimrodteam.org) using local computing resources and massively parallel computing hardware at the National Energy Research Scientific Computing Center. Direct comparisons of simulation results for the spheromak with laboratory measurements verify the effectiveness of our numerical approach. The comparisons have been published in refereed journal articles by this group and by collaborators at Lawrence Livermore National Laboratory (see Section 4). In addition to the technical products, this grant has supported the graduate education of the two participating students for three years

  13. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  14. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  15. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  16. Built environment interventions aimed at improving physical activity levels in rural Ontario health units: a descriptive qualitative study.

    Science.gov (United States)

    Coghill, Cara-Lee; Valaitis, Ruta K; Eyles, John D

    2015-05-03

    Few studies to date have explored the relationship between the built environment and physical activity specifically in rural settings. The Ontario Public Health Standards policies mandate that health units in Ontario address the built environment; however, it is unclear how public health practitioners are integrating the built environment into public health interventions aimed at improving physical activity in chronic disease prevention programs. This descriptive qualitative study explored interventions that have or are being implemented which address the built environment specifically related to physical activity in rural Ontario health units, and the impact of these interventions. Data were collected through twelve in-depth semi-structured interviews with rural public health practitioners and managers representing 12 of 13 health units serving rural communities. Key themes were identified using qualitative content analysis. Themes that emerged regarding the types of interventions that health units are employing included: Engagement with policy work at a municipal level; building and working with community partners, committees and coalitions; gathering and providing evidence; developing and implementing programs; and social marketing and awareness raising. Evaluation of interventions to date has been limited. Public health interventions, and their evaluations, are complex. Health units who serve large rural populations in Ontario are engaging in numerous activities to address physical activity levels. There is a need to further evaluate the impact of these interventions on population health.

  17. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  18. Multi-scale experimental and numerical study of the structure and the dynamics of water confined in clay minerals

    International Nuclear Information System (INIS)

    Guillaud, Emmanuel Bertrand

    2017-01-01

    Clay are complex minerals with a multi-scale porosity and a remarkable ability to swell under humid atmosphere. These materials have many applications in catalysis, waste management, construction industry... However, the properties of confined water are still not fully understood, due in particular to the complexity of water itself. The aim of this work is, using mainly molecular simulations and vibrational spectroscopy, to understand the structure and the dynamics of water confined in clay minerals. To evaluate the accuracy of numerical models to describe water confined in clay minerals, and to understand the origin of its structural and dynamical properties, a large part of the work was devoted to the building blocks of clays: pure bulk water, water at the surface of a solid, and salt water. To this extent, the viscoelastic properties of water from the deeply supercooled regime to the boiling temperature were investigated using classical molecular dynamics. The evolution of the friction properties of water on a prototypical solid surface was also analyzed, and the accuracy of ab initio approaches and empirical salt models was studied. In a second part, those results were confronted to the properties of water confined in clay minerals at low and room temperature, studied both experimentally and numerically. Experimental work consisted mostly in extensive far- and -mid infrared absorption spectrometry measurements, whereas numerical work mainly consisted in empirical molecular dynamics simulations. Especially, the existence of confinement- or temperature-induced phase transitions of confined water was investigated. (author)

  19. Numerical methods for Bayesian inference in the face of aging

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Villain, B.; Procaccia, H.

    1996-01-01

    In recent years, much attention has been paid to Bayesian methods for Risk Assessment. Until now, these methods have been studied from a theoretical point of view. Researchers have been mainly interested in: studying the effectiveness of Bayesian methods in handling rare events; debating about the problem of priors and other philosophical issues. An aspect central to the Bayesian approach is numerical computation because any safety/reliability problem, in a Bayesian frame, ends with a problem of numerical integration. This aspect has been neglected until now because most Risk studies assumed the Exponential model as the basic probabilistic model. The existence of conjugate priors makes numerical integration unnecessary in this case. If aging is to be taken into account, no conjugate family is available and the use of numerical integration becomes compulsory. EDF (National Board of Electricity, of France) and ENEA (National Committee for Energy, New Technologies and Environment, of Italy) jointly carried out a research program aimed at developing quadrature methods suitable for Bayesian Interference with underlying Weibull or gamma distributions. The paper will illustrate the main results achieved during the above research program and will discuss, via some sample cases, the performances of the numerical algorithms which on the appearance of stress corrosion cracking in the tubes of Steam Generators of PWR French power plants. (authors)

  20. Numerical taxonomic studies of some tribes of Brassicaceae from Egypt

    NARCIS (Netherlands)

    Abdel Khalik, K.; Maesen, van der L.J.G.; Koopman, W.J.M.; Berg, van den R.G.

    2002-01-01

    A systematic study of 45 taxa belonging to 23 genera of tribes Arabideae, Euclidieae, Hesperideae, Lunarieae, Matthioleae and Sisymbrieae of Brassicaceae from Egypt was conducted by means of numerical analysis based on sixty two morphological characters, including vegetative parts, pollen grains and

  1. A numerical study on thermal behavior of a D-type water-cooled steam boiler

    International Nuclear Information System (INIS)

    Moghari, M.; Hosseini, S.; Shokouhmand, H.; Sharifi, H.; Izadpanah, S.

    2012-01-01

    To achieve a precise assessment on thermal performance of a D-type water-cooled natural gas-fired boiler the present paper was aimed at determining temperature distribution of water and flue gas flows in its different heat exchange equipment. Using the zonal method to predict thermal radiation treatment in the boiler furnace and a numerical iterative approach, in which heat and fluid flow relations associated with different heat surfaces in the boiler convective zone were employed to estimate heat transfer characteristics, enabled this numerical study to obtain results in good agreement with experimental data measured in the utility site during steady state operation. A constant flow rate for a natural gas fuel of specified chemical composition was assumed to be mixed with a given excess ratio of air flow at a full boiler load. Significant results attributed to distribution of heat flux on different furnace walls and that of flue gas and water/steam temperature in different convective stages including superheater, evaporating risers and downcomers modules, and economizer were obtained. Besides the rate of heat absorption in every stage and other essential parameters in the boiler design too, inherent thermal characteristics like radiative and convective heat transfer coefficients as well as overall heat transfer conductance and effectiveness of convective stages considered as cross-flow heat exchangers were eventually presented for the given operating condition. - Highlights: ► Detailed distribution of heat flux on all of the boiler furnace walls was obtained. ► Flue gas and water thermal behaviors in different heating sections were evaluated. ► A good agreement was made between numerical results and experimental data. ► Contribution of the boiler furnace to the total thermal absorption was 39%. ► Contribution of the boiler tube banks to the total thermal absorption was 61%.

  2. Count on dopamine: influences of COMT polymorphisms on numerical cognition

    Directory of Open Access Journals (Sweden)

    Annelise eJúlio-Costa

    2013-08-01

    Full Text Available Catechol-O-methyltransferase (COMT is an enzyme that is particularly important for the metabolism of dopamine. Functional polymorphisms of COMT have been implicated in working memory and numerical cognition. This is an exploratory study that aims at investigating associations between COMT polymorphisms, working memory and numerical cognition. Elementary school children from 2th to 6th grades were divided into two groups according to their COMT val158met polymorphism (homozygous for valine allele [n= 61] versus heterozygous plus methionine homozygous children or met+ group [n=94]. Both groups were matched for age and intelligence. Working memory was assessed through digit span and Corsi blocks. Symbolic numerical processing was assessed through transcoding and single-digit word problem tasks. Non-symbolic magnitude comparison and estimation tasks were used to assess number sense. Between-group differences were found in symbolic and non-symbolic numerical tasks, but not in working memory tasks. Children in the met+ group showed better performance in all numerical tasks while val homozygous children presented slower development of non-symbolic magnitude representations. These results suggest COMT-related dopaminergic modulation may be related not only to working memory, as found in previous studies, but also to the development of magnitude processing and magnitude representations.

  3. An Experimental and numerical Study for squeezing flow

    Science.gov (United States)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  4. A numerical study of the eigenvalues in the neutron diffusion theory

    International Nuclear Information System (INIS)

    Lima Bezerra, J. de.

    1982-12-01

    A systematic numerical study for the eigenvalue problem in one dimension was carried out. A computer code RED2G was developed to obtain and to discuss a number of numerical solutions concerning eigenvalues problems originating from the discretization of the two groups neutron diffusion equation in one dimension and steady state. The problem of eigenvalues was created from the discretization by the method of finite differences. The solutions were obtained by four different iterative methods, i.e. Power, Wielandt-1, Wielandt-2 and accelerated Power with the Chebyshev polinomials. The numerical results given by the solution of the two test-problems indicate that the RED2G code is fast and efficient in these calculations and the Wielandt-2 method has been found to be the best both in respect of rapidity of calculations as well as programation effort required. (E.G.) [pt

  5. Numerical and experimental study of the beam dynamics of CANDELA photo-injector and associated instrumentation

    International Nuclear Information System (INIS)

    Devanz, Guillaume

    1999-01-01

    Laser triggered radiofrequency guns are the most luminous electron sources allowing to reach the performances requested by highly demanding applications like the e + /e - linear colliders and the short wave free electron lasers. CANDELA is a band S photo-injector triggered by a sub-picosecond laser. It allows reaching peak currents of hundred of amperes at average energies higher than 2 MeV. The original concept of two accelerating cavities aims at minimizing the transverse and longitudinal emittances following the Gao's principles. From practical reasons the operating parameters, particularly the laser pulse duration, do not correspond to those considered in the design. Hence, numerical simulations were performed to evaluate the gun's performances in experimental environment. The study of a stabile injector operation resulted in evolutions with consequences in the phase control systems implying the laser and the HF (Hyper Frequency) source. The beam transverse and longitudinal characteristics have been measured as a function of the main parameters i.e., the beam charge and the phase shift between the laser and the HF wave. Measurements of the transverse emittance energy dispersion and wave packed duration are presented for several injector configurations. The systems of existing beam measurements have been studied to determine the resolution and the experimental conditions to fulfill, in order to suggest improvements for the CANDELA beam. The experiments with the beam have been compared with numerical simulations. Agreement was obtained within wide ranges of parameters for most of the characteristic beam quantities

  6. Numerical Investigation of Thermal and Thermo-mechanical Effective Properties for Short Fibre Reinforced Composite

    Science.gov (United States)

    Ioannou, Ioannis; Hodzic, Alma; Gitman, Inna M.

    2017-10-01

    This study aims to investigate the thermal conductivity and the linear coefficient of thermal expansion for short fibre reinforced composites. The study combines numerical and statistical analyses in order to primarily examine the representative size and the effective properties of the volume element. Effects of various micromechanical parameters, such as fibre's aspect ratio and fibre's orientation, on the minimum representative size are discussed. The numerically acquired effective properties, obtained for the representative size, are presented and compared with analytical models.

  7. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  8. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  9. Optimum design of vaporizer fin with liquefied natural gas by numerical analysis

    International Nuclear Information System (INIS)

    Jeong, Hyo Min; Chung, Han Shik; Lee, Sang Chul; Kong, Tae Woo; Yi, Chung Seub

    2006-01-01

    Generally, the temperature drop under 0 .deg. C on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins (Φ) and fin thickness (TH F ). Numerical analysis results were presented through the correlations between the ice layer thickness (TH ICE ) on the vaporizer surface to the temperature distribution of inside vaporizer (T IN ), fin thickness (TH F ), and angle between two fins (Φ). Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper

  10. Experimental and Numerical Investigation of Ablation Kinetics

    Data.gov (United States)

    National Aeronautics and Space Administration — The University of Vermont (UVM) and the University of Michigan (UMI) propose a 2-year experimental and numerical research effort aimed at providing critically needed...

  11. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  12. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  13. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    NARCIS (Netherlands)

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors,

  14. Mathematical and numerical study of non-linear models used in plasma physics

    International Nuclear Information System (INIS)

    Ebrard, G.

    2005-12-01

    We study the interaction of several crossing beams with a plasma in the Laser-Megajoule context. We start from Euler-Maxwell. The formal asymptotic is the Zakharov system. For simplified systems of Klein-Gordon-wave type, we justify an approximation by a Zakharov equation for solutions of large amplitude. We construct a new system that simulates the interaction of 2 beams and present a whole hierarchy of models. We introduce a numerical scheme using the known results on Zakharov-wave equations which are valid for short pulses. We give a scheme which eliminate the backscattering wave. We give some numerical results. Finally, we do several numerical simulations of laser-plasma interaction for the initial value problem and the boundary value problem. (author)

  15. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  16. Research status and some results of numerical system to study regional environment: SPEEDI-MP

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2004-01-01

    Research status and some results of 'Numerical system to study regional environment: SPEEDI-MP', which reproduces circulations of materials in the atmospheric, oceanic and terrestrial environments, are introduced. The purpose of this system are the development of various environmental models, the connection of atmospheric, oceanic and terrestrial models and the construction of research bases for numerical environmental studies. In addition to the accurate prediction of environmental behavior of radionuclides, the system has been applied to the non-nuclear fields, e.g., numerical analysis of environmental effects to volcanic gases from Miyake Jima, real-time prediction of the migration of rice planthoppers from Eastern Asia. (author)

  17. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  18. Numerical simulation system for environmental studies: SPEEDI-MP

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko

    2006-09-01

    A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  19. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1998-01-01

    htmlabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  20. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1997-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  1. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Huminic, Gabriela; Huminic, Angel

    2013-01-01

    Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water

  2. Numerical and experimental study of a hydrodynamic cavitation tube

    Science.gov (United States)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  3. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  4. Gyrotactic trapping: A numerical study

    Science.gov (United States)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  5. Cross-cultural exchange: How students can frustrate the aims of study abroad programmes

    Science.gov (United States)

    Barnes, Leslie R.

    1982-09-01

    Readily accepting that study abroad programmes may have as many differing forms and aims as there are participating institutions, and that by no means all programmes include academic content in their goals, I would nevertheless maintain: 1. that a sociological perspective is as necessary as the hitherto predominantly psychological approach in obtaining a balanced assessment of study abroad programmes;

  6. Numerical study of microphase separation in gels and random media

    International Nuclear Information System (INIS)

    Uchida, Nariya

    2004-01-01

    Microphase separation in gels and random media is numerically studied using a Ginzburg-Landau model. A random field destroys long-range orientational (lamellar) order and gives rise to a disordered bicontinuous morphology. The dependence of the correlation length on the field strength is distinct from that of random-field magnets

  7. Numerical study of hydrogen absorption in a LM-Ni5 hybride reactor

    International Nuclear Information System (INIS)

    Altinisik, K.; Tekin, M.; Mat, M. D.; Altinisik, A.; Veziroglu, T. N.

    2007-01-01

    Metal hydride formation in an Lm-Ni5 storage tank is numerically studied with a continuum mathematical model. The model considers complex heat, and mass transfer and chemical reaction in the reaction bed. It is found that hydride formation enhances at regions with lower equilibrium pressure. Absorbed hydrogen mass increases exponentially at earlier times of hydriding process and slow down after temperature of reaction bed increases due to the heat of reaction. Numerical results agree satisfactorily with the experimental data in the literature

  8. Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study

    Science.gov (United States)

    Landerl, Karin

    2013-01-01

    Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310

  9. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    Science.gov (United States)

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with

  10. A numerical study of bubble interactions in Rayleigh--Taylor instability for compressible fluids

    International Nuclear Information System (INIS)

    Glimm, J.; Li, X.L.; Menikoff, R.; Sharp, D.H.; Zhang, Q.

    1990-01-01

    The late nonlinear and chaotic stage of Rayleigh--Taylor instability is characterized by the evolution of bubbles of the light fluid and spikes of the heavy fluid, each penetrating into the other phase. This paper is focused on the numerical study of bubble interactions and their effect on the statistical behavior and evolution of the bubble envelope. Compressible fluids described by the two-fluid Euler equations are considered and the front tracking method for numerical simulation of these equations is used. Two major phenomena are studied. One is the dynamics of the bubbles in a chaotic environment and the interaction among neighboring bubbles. Another one is the acceleration of the overall bubble envelope, which is a statistical consequence of the interactions of bubbles. The main result is a consistent analysis, at least in the approximately incompressible case of these two phenomena. The consistency encompasses the analysis of experiments, numerical simulation, simple theoretical models, and variation of parameters. Numerical simulation results that are in quantitative agreement with laboratory experiment for one-and-one-half (1 1/2) generations of bubble merger are presented. To the authors' knowledge, computations of this accuracy have not previously been obtained

  11. Numerical simulation of flood barriers

    Science.gov (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  12. Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16

  13. Numerical study of the ghost-ghost-gluon vertex on the lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z∼ 1 1(p 2 ) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β= 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16. (author)

  14. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  15. Numerical Simulation of the Coagulation Dynamics of Blood

    Directory of Open Access Journals (Sweden)

    T. Bodnár

    2008-01-01

    Full Text Available The process of platelet activation and blood coagulation is quite complex and not yet completely understood. Recently, a phenomenological meaningful model of blood coagulation and clot formation in flowing blood that extends existing models to integrate biochemical, physiological and rheological factors, has been developed. The aim of this paper is to present results from a computational study of a simplified version of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-thinning viscosity has been adopted to describe the flow of blood. To simulate the biochemical changes and transport of various enzymes, proteins and platelets involved in the coagulation process, a set of coupled advection–diffusion–reaction equations is used. Three-dimensional numerical simulations are carried out for the whole model in a straight vessel with circular cross-section, using a finite volume semi-discretization in space, on structured grids, and a multistage scheme for time integration. Clot formation and growth are investigated in the vicinity of an injured region of the vessel wall. These are preliminary results aimed at showing the validation of the model and of the numerical code.

  16. Numerical studies on the dynamics of the Northwestern Black Sea shelf

    Directory of Open Access Journals (Sweden)

    V. KOURAFALOU

    2004-06-01

    Full Text Available The Northwestern Black Sea shelf dynamics are studied with numerical simulations based on the Princeton Ocean Model. The study focus is on buoyancy and wind driven flows and on the transport and fate of low salinity waters that are introduced through riverine sources (the Danube, Dnestr and Dnepr Rivers, under the seasonal changes in atmospheric forcing. The study is part of the DANUBS project (NUtrient management in the DAnube basin and its impact on the Black Sea. The numerical simulations show that the coastal circulation is greatly influenced by river runoff and especially that of the Danube, which is dominant with monthly averaged values ranging from 5,000 m3 to 10,000 m3. The transport of low-salinity waters associated with the Danube runoff is greatly influenced by wind stress, topographic effects and basin-scale circulation patterns, such as changes in the position of the Rim Current.

  17. Experimental and numerical studies on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Su, G.Y.; Gu, H.Y.; Cheng, X.

    2012-01-01

    Highlights: ► Experimental and CFD studies on free surface flow have been performed in a scaled windowless target. ► Flow structure inside spallation area can be divided into three typical zones. ► Under large Reynolds number, large scale vortex can be observed. ► CFD studies have been conducted by using both LES and RANS (k-ω SST) turbulence models. ► LES model provides better numerical prediction on free surface behavior and flow transient. - Abstract: The formation and control method of the coolant free surface is one of the key technologies for the design of windowless targets in the accelerator driven system (ADS). In the recent study, experimental and numerical investigations on the free surface flow have been performed in a scaled windowless target by using water as the model fluid. The planar laser induced fluorescence technique has been applied to visualize the free surface flow pattern inside the spallation area. Experiments have been carried out with the Reynolds number in the range of 30,000–50,000. The structure and features of flow vortex have been investigated. The experimental results show that the free surface is vulnerable to the vortex movement. In addition, CFD simulations have been performed under the experimental conditions, using LES and RANS (k-ω SST) turbulence models, respectively. The numerical results of LES model agree qualitatively well with the experimental data related to both flow pattern and free surface behavior.

  18. Numerical study of traveling-wave solutions for the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Kalisch, Henrik; Lenells, Jonatan

    2005-01-01

    We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied

  19. Numerical study of interfacial flows with immersed solids

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2003-01-01

    A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle

  20. Numerical study of the structure of thermal plume in a vertical channel: Effect of the height of canal

    Directory of Open Access Journals (Sweden)

    Jouini Belgacem

    2016-01-01

    Full Text Available In this paper we propose to study numerically, by means of a software Named Calculation FDS, a thermal plume evolve from a source at the entrance to of a vertical channel. In the literature, there are researchers who interested in the interaction of plume with his the confinement medium. These studies are based on the determination of the global structure of plume confined. They found that this plume consists of three distinct zones. A first zone near source (instability zone followed by a second zone, such as the development of plume, and a third zone which is the zone of turbulence, Comparing the overall structure of the plume confined to that of the free plume, we can identify the presence of a third zone (zone of instability. The aim is firstly to determine the height of the instability zone located above of source, and secondly, to make a spectral study frequencies exhaust. Thus, effects of the geometrical parameters on frequencies of these escapements and the height an instability zone. The final aim is to establish correlations between the dimensionless numbers of Strouhal and Grashof.

  1. Experimental and numerical studies of rotating drum grate furnace

    Directory of Open Access Journals (Sweden)

    Basista Grzegorz

    2017-01-01

    Full Text Available Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  2. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.

    Science.gov (United States)

    Thalhammer, Mechthild; Abhau, Jochen

    2012-08-15

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that

  3. Numerical study for two phase flow in the near nozzle region of turbine combustors

    International Nuclear Information System (INIS)

    Pervez, K.; Mushtaq, S.

    1999-01-01

    In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)

  4. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    Directory of Open Access Journals (Sweden)

    Yucong Miao

    2014-01-01

    Full Text Available The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD model used in this study—Open Source Field Operation and Manipulation (OpenFOAM software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispersion within three different kinds of street canyon configuration under the perpendicular approaching flow were numerically studied. The result showed that the width and height of building can dramatically affect the pollution level inside the street canyon. As the width or height of building increases, the pollution at the pedestrian level increases. And the asymmetric configuration (step-up or step-down street canyon could provide better ventilation. It is recommended to design a street canyon with nonuniform configurations. And the OpenFOAM software package can be used as a reliable tool to study flows and dispersions around buildings.

  5. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  6. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  7. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  8. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

    Science.gov (United States)

    Thalhammer, Mechthild; Abhau, Jochen

    2012-01-01

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively

  9. Numerical Simulation of Non-Thermal Food Preservation

    Science.gov (United States)

    Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.

    2010-09-01

    Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.

  10. Role of vegetation in formation of radiation fog: A numerical study

    Czech Academy of Sciences Publication Activity Database

    Potužníková, Kateřina; Sedlák, Pavel

    2004-01-01

    Roč. 23, Suppl. 2 (2004), s. 39-45 ISSN 1335-342X Institutional research plan: CEZ:AV0Z3042911 Keywords : radiation fog * vegetation cover * numerical study Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.078, year: 2004

  11. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...

  12. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  13. Contribution to the theoretical and numerical study of inertial confinement fusion

    International Nuclear Information System (INIS)

    Tran Trach-Minh

    1983-01-01

    After an overview of problems faced for numerical simulations of inertial fusion, this research thesis reports the study of the behaviour of suprathermal ions by using the transport equation as model. The problem is then to find an appropriate numerical method to solve this equation, inspired by well known methods related to the transport of neutral particles (photons and neutrons) which however cannot be directly applied. The calculation scheme is introduced in an existing hydrodynamic code. Models are then proposed to take the partial ionisation of some materials into account in the target thermodynamics and in the slowing down of fast ions. In the next part, the author discusses the ion transport equation, and the calculation of the different coefficients which characterise their interaction with particles of the host medium. Problems faced for numerical processing are addressed. The coupling of ion transport calculation model with a hydrodynamic code is described. Effects of alphas transport during target ignition are analysed, as well as the penetration of external ion beams during the compression phase

  14. Microfluidic emulsification at cross-junction: experimental and numerical study using Blue

    Science.gov (United States)

    Roumpea, Evangelia; Kovalchuk, Nina M.; Kahouadji, Lyes; Xie, Zhihua; Chinaud, Maxime; Simmons, Mark J. H.; Matar, Omar K.; Angeli, Panagiota

    2017-11-01

    Liquid-liquid drop formation in a cross-junction device is investigated both experimentally and numerically. Experiments are performed using 5 cSt silicone oil as the continuous phase and 52% glycerol/ 48% water mixture containing surfactants as the dispersed phase. Both a high-speed camera and a two-colour micro-PIV technique were used to obtain the different flow regimes i.e. squeezing, dripping, jetting and threading and to study the velocity fields of the two phases simultaneously. The dependence of the drop size on flow rate follows a power law with different exponents for small and large drops. Numerical simulations using the code Blue, a massive parallel solver for simulations of fully three-dimensional multiphase flows, were also performed taking into account the properties of the liquids used in the experiments and the precise geometry of the microfluidic chips. The simulation results agreed very well with the surfactant-free solution. The numerical simulations taking into account the surfactant are ongoing. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  15. Modeling and numerical study of two phase flow

    International Nuclear Information System (INIS)

    Champmartin, A.

    2011-01-01

    This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr

  16. Considerations on aims and approaches of the study on the transport of trace elements in a river watershed

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi

    2002-10-01

    Concerning the study subject on the transport of trace, toxic chemicals and radioactive elements in a river watershed, that has been developed in the Research Group for Terrestrial Environment, its aims and methodological approaches have been discussed in the light of related social and technological aspects of today. It is stressed that a study of the transport of radionuclides originated from a nuclear installation is needed to assess the physiological impact and to provide appropriate countermeasures in case of an accident. A numerical model is prerequisite for these objectives and to be keenly developed. The outcome of the modeling will be also important for a quantitative analysis of cycling of trace toxic elements in the atmosphere- lithosphere-hydrosphere, and also of the mechanisms of contamination of the surface aquatic environment. Accordingly, the study will contribute to the key issues stated in the national programs of science and technologies such as conservation of the natural and living environment. The present large consumption of metals and metalloids may cause an extensive contamination in the future. The study can provide solutions to the problems associated with metals and metalloids, because their environmental behavior resembles to that of radionuclides. From a methodological aspect, an importance of a direct investigation of physicochemical forms of trace, toxic elements must be stressed. A simultaneous use of experimental methods and chemical modeling to study the physico-chemical forms will be a good exemption to be realized hereafter. Experimentally, partitioning between solid and liquid phases using radioisotopes, and identification of solid species using various X-ray spectrometric techniques, for example, have been recognized very promising to investigate physico-chemical form of trace elements. These techniques are much ought to the nuclear sciences, suggesting further possible contribution of the nuclear sciences to the questions of

  17. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2014-01-01

    We present a numerical study of thermoviscous effects on the acoustic streaming flow generated by an ultrasound standing-wave resonance in a long straight microfluidic channel containing a Newtonian fluid. These effects enter primarily through the temperature and density dependence of the fluid...... viscosity. The resulting magnitude of the streaming flow is calculated and characterized numerically, and we find that even for thin acoustic boundary layers, the channel height affects the magnitude of the streaming flow. For the special case of a sufficiently large channel height, we have successfully...

  18. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  19. Residents' numeric inputting error in computerized physician order entry prescription.

    Science.gov (United States)

    Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong

    2016-04-01

    Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial

  20. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study

    Science.gov (United States)

    Song, Zhiming; Gu, Kaiyun; Gao, Bin; Wan, Feng; Chang, Yu; Zeng, Yi

    2014-01-01

    Background The aim of this study was to determine the hemodynamic effects of various support modes of continuous flow left ventricular assist devices (CF-LVADs) on the cardiovascular system using a numerical cardiovascular system model. Material/Methods Three support modes were selected for controlling the CF-LVAD: constant flow mode, constant speed mode, and constant pressure head mode of CF-LVAD. The CF-LVAD is established between the left ventricular apex and the ascending aorta, and was incorporated into the numerical model. Various parameters were evaluated, including the blood assist index (BAI), the left ventricular external work (LVEW), the energy of blood flow (EBF), pulsatility index (PI), and surplus hemodynamic energy (SHE). Results The results show that the constant flow mode, when compared to the constant speed mode and the constant pressure head mode, increases LVEW by 31% and 14%, and EBF by 21% and 15%, respectively, indicating that this mode achieved the best ventricular unloading among the 3 support modes. As BAI is increased, PI and SHE are gradually decreased, whereas PI of the constant pressure head reaches the maximum value. Conclusions The study demonstrates that the continuous flow control mode of the CF-LVAD may achieve the highest ventricular unloading. In contrast, the constant rotational speed mode permits the optimal blood perfusion. Finally, the constant pressure head strategy, permitting optimal pulsatility, should optimize the vascular function. PMID:24793178

  1. Numerical simulation of random stresses on an annular turbulent flow

    International Nuclear Information System (INIS)

    Marti-Moreno, Marta

    2000-01-01

    The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr

  2. Numerical study of two-dimensional moist symmetric instability

    Directory of Open Access Journals (Sweden)

    M. Fantini

    2008-06-01

    Full Text Available The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode and for a saturated one ("pseudo"-linear mode and the modifications induced on the base state by their finite amplitude evolution.

  3. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  4. Effect of object functions on tomographic reconstruction a numerical study

    International Nuclear Information System (INIS)

    Babu Rao, C.; Baldev Raj; Ravichandran, V.S.; Munshi, P.

    1996-01-01

    Convolution back projection is the most widely used algorithm of computed tomography (CT). Theoretical studies show that under ideal conditions, the error in the reconstruction can be correlated with the second fourier space derivative of filter function and with the Laplacian of the object function. This paper looks into the second aspect of the error function. In this paper a systematic numerical study is presented on the effect to object functions on global and local errors. (author)

  5. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    Science.gov (United States)

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  6. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  7. Numerical and experimental study of blowing jet on a high lift airfoil

    Science.gov (United States)

    Bobonea, A.; Pricop, M. V.

    2013-10-01

    Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.

  8. Study of natural convection heat transfer characteristics. (2) Verification for numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Nakada, Kotaro; Ikeda, Tatsumi; Wakamatsu, Mitsuo; Iwaki, Chikako; Morooka, Shinichi; Masaki, Yoshikazu

    2008-01-01

    In the natural cooling system for waste storage, it is important to evaluate the flow by natural draft enough to remove the decay heat from the waste. In this study, we carried out the fundamental study of natural convection on vertical cylindrical heater by experiment and numerical simulation. The dimension of test facility is about 4m heights with single heater. Heating power is varied in the range of 33-110W, where Rayleigh number is over 10 10 . We surveyed the velocity distribution around heater by some turbulent models, mesh sizes around heated wall and turbulent Prandtl numbers. Results of numerical simulation of the velocity distribution and averaged heat transfer coefficient agreed well with experimental data and references. (author)

  9. The analytical and numerical study of the fluorination of uranium dioxide particles

    International Nuclear Information System (INIS)

    Sazhin, S.S.

    1997-01-01

    A detailed analytical study of the equations describing the fluorination of UO 2 particles is presented for some limiting cases assuming that the mass flowrate of these particles is so small that they do not affect the state of the gas. The analytical solutions obtained can be used for approximate estimates of the effect of fluorination on particle diameter and temperature but their major application, however, is probably in the verification of self-consistent numerical solutions. Computational results are presented and discussed for a self-consistent problem in which both the effects of gas on particles and particles on gas are accounted for. It has been shown that in the limiting cases for which analytical solutions have been obtained, the coincidence between numerical and analytical results is almost exact. This can be considered as a verification of both the analytical and numerical solutions. (orig.)

  10. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  11. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  12. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  13. Numerical Magnitude Representation in Children With Mathematical Difficulties With or Without Reading Difficulties.

    Science.gov (United States)

    Tobia, Valentina; Fasola, Anna; Lupieri, Alice; Marzocchi, Gian Marco

    2016-01-01

    This study aimed to explore the spatial numerical association of response codes (SNARC), the flanker, and the numerical distance effects in children with mathematical difficulties. From a sample of 720 third, fourth, and fifth graders, 60 children were selected and divided into the following three groups: typically developing children (TD; n = 29), children with mathematical difficulties only (MD only; n = 21), and children with mathematical and reading difficulties (MD+RD; n = 10). Children were tested with a numerical Eriksen task that was built to assess SNARC, numerical distance, and flanker (first and second order congruency) effects. Children with MD only showed stronger SNARC and second order congruency effects than did TD children, whereas the numerical distance effects were similar across the three groups. Finally, the first order congruency effect was associated with reading difficulties. These results showed that children with mathematical difficulties with or without reading difficulties were globally more impaired when spatial incompatibilities were presented. © Hammill Institute on Disabilities 2014.

  14. A Numerical Study for Robust Active Portfolio Management with Worst-Case Downside Risk Measure

    Directory of Open Access Journals (Sweden)

    Aifan Ling

    2014-01-01

    Full Text Available Recently, active portfolio management problems are paid close attention by many researchers due to the explosion of fund industries. We consider a numerical study of a robust active portfolio selection model with downside risk and multiple weights constraints in this paper. We compare the numerical performance of solutions with the classical mean-variance tracking error model and the naive 1/N portfolio strategy by real market data from China market and other markets. We find from the numerical results that the tested active models are more attractive and robust than the compared models.

  15. Coach development programmes to improve interpersonal coach behaviours: a systematic review using the re-aim framework.

    Science.gov (United States)

    Evans, M Blair; McGuckin, Matthew; Gainforth, Heather L; Bruner, Mark W; Côté, Jean

    2015-07-01

    Although evidence supports the effectiveness of interpersonal Coach Development Programmes (CDPs), which are designed to foster coach-athlete relationships, an intervention's impact is shaped by numerous factors over and above effectiveness. The purpose of this systematic review was to examine the extent that published articles describing interpersonal CDP trials reported on indicators of internal and external validity, as conceptualised in the RE-AIM framework (ie, Reach, Effectiveness, Adoption, Implementation and Maintenance). The search strategy was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, involving a database search and supplemental manual search of key articles and journals. After initial screening, the full-text search strategy involved identifying articles describing CDP trials and then selecting a specific subgroup of articles involving interpersonal CDP trials and excluding ineligible articles. Resulting trials were coded using a 47-item sport coaching adaptation of the RE-AIM coding sheet. 17 published articles met eligibility criteria, representing 10 distinct CDP trials. After attaining coder agreement, global ratings of RE-AIM indicators within interpersonal CDP trials ranged from the low to moderate quality. Whereas indicators of effectiveness and implementation were reported to some extent across all studies, maintenance within sport organisations and a number of specific indicators from across dimensions were rarely reported. These findings inform the future design and evaluation of CDPs that have the potential to be adopted in numerous settings and reach athletes and coaches who can most benefit. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Fundamentals of Numerical Modelling of Casting Processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper

    Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...

  17. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  18. Analytical and Numerical Studies of Several Fluid Mechanical Problems

    Science.gov (United States)

    Kong, D. L.

    2014-03-01

    In this thesis, three parts, each with several chapters, are respectively devoted to hydrostatic, viscous, and inertial fluids theories and applications. Involved topics include planetary, biological fluid systems, and high performance computing technology. In the hydrostatics part, the classical Maclaurin spheroids theory is generalized, for the first time, to a more realistic multi-layer model, establishing geometries of both the outer surface and the interfaces. For one of its astrophysical applications, the theory explicitly predicts physical shapes of surface and core-mantle-boundary for layered terrestrial planets, which enables the studies of some gravity problems, and the direct numerical simulations of dynamo flows in rotating planetary cores. As another application of the figure theory, the zonal flow in the deep atmosphere of Jupiter is investigated for a better understanding of the Jovian gravity field. An upper bound of gravity field distortions, especially in higher-order zonal gravitational coefficients, induced by deep zonal winds is estimated firstly. The oblate spheroidal shape of an undistorted Jupiter resulting from its fast solid body rotation is fully taken into account, which marks the most significant improvement from previous approximation based Jovian wind theories. High viscosity flows, for example Stokes flows, occur in a lot of processes involving low-speed motions in fluids. Microorganism swimming is such a typical case. A fully three dimensional analytic solution of incompressible Stokes equation is derived in the exterior domain of an arbitrarily translating and rotating prolate spheroid, which models a large family of microorganisms such as cocci bacteria. The solution is then applied to the magnetotactic bacteria swimming problem, and good consistency has been found between theoretical predictions and laboratory observations of the moving patterns of such bacteria under magnetic fields. In the analysis of dynamics of planetary

  19. The Numerical Study on the Influence of Prandtl Number and Height of the Enclosure

    International Nuclear Information System (INIS)

    Moon, Je-Young; Chung, Bum-Jin

    2016-01-01

    This study investigated numerically the internal flow depending on Prandtl number of fluid and height of enclosure. The two-dimensional numerical simulations were performed for several heights of enclosure in the range between 0.01 m and 0.074 m. It corresponds to the aspect ratio (H/L) ranged from 0.07 to 0.5. Prandtl number was 0.2, 0.7 and 7. Rayleigh number based on the height of enclosure ranged between 8.49x10 3 and 1.20x10 8 . The numerical calculations were carried out using FLUENT 6.3. In order to confirm the influence of Prandtl number and height of side walls on the internal flow and heat transfer of the horizontal enclosure, the numerical study is carried out using the FLUENT 6.3. The numerical results for the condition of top cooling only agree well with Rayleigh-Benard natural convection. When the top and side walls were cooled, the internal flow of enclosure is more complex. The thickness of thermal and velocity boundary layer varies with Prandtl number. For Pr>1 the behavior of cells is unstable and irregular owing to the entrained plume, whereas the internal flow for Pr<1 is stable and regular. Also, the number of cells increases depending on decrease of height. As a result, the heat exchange increases

  20. Numerical investigation of the High Temperature Reactor (VHTR) using computational fluid dynamics

    International Nuclear Information System (INIS)

    Pinto, Joao Pedro C.T.A.; Santos, Andre A. Campagnole dos; Mesquita, Amir Z.

    2013-01-01

    This work consists to evaluate and continue the study that is being developed in the Laboratory of Thermo-Hydraulics of the CNEN/CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), aiming to validate the methods and procedures used in the numerical calculations of fluid flow in fuel elements of the core of the VHTR

  1. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  2. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    OpenAIRE

    Lidia Dzierzbicka-G³owacka

    2002-01-01

    This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB) in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as ...

  3. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  4. Infragravity-wave dynamics in a barred coastal region, a numerical study

    NARCIS (Netherlands)

    Rijnsdorp, Dirk P.; Ruessink, Gerben; Zijlema, Marcel

    2015-01-01

    This paper presents a comprehensive numerical study into the infragravity-wave dynamics at a field site, characterized by a gently sloping barred beach. The nonhydrostatic wave-flow model SWASH was used to simulate the local wavefield for a range of wave conditions (including mild and storm

  5. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  6. Development of numerical processing in children with typical and dyscalculic arithmetic skills – a longitudinal study

    Directory of Open Access Journals (Sweden)

    Karin eLanderl

    2013-07-01

    Full Text Available Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a two-year period from beginning of Grade 2, when children were 7;6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation was given five times during the study (beginning and middle of each school year. Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development.

  7. A rare case of haboob in Tehran: Observational and numerical study

    Science.gov (United States)

    Karami, S.; Ranjbar, A.; Mohebalhojeh, A. R.; Moradi, M.

    2017-03-01

    A great dust storm occurred in Tehran on 2 June 2014 and caused severe damage to properties and involved loss of human life. From the visual evidence available, it can be regarded as a case of haboob. As a lower latitude phenomenon, its occurrence in Tehran was unprecedented in the last 50 years. This paper aims to present a detailed analysis of the weather conditions, the pathways by which dust particles were ingested by the haboob, as well as the impact of the urban boundary layer on the intensity and propagation of the dust storm. Using numerical simulation carried out by the WRF-Chem model and various observational techniques, the coupling of a low-level small-scale deformation field with a lower-tropospheric cold pool produced by precipitating mid-tropospheric clouds is identified as the main process involved in shaping this rare dust storm.

  8. Numerical study on visualization method for material distribution using photothermal effect

    International Nuclear Information System (INIS)

    Kim, Moo Joong; Yoo, Jai Suk; Kim, Dong Kwon; Kim, Hyun Jung

    2015-01-01

    Visualization and imaging techniques have become increasingly essential in a wide range of industrial fields. A few imaging methods such as X-ray imaging, computed tomography and magnetic resonance imaging have been developed for medical applications to materials that are basically transparent or X-ray penetrable; however, reliable techniques for optically opaque materials such as semiconductors or metallic circuits have not been suggested yet. The photothermal method has been developed mainly for the measurement of thermal properties using characteristics that exhibit photothermal effects depending on the thermal properties of the materials. This study attempts to numerically investigate the feasibility of using photothermal effects to visualize or measure the material distribution of opaque substances. For this purpose, we conducted numerical analyses of various intaglio patterns with approximate sizes of 1.2-6 mm in stainless steel 0.5 mm below copper. In addition, images of the intaglio patterns in stainless steel were reconstructed by two-dimensional numerical scanning. A quantitative comparison of the reconstructed results and the original geometries showed an average difference of 0.172 mm and demonstrated the possibility of application to experimental imaging.

  9. Experimental-numerical study of heat flow in deep low-enthalpy geothermal conditions

    NARCIS (Netherlands)

    Saeid, S.; Al-Khoury, R.; Nick, H.M.; Barends, F.

    2014-01-01

    This paper presents an intensive experimental-numerical study of heat flow in a saturated porous domain. A temperature and a flow rate range compared to that existing in a typical deep low-enthalpy hydrothermal system is studied. Two main issues are examined: the effect of fluid density and

  10. Numerical Study of the Critical Impact Velocity in Shear. Appendix Number 1

    National Research Council Canada - National Science Library

    Klosak, M

    1996-01-01

    .... A numerical study of impact shearing of a layer has been performed by the FE code ABAQUS. It was intended to verify available experimental results for VAR 4340 steel 52 HRC, obtained by direct...

  11. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua; Wang, Xiao-Ping; Sun, Shuyu

    2016-01-01

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier

  12. Parametrical Numerical Study on Breakwater SSG Application

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    The report presents numerical investigations on the performance of the SSG concept for different tide and wave conditions towards different levels of discretization to an optimal solution. Benefit of extra reservoir utilization and reservoir length has also been investigated. The report must be c...

  13. Intensification of transesterification via sonication numerical simulation and sensitivity study

    International Nuclear Information System (INIS)

    Janajreh, Isam; ElSamad, Tala; Noorul Hussain, Mohammed

    2017-01-01

    Highlights: • 3D numerical simulation of transesterification is accomplished. • A non-isothermal, reactive Navier–stokes was carried out. • Conventional and sonicated process was compared as far as reaction kinetics and yield. • Higher kinetic rates are achieved at lower molar ratios in sonicated process. • It validates feasibility of numerical simulation for transesterification assessment. - Abstract: Transesterification is known as slow reaction that can take over several hours to complete. The process involves two immiscible reactants to produce the biodiesel and the byproduct glycerol. Biodiesel commercialization has always been hindered by the long process times of the transesterification reaction. Catalyzing the process and increasing the agitation rate is the mode of intensifying the process additional to the increase of the molar ratio, temperature, circulation that all penalize the overall process metrics. Finding shorter path by reducing the reaction into a few minutes and ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction moves the technology from the slow batch process into the high throughput continuous process. In a practical sense this means a huge optimization for the biodiesel production process which opens pathways for faster, voluminous and cheaper production. The mechanism of sonication assisted reaction is explained by the creation of microbubbles which increases the interfacial surface reaction areas and the presence of high localized temperature and turbulence as these microbubbles implode. As a result the reaction kinetics of sonicated transesterification as inferred by several authors is much faster. The aim of this work is to implement the inferred rates in a high fidelity numerical reactive flow simulation model while considering the reactor geometry. It is based on Navier–Stokes equations coupled with energy equation for non-isothermal flow and the transport

  14. Field and numerical studies of flow structure in Lake Shira (Khakassia) in summer

    Science.gov (United States)

    Yakubaylik, Tatyana; Kompaniets, Lidia

    2014-05-01

    Investigations of Lake Shira are conducted within a multidisciplinary approach that includes the study of biodiversity, biochemistry, geology of lake sediments, as well as its hydrophysics. Our report focuses on field measurements in the lake during the 2009 - 2013 and numerical modeling of flow structure. The flow velocity, temperature and salinity distribution and fluctuations of the thermocline (density) were measured in summer. An analysis of spatial and temporal variability of the major hydrophysical characteristics leads us to conclusion that certain meteorological conditions may cause internal waves in this lake. Digital terrain model is constructed from measurements of Lake bathymetry allowing us to carry out numerical simulation. Three-dimensional primitive equation numerical model GETM is applied to simulate hydrophysical processes in Lake Shira. The model is hydrostatic and Boussinesq. An algorithm of high order approximation is opted for calculating the equations of heat and salt transfer. Temperature and salinity distributions resulting from field observations are taken as initial data for numerical simulations. Model calculations as well as calculations with appropriate real wind pattern being observed on Lake Shira have been carried out. In the model calculations we follow (1). Significant differences are observed between model calculations with constant wind and calculations with real wind pattern. Unsteady wind pattern leads to the appearance of horizontal vortexes and a significant increase of vertical fluctuations in temperature (density, impurities). It causes lifting of the sediments to the upper layers at the areas where the thermocline contacts the bottom. It is important for understanding the overall picture of the processes occurring in the lake in summer. Comparison of the results of numerical experiments with the field data shows the possibility of such a phenomena in Lake Shira. The work was supported by the Russian Foundation for

  15. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  16. A numerical study on charging mechanism in leaky dielectric liquids inside the electrostatic atomizers

    Science.gov (United States)

    Kashir, Babak; Perri, Anthony; Yarin, Alexander L.; Mashayek, Farzad

    2017-11-01

    The charging of leaky dielectric liquids inside an electrostatic atomizer is studied numerically by developed codes based on OpenFOAM platform. Faradaic reactions are taken into account as the electrification mechanism. The impact of ionic finite size (steric terms) in high voltages is also investigated. The fundamental electrohydrodynamic understanding of the charging mechanism is aimed in the present work where the creation of polarized near-electrode layer and the movement of charges due to hydrodynamic flow are studied in conjunction with the solution of the Navier-Stokes equations. The case of a micro channel electrohydrodynamic flow subjected to two electrodes of the opposite polarity is considered as an example, with the goal to predict the resulting net charge at the exit. Even though the electrodes constitute a small portion of the channel wall, otherwise insulated, it is indicated that the channel length plays a dominant role in the discharging net charge. The ionic fluxes at the electrode surfaces are accounted through the Frumkin-Butler-Volmer relation found from the concurrent in-house experimental investigations. This projects was supported by National science Foundation (NSF) GOALI Grant CBET-1505276.

  17. Numerical and analytical investigation of steel beam subjected to four-point bending

    Science.gov (United States)

    Farida, F. M.; Surahman, A.; Sofwan, A.

    2018-03-01

    A One type of bending tests is four-point bending test. The aim of this test is to investigate the properties and behavior of materials with structural applications. This study uses numerical and analytical studies. Results from both of these studies help to improve in experimental works. The purpose of this study is to predict steel beam behavior subjected to four-point bending test. This study intension is to analyze flexural beam subjected to four-point bending prior to experimental work. Main results of this research are location of strain gauge and LVDT on steel beam based on numerical study, manual calculation, and analytical study. Analytical study uses linear elasticity theory of solid objects. This study results is position of strain gauge and LVDT. Strain gauge is located between two concentrated loads at the top beam and bottom beam. LVDT is located between two concentrated loads.

  18. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  19. Numerical Boron mixing studies for Loviisa Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gango, P. [IVO International Ltd. (Finland)

    1995-09-01

    A program has been started for studying numerically boron mixing in the downcomer of Loviisa NPP (VVER-440). Mixing during the transport of a diluted slug from the loop to the core might serve as an inherent protection mechanism against severe reactivity accidents in inhomogenous boron dilution scenarios for PWRs. The commercial general purpose Computational Fluid Dynamics (CFD) core PHOENICS is used for solving the governing fluid flow equations in the downcomer geometry of VVER-440. So far numerical analyses have been performed for steady state operation conditions and two different pump driven transients. The steady state analyses focused on model development and validation against existing experimental data. The two pump driven transient scenarios reported are based on slug transport during the start of the sixth and first loop respectively. The results from the two transients show that mixing is case and plant specific; the high and open downcomer geometry of VVER-440 seems to be advantageous from mixing point of view. In addition the analyzing work for the {open_quotes}first pump start{close_quotes} scenario brought up some considerations about flow distribution in the existing experimental facilities.

  20. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  1. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  2. Case studies in the numerical solution of oscillatory integrals

    International Nuclear Information System (INIS)

    Adam, G.

    1992-06-01

    A numerical solution of a number of 53,249 test integrals belonging to nine parametric classes was attempted by two computer codes: EAQWOM (Adam and Nobile, IMA Journ. Numer. Anal. (1991) 11, 271-296) and DO1ANF (Mark 13, 1988) from the NAG library software. For the considered test integrals, EAQWOM was found to be superior to DO1ANF as it concerns robustness, reliability, and friendly user information in case of failure. (author). 9 refs, 3 tabs

  3. Numerical Study of Photoacoustic Pressure for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2016-11-01

    Full Text Available A commonly used therapy for cancer is based on the necrosis of cells induced by heating through the illumination of nanoparticles embedded in cells. Recently, the photoacoustic pressure shock induced by the illumination pulse was proved and this points to another means of cell destruction. The purpose of this study is to propose a model of the photoacoustic pressure in cells. The numerical resolution of the problem requires the accurate computation of the electromagnetism, the temperature and the pressure around the nanostructures embedded in a cell. Here, the problem of the interaction between an electromagnetic excitation and a gold nanoparticle embedded in a cell domain is solved. The variations of the thermal and photoacoustic pressures are studied in order to analyze the pressure shock wave inducing the collapse of the cell’s membrane in cancer therapy.

  4. Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory

    Science.gov (United States)

    Grisey, A.; Yon, S.; Pechoux, T.; Letort, V.; Lafitte, P.

    2017-03-01

    Treatment time reduction is a key issue to expand the use of high intensity focused ultrasound (HIFU) surgery, especially for benign pathologies. This study aims at quantitatively assessing the potential reduction of the treatment time arising from moving the focal point during long pulses. In this context, the optimization of the focal point trajectory is crucial to achieve a uniform thermal dose repartition and avoid boiling. At first, a numerical optimization algorithm was used to generate efficient trajectories. Thermal conduction was simulated in 3D with a finite difference code and damages to the tissue were modeled using the thermal dose formula. Given an initial trajectory, the thermal dose field was first computed, then, making use of Pontryagin's maximum principle, the trajectory was iteratively refined. Several initial trajectories were tested. Then, an ex vivo study was conducted in order to validate the efficicency of the resulting optimized strategies. Single pulses were performed at 3MHz on fresh veal liver samples with an Echopulse and the size of each unitary lesion was assessed by cutting each sample along three orthogonal planes and measuring the dimension of the whitened area based on photographs. We propose a promising approach to significantly shorten HIFU treatment time: the numerical optimization algorithm was shown to provide a reliable insight on trajectories that can improve treatment strategies. The model must now be improved in order to take in vivo conditions into account and extensively validated.

  5. POLLUTANT EMISSION NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The energies produced by the diesel engines of strong power are largely used in marine propulsion because of their favorable reliability and their significant output. However, the increasingly constraining legislations, aimed at limiting the pollutant emissions from the exhaust gas produced by these engines, tend to call into question their supremacy. The analysis of the pollutant emissions and their reduction in the exhaust gas of the slow turbocharged marine diesel engine using ANSYS 15 constitutes the principal objective of this study. To address problems of global air pollution due to the pollutant emission from fuel oil engin e combustion, it is necessary to understand the mechanisms by which pollutants are produced in combustion processes. In the present work, an experimental and numerical study is carried out on a unit of real use aboard a car ferry ship. A numerical model based on a detailed chemical kinetics scheme is used to calculate the emissions of NOx, SOx and Sooth in an internal combustion engine model for the same characteristics of the real unit.

  6. Numerical study of plasma-wall transition in an oblique magnetic field

    International Nuclear Information System (INIS)

    Valsaque, Fabrice; Manfredi, Giovanni

    2001-01-01

    The interaction of a plasma with a fixed wall is investigated numerically. The ions are described by a kinetic model, while the electrons are assumed to be at thermal equilibrium. Finite Debye length effects are taken into account. An Eulerian code is used for the ion dynamics, which enables us to obtain a fine resolution of both position and velocity space. First, we analyse the effect of ionization and collisions, which bring the ion flow to supersonic velocity at the entrance of the Debye sheath (Bohm's criterion). Second, we consider a collisionless sheath with an oblique magnetic field. A magnetic presheath, which has a width of several ion gyroradii, is located between the Debye sheath and the bulk plasma. We perform a systematic numerical study of these sheaths for different incidences of the magnetic field

  7. The influence of numerical models on determining the drag coefficient

    Directory of Open Access Journals (Sweden)

    Dobeš Josef

    2014-03-01

    Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.

  8. Numerical studies of QCD renormalons in high-order perturbative expansions

    International Nuclear Information System (INIS)

    Bauer, Clemens

    2013-01-01

    Perturbative expansions in four-dimensional non-Abelian gauge theories such as Quantum Chromodynamics (QCD) are expected to be divergent, at best asymptotic. One reason is that it is impossible to strictly exclude from the relevant Feynman diagrams those energy regions in which a perturbative treatment is inapplicable. The divergent nature of the series is then signaled by a rapid (factorial) growth of the perturbative expansion coefficients, commonly referred to as a renormalon. In QCD, the most severe divergences occur in the infrared (IR) limit and therefore they are classified as IR renormalons. Their appearance can be understood within the well-accepted Operator Product Expansion (OPE) framework. According to the OPE, the perturbative calculation of a physical observable must be amended by non-perturbative power corrections that come in the form of condensates, universal characteristics of the rich QCD vacuum structure. Adding up perturbative and non-perturbative contributions, the ambiguity due to the renormalon cancels and the physical observable is well-defined. Although the field has made considerable progress in the last twenty years, a proof of renormalon existence is still pending. It has only been tested assuming strong simplifications or in toy models. The aim of this thesis is to provide the first numerical evidence for renormalon existence in the gauge sector of QCD. We use Numerical Stochastic Perturbation Theory (NSPT) to directly obtain perturbative coefficients within lattice regularization, a means to replace continuum spacetime by a four-dimensional hypercubic lattice. A peculiar feature of NSPT are comparatively low simulation costs when reaching high expansion orders. We examine two distinct observables: the static self-energy of an isolated quark and the elementary plaquette. Following the OPE classification, the static quark self-energy is ideally suited for a renormalon study. Taking into account peculiarities of the lattice approach such

  9. A numerical study of a premixed flame on a slit burner

    NARCIS (Netherlands)

    Somers, L.M.T.; Goey, de L.P.H.

    1995-01-01

    A numerical study of a premixed methane/air flame on a 4 mm slit burner is presented. A local grid refinement technique is used to deal with large gradients and curvature of all variables encountered in the flame, keeping the number of grid points within reasonable bounds. The method used here leads

  10. New numerical method to study phase transitions and its applications

    International Nuclear Information System (INIS)

    Lee, Jooyoung; Kosterlitz, J.M.

    1991-11-01

    We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/ξ < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems

  11. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    Science.gov (United States)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  12. Numerical study of Q-ball formation in gravity mediation

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu

    2010-01-01

    We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q 3D peak ≅ 1.9 × 10 −2 (|Φ in |/m) 2 , which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past

  13. Numerical ecology with R

    CERN Document Server

    Borcard, Daniel; Legendre, Pierre

    2018-01-01

    This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary mul...

  14. Numerical study of the grain growth and the thermal properties of ceramics

    International Nuclear Information System (INIS)

    Shahtahmasebi, N.; Shariaty ghleno, A.M.; Hosaini, M.

    2000-04-01

    The physical properties of ceramics strongly depends on the grain size, which itself depends on the sintering process. In this work we propose a model for sintering based on the gross features known experimental and the preform numerical study

  15. Numerical study of non-ideal Vlasov-BGK plasmas

    International Nuclear Information System (INIS)

    Levchenko, V.D.; Sigov, Y.S.; Premuda, F.

    1995-01-01

    A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code

  16. How Parents Read Counting Books and Non-numerical Books to Their Preverbal Infants: An Observational Study.

    Science.gov (United States)

    Goldstein, Alison; Cole, Thomas; Cordes, Sara

    2016-01-01

    Studies have stressed the importance of counting with children to promote formal numeracy abilities; however, little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the 1st year of life. Parents and their 5-10 months old infants were asked to read, as they would at home, two books to their infants: a counting book and another book that did not have numerical content. Parents' spontaneous statements rarely focused on number and those that did consisted primarily of counting, with little emphasis on labeling the cardinality of the set. However, developmental differences were observed even in this age range, such that parents were more likely to make numerical utterances when reading to older infants. Together, results are the first to characterize naturalistic reading behaviors between parents and their preverbal infants in the context of counting books, suggesting that although counting books promote numerical language in parents, infants still receive very little in the way of numerical input before the end of the 1st year of life. While little is known regarding the impact of number talk on the cognitive development of young infants, the current results may guide future work in this area by providing the first assessment of the characteristics of parental numerical input to preverbal infants.

  17. Numerical and Experimental Study on the Formation and Dispersion Patterns of Multiple Explosively Formed Penetrators

    Directory of Open Access Journals (Sweden)

    Jian Feng Liu

    Full Text Available Abstract Three-dimensional numerical simulations and experiments were performed to examine the formation and spatial dispersion patterns of integral multiple explosively formed penetrators (MEFP warhead with seven hemispherical liners. Numerical results had successfully described the formation process and distribution pattern of MEFP. A group of penetrators consisting of a central penetrator surrounded by 6 penetrators is formed during the formation process of MEFP and moves in the direction of aiming position. The maximum divergence angle of the surrounding penetrator group was 7.8°, and the damage area could reach 0.16 m2 at 1.2 m. The laws of perforation dispersion patterns of MEFP were also obtained through a nonlinear fitting of the perforation information on the target at different standoffs. The terminal effects of the MEFP warhead were performed on three #45 steel targets with a dimension of 160cm ( 160cm ( 1.5cm at various standoffs (60, 80, and 120 cm. The simulation results were validated through penetration experiments at different standoffs. It has shown excellent agreement between simulation and experiment results.

  18. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  19. Three-dimensional numerical study of heat transfer enhancement in separated flows

    Science.gov (United States)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  20. Soil remediation by heat injection: Experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others

    1995-03-01

    In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.

  1. Qualitative approaches to use of the RE-AIM framework: rationale and methods.

    Science.gov (United States)

    Holtrop, Jodi Summers; Rabin, Borsika A; Glasgow, Russell E

    2018-03-13

    There have been over 430 publications using the RE-AIM model for planning and evaluation of health programs and policies, as well as numerous applications of the model in grant proposals and national programs. Full use of the model includes use of qualitative methods to understand why and how results were obtained on different RE-AIM dimensions, however, recent reviews have revealed that qualitative methods have been used infrequently. Having quantitative and qualitative methods and results iteratively inform each other should enhance understanding and lessons learned. Because there have been few published examples of qualitative approaches and methods using RE-AIM for planning or assessment and no guidance on how qualitative approaches can inform these processes, we provide guidance on qualitative methods to address the RE-AIM model and its various dimensions. The intended audience is researchers interested in applying RE-AIM or similar implementation models, but the methods discussed should also be relevant to those in community or clinical settings. We present directions for, examples of, and guidance on how qualitative methods can be used to address each of the five RE-AIM dimensions. Formative qualitative methods can be helpful in planning interventions and designing for dissemination. Summative qualitative methods are useful when used in an iterative, mixed methods approach for understanding how and why different patterns of results occur. In summary, qualitative and mixed methods approaches to RE-AIM help understand complex situations and results, why and how outcomes were obtained, and contextual factors not easily assessed using quantitative measures.

  2. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  3. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  4. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian

    2013-03-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  5. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian; Muite, Benson; Roidot, Kristelle

    2013-01-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  6. A numerical study of variable density flow and mixing in porous media

    Science.gov (United States)

    Fan, Yin; Kahawita, René

    1994-10-01

    A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.

  7. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  8. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  9. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  10. Two-fluid Numerical Simulations of Solar Spicules

    Energy Technology Data Exchange (ETDEWEB)

    Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep; Wójcik, Darek [Group of Astrophysics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, Abhishek Kumar; Dwivedi, Bhola N., E-mail: blazejkuzma1@gmail.com [Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005 (India)

    2017-11-10

    We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.

  11. Processing-microstructure relationships in thermotropic liquid crystalline polymers: Experimental and numerical modeling studies

    Science.gov (United States)

    Fang, Jun

    Thermotropic liquid crystalline polymers (TLCPs) are a class of promising engineering materials for high-demanding structural applications. Their excellent mechanical properties are highly correlated to the underlying molecular orientation states, which may be affected by complex flow fields during melt processing. Thus, understanding and eventually predicting how processing flows impact molecular orientation is a critical step towards rational design work in order to achieve favorable, balanced physical properties in finished products. This thesis aims to develop deeper understanding of orientation development in commercial TLCPs during processing by coordinating extensive experimental measurements with numerical computations. In situ measurements of orientation development of LCPs during processing are a focal point of this thesis. An x-ray capable injection molding apparatus is enhanced and utilized for time-resolved measurements of orientation development in multiple commercial TLCPs during injection molding. Ex situ wide angle x-ray scattering is also employed for more thorough characterization of molecular orientation distributions in molded plaques. Incompletely injection molded plaques ("short shots") are studied to gain further insights into the intermediate orientation states during mold filling. Finally, two surface orientation characterization techniques, near edge x-ray absorption fine structure (NEXAFS) and infrared attenuated total reflectance (FTIR-ATR) are combined to investigate the surface orientation distribution of injection molded plaques. Surface orientation states are found to be vastly different from their bulk counterparts due to different kinematics involved in mold filling. In general, complex distributions of orientation in molded plaques reflect the spatially varying competition between shear and extension during mold filling. To complement these experimental measurements, numerical calculations based on the Larson-Doi polydomain model

  12. Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China

    Science.gov (United States)

    Zhang, Guangchao; Liang, Saijiang; Tan, Yunliang; Xie, Fuxing; Chen, Shaojie; Jia, Hongguo

    2018-02-01

    This paper presents a new numerical modeling procedure and design principle for longwall pillar design with the assistance of numerical simulation of FLAC3D. A coal mine located in Yanzhou city, Shandong Province, China, was selected for this case study. A meticulously validated numerical model was developed to investigate the stress changes across the longwall pillar with various sizes. In order to improve the reliability of the numerical modeling, a calibration procedure is undertaken to match the Salamon and Munro pillar strength formula for the coal pillar, while a similar calibration procedure is used to estimate the stress-strain response of a gob. The model results demonstrated that when the coal pillar width was 7-8 m, most of the vertical load was carried by the panel rib, whilst the gateroad was overall in a relatively low stress environment and could keep its stability with proper supports. Thus, the rational longwall pillar width was set as 8 m and the field monitoring results confirmed the feasibility of this pillar size. The proposed numerical simulation procedure and design principle presented in this study could be a viable alternative approach for longwall pillar design for other similar projects.

  13. Evaluation and cultural adaptation of a German version of the AIMS2-SF questionnaire (German AIMS2-SF).

    NARCIS (Netherlands)

    Rosemann, T.J.; Korner, T.; Wensing, M.J.P.; Schneider, A.; Szecsenyi, J.

    2005-01-01

    OBJECTIVES: The aim of the study was to examine the validity of a translated and culturally adapted version of the Arthritis Impact Measurement Scales 2, Short Form (AIMS2-SF) in patients suffering from osteoarthritis (OA) in primary care. METHODS: A structured procedure was used for the translation

  14. How Parents Read Counting Books and Non-Numerical Books to Their Preverbal Infants: An Observational Study

    Directory of Open Access Journals (Sweden)

    Alison Goldstein

    2016-07-01

    Full Text Available Studies have stressed the importance of counting with children to promote formal numeracy abilities; however little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the first year of life. Parents and their 5-10 month old infants were asked to read, as they would at home, two books to their infants: a counting book and another book that did not have numerical content. Parents’ spontaneous statements rarely focused on number and those that did consisted primarily of counting, with little emphasis on labeling the cardinality of the set. However, developmental differences were observed even in this age range, such that parents were more likely to make numerical utterances when reading to older infants. Together, results are the first to characterize naturalistic reading behaviors between parents and their preverbal infants in the context of counting books, suggesting that although counting books promote numerical language in parents, infants still receive very little in the way of numerical input before the end of the first year of life. While little is known regarding the impact of number talk on the cognitive development of young infants, the current results may guide future work in this area by providing the first assessment of the characteristics of parental numerical input to preverbal infants.

  15. Numerical and Experimental Study of Amplitude Modulated Positive Corona Discharge

    Directory of Open Access Journals (Sweden)

    Pablo Martín GOMEZ

    2014-12-01

    Full Text Available The electrical behavior of a modulated positive corona discharge loudspeaker was studied. A coaxial transducer in air was built using a central copper wire of 75 mm radius (inner electrode and a perforated tube of 11 mm (outer electrode. A high voltage DC supply provided the bias current and a sinusoidal signal was superimposed to measure the discharge admittance. The experimental results could not be matched to previously reported equivalent circuits with fixed components. Using the basic equations that describe the ion motion, a numerical model was proposed. The computed values matched well the experimental data and suggested an equivalent circuit composed of frequency dependent conductance and capacitance. This dependence is closely related to the ion travel time between electrodes (transit time. Simulations carried out at several inter-electrode distances could be synthesized in a single plot where the different results overlap and further emphasize the role of the transit time. This numerical model proved to be an efficient tool to simulate and design modulated corona transducers.

  16. Theoretical and numerical study of heat transfer deterioration in HPLWR

    International Nuclear Information System (INIS)

    Palko, D.; Anglart, H.

    2007-01-01

    A numerical investigation of the Heat Transfer Deterioration (HTD) phenomena is performed using the low-Re k - ω turbulence model. Steady state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable to simulate the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates. (author)

  17. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    OpenAIRE

    Yucong Miao; Shuhua Liu; Yijia Zheng; Shu Wang; Yuan Li

    2014-01-01

    The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD) model used in this study—Open Source Field Operation and Manipulation (OpenFOAM) software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispe...

  18. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  19. Asymptotic and numerical studies of a differential-delay system

    Science.gov (United States)

    Semak, Matthew Richard

    A singularly-perturbed differential-delay equation is studied the form of which is seen in various fields. Relaxation effects are combined with nonlinear driving from the past in this system. Having an infinite dimensional phase space, this flow is capable of very interesting behavior. Among the rich aspects of the dynamics of such a relation, period doubling can be observed as parameters are varied. Rigorous proofs concerning the existence of such periodic solutions can be found in the literature. Attention is given to the (first) Hopf bifurcation as the periodic structure is born. Key questions concern the limit of fast relaxation. In this limit, one can analytically understand the development of the periodic solution in the neighborhood of the bifurcation along with the frequency shift which is encountered. This limit also reveals the underlying mapping structure present. In the model studied, this is the logistic map the behavior of which is well-known. Convergence of periodic solutions to the mapping's square wave involves central issues in this work. An analogue to Gibb's phenomenon presents itself as the mapping structure is approached for a certain range of parameters. Transition layers also exist and, together with the latter, present a challenge to various computational approaches. A highly accurate and efficient spectral numerical technique is introduced to properly resolve such behavior in the limit studied. This scheme is used to measure the period's dependence on the relaxation rate in this region of parameter space. Also, numerically assisted asymptotic analysis develops relations for the layers. Moreover, regimes of parameter values have been identified for which there exist extremely long-lived transient states of arbitrarily complex form. Finally, initial interval states are designed which lead to specific long-lived multi-layer patterns of significant complexity. Layer-layer interactions are considered concerning the formation and lifetime of

  20. Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai Razvan Mitroi

    2014-01-01

    Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.

  1. Stochastic numerical methods an introduction for students and scientists

    CERN Document Server

    Toral, Raul

    2014-01-01

    Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability ConceptsMonte Carlo IntegrationGeneration of Uniform and Non-uniformRandom Numbers: Non-correlated ValuesDynamical MethodsApplications to Statistical MechanicsIn...

  2. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  3. A Numerical Matrix-Based method in Harmonic Studies in Wind Power Plants

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz Hubert

    2016-01-01

    In the low frequency range, there are some couplings between the positive- and negative-sequence small-signal impedances of the power converter due to the nonlinear and low bandwidth control loops such as the synchronization loop. In this paper, a new numerical method which also considers...... these couplings will be presented. The numerical data are advantageous to the parametric differential equations, because analysing the high order and complex transfer functions is very difficult, and finally one uses the numerical evaluation methods. This paper proposes a numerical matrix-based method, which...

  4. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    Science.gov (United States)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  5. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    Science.gov (United States)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  6. Developing a dashboard to help measure and achieve the triple aim: a population-based cohort study.

    Science.gov (United States)

    Seow, Hsien-Yeang; Sibley, Lyn M

    2014-08-30

    Health system planners aim to pursue the three goals of Triple Aim: 1) reduce health care costs; 2) improve population health; and 3) improve the care experience. Moreover, they also need measures that can reliably predict future health care needs in order to manage effectively the health system performance. Yet few measures exist to assess Triple Aim and predict future needs at a health system level. The purpose of this study is to explore the novel application of a case-mix adjustment method in order to measure and help improve the Triple Aim of health system performance. We applied a case-mix adjustment method to a population-based analysis to assess its usefulness as a measure of health system performance and Triple Aim. The study design was a retrospective, cohort study of adults from Ontario, Canada using administrative databases: individuals were assigned a predicted illness burden score using a case-mix adjustment system from diagnoses and health utilization data in 2008, and then followed forward to assess the actual health care utilization and costs in the following year (2009). We applied the Johns Hopkins Adjusted Clinical Group (ACG) Case-Mix System to categorize individuals into 60 levels of healthcare need, called ACGs. The outcomes were: 1) Number of individuals per ACG; 2) Total system costs per ACG; and 3) Mean cost per person per ACG, which together formed a health system "dashboard". We identified 11.4 million adults. 16.1% were aged 65 or older, 3.2 million (28%) did not use health care services that year, and 45,000 (0.4%) were in the highest acuity ACG category using 12 times more than an average adult. The sickest 1%, 5% and 15% of the population use about 10%, 30% and 50% of total health system costs respectively. The dashboard measures 2 dimensions of Triple Aim: 1) reduced costs: when total system costs per ACG or when average costs per person is reduced; and 2) improved population health: when more people move into healthier rather than

  7. Numerical study of free convection in an enclosure with two vertical isothermal walls

    International Nuclear Information System (INIS)

    Barletta, A.; Rossi di Schio, E.; Zanchini, E.; Nobile, E.; Pinto, F.

    2005-01-01

    In this paper, natural convection is studied in a 2D-cavity with two vertical isothermal walls, kept at different temperatures, and two adiabatic walls which are either straight (rectangular cavity) or elliptic (modified rectangular cavity). The local mass, momentum and energy balance equations are written in a dimensionless form and solved numerically, by means of two different software packages based on Galerkin finite element methods. With reference to a Prandtl number of 0.71, two rectangular cavities are studied: a square one and a cavity with height double than width. Then, for each value of the ratio between height and width, two cavities with elliptic boundaries are investigated. The numerical solution shows that the elliptic boundaries enhance the mean Nusselt number and the dimensionless mean kinetic energy of the fluid. (authors)

  8. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  9. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  10. The beauty of God in the numerical order

    NARCIS (Netherlands)

    Bai, Jenny

    2017-01-01

    This present thesis interprets the beauty of God in Augustine’s historical situation and aims to argue that approached from a Pythagorean musical-cosmology, Augustine explains the beauty of God as an unchangeable numerical/harmonic order immanently pervading the realms of nature, logic and ethics.

  11. Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process

    International Nuclear Information System (INIS)

    Depradeux, L.; Julien, J.F.

    2004-01-01

    In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone (HAZ) during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated. When a melted zone is created, the thermal simulation reproduce well the temperature field in the upper face of the disk, but the size of the weld pool is not correctly rated, as fluid flows are not taken into account. Despite this fact, the general structural behavior is well represented by simulation

  12. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  13. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    Science.gov (United States)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  14. Experimental and numerical study of MILD combustion in a lab-scale furnace

    NARCIS (Netherlands)

    Huang, X.; Tummers, M.J.; Roekaerts, D.J.E.M.; Scherer, Viktor; Fricker, Neil; Reis, Albino

    2017-01-01

    Mild combustion in a lab-scale furnace has been experimentally and numerically studied. The furnace was operated with Dutch natural gas (DNG) at 10 kW and at an equivalence ratio of 0.8. OH∗chemiluminescence images were taken to characterize the reaction zone. The chemiluminescence intensity is

  15. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    OpenAIRE

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors, which will help increase the throughput of EUV lithography. The model is 2D axially symmetric particle-in-cell code, hence it allows the full geometry of an axially symmetric chamber to be taken into...

  16. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    International Nuclear Information System (INIS)

    Burt, G.; Ronald, K.; Young, A.R.; Phelps, A.D.R.; Cross, A.W.; Konoplev, I.V.; He, W.; Thomson, J.; Whyte, C.G.; Samsonov, S.V.; Denisov, G.G.; Bratman, V.L.

    2004-01-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared

  17. Reactions, accuracy and response complexity of numerical typing on touch screens.

    Science.gov (United States)

    Lin, Cheng-Jhe; Wu, Changxu

    2013-01-01

    Touch screens are popular nowadays as seen on public kiosks, industrial control panels and personal mobile devices. Numerical typing is one frequent task performed on touch screens, but this task on touch screen is subject to human errors and slow responses. This study aims to find innate differences of touch screens from standard physical keypads in the context of numerical typing by eliminating confounding issues. Effects of precise visual feedback and urgency of numerical typing were also investigated. The results showed that touch screens were as accurate as physical keyboards, but reactions were indeed executed slowly on touch screens as signified by both pre-motor reaction time and reaction time. Provision of precise visual feedback caused more errors, and the interaction between devices and urgency was not found on reaction time. To improve usability of touch screens, designers should focus more on reducing response complexity and be cautious about the use of visual feedback. The study revealed that slower responses on touch screens involved more complex human cognition to formulate motor responses. Attention should be given to designing precise visual feedback appropriately so that distractions or visual resource competitions can be avoided to improve human performance on touch screens.

  18. Study on applicability of numerical simulation to evaluation of gas entrainment due to free surface vortex

    International Nuclear Information System (INIS)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    2008-01-01

    An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of sodium-cooled fast reactor with a higher coolant velocity than conventional designs. Numerous investigations have been conducted experimentally and theoretically; however, the universal onset condition of the GE has not been determined yet due to the nonlinear characteristics of the GE. Recently, we have been studying numerical simulation methods as a promising method to evaluate GE, instead of the reliable but costly real-scale tests. In this paper, the applicability of the numerical simulation methods to the evaluation of the GE is discussed. For the purpose, a quasi-steady vortex in a cylindrical tank and a wake vortex (unsteady vortex) in a rectangular channel were numerically simulated using the volume-of-fluid type two-phase flow calculation method. The simulated velocity distributions and free surface shapes of the quasi-steady vortex showed good (not perfect, however) agreements with experimental results when a fine mesh subdivision and a high-order discretization scheme were employed. The unsteady behavior of the wake vortex was also simulated with high accuracy. Although the onset condition of the GE was slightly underestimated in the simulation results, the applicability of the numerical simulation methods to the GE evaluation was confirmed. (author)

  19. Numerical study of the EDZ by a thermo-hydro-mechanical damage model dedicated to unsaturated geo-materials

    International Nuclear Information System (INIS)

    Arson, Chloe; Gatmiri, Behrouz

    2010-01-01

    involved in the transfer model in the intact state. A specific algorithm has been written in order to implement the 'THHMD' model in 'Θ-Stock' Finite Element code. In the brittle domain, the increment of damage-associated stress has a non-linear expression, and is thus computed iteratively. The final algorithm encompasses three interwoven loops, and two convergence criteria. Due to the couplings between the constitutive laws, the computation of the residual vector requires specific dynamic storage variables. Simulations of laboratory tests have already provided a numerical validation of the mechanical aspect of the model. This article presents the results of more complex simulations, aimed at studying the effects of a decreasing thermal loading on an unsaturated host geo-material. The numerical response of the algorithm is first checked in the elastic domain, by comparing the numerical results to experimental data. Parametric studies are then performed with the same materials endowed with non zero damage parameter. This approach enables the study of damage trends in various loading conditions, with various parameter combinations. A heating laboratory test performed on unsaturated bentonite samples has been simulated with the 'THHMD' model. The satisfactory results obtained in elasticity in the experimental conditions justify a parametric study on damage. The rigidity to mechanical tensile strains (g M ) has been varied for a given heating power on the one hand, and the power of the heating source has been varied with a fixed gM parameter on the other hand. In both cases, damage trends are in full agreement with the physical expectations. In accordance with the assumptions of the model, the thermal loading generates isotropic tensile strains, and consequently, isotropic damage. Damage grows with the rigidity to tensile strains g M and with the heating power. An in situ heating test has been reproduced by a one-dimensional axisymmetric

  20. On Numerical Methods in Non-Newtonian Flows

    International Nuclear Information System (INIS)

    Fileas, G.

    1982-12-01

    The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)

  1. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  2. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  3. Numerical model of thyroid counter

    Directory of Open Access Journals (Sweden)

    Szuchta Maciej

    2016-03-01

    Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.

  4. Key issues review: numerical studies of turbulence in stars

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  5. A Correlational and Descriptive Study of Student Writing in Three Aims of Discourse.

    Science.gov (United States)

    1981-12-01

    than the old abondend house does now. As it stands it is the perfect target and meeting place for criminals and drug addicts . If the house were C... Whale and Robinson (1978) discovered that, in a free-writing situation, students most often chose to write transactional (referential and persuasive...discourse.27 (Perhaps in the transactional aim they used the narrative mode more than any other, as Pianko’s study suggested, but Whale and Robinson did

  6. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  7. How Parents Read Counting Books and Non-Numerical Books to Their Preverbal Infants: An Observational Study

    OpenAIRE

    Alison Goldstein; Thomas Cole; Sara Cordes

    2016-01-01

    Studies have stressed the importance of counting with children to promote formal numeracy abilities; however little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the first year of life. Parents and their 5-10 month old infants wer...

  8. Numerical modeling and experimental testing of a wave energy converter: deliverable D4.2

    Energy Technology Data Exchange (ETDEWEB)

    Zurkinden, A.S.; Kramer, M.; Ferri, F.; Kofoed, J.P.

    2013-05-15

    The objective of this document is to summarize the outcome of the research which has been carried out during the period May 2011 until June 2012 i.e. during the first year of the PhD study. The work has been done in collaboration with the co-authors. The aim of the project was primarily to provide numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a) validate the numerical model and b) preform stochastic analysis. The latter technique is introduced in order to optimize the control parameters of the power take off system. (Author)

  9. Experimental and numerical investigation of heat dissipation from an electronic component in a closed enclosure

    Directory of Open Access Journals (Sweden)

    George Bobin Saji

    2018-01-01

    Full Text Available Intensifying electronic component power dissipation levels, shortening product design cycle times, and greater than before requirement for more compact and reliable electronic systems with greater functionality, has heightened the need for thermal design tools that enable accurate solutions to be generated and quickly assessed. The present numerical study aims at developing a computational tool in OpenFOAM that can predict the heat dissipation rate and temperature profile of any electronic component in operation. A suitable computational domain with defined aspect ratio is chosen. For analyzing, “buoyant Boussinesq Simple Foam“ solver available with OpenFOAM is used. It was modified for adapting to the investigation with specified initial and boundary conditions. The experimental setup was made with the dimensions taken up for numerical study. Thermocouples were calibrated and placed in specified locations. For different heat input, the temperatures are noted down at steady state and compared with results from the numerical study.

  10. The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    International Nuclear Information System (INIS)

    Ansorg, Marcus; Hennig, Joerg

    2011-01-01

    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.

  11. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    Science.gov (United States)

    El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.

    2015-12-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.

  12. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    International Nuclear Information System (INIS)

    Amri, A El; Haddou, M E Y; Hanafi, I; Khamlichi, A

    2015-01-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations. (paper)

  13. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    Science.gov (United States)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  14. An experimental and numerical study on the improvement of the performance of Savonius wind rotor

    International Nuclear Information System (INIS)

    Altan, Burcin Deda; Atilgan, Mehmet

    2008-01-01

    In the present study, a curtain has been designed to increase the low performance of the Savonius wind rotor, a type of vertical-axis wind rotor, and the effect of this curtain on the static rotor performance has been analyzed both experimentally and numerically. Designed to prevent the torque that occurs on the convex blade of the rotor in the negative direction, this curtain has been placed in front of the rotor. Experimental measurements and numerical analysis have been conducted when the Savonius wind rotor is with and without curtain. The static torque values of the rotor have been measured by experiments and calculated by numerical analysis, and finally they have been compared. The best results have been obtained by means of the rotor with curtain. Low static torque values have been obtained with the short curtain dimensions, while a considerable increase has been acquired in the static torque values with the long curtain dimensions. Fluent 6.0 trade software has been used as the numerical method

  15. Numerical and experimental study on laminar round free jet of Ar discharging into stagnant air

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto; Kunugi, Tomoaki

    1990-01-01

    The objective of the present study is to investigate numerically and experimentally the behavior of the fluid flow and the mass transfer of argon gas (Ar) laminar round jet discharging into stagnant air along the gravity force. The SIMPLE method and two differential numerical schemes of PLDS and QUICK are used in the TEAM code modified by adding the binary diffusion equation. The solution domain is comprised of 80X40 grids of uniform size. As the result, the following were obtained: The half radius of Ar mass fraction obtained by QUICK was in good agreement with experimental result. The half radii of axial velocity and Ar mass fraction obtained by PLDS were larger than those by QUICK due to numerical viscosity. Numerical analyses by PLDS and QUICK schemes agreed well with experimental results on centerline Ar mass fraction. Computational times of PLDS and QUICK are about 40 min. and 120 min. respectively by FACOM VP100 computer in JAERI. (author)

  16. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  17. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  18. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  19. Computational study of formamide-water complexes using the SAPT and AIM methods

    International Nuclear Information System (INIS)

    Parreira, Renato L.T.; Valdes, Haydee; Galembeck, Sergio E.

    2006-01-01

    In this work, the complexes formed between formamide and water were studied by means of the SAPT and AIM methods. Complexation leads to significant alterations in the geometries and electronic structure of formamide. Intermolecular interactions in the complexes are intense, especially in the cases where the solvent interacts with the carbonyl and amide groups simultaneously. In the transition states, the interaction between the water molecule and the lone pair on the amide nitrogen is also important. In all the complexes studied herein, the electrostatic interactions between formamide and water are the main attractive force, and their contribution may be five times as large as the corresponding contribution from dispersion, and twice as large as the contribution from induction. However, an increase in the resonance of planar formamide with the successive addition of water molecules may suggest that the hydrogen bonds taking place between formamide and water have some covalent character

  20. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  1. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    Science.gov (United States)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  2. Enhancement of numeric cognition in children with low achievement in mathematic after a non-instrumental musical training.

    Science.gov (United States)

    Ribeiro, Fabiana Silva; Santos, Flávia H

    2017-03-01

    Studies suggest that musical training enhances spatial-temporal reasoning and leads to greater learning of mathematical concepts. The aim of this prospective study was to verify the efficacy of a Non-Instrumental Musical Training (NIMT) on the Numerical Cognition systems in children with low achievement in math. For this purpose, we examined, with a cluster analysis, whether children with low scores on Numerical Cognition would be grouped in the same cluster at pre and post-NIMT. Participants were primary school children divided into two groups according to their scores on an Arithmetic test. Results with a specialized battery of Numerical Cognition revealed improvements for Cluster 2 (children with low achievement in math) especially for number production capacity compared to normative data. Besides, the number of children with low scores in Numerical Cognition decreased at post-NIMT. These findings suggest that NIMT enhances Numerical Cognition and seems to be a useful tool for rehabilitation of children with low achievement in math. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Influence of Sensor Size on Acoustic Emission Waveforms—A Numerical Study

    Directory of Open Access Journals (Sweden)

    Eleni Tsangouri

    2018-01-01

    Full Text Available The performance of Acoustic Emission technique is governed by the measuring efficiency of the piezoelectric sensors usually mounted on the structure surface. In the case of damage of bulk materials or plates, the sensors receive the acoustic waveforms of which the frequency and shape are correlated to the damage mode. This numerical study measures the waveforms received by point, medium and large size sensors and evaluates the effect of sensor size on the acoustic emission signals. Simulations are the only way to quantify the effect of sensor size ensuring that the frequency response of the different sensors is uniform. The cases of horizontal (on the same surface, vertical and diagonal excitation are numerically simulated, and the corresponding elastic wave displacement is measured for different sizes of sensors. It is shown that large size sensors significantly affect the wave magnitude and content in both time and frequency domains and especially in the case of surface wave excitation. The coherence between the original and received waveform is quantified and the numerical findings are experimentally supported. It is concluded that sensors with a size larger than half the size of the excitation wavelength start to seriously influence the accuracy of the AE waveform.

  4. Complex blood flow patterns in an idealized left ventricle: A numerical study

    Science.gov (United States)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  5. Numerical Study of Motion of Falling Conical Graupel

    Science.gov (United States)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2018-01-01

    In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.

  6. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  7. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  8. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.

    Science.gov (United States)

    Riaud, Antoine; Zhang, Hao; Wang, Xueying; Wang, Kai; Luo, Guangsheng

    2018-04-18

    Microchannel emulsification requires large amounts of surfactant to prevent coalescence and improve emulsions lifetime. However, most numerical studies have considered surfactant-free mixtures as models for droplet formation in microchannels, without taking into account the distribution of surfactant on the droplet surface. In this paper, we investigate the effects of nonuniform surfactant coverage on the microfluidic flow pattern using an extended lattice-Boltzmann model. This numerical study, supported by micro-particle image velocimetry experiments, reveals the likelihood of uneven distribution of surfactant during the droplet formation and the appearance of a stagnant cap. The Marangoni effect affects the droplet breakup by increasing the shear rate. According to our results, surfactant-free and surfactant-rich droplet formation processes are qualitatively different, such that both the capillary number and the Damköhler number should be considered when modeling the droplet generation in microfluidic devices. The limitations of traditional volume and pressure estimation methods for determining the dynamic interfacial tension are also discussed on the basis of the simulation results.

  9. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  10. Numerical studies of pair creation in counterpropagating laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Matthias

    2009-05-27

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  11. Numerical studies of pair creation in counterpropagating laser fields

    International Nuclear Information System (INIS)

    Ruf, Matthias

    2009-01-01

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  12. Numerical simulation of 900 MW control rods impact friction vibration and wear

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-12-01

    Impact-friction vibrations and wear have motivated a great research and development program aiming at understanding the impact and vibration behaviour of these components through experimental and numerical works. This report presents a numerical simulation of the vibrations of a single control rod and of a whole control cluster. Excitation sources for this component are due to hydraulic forces and are situated in the lower part of the rods and in the part of the cluster. Some parametric computations have been carried out on a single rod, to evaluate the effect of the lower excitation source. Different excitation levels, different eccentricities or static forces have been computed and compared to measurements on the MAGALY mock-up representing a complete rod cluster. A numerical model for the complete cluster allowed the evaluation of the upper excitation source effects. This source appears to be less powerful than the lower one. These results have been validated by comparison with MAGALY measurements. At last, some computations were performed with a model of the complete cluster, taking into account the both excitation sources. A parametric study on eccentricity and static forces has been carried out. A comparison with MAGALY measurements seems to be fairly fitting, showing that the numerical results are of the right order of magnitude. Through this numerical study, we have shown that numerical simulation of a complete control rod cluster could be lead, and we have obtained some new informations about impact forces and wear rates that need to be confirmed by more computational or experimental works or in-situ measurements. (author). 10 annexes, 11 refs

  13. Numerical study of the stopping of aura during migraine

    Directory of Open Access Journals (Sweden)

    Moussa A.

    2010-12-01

    Full Text Available This work is devoted to the study of migraine with aura in the human brain. Following [6], we class migraine as a propagation of a wave of depolarization through the cells. The mathematical model used, based on a reaction-diffusion equation, is briefly presented. The equation is considered in a duct containing a bend, in order to model one of the numerous circumvolutions of the brain. For a wide set of parameters, one can establish the existence of a critical radius below which the wave stops. The approximation scheme used for the simulations is first described and then a numerical study is realized, precising the dependence of the critical radius with respect to the different parameters of the model. Ce travail est consacré à l’étude de l’évolution d’une migraine avec aura dans le cerveau humain. Suivant [6], nous assimilons la migraine à une onde de dépolarisation attaquant les cellules du cerveau. Le modèle mathématique retenu, basé sur une équation de réaction-diffusion, est brièvement rappelé. Le domaine d’espace utilisé est constitué d’un conduit présentant un coude, afin de représenter l’une des nombreuses circonvolutions cérébrales. Pour une importante classe de paramètres, il est possible de mettre en évidence l’existence d’un rayon critique au delà duquel le front d’onde n’arrive pas à dépasser le coude. Après une description du schéma d’approximation utilisé, une étude numérique a été réalisée, visant à préciser la dépendance du rayon critique en fonction des différents paramètres du modèle.

  14. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    International Nuclear Information System (INIS)

    Damyanova, M; Sabchevski, S; Vasileva, E; Balabanova, E; Zhelyazkov, I; Dankov, P; Malinov, P

    2016-01-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed. (paper)

  15. Numerical Study on the 1682 Tainan Historic Tsunami Event

    Science.gov (United States)

    Tsai, Y.; Wu, T.; Lee, C.; KO, L.; Chuang, M.

    2013-12-01

    We intend to reconstruct the tsunami source of the 1682/1782 tsunami event in Tainan, Taiwan, based on the numerical method. According to Soloviev and Go (1974), a strong earthquake shook the Tainan and caused severe damage, followed by tsunami waves. Almost the whole island was flooded by tsunami for over 120 km. More than 40,000 inhabitants were killed. Forts Zealand and Pigchingi were washed away. 1682/1782 event was the highest death toll in the Pacific Ocean regarded by Bryant (2001). However, the year is ambiguous in 1682 or 1782, and death toll is doubtful. We tend to believe that this event was happened in 1682 based on the evolution of the harbor name. If the 1682 tsunami event does exist, the hazard mitigation plan has to be modified, and restoring the 1682 event becomes important. In this study, we adopted the tsunami reverse tracking method (TRTM) to examine the possible tsunami sources. A series of numerical simulations were carried out by using COMCOT (Cornell Multi-grid Coupled Tsunami model), and nested grid with 30 m resolution was applied to the study area. According to the result of TRTM, the 1682 tsunami is most likely sourcing from the north segment of Manila Trench. From scenario study, we concluded that the 1682 event was triggered by an Mw >= 8.8 earthquake in north segment of Manila Trench, and 4 m wave height was observed in Tainan and its inundation range is agreeable with historical records. If this scenario occurred again, sever damage and death toll will be seen many high population cities, such as Tainan city, Kaohsiung city and Kenting, where No. 3 nuclear power plant is located. Detailed results will be presented in the full paper. Figure 1. Map of Tsunami Reverse Tracking Method (TRTM) in Tainan. Black arrow indicates direction of possible tsunami direction. The color bar denotes the magnitude of the maximum moment flux. Figure 2. Scenario result of Mw 8.8 in northern segment of Manila Trench. (Left: Initial free surface elevation

  16. Separation Process by Porous Membranes: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Acto de Lima Cunha

    2014-07-01

    Full Text Available A major problem associated with the membrane separation processes is the permeate flux drop, limiting the widespread of industrial application of this process. This occurs due to the accumulation of solute concentration near the membrane surface. An exact quantification of the concentration polarization as a function of process conditions is essential to estimate the system performance satisfactorily. In this sense, this work aims to predict the behavior of the concentration polarization boundary layer along the length of a permeable tubular membrane, over various operation conditions. The numerical solution of the Navier-Stokes equation, coupled to Darcy's and mass transfer equations, is obtained by the commercial software ANSYS CFX 12, considering a two-dimensional computational domain. The study evaluates the effects of axial Reynolds and Schmidt numbers on the concentration polarization boundary layer thickness during the cross-flow filtration process. Numerical results have shown that the mathematical model is able to predict the formation and growth of the concentration polarization boundary layer along the length of the tubular membrane.

  17. Heat transfer enhancement in nanofluids. A numerical approach

    International Nuclear Information System (INIS)

    Fariñas Alvariño, P; Sáiz Jabardo, J M; Arce, A; Llamas Galdo, M I

    2012-01-01

    The aim of the reported investigation is to asses the effect of brownian and thermophoretic diffusion in nanofluids convective heat transfer. In order to capture these effects, a new equation for particles distribution had to be consider. Momentum and energy equations have been reformulated in order to include brownian and thermophretic diffusion. These modes of diffusion have been suggested extensively in the literature but their effect on momentum and energy transport has not yet been numerically analyzed. In order to obtain a solution for the modified set of governing equations, a new CFD solver had to be devised. The new solver has been applied to a case study involving hydrodynamic and thermally developing laminar flow regime in a pipe. Pure base fluid solutions have been used to asses the accuracy of the model. Numerical nanofluid solutions compare reasonably well with both experimental results obtained elsewhere and the Churchill and Ozoe correlation. The observed heat transfer enhancement by the nanofluid has been attributed to its transport properties rather than to another transport mechanism.

  18. Numerical studies on helium cooled divertor finger mock up with sectorial extended surfaces

    International Nuclear Information System (INIS)

    Rimza, Sandeep; Satpathy, Kamalakanta; Khirwadkar, Samir; Velusamy, Karupanna

    2014-01-01

    Highlights: • Studies on heat transfer enhancement for divertor finger mock-up. • Heat transfer characteristics of jet impingement with extended surfaces have been investigated. • Effect of critical parameters that influence the thermal performance of the finger mock-up by CFD approach. • Effect of extended surface in enhancing heat removal potential with pumping power assessed. • Practicability of the chosen design is verified by structural analysis. - Abstract: Jet impinging technique is an advance divertor concept for the design of future fusion power plants. This technique is extensively used due to its high heat removal capability with reasonable pumping power and for safe operation. In this design, plasma-facing components are fabricated with numerous fingers cooled by helium jets to reduce the thermal stresses. The present study is focused towards finding an optimum performance of one such finger mock-up through systematic computational fluid dynamics (CFD) studies. Heat transfer characteristics of jet impingement have been numerically investigated with sectorial extended surfaces (SES). The result shows that addition of SES enhances heat removal potential with minimum pumping power. Detailed parametric studies on critical parameters that influence thermal performance of the finger mock-up have been analyzed. Thermo-mechanical analysis has been carried out through finite element based approach to know the state of stress in the assembly as a result of large temperature gradients. It is seen that the stresses are within the permissible limits for the present design. The whole numerical simulation has been carried out using general-purpose CFD software (ANSYS FLUENT, Release 14.0, User Guide, Ansys, Inc., 2011). Benchmark validation studies have been performed against high-heat flux experiments (B. Končar, P. Norajitra, K. Oblak, Appl. Therm. Eng., 30, 697–705, 2010) and a good agreement is noticed between the present simulation and the reported

  19. Fire exposed facades: Numerical modelling of the LEPIR2 testing facility

    Directory of Open Access Journals (Sweden)

    Dréan Virginie

    2016-01-01

    Full Text Available LEPIR2 testing facility is aimed to evaluate the fire behaviour of construction solutions implemented on facade according with the experimental evaluation required by the French Technical Specification 249 (IT249 of the safety regulation. It aims to limit the risks of fire spreading by facades to upper levels. This facility involves a wood crib fire in the lower compartment of a full scale two levels high structure. Flames are coming outside from the compartment through windows openings and develop in front of the facade. Computational fluids dynamics simulations are carried out with the FDS code (Fire Dynamics Simulator for two full-scale experiments performed by Efectis France laboratory. The first objective of this study is to evaluate the ability of numerical model to reproduce quantitative results in terms of gas temperatures and heat flux on the tested facade for further evaluation of fire performances of an insulation solution. When experimental results are compared with numerical calculations, good agreement is found out for every quantities and each test. The proposed models for wood cribs and geometry give correct thermal loads and flames shape near the tested facade.

  20. Numerical study of the characteristics of a dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Shi, C. A.; Adamiak, K.; Castle, G. S. P.

    2018-03-01

    A dielectric barrier discharge actuator to control airflow along a flat dielectric plate has been numerically investigated in this paper. In order to avoid large computing times, streamers, Trichel pulses and the ionic reactions involving photons and electrons are neglected. The numerical model assumes two types of generic ions, one positive and one negative, whose drift in the electric field produces the electrohydrodynamic flow. This study provides detailed insights into the physical mechanisms of DBD that include the electric field, space charge transport, surface charge accumulation and air flow motion. The results show the V-I characteristics, velocity profiles and drag force estimates. In addition, the effects of the voltage level, frequency and inlet air velocity on the actuator performance are presented and interpreted. The simulation results show a good agreement with theoretical expectations and experimental data available in literature.

  1. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  2. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  3. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    Directory of Open Access Journals (Sweden)

    Lidia Dzierzbicka-G³owacka

    2002-03-01

    Full Text Available This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as organisms having definite patterns of growth, reproduction and mortality. Assuming also that {Zoop} is composed ofi cohorts of copepods with weights Wi and numbers Zi, then {Zoop} = WiZi. The PhyZooNuDe model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton, zooplankton and nutrients, and one ordinary first-order differential equation for the benthic detritus pool, together with initial and boundary conditions. The calculations were made during 90 days (April, May and June for the study area P1 (Gdansk Deep in an area 0z<=20 m with a vertical space step of 0.1 m and a time step of 300 s. The simulation given here demonstrated the importance of food ingestion by zooplankton in that it can alter the nature of the interactions of plants and herbivores. The analysis of these numerical studies indicate that the maximal ingestion rate and the half-saturation constant for grazing strongly affect the magnitude of the spring bloom and the cyanobacterial bloom, and also the total zooplankton biomass.

  4. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  5. Friction stir welding of AA6082-T6 sheets: Numerical analysis and experimental tests

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.

    2004-01-01

    3D numerical simulation of the Friction Stir Welding process is developed with the aim to highlight the process mechanics in terms of metal flux and temperature, strain and strain rate distributions. The numerical results have been validated though a set of experimental tests

  6. Buckling and Fracture Investigation of Debonded Sandwich Columns: An Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Berggreen, Christian; Carlsson, Leif A.; Avilés, F.

    2008-01-01

    An experimental and numerical study of in-plane compression of foam core sandwich columns with implanted trough width face/core debond is presented. Experiments were conducted for columns with two different face thicknesses over different cores and debond lengths. The debonded region was monitore...

  7. Comparing Psychology Undergraduates' Performance in Probabilistic Reasoning under Verbal-Numerical and Graphical-Pictorial Problem Presentation Format: What Is the Role of Individual and Contextual Dimensions?

    Science.gov (United States)

    Agus, Mirian; Peró-Cebollero, Maribel; Penna, Maria Pietronilla; Guàrdia-Olmos, Joan

    2015-01-01

    This study aims to investigate about the existence of a graphical facilitation effect on probabilistic reasoning. Measures of undergraduates' performances on problems presented in both verbal-numerical and graphical-pictorial formats have been related to visuo-spatial and numerical prerequisites, to statistical anxiety, to attitudes towards…

  8. Molecular dynamics with deterministic and stochastic numerical methods

    CERN Document Server

    Leimkuhler, Ben

    2015-01-01

    This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications.  Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...

  9. Numerical Simulation of Tsunami Hazard Mitigation by Mangrove Forest in North Coast Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Putu Harry Gunawan

    2015-06-01

    Full Text Available Mangrove forest or known as bakau forest is important forest as a natural wave barrier or tsunami wave mitigation. Some advantages of mangrove forest to reduce the water waves are already studied. Mangrove forest in north coast of Bali’s island, Buleleng regency, Indonesia is in damaged condition. The aim of this paper is to present the importance of mangrove forest as the water wave mitigation in numerical simulation point of view. Moreover, the results also show the effect of tsunami propagation to the coastal area with and without mangrove resistance. Here, the nonlinear shallow water equations are used to govern the model of numerical simulation.

  10. Numerical Simulation of Tsunami Hazard Mitigation by Mangrove Forest in North Coast Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Putu Harry Gunawan

    2015-11-01

    Full Text Available Mangrove forest or known as bakau forest is important forest as a natural wave barrier or tsunami wave mitigation. Some advantages of mangrove forest to reduce the water waves are already studied. Mangrove forest in north coast of Bali’s island, Buleleng regency, Indonesia is in damaged condition. The aim of this paper is to present the importance of mangrove forest as the water wave mitigation in numerical simulation point of view. Moreover, the results also show the effect of tsunami propagation to the coastal area with and without mangrove resistance. Here, the nonlinear shallow water equations are used to govern the model of numerical simulation.

  11. Numerical semigroups and applications

    CERN Document Server

    Assi, Abdallah

    2016-01-01

    This work presents applications of numerical semigroups in Algebraic Geometry, Number Theory, and Coding Theory. Background on numerical semigroups is presented in the first two chapters, which introduce basic notation and fundamental concepts and irreducible numerical semigroups. The focus is in particular on free semigroups, which are irreducible; semigroups associated with planar curves are of this kind. The authors also introduce semigroups associated with irreducible meromorphic series, and show how these are used in order to present the properties of planar curves. Invariants of non-unique factorizations for numerical semigroups are also studied. These invariants are computationally accessible in this setting, and thus this monograph can be used as an introduction to Factorization Theory. Since factorizations and divisibility are strongly connected, the authors show some applications to AG Codes in the final section. The book will be of value for undergraduate students (especially those at a higher leve...

  12. Experimental study and numerical optimization of tensegrity domes - A case study

    Science.gov (United States)

    Winkelmann, Karol; Kłos, Filip; Rąpca, Mateusz

    2018-01-01

    The paper deals with the design, experimental analysis and numerical optimization of tensegrity dome models. Two structures are analyzed - a Geiger system dome (preliminary dome), with PVC-U bars and PA6/PP/PET tendons and a Fuller system dome (target dome), with wooden bars and steel cables as tendons. All used materials are experimentally tested in terms of Young's modulus and yield stress values, the compressed bars are also tested for the limit length demarcating the elastic buckling from plastic failure. The data obtained in experiments is then implemented in SOFiSTiK commercial software FE model. The model's geometrical parameters are considered uniform random variables. Geometrically and materially nonlinear analysis is carried out. Based on the obtained structural response (displacements), a Monte Carlo simulation - based approach is incorporated for both structural design point formulation and the SLS requirements fulfillment analysis. Finally, an attempt is made to erect the Fuller dome model in order to compare the numerical results of an experimentally-derived model with the in situ measurements of an actual structure.

  13. Numerical study on xenon positive column discharges of mercury-free lamp

    International Nuclear Information System (INIS)

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  14. Numerical simulation of installation of skirt foundations

    Energy Technology Data Exchange (ETDEWEB)

    Vangelsten, Bjoern Vidar

    1997-12-31

    Skirt foundation has been increasingly used for permanent offshore oil installations and anchors for drilling ships. Suction is commonly used in skirt foundation installing. If a large amount of suction is applied, the soil around the foundation may fail and the foundation become useless. This thesis studies failure due to high seepage gradients, aiming to provide a basis for reducing the risk of such failures. Skirt penetration model testing has shown that to solve the problem one must understand what is going on at the skirt tip during suction installation. A numerical model based on micro mechanics was developed as continuum hypothesis was seen to be unsuitable to describe the processes in the critical phases of the failure. The numerical model combines two-dimensional elliptical particles with the finite difference method for flow to model water flow in a granular material. The key idea is to formulate the permeability as a function of the porosity of the grain assembly and so obtain an interaction between the finite difference method on flow and the particle movement. A computer program, DYNELL, was developed and used to simulate: (1) weight penetration of a skirt wall, (2) combined suction and weight penetration of a skirt wall, and (3) critical gradient tests around a skirt wall to study failure mechanisms. The model calculations agree well with laboratory experiments. 16 refs., 124 figs., 21 tabs.

  15. Numerical resolution of the time-domain three-dimensional Maxwell equations by a conform finite element approximation. Part II: numerical results

    International Nuclear Information System (INIS)

    Heintze, E.

    1993-01-01

    The aim of this report is to validate the program MAX3D built up from the discretization of the formulation (FB) established in part 1. A qualitative and quantitative analysis is carried out on numerical results obtained with various test cases of which, for most of them, analytical solutions are known. 32 figs., 3 refs

  16. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  17. Numerical investigations on axial and radial blade rubs in turbo-machinery

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Tang, Eric Sang Sung; Salman Leong, M.; Al-Qrimli, Haidar F.; Rajamohan, G.

    2017-07-01

    In the recent years, the clearance between the rotor blades and stator/casing had been getting smaller and smaller prior improving the aerodynamic efficiency of the turbomachines as demand in the engineering field. Due to the clearance reduction between the blade tip and the rotor casing and between rotor blades and stator blades, axial and radial blade rubbing could be occurred, especially at high speed resulting into complex nonlinear vibrations. The primary aim of this study is to address the blade axial rubbing phenomenon using numerical analysis of rotor system. A comparison between rubbing caused impacts of axial and radial blade rubbing and rubbing forces are also aims of this study. Tow rotor models (rotor-stator and rotor casing models) has been designed and sketched using SOILDSWORKS software. ANSYS software has been used for the simulation and the numerical analysis. The rubbing conditions were simulated at speed range of 1000rpm, 1500rpm and 2000rpm. Analysis results for axial blade rubbing showed the appearance of blade passing frequency and its multiple frequencies (lx, 2x 3x etc.) and these frequencies will more excited with increasing the rotational speed. Also, it has been observed that when the rotating speed increased, the rubbing force and the harmonics frequencies in x, y and z-direction become higher and severe. The comparison study showed that axial blade rub is more dangerous and would generate a higher vibration impacts and higher blade rubbing force than radial blade rub.

  18. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  19. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  20. Hydration of mineral shrinkage-compensating admixture for concrete : an experimental and numerical study

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2012-01-01

    The use of shrinkage-compensating admixture in concrete has been proven to be an effective way to mitigate the shrinkage of concrete. The hydration of a shrinkage-compensating admixture in cement paste and concrete is investigated in this paper with numerical simulation and experimental study. An

  1. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    Directory of Open Access Journals (Sweden)

    Mespoulet Jérôme

    2015-01-01

    Full Text Available Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  2. A Numerical Study on Premixed Bluff Body Flame of Different Bluff Apex Angle

    Directory of Open Access Journals (Sweden)

    Gelan Yang

    2013-01-01

    Full Text Available In order to investigate effects of apex angle (α on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.

  3. Numerical taxonomic study of some tribes of composite (subfamily asteroideae) from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Osman, A K [South Valley University, Faculty of Science, Qena (Egypt). Dept. of Botany

    2011-02-15

    A systematic study of 25 taxa belonging to 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae of Compositae from Egypt was conducted by means of numerical analysis based on 19 main pollen grains characters. On the basis of UPGMA (Unpaired Group Method off Averaging) clustering and PCO (Principal Component Analysis), two main groups and five subgroups are recognized. (author)

  4. Numerical taxonomic study of some tribes of composite (subfamily asteroideae) from Egypt

    International Nuclear Information System (INIS)

    Osman, A.K.

    2011-01-01

    A systematic study of 25 taxa belonging to 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae of Compositae from Egypt was conducted by means of numerical analysis based on 19 main pollen grains characters. On the basis of UPGMA (Unpaired Group Method off Averaging) clustering and PCO (Principal Component Analysis), two main groups and five subgroups are recognized. (author)

  5. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study

    Directory of Open Access Journals (Sweden)

    Stephan E. Vogel

    2015-04-01

    Full Text Available The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number. Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.

  6. Numerical study of a mathematical model of internal erosion of soil

    Science.gov (United States)

    Sibin, A.

    2017-10-01

    The process of internal erosion in a three-phase saturated soil is studied. A mathematical model describing the process consists of the equations of mass conservation, Darcy’s law and equation for capillary pressure. The original system of equations is reduced to a system of three equations for porosity, pressure and water saturation. Obtained equation for the water saturation is degenerate. The degenerate problem in an one-dimensional domain is solved numerically using the finite-difference method.

  7. Continuous modelling study of numerical volumes - Applications to the visualization of anatomical structures

    International Nuclear Information System (INIS)

    Goret, C.

    1990-12-01

    Several technics of imaging (IRM, image scanners, tomoscintigraphy, echography) give numerical informations presented by means of a stack of parallel cross-sectional images. Since many years, 3-D mathematical tools have been developed and allow the 3 D images synthesis of surfaces. In first part, we give the technics of numerical volume exploitation and their medical applications to diagnosis and therapy. The second part is about a continuous modelling of the volume with a tensor product of cubic splines. We study the characteristics of this representation and its clinical validation. Finally, we treat of the problem of surface visualization of objects contained in the volume. The results show the interest of this model and allow to propose specifications for 3-D workstation realization [fr

  8. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage

    Science.gov (United States)

    Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai

    2015-06-01

    The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.

  9. Numerical study of the Columbia high-beta device: Torus-II

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  10. Numerical study of the Columbia high-beta device: Torus-II

    International Nuclear Information System (INIS)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes

  11. Numerical study of a PCM-air heat exchanger's thermal performance

    Science.gov (United States)

    Herbinger, F.; Bhouri, M.; Groulx, D.

    2016-09-01

    In this paper, the use of PCMs in HVAC applications is investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study is dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  12. Precarious Rock Methodology for Seismic Hazard: Physical Testing, Numerical Modeling and Coherence Studies

    Energy Technology Data Exchange (ETDEWEB)

    Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.

    2006-09-29

    This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.

  13. Numerical study of turbulent flow in a rectangular T-junction

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis V.

    2017-06-01

    In this paper, we report on a numerical study of the interaction and merging of a turbulent crossflow with an incoming turbulent jet in a T-junction with rectangular cross section. Our study is based on wall-resolved and experimentally validated large eddy simulations. The bulk Reynolds number of the crossflow is 15 000. Further, we consider cases with two different momentum ratios, namely, MR = 2 and MR = 0.5. In the presentation of the results, we elaborate on the main features of the flow, namely, the shear layers that emanate from the corners of the entry of the jet, the large recirculation bubble downstream the incoming jet, and the mixing process beyond the reattachment point. For validation purposes, we compare our simulations with existing experimental data. This comparison shows a good agreement between our numerical predictions and the measurements. First- and second-order statistics of the flow are also presented and analyzed in detail. Our simulations reveal two features of the flow that have not been reported before in studies of T-junctions. The first one is a secondary small-scale recirculation region between the entry of the jet and the large recirculation bubble. The second one is the negative turbulent kinetic energy production that occurs in the recirculation bubble and close to the reattachment of the flow. The analysis of our results further reveals that just across the entry of the jet, the boundary layer in the wall opposite to the jet experiences a favourable pressure gradient due to a Venturi effect induced by the incoming jet. In turn, this favourable pressure gradient contributes to the local relaminarization of the flow. On the other hand, the boundary layer downstream the recirculation bubble experiences an adverse pressure gradient. In both cases, a significant deviation from the universal law of the wall is confirmed.

  14. Experimental and Numerical Study of FRP Encased Composite Concrete Columns

    Directory of Open Access Journals (Sweden)

    Mohsen Ishaghian

    2017-02-01

    Full Text Available A new type of composite column is presented and assessed through experimental testing and numerical modeling. The objective of this research is to investigate design options for a composite column without the use of ferrous materials. This is to avoid the current problem of deterioration of concrete due to expansion of rusting reinforcement members. Such a target can be achieved by replacing the steel reinforcement of concrete columns with pultruded I-shape glass FRP structural sections. The composite column utilizes a glass FRP tube that surrounds a pultruded I-section glass FRP, which is subsequently filled with concrete. The GFRP tube acts as a stay-in-place form in addition to providing confinement to the concrete. A total of four composite columns were tested under monotonic axial loading. The experimental ultimate capacity of each of the tested composite column was compared to the predicted numerical capacity using ANSYS program. The comparison showed that the predicted numerical values were in good agreement with the experimental ones.

  15. Optimal control approaches for aircraft conflict avoidance using speed regulation : a numerical study

    OpenAIRE

    Cellier , Loïc; Cafieri , Sonia; Messine , Frederic

    2013-01-01

    International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...

  16. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  17. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  18. A numerical study of steady-state two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Henning Arendt

    2002-07-01

    pore scale. Although, the possible two-phase flow systems in nature and laboratory differ with respect to the properties of the media and the flowing phases, it is possible to include main features of these systems into a simple model. Thus, having created a simulator on pore scale for these systems, it is possible to use computer power to extract information that is generally valid. The aims of this thesis is to extract such information from numerical simulations. It is important to keep in mind that the conclusions that are presented in the paper section are based on numerical work, and should be verified by experiments. (author)

  19. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  20. Experimental and numerical studies in a vortex tube

    International Nuclear Information System (INIS)

    Sohn, Chang Hyun; Kim, Chang Soo; Gowda, B. H. L Lakshmana; Jung, Ui Hyun

    2006-01-01

    The present investigation deals with the study of the internal flow phenomena of the counter-flow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1 MPa to 0.3 MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments

  1. Complexities in coastal sediment transport studies by numerical modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Ilangovan, D.; ManiMurali, R.

    equations arrived based on scientific principles as all natural phenomena are governed by certain rules which can be explained by scientific principles. Efficiency of numerical modeling greatly depends on quality of input parameters. When input parameters...

  2. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    Science.gov (United States)

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  3. Analytical and numerical study of microswimming using the 'bead-spring model'

    OpenAIRE

    Pande, Jayant

    2016-01-01

    In this thesis we use the bead-spring microswimmer design as a model system to study mechanical microswimming. The basic form of such a swimmer was introduced as the 'three-sphere swimmer' in Najafi & Golestanian, Phys. Rev. E (2004) and has found wide use in theoretical, numerical and experimental research. In our work, we have modified and extended the model in various ways, which, as explained in this thesis, allow us to gain insight into many general principles of microswimming, for insta...

  4. Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-01-01

    This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.

  5. Direct numerical methods of mathematical modeling in mechanical structural design

    International Nuclear Information System (INIS)

    Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed

    2002-01-01

    Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

  6. AIMES Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Daniel S [Univ. of Illinois, Urbana-Champaign, IL (United States). National Center for Supercomputing Applications (NCSA); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Weissman, Jon [Univ. of Minnesota, Minneapolis, MN (United States); Turilli, Matteo [Rutgers Univ., New Brunswick, NJ (United States)

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.

  7. A new scheme to treat the numerical Tcherenkov instability for electromagnetic particle simulations

    International Nuclear Information System (INIS)

    Assous, F.; Degond, P.; Segre, J.; Degond, P.

    1997-10-01

    The aim of this paper is to present a new explicit time scheme for electromagnetic particle simulations. The main property of this new scheme, which depends on a parameter, is to reduce and in some cases to suppress numerical instabilities that can appear in this context, and are widely described in the literature. Other numerical properties are also investigated, and a numerical example is finally given to illustrate our purpose. This scheme is expected to be useful in the field of plasma modelling. (authors)

  8. A delta-rule model of numerical and non-numerical order processing.

    Science.gov (United States)

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.

    Science.gov (United States)

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan

    2015-08-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.

  10. Experimental and numerical study of the micro-spalling of metallic targets subjected to laser shock

    International Nuclear Information System (INIS)

    Loison, D.

    2012-01-01

    Micro-spalling is a failure phenomenon consisting in dynamic fragmentation of a material after partial or full melting under intense shock wave loading. High power pulsed lasers are used as shock wave generators in laboratory for scientific and industrial purposes, such as research on inertial confinement fusion. In this context, the production of high velocity fragments can damage the facilities where shock experiments are conducted. This thesis, realized in collaboration with different teams from CEA, aims at understanding and modeling the different processes involved in micro-spalling phenomenon. Experiments to study micro-spalling of laser shock-loaded tin and aluminum targets have been performed. Various and complementary diagnostics (photonic Doppler velocimetry, soft recovery of debris and microtomography) have been used to characterize the ballistic properties (size distributions and velocities) of droplets constituting the micro-spalling cloud. In parallel, phase transition and fragmentation models have been adapted to simulate micro-spalling. These models have been implemented in a code to predict the sizes and velocities of debris. The combination of experimental and numerical results allows characterizing the successive stages of micro-spalling from laser-matter interaction to the ejection of droplets. (author)

  11. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  12. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  13. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    Science.gov (United States)

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  14. Experimental and numerical studies of turbulent flow in an in-line tube bundles

    Directory of Open Access Journals (Sweden)

    Aounalah Mohamed

    2012-04-01

    Full Text Available In the present paper an experimental and a numerical simulation of the turbulent flow in an in-line tube bundles have been performed. The experiments were carried out using a subsonic wind tunnel. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The Navier-Stokes equations of the turbulent flow are solved using Reynolds Stress and K-ε, turbulence models (RANS provided by Fluent CFD code. An adapted grid using static pressure, pressure coefficient and velocity gradient, furthermore, a second order upwind scheme were used. The obtained results from the experimental and numerical studies show a satisfactory agreement.

  15. Two-Dimensional Numerical Study on the Migration of Particle in a Serpentine Channel

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available In this work, the momentum exchange scheme-based lattice Boltzmann method is adopted to numerically study the migration of a circular particle in a serpentine channel for the range of 20 ≤ Re ≤ 120. The effects of the Reynolds number, particle density, and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories, and final equilibrium positions. Close attention is also paid to the time it takes for the particle to travel in the channel. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large. Furthermore, there exists a critical solid-to-fluid density ratio for which the particle travels fastest in the channel.

  16. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  17. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Ramani, Geetha B.

    2008-01-01

    The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…

  18. Experimental and numerical study of the mechanical behaviour modelling of a metal-ceramic composite: MoTiC30%

    International Nuclear Information System (INIS)

    Cedat, D.

    2008-11-01

    In the scope of refractory materials development for structural applications in the core of the future nuclear reactors, several studies have been developed. The aim of this work is to increase the knowledge of the mechanical behaviour and the damage of the ceramic-metal composite Mo(TiC)x% under the temperature range [25-700 C]. The identification of the third phase, formed by diffusion during the sintering step was identified by microstructural characterization. Experimental study also revealed the percolation of the ceramic particles through the structure. Mechanical tests highlight the main characteristics of the material: the macroscopic behaviour depends on the strain rate on the first hand and the temperature on the other hand. These mechanisms are attributed to the thermally activated behaviour of molybdenum. Simulations have been made on several microstructures considering elastic-brittle inclusion in a viscoelastic matrix. A polycrystalline model was used to simulate the evolution of the mechanical behaviour of the composite. The numerical aggregate, used for the simulation, was built from a 3D reconstruction technique thanks to acquisition of FIB/EBSD/SEM data. (author)

  19. A Numerical Modelling Study on the Potential Role of Tsunamis in the Biblical Exodus

    Directory of Open Access Journals (Sweden)

    José M. Abril

    2015-07-01

    Full Text Available The reliability of the narrative of the Biblical Exodus has been subject of heated debate for decades. Recent archaeological studies seem to provide new insight of the exodus path, and although with a still controversial chronology, the effects of the Minoan Santorini eruption have been proposed as a likely explanation of the biblical plagues. Particularly, it has been suggested that flooding by the associated tsunamis could explain the first plague and the sea parting. Recent modelling studies have shown that Santorini’s tsunami effects were negligible in the eastern Nile Delta, but the released tectonic stress could have triggered local tsunamigenic sources in sequence. This paper is aimed to a quantitative assessment of the potential role of tsunamis in the biblical parting of the sea. Several “best case” scenarios are tested through the application of a numerical model for tsunami propagation that has been previously validated. The former paleogeographic conditions of the eastern Nile Delta have been implemented based upon recent geological studies; and several feasible local sources for tsunamis are proposed. Tsunamis triggered by submarine landslides of 10–30 km3 could have severely impacted the northern Sinai and southern Levantine coasts but with weak effects in the eastern Nile Delta coastline. The lack of noticeable flooding in this area under the most favorable conditions for tsunamis, along with the time sequence of water elevations, make difficult to accept them as a plausible and literally explanation of the first plague and of the drowning of the Egyptian army in the surroundings of the former Shi-Hor Lagoon.

  20. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is

  1. Numerical study on transient local entropy generation in pulsating ...

    Indian Academy of Sciences (India)

    - soidal flow, step flow, and saw-down flow) and for varying periods. The flow and temperature fields are computed numerically with the help of the Fluent compu- tational fluid dynamics (CFD) code, and a computer program developed by us by.

  2. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  3. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  4. Numerical study of criticality of the slab reactors with three regions in one-group transport theory

    International Nuclear Information System (INIS)

    Santos, A. dos.

    1979-01-01

    The criticality of slab reactors consisting of core, blanket, and reflector is studied numerically based on the singular-eigenfunction-expansion method in one-group transport theory. The purpose of this work is three-fold: (1) it is shown that the three-media problem can be converted, using a recently developed method, to a set of regular integral equations for the expansion coefficients, such that numerical solutions can be obtained for the first time based on an exact theory; (2) highly accurate numerical results that can serve as standards of comparison for various approximate methods are reported for representative sets of parameters; and (3) the accuracy of the P sub(N) approximation, one of the more often used methods, is analyzed compared to the exact results [pt

  5. Numerical study on non-locally reacting behavior of nacelle liners incorporating drainage slots

    Science.gov (United States)

    Chen, Chao; Li, Xiaodong; Thiele, Frank

    2018-06-01

    For acoustic liners used in current commercial nacelles, in order to prevent any liquid accumulating in the resonators, drainage slots are incorporated on the partition walls between closely packed cavities. Recently, an experimental study conducted by Busse-Gerstengarbe et al. shown that the cell interaction introduced by drainage slots causes an additional dissipation peak which increases with the size of the slot. However, the variation of damping process due to drainage slots is still not fully understood. Therefore, a numerical study based on computational aeroacoustic methods is carried out to investigate the mechanism of the changed attenuation characteristics due to drainage slots in presence of grazing incident sound waves with low or high intensities. Different slot configurations are designed based on the generic non-locally reacting liner model adopted in the experimental investigation. Both 2-D and 3-D numerical simulations of only slit resonators are carried out. Numerical results indicate that the extra peak is a result of a resonance excited in the second cavity at specific frequency. Under high sound pressure level incoming waves, the basic characteristics of the acoustic performance remain. However, vortex shedding transpires at the resonances around both the slits and the drainage slot. Vorticity contours show that the connection of two coupled cavities decreases the strength of vortex shedding around the basic Helmholtz resonance due to a higher energy reflection. Meanwhile, the cell interaction significantly increases the vorticity magnitude near the extra resonant frequency. Finally, a semi-empirical model is derived to predict the extra attenuation peak frequency.

  6. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  7. Numerical study of impact erosion of multiple solid particle

    Science.gov (United States)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  8. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  9. Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders

    Science.gov (United States)

    Nigsch, Martin

    2007-07-01

    A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.

  10. Aging and the number sense: preserved basic non-symbolic numerical processing and enhanced basic symbolic processing

    Directory of Open Access Journals (Sweden)

    Jade Eloise eNorris

    2015-07-01

    Full Text Available Aging often leads to general cognitive decline in domains such as memory and attention. The effect of aging on numerical cognition, particularly on foundational numerical skills known as the Number Sense, is not well known. Early research focused on the effect of aging on arithmetic. Recent studies have begun to investigate the impact of healthy aging on basic numerical skills, but focused on non-symbolic quantity discrimination alone. Moreover, contradictory findings have emerged. The current study aimed to further investigate the impact of aging on basic non-symbolic and symbolic numerical skills. A group of 25 younger (18-25 and 25 older adults (60-77 participated in non-symbolic and symbolic numerical comparison tasks. Mathematical and spelling abilities were also measured. Results showed that aging had no effect on foundational non-symbolic numerical skills, as both groups performed similarly (RTs, accuracy and Weber fractions (w. All participants showed decreased non-symbolic acuity (accuracy and w in trials requiring inhibition. However, aging appears to be associated with a greater decline in discrimination speed in such trials. Furthermore, aging seems to have a positive impact on mathematical ability and basic symbolic numerical processing, as older participants attained significantly higher mathematical achievement scores, and performed significantly better on the symbolic comparison task than younger participants. The findings suggest that aging and its lifetime exposure to numbers may lead to better mathematical achievement and stronger basic symbolic numerical skills. Our results further support the observation that basic non-symbolic numerical skills are resilient to aging, but that aging may exacerbate poorer performance on trials requiring inhibitory processes. These findings lend further support to the notion that preserved basic numerical skills in aging may reflect the preservation of an innate, primitive and embedded Number

  11. Experimental study and numerical modeling of the plastic behavior of zirconium alloys under and after irradiation

    International Nuclear Information System (INIS)

    Drouet, Julie

    2014-01-01

    Recrystallized zirconium alloys are widely used as constitutive material of cladding tubes in Pressurized Water Reactors. During their lifetime in reactor, these materials are submitted to irradiation, creating a large amount of defects and changing their mechanical behavior. Despite the broad knowledge of macroscopic modifications due to irradiation, microscopic mechanisms involved remain partially known and understood. This study aims at understanding this issue using two different means, experimental and numerical, to investigate interactions between moving dislocations and dislocation loops created by irradiation. The experimental approach is based on irradiating with Zr ions Zircaloy-4 samples. Then, these samples are strained in a transmission electron microscope (TEM). Mobile dislocations interacting with irradiation induced loops are observed, following different mechanisms. Loops can act as strong obstacles to moving dislocations, pinning their further glide and hardening the material. Therefore, this type of mechanism participates in irradiation hardening. Dislocations absorbing loops have also been observed, showing the ability of dislocations to clear up defects. This mechanism explains the formation of clear bands observed in the material after irradiation and mechanical testings. The numerical approach is based on Dislocation Dynamics (DD) simulations of mobile dislocations gliding in prismatic or basal planes of the hexagonal close packed lattice and loops, using NUMODIS. The results of this study are consistent with a recent study of interactions of dislocations in a prismatic plane and loops studied by molecular dynamics. The counterpart of this study with gliding dislocations in the basal plane, performed only using DD simulations, show interesting explanations of the observed clear band formation in basal and prismatic planes, with broader channels in basal planes. A situation observed during in situ TEM experiments has been simulated using DD

  12. Experimental and numerical approaches to studying hot cracking in stainless steel welds

    International Nuclear Information System (INIS)

    Le, Minh

    2014-01-01

    This work concerns experimental and numerical approaches to studying hot cracking in welds in stainless steel. Metallurgical weldability of two filler products used for the welding of an AISI-316L(N) austenitic stainless steel grade is evaluated. These filler metals are distinguished by their solidification microstructures: austeno-ferritic for the 19Cr-12Ni-2Mo grade and austenitic for the 19-15H Thermanit grade. The study of weldability concerns the assessment of the susceptibility to hot cracking of these three alloys, the proposition of a hot cracking criterion, and the evaluation of its transferability to structure-scale tests. Hot cracks are material separations occurring at high temperatures along the grain boundaries (dendrite boundaries), when the level of strain and the strain rate exceed a certain level. The hot cracks studied are formed during solidification from the liquid phase of weld metals. The bibliography study brings to the fore the complexity of initiation and propagation mechanisms of these material separations. Three types of tests are studied in this work: hot cracking tests, such as trapezoidal and Varestraint tests, allowing to initiate the phenomenon in controlled experimental conditions, and tests on the Gleeble thermomechanical simulator for thermomechanical (materials behavior laws, fracture properties) and metallurgical (brittle temperature range (BTR), evolution of delta ferrite) characterizations of the alloys. All these tests on the three materials were analyzed via numerical modeling and simulations implemented in the Cast3M finite element code in order to bring out a thermomechanical hot cracking criterion. (author) [fr

  13. Development and comparison of different spatial numerical schemes for the radiative transfer equation resolution using three-dimensional unstructured meshes

    International Nuclear Information System (INIS)

    Capdevila, R.; Perez-Segarra, C.D.; Oliva, A.

    2010-01-01

    In the present work four different spatial numerical schemes have been developed with the aim of reducing the false-scattering of the numerical solutions obtained with the discrete ordinates (DOM) and the finite volume (FVM) methods. These schemes have been designed specifically for unstructured meshes by means of the extrapolation of nodal values of intensity on the studied radiative direction. The schemes have been tested and compared in several 3D benchmark test cases using both structured orthogonal and unstructured grids.

  14. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  15. Numerical studies of the g-hartree density functional in the Thomas-Fermi scaling limit

    International Nuclear Information System (INIS)

    Millack, T.; Weymans, G.

    1986-02-01

    Methods of finite temperature quantum field theory are used to construct the g-Hartree density functional for atoms. Low and high temperature expansions are discussed in detail. Numerical studies for atomic ground-state configurations are presented in the Thomas-Fermi-Scaling limit. (orig.)

  16. An analytical and numerical study of solar chimney use for room natural ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Koura, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2008-07-01

    The solar chimney concept used for improving room natural ventilation was analytically and numerically studied. The study considered some geometrical parameters such as chimney inlet size and width, which are believed to have a significant effect on space ventilation. The numerical analysis was intended to predict the flow pattern in the room as well as in the chimney. This would help optimizing design parameters. The results were compared with available published experimental and theoretical data. There was an acceptable trend match between the present analytical results and the published data for the room air change per hour, ACH. Further, it was noticed that the chimney width has a more significant effect on ACH compared to the chimney inlet size. The results showed that the absorber average temperature could be correlated to the intensity as: (T{sub w} = 3.51I{sup 0.461}) with an accepted range of approximation error. In addition the average air exit velocity was found to vary with the intensity as ({nu}{sub ex} = 0.013I{sup 0.4}). (author)

  17. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of the Reference Numerical Parameters of the Monthly Method in ISO 13790 Considering S/V Ratio

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Kwak

    2015-01-01

    Full Text Available Many studies have investigated the accuracy of the numerical parameters in the application of the quasi steady-state calculation method. The aim of this study is to derive the reference numerical parameters of the ISO 13790 monthly method by reflecting the surface-to-volume (S/V ratio and the characteristics of the structures. The calculation process was established, and the parameters necessary to derive the reference numerical parameters were calculated based on the input data prepared for the established calculation processes. The reference numerical parameters were then derived through regression analyses of the calculated parameters and the time constant. The parameters obtained from an apartment building and the parameters of the international standard were both applied to the Passive House Planning Package (PHPP and EnergyPlus programs, and the results were analyzed in order to evaluate the validity of the results. The analysis revealed that the calculation results based on the parameters derived from this study yielded lower error rates than those based on the default parameters in ISO 13790. However, the differences were shown to be negligible in the case of high heat capacity.

  19. Numerical study on hygroscopic material drying in packed bed

    Directory of Open Access Journals (Sweden)

    M. Stakić

    2011-06-01

    Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.

  20. Developing group investigation-based book on numerical analysis to increase critical thinking student’s ability

    Science.gov (United States)

    Maharani, S.; Suprapto, E.

    2018-03-01

    Critical thinking is very important in Mathematics; it can make student more understanding mathematics concept. Critical thinking is also needed in numerical analysis. The Numerical analysis's book is not yet including critical thinking in them. This research aims to develop group investigation-based book on numerical analysis to increase critical thinking student’s ability, to know the quality of the group investigation-based book on numerical analysis is valid, practical, and effective. The research method is Research and Development (R&D) with the subject are 30 student college department of Mathematics education at Universitas PGRI Madiun. The development model used is 4-D modified to 3-D until the stage development. The type of data used is descriptive qualitative data. Instruments used are sheets of validation, test, and questionnaire. Development results indicate that group investigation-based book on numerical analysis in the category of valid a value 84.25%. Students response to the books very positive, so group investigation-based book on numerical analysis category practical, i.e., 86.00%. The use of group investigation-based book on numerical analysis has been meeting the completeness criteria classical learning that is 84.32 %. Based on research result of this study concluded that group investigation-based book on numerical analysis is feasible because it meets the criteria valid, practical, and effective. So, the book can be used by every mathematics academician. The next research can be observed that book based group investigation in other subjects.

  1. Numerical simulation and sensitivity study of a severe hailstorm in northeast Spain

    Science.gov (United States)

    García-Ortega, E.; Fita, L.; Romero, R.; López, L.; Ramis, C.; Sánchez, J. L.

    2007-02-01

    During the afternoon of August 16th 2003 a severe hail event occurred in the town of Alcañiz in the Ebro Valley (Spain). This storm brought with it intense rain and hail precipitation that caused severe floods, damaged cars and street furniture. A diagnosis, using data from ECMWF, showed the presence of a mesolow at surface level centered over the Northeast of Spain, carrying winds from the Mediterranean Sea towards the Central Ebro Valley. At medium and high levels, a trough, whose axis extended over the Northwest of the Iberian Peninsula, moved eastwards preceded at 500 hPa by a thermal trough that caused increasing instability before the arrival of the geopotential trough. A numerical study of this event has been carried out using the MM5 model with a double aim. On the one hand, it attempts to check whether or not the simulation reproduces the storm in Alcañiz. On the other hand, it carries out a sensitivity experiment in order to evaluate the contribution of two specific factors: topography and solar radiation. Compared with radar data, the control simulation reproduces the region affected by the storm reasonably well. The suppression of topography and/or solar radiation substantially modifies the surface mesolow and the spatial distribution of the precipitation. Neither of these factors, considered independently, reproduces the precipitation caused by the storm in Alcañiz. However, the results illustrate the importance of the synergic effect of these two factors on the spatial localization of the storm and on the intensity of the precipitation registered.

  2. Modelisation and numerical simulation for bulk crystal growth processes

    International Nuclear Information System (INIS)

    Duffar, F.; Dusserre, P.; Barat, C.; Nabot, J.P.

    1993-01-01

    The aim of this work is to study the relevance of numerical simulation for improving the process control in the field of crystal growth. This investigation focused on the growth of semiconductor and halide crystals by the Bridgman solidification technique, the principle of which is to cool a seeded feed material contained in a crucible, either by pulling the crucible or by decreasing the temperature in the furnace. Calculations are performed with the finite element method, and for comparison, experiments are carried out on Bridgman pulling machines operating either in a laboratory or in industrial plants. Calculations and experimental data have shown a good agreement and a satisfactory reliability

  3. Theoretical and numerical studies of TWR based on ESFR core design

    International Nuclear Information System (INIS)

    Zhang, Dalin; Chen, Xue-Nong; Flad, Michael; Rineiski, Andrei; Maschek, Werner

    2013-01-01

    Highlights: • The traveling wave reactor (TWR) is studied based on the core design of the European Sodium-cooled Fast Reactor (ESFR). • The conventional fuel shuffling technique is used to produce a continuous radial fuel movement. • A stationary self sustainable nuclear fission power can be established asymptotically by only loading natural or depleted uranium. • The multi-group deterministic neutronic code ERANOS is applied. - Abstract: This paper deals with the so-called traveling wave reactor (TWR) based on the core design of the European Sodium-cooled Fast Reactor (ESFR). The current concept of TWR is to use the conventional radial fuel shuffling technique to produce a continuous radial fuel movement so that a stationary self sustainable nuclear fission power can be established asymptotically by only loading fertile material consisting of natural or depleted uranium. The core design of ESFR loaded with metallic uranium fuel without considering the control mechanism is used as a practical application example. The theoretical studies focus mainly on qualitative feasibility analyses, i.e. to identify out in general essential parameter dependences of such a kind of reactor. The numerical studies are carried out more specifically on a certain core design. The multi-group deterministic neutronic code ERANOS with the JEFF3.1 data library is applied as a basic tool to perform the neutronics and burn-up calculations. The calculations are performed in a 2-D R-Z geometry, which is sufficient for the current core layout. Numerical results of radial fuel shuffling indicate that the asymptotic k eff parabolically varies with the shuffling period, while the burn-up increases linearly. Typical shuffling periods investigated in this study are in the range of 300–1000 days. The important parameters, e.g. k eff , the burn-up, the power peaking factor, and safety coefficients are calculated

  4. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    OpenAIRE

    Bustos, Claudio; Herrera, Claudio García; Celentano, Diego; Chen, Daming; Cruchaga, Marcela

    2016-01-01

    Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an...

  5. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  6. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  7. Numerical studies of the MHD spectrum of an elliptic plasma column

    International Nuclear Information System (INIS)

    Chance, M.S.; Greene, J.M.; Grimm, R.C.; Johnson, J.L.

    1976-05-01

    A numerical procedure is described for determining the MHD spectrum associated with small perturbations about an analytic equilibrium. This configuration has magnetic flux surfaces which are nested similar elliptical cylinders generated by a uniform axial current. Since the system is periodic, it models the essential features of a toroid. The code is used to study the properties of modes in the continuous shear Alfven and slow acoustic spectra as well as the discrete modes associated with the fast magnetosonic waves and kinks. Modes where the interchange criterion is violated, or nearly violated, are investigated

  8. Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio

    Science.gov (United States)

    2009-09-01

    chl.erdc.usace.army.mil/sms). Cross-sections from a ERDC/CHL TR-09-17 7 HEC - RAS model provided by the district, along with aerial photographs for proper alignment...ER D C/ CH L TR -0 9 -1 7 Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio Richard L. Stockstill and Jane M. Vaughan...September 2009 C oa st al a n d H yd ra u lic s La b or at or y Approved for public release; distribution is unlimited. ERDC/CHL TR-09

  9. Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance

    DEFF Research Database (Denmark)

    Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid

    2015-01-01

    The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...... sensitivity of the flow to perturbations, large scale separation and performance hysteresis. The objective of this work is to improve the understanding of the transitional airfoil flow performance by studying the S826 NREL airfoil at low Reynolds numbers (Re = 4:104 and 1:105) with two inherently different...

  10. Geometric and numerical foundations of movements

    CERN Document Server

    Mansard, Nicolas; Lasserre, Jean-Bernard

    2017-01-01

    This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.

  11. Numerical methods for the Lévy LIBOR model

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    2010-01-01

    but the methods are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure....... This enables simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the L\\'evy LIBOR model of Eberlein and \\"Ozkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates...

  12. Numerical Methods for the Lévy LIBOR Model

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure. This enables...... simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the Lévy LIBOR model of Eberlein and Özkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods...

  13. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  14. Mechanical behaviour of the heel pad: experimental and numerical approach

    DEFF Research Database (Denmark)

    Matteoli, Sara; Fontanella, C. G.; Virga, A.

    The aim of the present work was to investigate the stress relaxation phenomena of the heel pad region under different loading conditions. A 31-year-old healthy female was enrolled in this study and her left foot underwent both MRI and experimental compression tests. Experimental results were...... compared with those obtained from finite element analysis performed on numerical 3D subject-specific heel pad model built on the basis of MRI. The calcaneal fat pad tissue was described with a visco-hyperelastic model, while a fiber-reinforced hyperelastic model was formulated for the skin. The reliability...

  15. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  16. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  17. Numerical study of the rising of the explosion clouds in different atmosphere

    International Nuclear Information System (INIS)

    Li Xiaoli; Zheng Yi; Chao Ying; Cao Yitang

    2010-01-01

    The rising of the explosion clouds in the uniform and normal atmosphere had been studied, the numerical model is based on the assumption that effects the clouds are gravity and buoyancy. The model is testified by Rayleigh-Taylor unsteady problem. The evolution of the density during the rising of the explosion clouds are provided, and the computational results indicates that the effects of the layered atmosphere mains the altitude of the cloud. (authors)

  18. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  19. Biosensor enhancement using grooved micromixers: Part I, numerical studies

    Czech Academy of Sciences Publication Activity Database

    Lynn, Nicholas Scott; Homola, Jiří

    2015-01-01

    Roč. 87, č. 11 (2015), s. 5516-5523 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Numerical methods * Micromixers * Analytes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.886, year: 2015

  20. Composite body movements modulate numerical cognition: Evidence from the motion–numerical compatibility effect

    Directory of Open Access Journals (Sweden)

    Xiaorong eCheng

    2015-11-01

    Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  1. SU-E-T-531: Large--Scale DVH Quality Study: Correlated Aims Lead Relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Nohadani, O; Roy, A [Northwestern University, Evanston, IL (United States); Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2015-06-15

    Purpose: Intensity modulated radiation therapy plans are designed to optimally target a tumor while sparing surrounding tissue. Desired dose distributions are iteratively approached via inverse planning. This leads to tradeoffs between clinical objectives for the planning target volume (PTV), organs at risk, and normal tissues. Dose volume histogram (DVHs) related aims are followed that are either institutional or internationally recommended. We analyze common goals and identify potential reasons that often lead to tradeoffs. Methods: 524 IMRT plans for various tumor sites were analyzed based on the main institutional DVH goal for PTV (D95) and the recommendations by ICRU-83 (D2, D50, and D98). Robust statistical tools are developed and applied to ensure that the results are immune to data uncertainties. The probability of violation was measured for each of the DVH goals based on the frequency of not meeting recommended doses. Conditional probabilities for satisfying and/or violating DVH aims were computed to test the hypothesized pair-wise relations between DVH aims. For example, for plans that satisfied D50, the probability of violating D98 was computed via P(D98 < 95% | 98% ≤ D50 ≤ 102%). The equality constraint D50 = 100% was relaxed to encompass the range [98,102]%. Results: A large majority of cases (88%) satisfied the institutional goal for PTV of D95 ≤ 95%. Similar consensus existed for D98. 51% of cases satisfied D2 ≥ 107%. However, only 18% of cases satisfied D50. The conditional probability showed correlations amongst the studied DVH goals. In fact, a negative correlation was revealed between D50 and D95 (and D98), suggesting that these competing goals cannot be satisfied concurrently. Conclusion: The majority of plans followed the institutional guidelines. The reason for their deviation from international recommendations seems to be that the latter goals are competing and cannot be satisfied concurrently in clinical practice.

  2. Numerical Simulation of Groundwater Flow at Kori Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Sohn, Wook; Sohn, Soon Whan; Chon, Chul Min; Kim, Kue Youn

    2010-01-01

    Recently, the understanding of hydrogeological characteristics of nuclear power sites is getting more importance with increasing public concerns over the environment since such understanding is essential for an environmentally friendly operation of plants. For such understanding, the prediction of groundwater flow pattern onsite plays the most critical role since it is the most dynamic of the factors to be considered. In this study, the groundwater flow at the Kori Plant 1 site has been simulated numerically with aim of providing fundamental information needed for improving the understanding of the hydrogeological characteristics of the site

  3. Numerical study of particle capture efficiency in fibrous filter

    Directory of Open Access Journals (Sweden)

    Fan Jianhua

    2017-01-01

    Full Text Available Numerical simulations are performed for transport and deposition of particles over a fixed obstacle in a fluid flow. The effect of particle size and Stokes number on the particle capture efficiency is investigated using two methods. The first one is one-way coupling combining Lattice Boltzmann (LB method with Lagrangian point-like approach. The second one is two-way coupling based on the coupling between Lattice Boltzmann method and discrete element (DE method, which consider the particle influence on the fluid. Then the single fiber collection efficiency characterized by Stokes number (St are simulated by LB-DE methods. Results show that two-way coupling method is more appropriate in our case for particles larger than 8 μm. A good agreement has also been observed between our simulation results and existing correlations for single fiber collection efficiency. The numerical simulations presented in this work are useful to understand the particle transport and deposition and to predict the capture efficiency.

  4. A numerical approach to the study of the perpetual case of Ameripean options

    Science.gov (United States)

    Kandilarov, J.

    2013-12-01

    A new numerical method for solving the perpetual case of Ameripean options is proposed. The Ameripean delayed exercise model analyzes a new class of option model with American and ParAsian features. The model is mathematically described by ultraparabolic and parabolic PDE's which are valid over different regions. The perpetual case leads to the parabolic-elliptic two-phase Stefan problem with free internal boundary. To deal with the obtained nonlinear problem an iterative numerical method is proposed. Numerical analysis are presented and discussed.

  5. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  6. Numerical simulation of pulse-tube refrigerators

    NARCIS (Netherlands)

    Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2004-01-01

    A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of

  7. Numerical study of a confined slot impinging jet with nanofluids

    Directory of Open Access Journals (Sweden)

    Manca Oronzio

    2011-01-01

    Full Text Available Abstract Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4

  8. Numerical studies of deuterium-tritium ignition in impact-fusion targets

    International Nuclear Information System (INIS)

    Zubrin, R.M.; Ribe, F.L.

    1989-01-01

    A numerical one-dimensional solution of the Euler equations for an imploding spherical tungsten shell with internal deuterium-tritium gas is applied to study impact-fusion dynamics with parameters of fusion reactor relevance. Thermal conduction and radiative energy loss by the plasma are taken into account, as is heating by fusion generated alpha particles. A variety of target sizes and impact velocities are examined, and scaling laws for fusion yields are deduced which define possible parameters for conceptual commercial impact-fusion power reactors. It is found that shell energies and velocities of about 30 MJ and 110 km/s would be satisfactory. A commercial impact-fusion reactor based on such parameters is discussed

  9. Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; El Golli, S. [Ecole Nationale d`Ingenieurs, Monastir (Tunisia). Lab. d`Energetique; Berthon, A.; Le Palec, G.; Bournot, P. [Technopole de Chateau-Gombert, Marseille (France)

    1998-10-01

    Because of its numerous industrial applications (air conditioning, thermal insulation, behavior of fires), heat transfer in rectangular cavities has made the subject of many works which concern both theoretical numerical studies and experimental investigations. This work is devoted to a numerical approach of the laminar mixed convection in a cavity which one of the boundaries is materialized by a laminar vertical downstream air jet. The purpose is to analyze the interaction of this flow with the natural movement that grows in the cavity under the combined action of boundary thermal gradients and external medium of the cavity in order to examine thermal insulation qualities of the jet. Calculations have been made with the help of the finite volume method.

  10. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  11. Numerical study of magnetic field effect on nano-fluid forced convection in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, H., E-mail: Heidary_ha@aut.ac.ir [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Pirmohammadi, M., E-mail: Pirmohamadi@pardisiau.ac.ir [Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City, Tehran (Iran, Islamic Republic of); Kermani, M.J. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2015-01-15

    In this study heat transfer and fluid flow analysis in a straight channel utilizing nano-fluid is numerically studied, while flow field is under magnetic field. Usage of nano-particles in base fluid and also applying magnetic field transverse to fluid velocity are two ways recommended in this paper to enhance heat exchange in straight duct. The fluid temperature at the channel inlet (T{sub in}) is taken less than that of the walls (T{sub w}). With assuming thermal equilibrium state of both the fluid phase and nano-particles and ignoring the slip velocity between the phases, single phase approach is used for modeling of nano-fluid. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique. Numerical studies are performed over a range of Reynolds number, nano-fluid volume fraction and Hartmann number. The influence of these parameters is investigated on the local and average Nusselt numbers. Computations show excellent agreement with the literature. From this study, it is concluded that heat transfer in channels can enhance up to 75% due to the presence of nano-particles and magnetic field in channels. In industrial applications for cooling or heating purposes, the recommended ways in this paper, can provide helpful guidelines to the manufacturers to enhance efficiencies without heat exchanger area increase. - Highlights: • Addition of 10% nano-particles (copper here) can enhance the heat exchange by 26%. • Presence of magnetic field with Ha=30 in pure fluid can enhance the heat exchange by 50%. • Presence of magnetic field and nanofluid with Ha=30 and ϕ=0.1, can enhance the heat exchange by 76%. • Increasing Re{sub H} from 50 to 1000, the average Nu number can increase by a factor of ≈3.

  12. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  13. Control strategies for friction dampers: numerical assessment and experimental investigations.

    Directory of Open Access Journals (Sweden)

    Coelho H.T.

    2014-01-01

    Full Text Available The use of friction dampers has been proposed in a wide variety of mechanical systems for which it is not possible to apply viscoelastic materials, fluid based dampers or others viscous dampers. An important example is the application of friction dampers in aircraft engines to reduce the blades vibration amplitudes. In most cases, friction dampers have been studied in a passive way, however, a significant improvement can be achieved by controlling the normal force in the dampers. The aim of this paper is to study three control strategies for friction dampers based on the hysteresis cycle. The first control strategy maximizes the energy removal in each harmonic oscillation cycle, by calculating the optimum normal force based on the last displacement peak. The second control strategy combines the first one with the maximum energy removal strategy used in the smart spring devices. Finally, is presented the strategy which homogenously modulates the friction force. Numerical studies were performed with these three strategies defining the performance metrics. The best control strategy was applied experimentally. The experimental test rig was fully identified and its parameters were used for the numerical simulations. The obtained results show the good performance for the friction damper and the selected strategy.

  14. The effects of area contraction on the performance of UNITEN's shock tube: Numerical study

    International Nuclear Information System (INIS)

    Mohsen, A M; Yusoff, M Z; Al-Falahi, A

    2013-01-01

    Numerical study into the effects of area contraction on shock tube performance has been reported in this paper. The shock tube is an important component of high speed fluid flow test facility was designed and built at the Universiti Tenaga Nasional (UNITEN). In the above mentioned facility, a small area contraction, in form of a bush, was placed adjacent to the diaphragm section to facilitate the diaphragm rupturing process when the pressure ratio across the diaphragm increases to a certain value. To investigate the effects of the small area contraction on facility performance, numerical simulations were conducted at different operating conditions (diaphragm pressure ratios P 4 /P 1 of 10, 15, and 20). A two-dimensional time-accurate Navier-Stokes CFD solver was used to simulate the transient flow in the facility with and without area contraction. The numerical results show that the facility performance is influenced by area contraction in the diaphragm section. For instance, when operating the facility with area contraction using diaphragm pressure ratio (P 4 /P 1 ) of 10, the shock wave strength and shock wave speed decrease by 18% and 8% respectively.

  15. Cognitive Strategy Use and Measured Numeric Ability in Immediate- and Long-Term Recall of Everyday Numeric Information

    Science.gov (United States)

    Bermingham, Douglas; Hill, Robert D.; Woltz, Dan; Gardner, Michael K.

    2013-01-01

    The goals of this study were to assess the primary effects of the use of cognitive strategy and a combined measure of numeric ability on recall of every-day numeric information (i.e. prices). Additionally, numeric ability was assessed as a moderator in the relationship between strategy use and memory for prices. One hundred participants memorized twelve prices that varied from 1 to 6 digits; they recalled these immediately and after 7 days. The use of strategies, assessed through self-report, was associated with better overall recall, but not forgetting. Numeric ability was not associated with either better overall recall or forgetting. A small moderating interaction was found, in which higher levels of numeric ability enhanced the beneficial effects of strategy use on overall recall. Exploratory analyses found two further small moderating interactions: simple strategy use enhanced overall recall at higher levels of numeric ability, compared to complex strategy use; and complex strategy use was associated with lower levels of forgetting, but only at higher levels of numeric ability, compared to the simple strategy use. These results provide support for an objective measure of numeric ability, as well as adding to the literature on memory and the benefits of cognitive strategy use. PMID:23483964

  16. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    Directory of Open Access Journals (Sweden)

    Claudio Bustos

    Full Text Available Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.

  17. Numerical study of dispersing pollutant clouds in a built-up environment

    International Nuclear Information System (INIS)

    Wang Bingchen; Yee, Eugene; Lien, F.-S.

    2009-01-01

    In this paper, we study numerically the dispersion of a passive scalar released from an instantaneous point source in a built-up (urban) environment using a Reynolds-averaged Navier-Stokes method. A nonlinear k-ε turbulence model [Speziale, C.G., 1987. On nonlinear k-l and k-ε models of turbulence. J. Fluid Mech., 178, 459-475] was used for the closure of the mean momentum equations. A tensor diffusivity model [Yoshizawa, A., 1985. Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows. Phys. Fluids, 28, 3226-3231] was used for closure of the scalar transport equations. The concentration variance was also calculated from its transport equation, for which new values of Yoshizawa's closure coefficients are used, in order to account for the instantaneous tracer release and the complex geometry. A new dissipation length-scale model, required for the modelling of the dissipation rate of concentration variance, is also proposed. The numerical results for the flow, the pollutant concentration and the concentration variance, are compared with experimental data. This data was obtained from a water-channel simulation of a full-scale field experiment of tracer dispersion through a large array of building-like obstacles known as the Mock Urban Setting Trial (MUST)

  18. Numerical study of dispersing pollutant clouds in a built-up environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bingchen [Department of Mechanical and Manufacturing Engineering, University of Manitoba, 75A Chancellors Circle, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: bc_wang@umanitoba.ca; Yee, Eugene [Defence Research and Development Canada - Suffield, P.O. Box 4000, STN Main, Medicine Hat, AB, T1A 8K6 (Canada)], E-mail: eugene.yee@drdc-rddc.gc.ca; Lien, F.-S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)], E-mail: fslien@mecheng1.uwaterloo.ca

    2009-02-15

    In this paper, we study numerically the dispersion of a passive scalar released from an instantaneous point source in a built-up (urban) environment using a Reynolds-averaged Navier-Stokes method. A nonlinear k-{epsilon} turbulence model [Speziale, C.G., 1987. On nonlinear k-l and k-{epsilon} models of turbulence. J. Fluid Mech., 178, 459-475] was used for the closure of the mean momentum equations. A tensor diffusivity model [Yoshizawa, A., 1985. Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows. Phys. Fluids, 28, 3226-3231] was used for closure of the scalar transport equations. The concentration variance was also calculated from its transport equation, for which new values of Yoshizawa's closure coefficients are used, in order to account for the instantaneous tracer release and the complex geometry. A new dissipation length-scale model, required for the modelling of the dissipation rate of concentration variance, is also proposed. The numerical results for the flow, the pollutant concentration and the concentration variance, are compared with experimental data. This data was obtained from a water-channel simulation of a full-scale field experiment of tracer dispersion through a large array of building-like obstacles known as the Mock Urban Setting Trial (MUST)

  19. Numerical study of inertial effects on the rheology of filament suspensions

    Science.gov (United States)

    Alizad Banaei, Arash; Rosti, Marco Edoardo; Brandt, Luca

    2017-11-01

    Significant work has been devoted to modeling fiber suspensions as they occur in many applications such as paper and food industries. Most of the works are limited to the motion of rigid cylindrical rods in low Stokes flows. Here, we investigate the rheological properties of flexible filament suspensions by means of numerical simulations. We considered the filaments as one-dimensional inextensible slender bodies obeying the Euler-Bernoulli equations and study the effect of flexibility, flow inertia and volume fraction on the rheology of the suspensions. The numerical simulations are performed using the Immersed Boundary Method to model the fluid/structure interaction. The results indicate that the inertia has significant effect on the relative viscosity of the suspensions. The effect is larger for less deformable filaments. The filament suspensions exhibit viscoelastic behavior and the first normal stress has a maximum for moderate flexibilities. The relative viscosity increases with volume fraction of the filaments and it is more sensitive to the volume fraction for larger Reynolds numbers. For a constant flexibility, the mean end-to-end distance of the filaments decreases with Reynolds number and the mean velocity fluctuations of the fluid increases with the Reynolds number. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  20. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  1. A study on user authentication methodology using numeric password and fingerprint biometric information.

    Science.gov (United States)

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol; Kwak, Jin

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.

  2. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  3. Experimental study of a shear wall with numerous small openings

    International Nuclear Information System (INIS)

    Sotomura, K.; Murazumi, Y.; Yoshizaki, S.; Ezaki, T.

    1981-01-01

    Many small openings for piping and ducts are usually required in the shear walls for PWR nuclear power plant. It is generally believed that such openings oadversely affect the strength and stiffness of shear walls. However, little information is available concerning the behavior of walls with numerous small openings. Therefore, tests using wall specimens and an analysis using an FEM program were carried out to investigate this behavior. Main findings are as follows: 1) The ultimate strength of a shear wall with numerous small openings may be obtained by using the effective area at the critical cross section of the shear wall. 2) Shear walls with openings can be restored to the same shear strength and stiffness as shear walls without openings by diagonal reinforcement. (orig./HP)

  4. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels

    International Nuclear Information System (INIS)

    Kim, Dong Kwon

    2011-01-01

    In this article, ion-selective nanochannels are numerically studied to investigate the power generation capability of a concentration gradient in conjunction with reverse electrodialysis. The generation of power from the nanochannel when it is placed between two reservoirs containing sodium chloride solutions with different concentrations is investigated. The current-potential characteristics of the nanochannel were calculated by solving the Poisson equation and the Nernst-Planck equation. The effects of engineering parameters on the power generation density are investigated

  5. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Kwon [Ajou University, Suwon (Korea, Republic of)

    2011-01-15

    In this article, ion-selective nanochannels are numerically studied to investigate the power generation capability of a concentration gradient in conjunction with reverse electrodialysis. The generation of power from the nanochannel when it is placed between two reservoirs containing sodium chloride solutions with different concentrations is investigated. The current-potential characteristics of the nanochannel were calculated by solving the Poisson equation and the Nernst-Planck equation. The effects of engineering parameters on the power generation density are investigated.

  6. Numerical investigation of elastic mechanical properties of graphene structures

    International Nuclear Information System (INIS)

    Georgantzinos, S.K.; Giannopoulos, G.I.; Anifantis, N.K.

    2010-01-01

    The computation of the elastic mechanical properties of graphene sheets, nanoribbons and graphite flakes using spring based finite element models is the aim of this paper. Interatomic bonded interactions as well as van der Waals forces between carbon atoms are simulated via the use of appropriate spring elements expressing corresponding potential energies provided by molecular theory. Each layer is idealized as a spring-like structure with carbon atoms represented by nodes while interatomic forces are simulated by translational and torsional springs with linear behavior. The non-bonded van der Waals interactions among atoms which are responsible for keeping the graphene layers together are simulated with the Lennard-Jones potential using appropriate spring elements. Numerical results concerning the Young's modulus, shear modulus and Poisson's ratio for graphene structures are derived in terms of their chilarity, width, length and number of layers. The numerical results from finite element simulations show good agreement with existing numerical values in the open literature.

  7. Advanced Integrated Multi-Sensor Surveillance (AIMS. Operator Machine Interface (OMI) Definition Study

    National Research Council Canada - National Science Library

    Baker, Kevin; Youngson, Gord

    2007-01-01

    To enhance the capability of airborne search and rescue (SAR) and surveillance, particularly at night and in poor weather, a multi sensor electro optical imaging system, the Advanced Integrated Multi sensor Surveillance (AIMS...

  8. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  9. Simplex-based optimization of numerical and categorical inputs in early bioprocess development: Case studies in HT chromatography.

    Science.gov (United States)

    Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy

    2017-08-01

    Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-similar radiation from numerical Rosenau-Hyman compactons

    International Nuclear Information System (INIS)

    Rus, Francisco; Villatoro, Francisco R.

    2007-01-01

    The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically induced radiation, which is illustrated here using four numerical methods applied to the Rosenau-Hyman K(p, p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated graphically by the proper scaling. A grid refinement study shows that the amplitude of the radiations decreases as the grid size does, confirming its numerical origin. The front velocity and the amplitude of both radiations have been studied as a function of both the compacton and the numerical parameters. The amplitude of the radiations decreases exponentially in time, being characterized by a nearly constant scaling exponent. An ansatz for both the backward and forward radiations corresponding to a self-similar function characterized by the scaling exponent is suggested by the present numerical results

  11. Numerical Magnitude Representations Influence Arithmetic Learning

    Science.gov (United States)

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  12. The diverse aims of science.

    Science.gov (United States)

    Potochnik, Angela

    2015-10-01

    There is increasing attention to the centrality of idealization in science. One common view is that models and other idealized representations are important to science, but that they fall short in one or more ways. On this view, there must be an intermediary step between idealized representation and the traditional aims of science, including truth, explanation, and prediction. Here I develop an alternative interpretation of the relationship between idealized representation and the aims of science. I suggest that continuing, widespread idealization calls into question the idea that science aims for truth. If instead science aims to produce understanding, this would enable idealizations to directly contribute to science's epistemic success. I also use the fact of widespread idealization to motivate the idea that science's wide variety aims, epistemic and non-epistemic, are best served by different kinds of scientific products. Finally, I show how these diverse aims—most rather distant from truth—result in the expanded influence of social values on science. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Numerical simulations of slagging dynamics using a meshmeshless strategy

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2009-07-01

    In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)

  14. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barrutia, Harritz; Esnaola, Jon Ander; Tutar, Mustafa

    2014-01-01

    Highlights: • A correlation equation to characterize regenerator heat transfer is proposed. • Proposed correlation can be used as a effective tool to optimize the heat transfer. • Thermal efficiency can be maximized by optimizing Stirling regenerator heat transfer. • The wound woven wire matrix provides lower Nusselt numbers compared to stacked. • The developed correlation can be used for Reynolds number range from 4 to 400. - Abstract: Nusselt number correlation equations are numerically derived by characterizing the heat transfer phenomena through porous medium of both stacked and wound woven wire matrices of a Stirling engine regenerator over a specified range of Reynolds number, diameter and porosity. A finite volume method (FVM) based numerical approach is proposed and validated against well known experimentally obtained empirical correlations for a random stacking woven wire matrix, the most widely used due to fabrication issues, for Reynolds number up to 400. The results show that the numerically derived correlation equation corresponds well with the experimentally obtained correlations with less than 6% deviation with the exception of low Reynolds numbers. Once the numerical approach is validated, the study is further extended to characterize the heat transfer in a wound woven wire matrix model for a diameter range from 0.08 to 0.11 mm and a porosity range from 0.60 to 0.68 within the same Reynolds number range. Thus, the new correlation equations are numerically derived for different flow configurations of the Stirling engine regenerator. It is believed that the developed correlations can be applied with confidence as a cost effective solution to characterize and hence to optimize stacked and wound woven wire Stirling regenerator in the above specified ranges

  15. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  16. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  17. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  18. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  19. Experimental and numerical studies on two-stage combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Houshfar, Eshan

    2012-07-01

    In this thesis, two-stage combustion of biomass was experimentally/numerically investigated in a multifuel reactor. The following emissions issues have been the main focus of the work: 1- NOx and N2O 2- Unburnt species (CO and CxHy) 3- Corrosion related emissions.The study had a focus on two-stage combustion in order to reduce pollutant emissions (primarily NOx emissions). It is well known that pollutant emissions are very dependent on the process conditions such as temperature, reactant concentrations and residence times. On the other hand, emissions are also dependent on the fuel properties (moisture content, volatiles, alkali content, etc.). A detailed study of the important parameters with suitable biomass fuels in order to optimize the various process conditions was performed. Different experimental studies were carried out on biomass fuels in order to study the effect of fuel properties and combustion parameters on pollutant emissions. Process conditions typical for biomass combustion processes were studied. Advanced experimental equipment was used in these studies. The experiments showed the effects of staged air combustion, compared to non-staged combustion, on the emission levels clearly. A NOx reduction of up to 85% was reached with staged air combustion using demolition wood as fuel. An optimum primary excess air ratio of 0.8-0.95 was found as a minimizing parameter for the NOx emissions for staged air combustion. Air staging had, however, a negative effect on N2O emissions. Even though the trends showed a very small reduction in the NOx level as temperature increased for non-staged combustion, the effect of temperature was not significant for NOx and CxHy, neither in staged air combustion or non-staged combustion, while it had a great influence on the N2O and CO emissions, with decreasing levels with increasing temperature. Furthermore, flue gas recirculation (FGR) was used in combination with staged combustion to obtain an enhanced NOx reduction. The

  20. Numerical relativity and asymptotic flatness

    International Nuclear Information System (INIS)

    Deadman, E; Stewart, J M

    2009-01-01

    It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.

  1. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  2. Is Fitts' law continuous in discrete aiming?

    Directory of Open Access Journals (Sweden)

    Rita Sleimen-Malkoun

    Full Text Available The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID in a goal-directed rapid aiming task (Fitts' law has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1 but not via target distance (experiment 2. Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.

  3. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  4. CRESESB: 10 years of activities aimed at the future; CRESESB - 10 anos de atividades visando o futuro

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio; Souza, Hamilton Moss de; Silva, Patricia de Castro da; Dutra, Ricardo Marques [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil). Dept. de Tecnologias Especiais], Emails: marcoag@cepel.br, moss@cepel.br, patricia@cepel.br, dutra@cepel.br

    2007-07-01

    The Centro de Referencia para as Energias Solar e Eolica Sergio de Salvo Brito - CRESESB was created in late 1994 through a agreement between CEPEL and the Ministry of Mines and Energy, at the recommendation of the 'Declaration of Belo Horizonte'. In 10 years of activities, CRESESB / CEPEL has developed several studies, the most important: support for various government programs of the MME and the MCT, Internet dissemination of information, assembling and running courses in solar energy and wind power, edition of publications, maintenance of a specialized library and visits to 'Casa Solar Eficiente' (Efficient Solar House). Other activities also include: attendance at meetings, participation in working groups, reporting, feasibility studies, installation and support of numerous events, etc.. The aim of this paper is to present the scientific community of solar and wind power a historical record of 10 years of activities developed by CRESESB, an assessment of achievements and planned targets for the future.

  5. Numerical studies of neon gas-puff Z-pinch dynamic processes

    International Nuclear Information System (INIS)

    Ning Cheng; Yang Zhenhua; Ding Ning

    2003-01-01

    Dynamic processes of neon gas-puff Z-pinch are studied numerically in this paper. A high temperature plasma with a high density can be generated in the process. Based on some physical analysis and assumption, a set of equations of one-dimensional Lagrangian radiation magneto-hydrodynamic (MHD) and its code are developed to solve the problem. Spatio-temporal distributions of plasma parameters in the processes are obtained, and their dynamic variations show that the major results are self-consistent. The duration for the plasma pinched to centre, as well as the width and the total energy of the x-ray pulse caused by the Z-pinch are in reasonable agreement with experimental results of GAMBLE-II. A zipping effect is also clearly shown in the simulation

  6. A Study on User Authentication Methodology Using Numeric Password and Fingerprint Biometric Information

    Directory of Open Access Journals (Sweden)

    Seung-hwan Ju

    2013-01-01

    Full Text Available The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.

  7. A Study on User Authentication Methodology Using Numeric Password and Fingerprint Biometric Information

    Science.gov (United States)

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility. PMID:24151601

  8. Numerical simulation studies of the LBNL heavy-ion beam combiner experiment

    International Nuclear Information System (INIS)

    Fawley, W.M.; Seidl, P.; Haber, I.; Friedman, A.; Grote, D.P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for heavy-ion inertial fusion energy drivers. A major area of interest, both theoretically and experimentally, is the resultant transverse phase space dilution during the beam merging process. Currently, a prototype combining experiment is underway at LBNL and we have employed a variety of numerical descriptions to aid in both the initial design of the experiment data. These range from simple envelope codes to detailed 2- and 3-D PIC simulations. We compare the predictions of the different numerical models to each other and to experimental data at different longitudinal positions

  9. Pure Left Neglect for Arabic Numerals

    Science.gov (United States)

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  10. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  11. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua

    2016-09-26

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions. Stick-slip behavior and con-tact angle hysteresis are observed. Moreover, we also study the relationship between the effective advancing/receding angle and the two intrinsic angles of the surface patterns. By increasing the volume of droplet gradually, we find that the advancing contact line tends gradually to an equiangular octagon with the length ratio of the two adjacent sides equal to a fixed value that depends on the geometry of the pattern.

  12. On the tradeoffs of programming language choice for numerical modelling in geoscience. A case study comparing modern Fortran, C++/Blitz++ and Python/NumPy.

    Science.gov (United States)

    Jarecka, D.; Arabas, S.; Fijalkowski, M.; Gaynor, A.

    2012-04-01

    The language of choice for numerical modelling in geoscience has long been Fortran. A choice of a particular language and coding paradigm comes with different set of tradeoffs such as that between performance, ease of use (and ease of abuse), code clarity, maintainability and reusability, availability of open source compilers, debugging tools, adequate external libraries and parallelisation mechanisms. The availability of trained personnel and the scale and activeness of the developer community is of importance as well. We present a short comparison study aimed at identification and quantification of these tradeoffs for a particular example of an object oriented implementation of a parallel 2D-advection-equation solver in Python/NumPy, C++/Blitz++ and modern Fortran. The main angles of comparison will be complexity of implementation, performance of various compilers or interpreters and characterisation of the "added value" gained by a particular choice of the language. The choice of the numerical problem is dictated by the aim to make the comparison useful and meaningful to geoscientists. Python is chosen as a language that traditionally is associated with ease of use, elegant syntax but limited performance. C++ is chosen for its traditional association with high performance but even higher complexity and syntax obscurity. Fortran is included in the comparison for its widespread use in geoscience often attributed to its performance. We confront the validity of these traditional views. We point out how the usability of a particular language in geoscience depends on the characteristics of the language itself and the availability of pre-existing software libraries (e.g. NumPy, SciPy, PyNGL, PyNIO, MPI4Py for Python and Blitz++, Boost.Units, Boost.MPI for C++). Having in mind the limited complexity of the considered numerical problem, we present a tentative comparison of performance of the three implementations with different open source compilers including CPython and

  13. Aims and tasks in parental caregiving for children receiving palliative care at home: a qualitative study.

    Science.gov (United States)

    Verberne, Lisa M; Kars, Marijke C; Schouten-van Meeteren, Antoinette Y N; Bosman, Diederik K; Colenbrander, Derk A; Grootenhuis, Martha A; van Delden, Johannes J M

    2017-03-01

    In paediatric palliative care (PPC), parents are confronted with increasing caregiving demands. More children are cared for at home, and the need for PPC of children is lengthened due to technical and medical improvements. Therefore, a clear understanding of the content of parental caregiving in PPC becomes increasingly important. The objective is to gain insight into parental caregiving based on the lived experience of parents with a child with a life-limiting disease. An interpretative qualitative study using thematic analysis was performed. Single or repeated interviews were undertaken with 42 parents of 24 children with a malignant or non-malignant disease, receiving PPC. Based on their ambition to be a 'good parent', parents caring for a child with a life-limiting disease strived for three aims: controlled symptoms and controlled disease, a life worth living for their ill child and family balance. These aims resulted in four tasks that parents performed: providing basic and complex care, organising good quality care and treatment, making sound decisions while managing risks and organising a good family life. Parents need early explanation from professionals about balancing between their aims and the related tasks to get a grip on their situation and to prevent becoming overburdened. What is Known: • In paediatric palliative care, parents are confronted with increasing caregiving demands. • Parenting is often approached from the perspective of stress. What is New: • Parents strive for three aims: controlled symptoms and controlled disease, a life worth living for their child and family balance. • Parents perform four tasks: providing basic and complex care, organising good quality care, making decisions while managing risks and organising a good family life. • Professionals need insight into the parents' aims and tasks from the parental perspective to strengthen parents' resilience.

  14. Experimental and numerical study of pleated filters clogging

    International Nuclear Information System (INIS)

    Gervais, Pierre-Colin

    2013-01-01

    Pleated filters are widely used in air treatments because of the advantageous effective surface to overall dimension ratio they offer. Their major drawback though resides in their reduced lifetime which still needs to be controlled. Indeed, when clogging, the pressure drop considerably increases, the filtration flow is then no longer maintained which might lead to the deterioration of the media. It is then crucial to characterize the evolution of the pressure drop under operating conditions in order to best design these equipments. Part of our work consisted in studying how the operating conditions influence the geometry of the deposit. To do so, we used Single- Photon Emission Computed Tomography (SPECT), a non-destructive imaging technique that keeps intact the particle structuring. The visualization of aerosol deposit at the beginning of the filtration process allows observing preferential particle deposition on the whole height of the pleat. A numerical approach was used to study the permeability of bimodal fibrous media and we experimentally studied the local velocity as well as the biphasic flow inside pleated filter media. Comparison between experiments and simulations allowed us to validate the Geodict code for a wide range of media properties and velocities. Regarding bimodal fibrous media, the fast data acquisition has allowed testing several existing models which resulted in classifying them in a unique way. If the experimental results on the initial deposition in pleated filters are encouraging, those related to beforehand clogging point to several improvements regarding the technique we used. (author) [fr

  15. Review of The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing

    International Nuclear Information System (INIS)

    Bailey, David

    2005-01-01

    In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard. If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100 correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the

  16. Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  17. Numerical study of the quasinormal mode excitation of Kerr black holes

    International Nuclear Information System (INIS)

    Dorband, Ernst Nils; Diener, Peter; Tiglio, Manuel; Berti, Emanuele; Schnetter, Erik

    2006-01-01

    We present numerical results from three-dimensional evolutions of scalar perturbations of Kerr black holes. Our simulations make use of a high-order accurate multiblock code which naturally allows for adapted grids and smooth inner (excision) and outer boundaries. We focus on the quasinormal ringing phase, presenting a systematic method for extraction of the quasinormal mode frequencies and amplitudes and comparing our results against perturbation theory. The detection of a single mode in a ringdown waveform allows for a measurement of the mass and spin of a black hole; a multimode detection would allow a test of the Kerr nature of the source. Since the possibility of a multimode detection depends on the relative mode amplitude, we study this topic in some detail. The amplitude of each mode depends exponentially on the starting time of the quasinormal regime, which is not defined unambiguously. We show that this time-shift problem can be circumvented by looking at appropriately chosen relative mode amplitudes. From our simulations we extract the quasinormal frequencies and the relative and absolute amplitudes of corotating and counterrotating modes (including overtones in the corotating case). We study the dependence of these amplitudes on the shape of the initial perturbation, the angular dependence of the mode, and the black hole spin, comparing against results from perturbation theory in the so-called asymptotic approximation. We also compare the quasinormal frequencies from our numerical simulations with predictions from perturbation theory, finding excellent agreement. For rapidly rotating black holes (of spin j=0.98) we can extract the quasinormal frequencies of not only the fundamental mode, but also of the first two overtones. Finally we study under what conditions the relative amplitude between given pairs of modes gets maximally excited and present a quantitative analysis of rotational mode-mode coupling. The main conclusions and techniques of our

  18. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  19. Numerical time-dependent partial differential equations for scientists and engineers

    CERN Document Server

    Brio, Moysey; Zakharian, Aramais R

    2010-01-01

    It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on bas...

  20. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    Science.gov (United States)

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.