Magnetic Reconnection at a Three-dimensional Solar Null Point
DEFF Research Database (Denmark)
Frederiksen, Jacob Trier; Baumann, Gisela; Galsgaard, Klaus
2012-01-01
Using a specific solar null point reconnection case studied by Masson et al (2009; ApJ 700, 559) we investigate the dependence of the reconnection rate on boundary driving speed, numerical resolution, type of resistivity (constant or numerical), and assumed stratification (constant density or sol...
3D Solar Null Point Reconnection MHD Simulations
Baumann, G.; Galsgaard, K.; Nordlund, Å.
2013-06-01
Numerical MHD simulations of 3D reconnection events in the solar corona have improved enormously over the last few years, not only in resolution, but also in their complexity, enabling more and more realistic modeling. Various ways to obtain the initial magnetic field, different forms of solar atmospheric models as well as diverse driving speeds and patterns have been employed. This study considers differences between simulations with stratified and non-stratified solar atmospheres, addresses the influence of the driving speed on the plasma flow and energetics, and provides quantitative formulas for mapping electric fields and dissipation levels obtained in numerical simulations to the corresponding solar quantities. The simulations start out from a potential magnetic field containing a null-point, obtained from a Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) magnetogram magnetogram extrapolation approximately 8 hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to - although simpler than - horizontal motions observed by SOHO during the period preceding the flare. The general behavior is nearly independent of the driving speed, and is also very similar in stratified and non-stratified models, provided only that the boundary motions are slow enough. The boundary motions cause a build-up of current sheets, mainly in the fan-plane of the magnetic null-point, but do not result in a flare-like energy release. The additional free energy required for the flare could have been partly present in non-potential form at the initial state, with subsequent additions from magnetic flux emergence or from components of the boundary motion that were not represented by the idealized driving pattern.
ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME
International Nuclear Information System (INIS)
Pontin, D. I.; Priest, E. R.; Galsgaard, K.
2013-01-01
Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection
OBSERVATION OF MAGNETIC RECONNECTION AT A 3D NULL POINT ASSOCIATED WITH A SOLAR ERUPTION
International Nuclear Information System (INIS)
Sun, J. Q.; Yang, K.; Cheng, X.; Ding, M. D.; Zhang, J.
2016-01-01
Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The Geostationary Operational Environmental Satellites X-ray profile of the flare exhibited two peaks at ∼02:23 UT and ∼02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X-ray peak was originated from MR in the current sheet (CS) underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null point located above the pre-eruption MFR. The interaction of the null point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null point, resulting in a significant displacement of the magnetic field surrounding the null. During the second step, the displaced magnetic field started to move back, resulting in a converging inflow and subsequently the MR around the null. The null-point reconnection is a different process from the current sheet reconnection in this flare; the latter is the cause of the main peak of the flare, while the former is the cause of the secondary peak of the flare and the conspicuous high-lying cusp structure.
Kinetic modeling of particle acceleration in a solar null point reconnection region
DEFF Research Database (Denmark)
Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke
2013-01-01
The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO...... particles and 3.5 billion grid cells of size 17.5\\,km --- these simulations offer a new opportunity to study particle acceleration in solar-like settings....... applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan-plane of the null-point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub...
Dynamics and waves near multiple magnetic null points in reconnection diffusion region
Czech Academy of Sciences Publication Activity Database
Deng, X. H.; Zhou, M.; Li, S. Y.; Baumjohann, W.; Andre, M.; Cornilleau, N.; Santolík, Ondřej; Pontin, D. I.; Reme, H.; Lucek, E.; Fazakerley, A. N.; Decreau, P.; Daly, P.; Nakamura, R.; Tang, R. X.; Hu, Y. H.; Pang, Y.; Büchner, J.; Zhao, H.; Vaivads, A.; Pickett, J. S.; Ng, C. S.; Lin, X.; Fu, S.; Yuan, Z. G.; Su, Z. W.; Wang, J. F.
2009-01-01
Roč. 114, - (2009), A07216/1-A07216/7 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30420517 Keywords : waves * dynamics * reconnection * diffusion Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009
ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES
International Nuclear Information System (INIS)
Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey; Eriksson, Elin; Markidis, Stefano
2015-01-01
We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission
Evaluation of null-point detection methods on simulation data
Olshevsky, Vyacheslav; Fu, Huishan; Vaivads, Andris; Khotyaintsev, Yuri; Lapenta, Giovanni; Markidis, Stefano
2014-05-01
We model the measurements of artificial spacecraft that resemble the configuration of CLUSTER propagating in the particle-in-cell simulation of turbulent magnetic reconnection. The simulation domain contains multiple isolated X-type null-points, but the majority are O-type null-points. Simulations show that current pinches surrounded by twisted fields, analogous to laboratory pinches, are formed along the sequences of O-type nulls. In the simulation, the magnetic reconnection is mainly driven by the kinking of the pinches, at spatial scales of several ion inertial lentghs. We compute the locations of magnetic null-points and detect their type. When the satellites are separated by the fractions of ion inertial length, as it is for CLUSTER, they are able to locate both the isolated null-points, and the pinches. We apply the method to the real CLUSTER data and speculate how common are pinches in the magnetosphere, and whether they play a dominant role in the dissipation of magnetic energy.
A fully magnetohydrodynamic simulation of three-dimensional non-null reconnection
International Nuclear Information System (INIS)
Pontin, D.I.; Galsgaard, K.; Hornig, G.; Priest, E.R.
2005-01-01
A knowledge of the nature of fully three-dimensional magnetic reconnection is crucial in understanding a great many processes in plasmas. It has been previously shown that in the kinematic regime the evolution of magnetic flux in three-dimensional reconnection is very different from two dimensions. In this paper a numerical fully magnetohydrodynamic simulation is described, in which this evolution is investigated. The reconnection takes place in the absence of a magnetic null point, and the nonideal region is localized in the center of the domain. The effect of differently prescribed resistivities is considered. The magnetic field is stressed by shear boundary motions, and a current concentration grows within the volume. A stagnation-point flow develops, with strong outflow jets emanating from the reconnection region. The behavior of the magnetic flux matches closely that discovered in the kinematic regime. In particular, it is found that no unique field line velocity exists, and that as a result field lines change their connections continually and continuously throughout the nonideal region. In order to describe the motion of magnetic flux within the domain, it is therefore necessary to use two different field line velocities. The importance of a component of the electric field parallel to the magnetic field is also demonstrated
Adrian, Mark L.; Wendel, D. E.
2012-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.
THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY
International Nuclear Information System (INIS)
Masson, S.; Aulanier, G.; Pariat, E.; Schrijver, C. J.
2009-01-01
Flare ribbons are commonly attributed to the low-altitude impact, along the footprints of separatrices or quasi-separatrix layers (QSLs), of particle beams accelerated through magnetic reconnection. If reconnection occurs at a three-dimensional coronal magnetic null point, the footprint of the dome-shaped fan surface would map a closed circular ribbon. This paper addresses the following issues: does the entire circular ribbon brighten simultaneously, as expected because all fan field lines pass through the null point? And since the spine separatrices are singular field lines, do spine-related ribbons look like compact kernels? What can we learn from these observations about current sheet formation and magnetic reconnection in a null-point topology? The present study addresses these questions by analyzing Transition Region and Coronal Explorer and Solar and Heliospheric Observatory/Michelson Doppler Imager observations of a confined flare presenting a circular ribbon. Using a potential field extrapolation, we linked the circular shape of the ribbon with the photospheric mapping of the fan field lines originating from a coronal null point. Observations show that the flare ribbon outlining the fan lines brightens sequentially along the counterclockwise direction and that the spine-related ribbons are elongated. Using the potential field extrapolation as initial condition, we conduct a low-β resistive magnetohydrodynamics simulation of this observed event. We drive the coronal evolution by line-tied diverging boundary motions, so as to emulate the observed photospheric flow pattern associated with some magnetic flux emergence. The numerical analysis allows us to explain several observed features of the confined flare. The vorticity induced in the fan by the prescribed motions causes the spines to tear apart along the fan. This leads to formation of a thin current sheet and induces null-point reconnection. We also find that the null point and its associated topological
Shocks and currents in stratified atmospheres with a magnetic null point
Tarr, Lucas A.; Linton, Mark
2017-08-01
We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.
Observation of a 3D Magnetic Null Point
Energy Technology Data Exchange (ETDEWEB)
Romano, P.; Falco, M. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Guglielmino, S. L.; Murabito, M., E-mail: prom@oact.inaf.it [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania (Italy)
2017-03-10
We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1) a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″–2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.
Current singularities at finitely compressible three-dimensional magnetic null points
International Nuclear Information System (INIS)
Pontin, D.I.; Craig, I.J.D.
2005-01-01
The formation of current singularities at line-tied two- and three-dimensional (2D and 3D, respectively) magnetic null points in a nonresistive magnetohydrodynamic environment is explored. It is shown that, despite the different separatrix structures of 2D and 3D null points, current singularities may be initiated in a formally equivalent manner. This is true no matter whether the collapse is triggered by flux imbalance within closed, line-tied null points or driven by externally imposed velocity fields in open, incompressible geometries. A Lagrangian numerical code is used to investigate the finite amplitude perturbations that lead to singular current sheets in collapsing 2D and 3D null points. The form of the singular current distribution is analyzed as a function of the spatial anisotropy of the null point, and the effects of finite gas pressure are quantified. It is pointed out that the pressure force, while never stopping the formation of the singularity, significantly alters the morphology of the current distribution as well as dramatically weakening its strength. The impact of these findings on 2D and 3D magnetic reconnection models is discussed
MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS
International Nuclear Information System (INIS)
Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano
2016-01-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data
Null point of discrimination in crustacean polarisation vision.
How, Martin J; Christy, John; Roberts, Nicholas W; Marshall, N Justin
2014-07-15
The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are maximally sensitive to polarised light with the same fixed e-vector orientation. Using opponent neural connections, this two-channel system may produce a single value of polarisation contrast and, consequently, it may suffer from null points of discrimination. Stomatopod crustaceans use a different system for polarisation vision, comprising at least four types of polarisation-sensitive photoreceptor arranged at 0, 45, 90 and 135 deg relative to each other, in conjunction with extensive rotational eye movements. This anatomical arrangement should not suffer from equivalent null points of discrimination. To test whether these two systems were vulnerable to null points, we presented the fiddler crab Uca heteropleura and the stomatopod Haptosquilla trispinosa with polarised looming stimuli on a modified LCD monitor. The fiddler crab was less sensitive to differences in the degree of polarised light when the e-vector was at -45 deg than when the e-vector was horizontal. In comparison, stomatopods showed no difference in sensitivity between the two stimulus types. The results suggest that fiddler crabs suffer from a null point of sensitivity, while stomatopods do not. © 2014. Published by The Company of Biologists Ltd.
Magnetic reconnection in nontoroidal plasmas
International Nuclear Information System (INIS)
Boozer, Allen H.
2005-01-01
Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length
Vortex line topology during vortex tube reconnection
McGavin, P.; Pontin, D. I.
2018-05-01
This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.
Influence of pinches on magnetic reconnection in turbulent space plasmas
Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey
A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.
Three-dimensional Oscillatory Magnetic Reconnection
International Nuclear Information System (INIS)
Thurgood, Jonathan O.; McLaughlin, James A.; Pontin, David I.
2017-01-01
Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.
Three-dimensional Oscillatory Magnetic Reconnection
Energy Technology Data Exchange (ETDEWEB)
Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)
2017-07-20
Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.
Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point
Energy Technology Data Exchange (ETDEWEB)
Kumar, Pankaj [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nakariakov, Valery M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of)
2017-08-01
This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.
Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point
International Nuclear Information System (INIS)
Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk
2017-01-01
This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s −1 . Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s −1 . The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.
Magnetoacoustic Waves in a Stratified Atmosphere with a Magnetic Null Point
Energy Technology Data Exchange (ETDEWEB)
Tarr, Lucas A.; Linton, Mark; Leake, James, E-mail: lucas.tarr.ctr@nrl.navy.mil [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)
2017-03-01
We perform nonlinear MHD simulations to study the propagation of magnetoacoustic waves from the photosphere to the low corona. We focus on a 2D system with a gravitationally stratified atmosphere and three photospheric concentrations of magnetic flux that produce a magnetic null point with a magnetic dome topology. We find that a single wavepacket introduced at the lower boundary splits into multiple secondary wavepackets. A portion of the packet refracts toward the null owing to the varying Alfvén speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfvén speeds coincide, partially transmit, reflect, and mode-convert between branches of the local dispersion relation. Approximately 15.5% of the wavepacket’s initial energy ( E {sub input}) converges on the null, mostly as a fast magnetoacoustic wave. Conversion is very efficient: 70% of the energy incident on the null is converted to slow modes propagating away from the null, 7% leaves as a fast wave, and the remaining 23% (0.036 E {sub input}) is locally dissipated. The acoustic energy leaving the null is strongly concentrated along field lines near each of the null’s four separatrices. The portion of the wavepacket that refracts toward the null, and the amount of current accumulation, depends on the vertical and horizontal wavenumbers and the centroid position of the wavepacket as it crosses the photosphere. Regions that refract toward or away from the null do not simply coincide with regions of open versus closed magnetic field or regions of particular field orientation. We also model wavepacket propagation using a WKB method and find that it agrees qualitatively, though not quantitatively, with the results of the numerical simulation.
Toward laboratory torsional spine magnetic reconnection
Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.
2017-12-01
Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.
Null-point titration measurements of free magnesium in stored erythrocytes
International Nuclear Information System (INIS)
Bock, J.L.; Yusuf, Y.; Puntillo, E.
1987-01-01
Free intracellular magnesium concentration (Mg/sub i/) was measured in stored human erythrocytes, using null-point titration with ionophore A23187. For cells stored 31 P NMR spectroscopy, which showed a decrease in Mg/sub i/ with storage. However, the NMR measurements are performed with no pretreatment of the cells, while the null-point method requires an initial washing step, which alters pH/sub i/ and may also alter Mg/sub i/. The titration-measured Mg/sub i/ values are still surprisingly low for long-stored cells, considering that depletion of ATP and 2,3-DPG should release bound Mg. Using the titration-measured Mg/sub i/ values along with measurements of total Mg, ATP, and 2,3-DPG, they estimate that an additional buffer contains about 47% of total Mg in cells stored 21 days. Mg/sub i/ determinations by both 31 P NMR and null-point titration thus indicate that erythrocyte Mg is largely bound to a high-capacity, low-affinity buffer whose relative importance increases during cell storage. Discrepancies between the methods require further investigation
Magnetic reconnection and current sheet formation in 3D magnetic configurations
International Nuclear Information System (INIS)
Frank, A.G.
1999-01-01
The problem of magnetic reconnection in three-dimensional (3D) magnetic configurations has been studied experimentally. The research has concentrated on the possibilities of formation of current sheets, which represent crucial objects for a realization of magnetic reconnection phenomena. Different types of 3D magnetic configurations were examined, including configurations with singular lines of the X-type, non-uniform fields containing isolated magnetic null-points and without null-points. It was revealed that formation of quasi-one-dimensional current sheets is the universal process for plasma dynamics in 3D magnetic fields both with null-points and without. At the same time the peculiarities of current sheets, plasma dynamics and magnetic reconnection processes depend essentially on characteristics of 3D magnetic configurations. The result of principal significance obtained was that magnetic reconnection phenomena can take place in a wide range of 3D magnetic configurations as a consequence of their ability to form current sheets. (author)
The importance of topographically corrected null models for analyzing ecological point processes.
McDowall, Philip; Lynch, Heather J
2017-07-01
Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.
Double null X-point operation in JET with NBI and ICRH heating
International Nuclear Information System (INIS)
Tubbing, B.; Bhatnagar, V.
1989-01-01
In this paper we report on a selection of experiments on H-modes, in 3 and 3.5MA discharges, in the double null X-point configuration. The first experiment, section 2, is an attempt to couple ICRH power to H-modes. Here we also report on a rather unique H-mode with a smaller than usual distance between plasma and limiter. The second experiment, section 3, is on H-modes in the low density, hot ion regime. (author) 5 refs., 4 figs
International Nuclear Information System (INIS)
Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L.; Aunai, N.; Karimabadi, H.; Daughton, W.
2013-01-01
We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-01-15
Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that
Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy
Perelman, Carlos Castro
2016-01-01
A continuous family of static spherically symmetric solutions of Einstein's vacuum field equations with a spatial singularity at the origin r = 0 is found. These solutions are parametrized by a real valued parameter λ (ranging from 0 to 1) and such that the radial horizon's location is displaced continuously towards the singularity ( r = 0 ) as λ increases. In the extreme limit λ = 1, the location of the singularity and horizon merges leading to a null singularity. In this extreme case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes. An heuristic argument is provided how one might avoid the Hawking particle emission process in this extreme case when the singularity and horizon merges. The field equations due to a delta-function point-mass source at r = 0 are solved and the Euclidean gravitational action corresponding to those solutions is evaluated explicitly. It is found that the Euclidean action is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions D ≥ 3.
Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point
Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.
2018-05-01
The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.
Interchange Slip-Running Reconnection and Sweeping SEP-Beams
Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.
2011-01-01
We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.
Influence of frame-dragging on magnetic null points near rotating black holes
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky
2012-01-01
Roč. 29, č. 3 (2012), 035010/1-035010/12 ISSN 0264-9381 R&D Projects: GA MŠk ME09036 Grant - others:GA ČR(CZ) GA205/09/H033 Institutional research plan: CEZ:AV0Z10030501 Keywords : Magnetic fields * Reconnection * Black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.562, year: 2012
International Nuclear Information System (INIS)
Kita, Miho; Kawano, Kazuhiro; Kometani, Katsuya; Kondo, Toshihiko; Shimamoto, Kazuhiro; Tanaka, Humihiro; Oda, Hideyuki; Kojima, Akihiro; Sato, Morio
2013-01-01
Diffusion-weighted imaging (DWI) requires adequate fat suppression because of its sensitivity to chemical shift artifacts, especially at 3 Tesla (T). We investigated the utility of calculating the inversion time of the null point (TI null ) in pelvic DWI with spectral attenuated inversion recovery (SPAIR) at 3 T for obtaining adequate fat suppression. Thirteen volunteers underwent pelvic SPAIR-DWI using various SPAIR inversion delay times (TI) at 5-ms intervals in the range of the calculated TI null ±25 ms. The degree of fat suppression was evaluated into 3 grades and was compared among the various SPAIR-TIs with the calculated TI null . In 65 cases of prostatic disease, we evaluated the ratio of adequate fat suppression obtained using the calculated TI null . We obtained adequate fat suppression in all 13 volunteers and in 61 (94%) of the 65 patients using the calculated TI null . Fat suppression was best when the calculated TI null was used (P null (P null increased. In conclusion, this method of calculating the TI null may be useful for obtaining adequate fat suppression for pelvic SPAIR-DWI at 3T. (author)
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-06-15
The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.
Graf von der Pahlen, J.; Tsiklauri, D.
2015-12-01
Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri
Characteristics of X-point lobe structures in single-null discharges on MAST
Czech Academy of Sciences Publication Activity Database
Harrison, J.R.; Kirk, A.; Chapman, I.T.; Cahyna, Pavel; Liu, Y.; Nardon, E.; Thornton, A.J.
2014-01-01
Roč. 54, č. 6 (2014), 064015-064015 ISSN 0029-5515 R&D Projects: GA ČR GAP205/11/2341 Institutional support: RVO:61389021 Keywords : tokamak * MAST * X-point * resonant magnetic perturbation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/6/064015/pdf/0029-5515_54_6_064015.pdf
Continuous development of current sheets near and away from magnetic nulls
International Nuclear Information System (INIS)
Kumar, Sanjay; Bhattacharyya, R.
2016-01-01
The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scaling than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.
SLIP-SQUASHING FACTORS AS A MEASURE OF THREE-DIMENSIONAL MAGNETIC RECONNECTION
International Nuclear Information System (INIS)
Titov, V. S.; Mikic, Z.; Linker, J. A.; Forbes, T. G.; Priest, E. R.
2009-01-01
A general method for describing magnetic reconnection in arbitrary three-dimensional magnetic configurations is proposed. The method is based on the field-line mapping technique previously used only for the analysis of a magnetic structure at a given time. This technique is extended here so as to analyze the evolution of a magnetic structure. Such a generalization is made with the help of new dimensionless quantities called s lip-squashing factors.Their large values define the surfaces that border the reconnected or to-be-reconnected magnetic flux tubes for a given period of time during the magnetic evolution. The proposed method is universal, since it assumes only that the time sequence of evolving magnetic field and the tangential boundary flows are known. The application of the method is illustrated for simple examples, one of which was considered previously by Hesse and coworkers in the framework of the general magnetic reconnection theory. The examples help us to compare these two approaches; it reveals also that, just as for magnetic null points, hyperbolic and cusp minimum points of a magnetic field serve as favorable sites for magnetic reconnection. The new method admits a straightforward numerical implementation and provides a powerful tool for the diagnostics of magnetic reconnection in numerical models of solar-flare-like phenomena in space and laboratory plasmas.
Energy Technology Data Exchange (ETDEWEB)
Masaaki Yamada, Russell Kulsrud and Hantao Ji
2009-09-17
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.
International Nuclear Information System (INIS)
Yamada, Masaaki; Kulsrud, Russell; Ji, Hantao
2009-01-01
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also briefly discussed.
Reconnection of magnetic field lines
International Nuclear Information System (INIS)
Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.
1990-01-01
Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input. 1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 × 101 MJ/kg (5 × 102 to greater than 2 × 104 ...
Uralov, A. M.; Grechnev, V. V.; Rudenko, G. V.; Myshyakov, I. I.; Chertok, I. M.; Filippov, B. P.; Slemzin, V. A.
2014-10-01
Our analysis in Papers I and II (Grechnev et al., Solar Phys. 289, 289, 2014b and Solar Phys. 289, 1279, 2014c) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys. submitted, 2014a), which concludes about its probable spheromak-like structure. The present article confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic dipole constituted by dimmed regions with the opposite magnetic polarities away from the parent active region corresponded to the direction of the axial field in the magnetic cloud, while the pre-eruptive filament mismatched it. To combine all of the listed findings, we propose an intrinsically three-dimensional scheme, in which a spheromak-like eruption originates via the interaction of the initially unconnected magnetic fluxes of the eruptive filament and pre-existing ones in the corona. Through a chain of magnetic reconnections their positive mutual helicity was transformed into the self-helicity of the spheromak-like magnetic cloud.
RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS
Energy Technology Data Exchange (ETDEWEB)
Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2016-07-20
We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.
Kohler, Susanna
2016-05-01
, erupting from the solar surface.Snapshots from the SDO side view (left and center) and STEREO overhead view (right). The three rows show the time evolution of the double-loop structure after the initial flare. In the STEREO view, you can see the central footpoints of the loops slip to the left. [Gou et al. 2016]In the SDO observations presented by Chen and collaborators, the pre-flare/CME structures look remarkably like the structures predicted in the breakout model. Sequential heating of loops can be seen as the breakout reconnection starts, followed by anenormous flare and CME as the lower loops erupt outward.Study 2: Slipping ReconnectionA team of scientists from the University of Science and Technology of China, led by Tingyu Gou and Rui Liu, have presented the first stereoscopic observation of slipping reconnection in the Sun, made by the two-spacecraft Solar Terrestrial Relations Observatory (STEREO).In slipping reconnection, magnetic field lines continuously exchange connectivities with their neighbors, causing them to slip through plasma. Observations by STEREO of a flaring double-loop system revealed that the central footpoints the endpoints where the loops are anchored to the solar surface slipped sideways after a flare.The authors model of the double-loop structure at two different times, during which the central footpoint slips from point C to D. Projections onto the XY and YZ planes show STEREOs and SDOs views, respectively. [Gou et al. 2016]The authors reconstructed a 3D model of the loop system using the overhead observations from STEREO and a simultaneous side view from SDO. They speculate that the slipping reconnection was likely triggered by the initial solar flare.Double BonusCheck out the videos belowto watch these processes happen!This first video is from Chen et al. 2016, and shows the SDO view of coronal loops in three wavelengths. If you watch carefully, you can see the sequential brightening of loops signs of the breakout reconnection before the
Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection
Tavabi, E.; Koutchmy, S.
2014-07-01
Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.
Magnetic Reconnection in the Solar Chromosphere
Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold
2017-08-01
We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National
Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point J. A. ...
Indian Academy of Sciences (India)
nar Alfvén wavefront remains planar, despite the varying equilibrium ..... Since the wave is so stretched where it forms the 'reflection point' in the wave- .... Thus, we find that the Alfvén wave is again distorted from its initially planar shape,.
Diagnostics of solar flare reconnection
Directory of Open Access Journals (Sweden)
M. Karlický
2004-01-01
Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally
Reconnecting to the biosphere.
Folke, Carl; Jansson, Asa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R; Chapin, F Stuart; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Osterblom, Henrik; Ostrom, Elinor; Persson, Asa; Peterson, Garry; Polasky, Stephen; Steffen, Will; Walker, Brian; Westley, Frances
2011-11-01
Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.
Electron Surfing Acceleration in Magnetic Reconnection
Hoshino, Masahiro
2005-01-01
We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven reconnection syst...
Collisionless magnetic reconnection in a plasmoid chain
Directory of Open Access Journals (Sweden)
S. Markidis
2012-02-01
Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.
THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY
International Nuclear Information System (INIS)
Pontin, D. I.; Wyper, P. F.
2015-01-01
Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic flux (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed
Study of driven magnetic reconnection in a laboratory plasma
International Nuclear Information System (INIS)
Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Bretz, N.; Jobes, F.; Ono, Yasushi; Perkins, F.
1998-01-01
The Magnetic Reconnection Experiment (MRX) has been constructed to investigate the fundamental physics of magnetic reconnection in a well controlled laboratory setting. This device creates an environment satisfying the criteria for a magnetohydrodynamic (MHD) plasma (S much-gt 1, ρ i much-lt L). The boundary conditions can be controlled externally, and experiments with fully three-dimensional reconnection are now possible. In the initial experiments, the effects of the third vector component of reconnecting fields have been studied. Two distinctively different shapes of neutral sheet current layers, depending on the third component, are identified during driven magnetic reconnection. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. A neutral sheet current profile is measured accurately to be as narrow as order ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration
On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field
Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.
2016-01-01
Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.
Intermittent magnetic reconnection in TS-3 merging experiment
International Nuclear Information System (INIS)
Ono, Y.; Hayashi, Y.; Ii, T.; Tanabe, H.; Ito, S.; Kuwahata, A.; Ito, T.; Kamino, Y.; Yamada, T.; Inomoto, M.
2011-01-01
Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittent reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.
Electron acceleration by turbulent plasmoid reconnection
Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.
2018-04-01
In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.
International Nuclear Information System (INIS)
Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.
1997-01-01
Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)
Vekstein, G.
2017-10-01
This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.
The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles
Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava
2017-10-01
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.
Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere
Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun
2018-01-01
Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.
International Nuclear Information System (INIS)
Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Ono, Yasushi; Perkins, F.
1997-01-01
Two strikingly different shapes of diffusion regions are identified during magnetic reconnection in a magnetohydrodynamic laboratory plasma. The shapes depend on the third vector component of the reconnecting magnetic fields. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. In this case, the neutral sheet current profile is accurately measured to be as narrow as the order of the ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration
Comparison of reconnection in magnetosphere and solar corona
Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi
One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.
Tail reconnection in the global magnetospheric context: Vlasiator first results
Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael
2017-11-01
The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.
Zilberberg, Oded; Romito, Alessandro; Gefen, Yuval
2013-01-01
Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.
International Nuclear Information System (INIS)
Hahm, T.S.; Kulsrud, R.M.
1984-11-01
By studying a simple model problem, we examine the time evolution of magnetic field islands which are induced by perturbing the boundary surrounding an incompressible plasma with a resonant surface inside. We find that for sufficiently small boundary perturbations, the reconnection and island formation process occurs on the tearing mode time scale defined by Furth, Killeen, and Rosenbluth. For larger perturbations the time scale is that defined by Rutherford. The resulting asymptotic equilibrium is such that surface currents in the resonant region vanish. A detailed analytical picture of this reconnection process is presented
International Nuclear Information System (INIS)
Terasawa, T.
1984-01-01
One of the outstanding problems in space physics is to understand the physical mechanism which governs energy conversion process from magnetic to particle energies, a typical one being the reconnection mechanism. As a possible candidate process of the magnetic reconnection in space, tearing mode instability has been considered. In this paper are discussed selected topics related to the understanding of the tearing mode instability; the effect of the boundary condition, the resonant particle and current filamentation effects, vorticity excitation, and the Hall current effect. 31 refs, 12 figs
International Nuclear Information System (INIS)
Pare, V.K.
1983-01-01
Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging
Driving reconnection in sheared magnetic configurations with forced fluctuations
Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David
2018-02-01
We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.
A new fast reconnection model in a collisionless regime
International Nuclear Information System (INIS)
Tsiklauri, David
2008-01-01
Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [M c ' less =(c/ω pe ) 2 /(r L,e L)] than Sweet-Parker's classical one (M sp =S -1/2 ). The width of the diffusion region (current sheet) in the collisionless regime is found to be δ c ' less =(c/ω pe ) 2 /r L,e , which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/ω pe , and electron Larmor radius, r L,e ). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Transient and intermittent magnetic reconnections in TS-3/UTST merging startup experiments
International Nuclear Information System (INIS)
Ono, Y.; Imazawa, R.; Imanaka, H.; Hayamizu, T.; Inomoto, M.; Sato, M.; Kawamori, E.; Ejiri, A.; Takase, Y.; Asai, T.; Takahashi, T.
2007-01-01
The high-power reconnection heating has been developed in the TS-3 merging experiments, leading us to a new pulsed high-beta spherical tokamak (ST) formation. Two ST plasmas were produced inductively by two or four PF coils without using any central solenoid (CS) coil and were merged together for MW-GW reconnection heating. The magnetic reconnection transformed the magnetic energy of reconnecting magnetic field through the outflow kinetic energy finally to the ion thermal energy, increasing the plasma beta of ST up to 0.5. A new finding is that ejection of current sheet (or plasmoid) causes high-speed merging/ reconnection as well as high-power heating. In the high-q ST merging, the sheet resistivity was almost classical due to the sheet thickness much longer than ion gyroradius. Large inflow flux and low current-sheet dissipation resulted in flux pileup followed by rapid growth of the current sheet. When the flux pileup exceeded a critical limit, the sheet was ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed was slow during the flux pileup and was fast during the ejection, indicating that intermittent reconnection similar to the solar flare increased the averaged reconnection speed. These transient effects enable us to have the fast reconnection as well as the high-power reconnection heating, even if the merging high-q tokamaks have low current-sheet resistivity. (author)
Reconnections of Wave Vortex Lines
Berry, M. V.; Dennis, M. R.
2012-01-01
When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…
Localized Oscillatory Energy Conversion in Magnetopause Reconnection
Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.
2018-02-01
Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
Current disruption and its spreading in collisionless magnetic reconnection
International Nuclear Information System (INIS)
Jain, Neeraj; Büchner, Jörg; Dorfman, Seth; Ji, Hantao; Surjalal Sharma, A.
2013-01-01
Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2013)] have disclosed current disruption in the absence of an externally imposed guide field. During current disruption in MRX, both the current density and the total observed out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that current disruption is an intrinsic property of the dynamic formation of an X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived from Ampere's Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed which depends on the wave number of the perturbation. The implications of these results for MRX are discussed
ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS
International Nuclear Information System (INIS)
Murphy, Nicholas A.; Lukin, Vyacheslav S.
2015-01-01
Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase
The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies
Energy Technology Data Exchange (ETDEWEB)
Amitava Bhattacharjee
2007-04-20
Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.
Colour reconnection in WW events
D'Hondt, J
2003-01-01
Preliminary results are presented for a measurement of the kappa parameter used in the JETSET SK-I model of colour reconnection in W /sup +/W/sup -/ to qq'qq' events at LEP2. An update on the investigation of colour reconnection effects in hadronic decays of W pairs, using the particle flow in DELPHI is presented. A second method is based on the observation that two different m/sub W/ estimators have different sensitivity to the parametrised colour reconnection effect. Hence the difference between them is an observable with information content about kappa. (6 refs).
On the Robinson theorem and shearfree geodesic null congruences
International Nuclear Information System (INIS)
Tafel, J.
1985-01-01
Null electromagnetic fields and shearfree geodesic null congruences in curved and flat spacetimes are studied. We point out some mathematical problems connected with the validity of the Robinson theorem. The problem of finding nonanalytic twisting congruences in the Minkowski space is reduced to the construction of holomorphic functions with specific boundary conditions. (orig.)
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Null cone superspace supergravity
International Nuclear Information System (INIS)
Downes-Martin, S.G.
1980-03-01
The null cone formalism is used to derive a 2(N-1) parameter family of constraints for O(N) extended superspace supergravity. The invariance groups of these constraints is analysed and is found to be [subgroup U submanifold] contains GL(4,R) for N = 1, the submanifold being eliminated for N > 1. The invariance group defines non-Weyl rotations on the superbein which combine to form Weyl transformations on the supertangent space metric. The invariance of the supergravity Lagrangian under these transformations is discussed. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Guo, Ruilong; Xie, Lun; He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Pu, Zuyin; Fu, Suiyan [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); PKU/UCLA Joint Research Institute in Science and Engineering, Peking University, Beijing (China); Chen, Li-Jen [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Wang, Xiaogang [Harbin Institute of Technology, Harbin 150001 (China); Dunlop, Malcolm [School of Astronautics, Beihang University, Beijing 100191 (China); RAL Space, Rutherford Appleton Laboratory, STFC, Didcot OX11 0QX (United Kingdom); Bogdanova, Yulia V. [RAL Space, Rutherford Appleton Laboratory, STFC, Didcot OX11 0QX (United Kingdom); Yao, Zhonghua; Fazakerley, Andrew N. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Xiao, Chijie [School of Physics, Peking University, Beijing 100871 (China)
2016-05-15
Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an A{sub s}-type null and a B{sub s}-type null paired via their spines. We call this A{sub s}-spine-B{sub s}-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to the spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site.
International Nuclear Information System (INIS)
Guo, Ruilong; Xie, Lun; He, Jiansen; Pu, Zuyin; Fu, Suiyan; Chen, Li-Jen; Wang, Xiaogang; Dunlop, Malcolm; Bogdanova, Yulia V.; Yao, Zhonghua; Fazakerley, Andrew N.; Xiao, Chijie
2016-01-01
Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an A_s-type null and a B_s-type null paired via their spines. We call this A_s-spine-B_s-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to the spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site.
Influence of a guide field on collisionless driven reconnection
International Nuclear Information System (INIS)
Horiuchi, Ritoku; Usami, Shunsuke; Ohtani, Hiroaki
2014-01-01
The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix. (author)
How Does the Electron Dynamics Affect the Reconnection Rate in a Typical Reconnection Layer?
Hesse, Michael
2009-01-01
The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.
Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet
Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.
2017-12-01
Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.
Magnetic Reconnection as Revealed by the Magnetospheric Multiscale Mission
Burch, J. L.; Torbert, R. B.; Moore, T. E.; Giles, B. L.; Phan, T.; Le Contel, O.; Webster, J.; Genestreti, K.; Ergun, R.; Chen, L. J.; Wang, S.; Dorelli, J.; Rager, A. C.; Graham, D.; Gershman, D. J.
2017-12-01
The NASA Magnetospheric Multiscale (MMS) mission has completed its prime mission observations and has now entered an extended mission phase. During the two-year prime mission MMS made fundamental advances in our understanding of magnetic reconnection as enabled by its unprecedentedly high-resolution plasma and field measurements, which were made from 4 identical spacecraft in tetrahedral formations ranging down to 7 km. The primary objective of MMS is to understand reconnection at the electron scale, and this objective was accomplished by detailed analysis of 32 electron diffusion regions at the dayside magnetopause and a significant number in the magnetotail, which are still being captured and analyzed. Significant interplay between theory and experiment has occurred throughout the mission leading to the discovery of agyrotropic "crescent-shaped" electron velocity-space distributions, which carry the out-of-plane current; the electron pressure tensor divergence, which produces the reconnection electric field; standing oblique whistler waves, which produce intense dissipation in sub-gyroscale regions near the X-line and electron stagnation point; beam-plasma interactions leading to whistler-mode and Langmuir waves; electromagnetic drift waves leading to corrugated magnetopause current sheets, and numerous other new reconnection-related phenomena. In this talk the many new aspects of reconnection discovered by MMS will be placed into context and used to evaluate our current level of understanding of this universally important space plasma phenomenon.
Reconnection of magnetic lines in an ideal fluid
International Nuclear Information System (INIS)
Grad, H.
1978-04-01
The rate of reconnection of magnetic lines at an X-point, also growth of a ''tearing'' configuration have always been related to the presence of resistivity or other dissipative mechanisms. These phenomena, exhibiting nonconservation of magnetic line topology, are shown to occur in an ideal, nondissipative fluid, thereby violating beliefs, theorems, and calculations of over a century
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
Spatial characteristics of magnetotail reconnection
Genestreti, Kevin J.
We examine the properties of magnetic reconnection as it occurs in the Earth's magnetosphere, first focusing on the spatial characteristics of the near-Earth magnetotail reconnection site, then analyzing the properties of cold plasma that may affect reconnection at the dayside magnetopause. Two models are developed that empirically map the position and occurrence rate of the nightside ion diffusion region, which are based upon Geotail data (first model) and a combination of Geotail and Cluster data (second model). We use these empirical models to estimate that NASA's MMS mission will encounter the ion-scale reconnection site 11+/-4 times during its upcoming magnetotail survey phase. We also find that the occurrence of magnetotail reconnection is localized and asymmetric, with reconnection occurring most frequently at the duskside magnetotail neutral sheet near YGSM* = 5 RE. To determine the physics that governs this asymmetry and localization, we analyze the time history of the solar wind, the instantaneous properties of the magnetotail lobes and current sheet, as well as the geomagnetic activity levels, all for a larger set of Geotail and Cluster reconnection site observations. We find evidence in our own results and in the preexisting literature that localized (small DeltaY) reconnection sites initially form near YGSM* = 5 RE due to an asymmetry in the current sheet thickness. If the solar wind driving remains strong, then localized reconnection sites may expand in the +/-Y direction. The DeltaY extent of the reconnection site ap- pears to be positively correlated with the geomagnetic activity level, which is to be expected for a simplified "energy in equals energy out"-type picture of 3D reconnection. We develop two new methods for determining the temperatures of plasmas that are largely below the energy detection range of electrostatic analyzer instruments. The first method involves the direct application of a theoretical fit to the visible, high-energy portion
International Nuclear Information System (INIS)
Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z
2005-01-01
High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic
Helicity, Reconnection, and Dynamo Effects
International Nuclear Information System (INIS)
Ji, Hantao
1998-01-01
The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation
Dipolarization Fronts from Reconnection Onset
Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.
2012-12-01
Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.
Self-organized Te Redistribution during Driven Reconnection Processes in High Temperature Plasmas
International Nuclear Information System (INIS)
Park, H.K.; Mazzucato, E.; Luhmann, N.C. Jr.; Domier, C.W.; Xia, Z.; Munsat, T.; Donne, A.J.H.; Classen, I.G.J.; van de Pol, M.J.
2005-01-01
Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: (1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure driven mode and a kink instability leads to an 'X-point' reconnection process. (3) Reconnection can take place anywhere along the q∼1 rational magnetic surface (both high and low field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas
Thick Escaping Magnetospheric Ion Layer in Magnetopause Reconnection with MMS Observations
Nagai, T.; Kitamura, N.; Hasagawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.;
2016-01-01
The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.
Electron Jet of Asymmetric Reconnection
Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.;
2016-01-01
We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
Visible Nulling Coronagraph Progress Report
Lyon, R. G.; Clampin, M.; Woodruff, R. A.; Vasudevan, G.; Thompson, P.; Petrone, P.; Madison, T.; Rizzo, M.; Melnick, G.; Tolls, V.
2010-10-01
We report on recent laboratory results with the NASA Goddard Space Flight Center Visible Nulling Coronagraph (VNC) testbed. We have achieved focal plane contrasts of 108 and approaching 109 at inner working angles of 2 λ/D and 4 λ/D, respectively. Results were obtained with a broadband source and 40 nm filter centered on 630 nm. A null control breadboard (NCB) was also developed to assess and quantify MEMS based deformable mirror technology (DM), and to develop and assess closed-loop null control algorithms. We have demonstrated closed-loop performance at 27 Hz.
Abreu, P
2002-01-01
The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, ALEPH, DELPHI, L3 and OPAL, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method (D. Duchesneau, (2001)), are yet inconclusive. (22 refs).
Particle Acceleration and Heating by Turbulent Reconnection
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios
2016-08-01
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
International Nuclear Information System (INIS)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios
2016-01-01
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)
2016-08-10
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
Null lifts and projective dynamics
Energy Technology Data Exchange (ETDEWEB)
Cariglia, Marco, E-mail: marco@iceb.ufop.br
2015-11-15
We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.
The Onset of Magnetic Reconnection in Tail-Like Equilibria
Hesse, Michael; Birn, Joachim; Kuznetsova, Masha
1999-01-01
Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.
Proxy and in-situ studies of dayside magnetopause reconnection
Energy Technology Data Exchange (ETDEWEB)
Scurry, L.; Russell, C.T. [California Univ., Los Angeles, CA (United States). Inst. of Geophysics and Planetary Physics; Gosling, J.T. [Los Alamos National Lab., NM (United States)
1992-12-01
The functional dependence of magnetic reconnection on solar wind parameters is examined utilizing the am geomagnetic index and satellite observations at the magnetopause. Several parameters in the solar wind are found to control geomagnetic activity. Reconnection is found to be most efficient when the interplanetary magnetic field is southward, although some activity remains when the IMF is horizontal and slightly northward. The reconnection efficiency increases with the solar wind dynamic pressure but decreases when the Mach number is greater than 7.5. These results are compared with the functional dependencies found by correlating solar wind and magnetosheath measurements with observations of accelerated tows at the magnetopause. Accelerated tows are found to occur most often when the interplanetary magnetic field is directed southward. However, accelerated flows do occur when the IMF is horizontal and northward. Accelerated flows are also affected by the magnetosheath beta such that higher beta inhibits their occurrence. The location of accelerated tows indicates that reconnection occurs mainly at the subsolar point.
Nandakumar, Raja
2001-01-01
Colour reconnection is the final state interaction between quarks from different sources. It is not yet fully understood and is a source of systematic error for W-boson mass and width measurements in hadronic \\WW decays at LEP2. The methods of measuring this effect and the results of the 4 LEP experiments at $183\\gev\\leq\\rts\\leq 202\\gev$ will be presented.
Rapid reconnection of flux lines
International Nuclear Information System (INIS)
Samain, A.
1982-01-01
The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)
Whistler dominated quasi-collisionless magnetic reconnection
International Nuclear Information System (INIS)
Biskamp, D.; Drake, J.F.
1995-05-01
A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)
Rapid reconnection in compressible plasma
International Nuclear Information System (INIS)
Heyn, M.F.; Semenov, V.S.
1996-01-01
A study of set-up, propagation, and interaction of non-linear and linear magnetohydrodynamic waves driven by magnetic reconnection is presented. The source term of the waves generated by magnetic reconnection is obtained explicitly in terms of the initial background conditions and the local reconnection electric field. The non-linear solution of the problem found earlier, serves as a basis for formulation and extensive investigation of the corresponding linear initial-boundary value problem of compressible magnetohydrodynamics. In plane geometry, the Green close-quote s function of the problem is obtained and its properties are discussed. For the numerical evaluation it turns out that a specific choice of the integration contour in the complex plane of phase velocities is much more effective than the convolution with the real Green close-quote s function. Many complex effects like intrinsic wave coupling, anisotropic propagation characteristics, generation of surface and side wave modes in a finite beta plasma are retained in this analysis. copyright 1996 American Institute of Physics
Multiscale Processes in Magnetic Reconnection
Surjalal Sharma, A.; Jain, Neeraj
The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.
Impulsive relaxation process in MHD driven reconnection
International Nuclear Information System (INIS)
Kitabata, H.; Hayashi, T.; Sato, T.
1997-01-01
Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)
Impulsive nature in collisional driven reconnection
International Nuclear Information System (INIS)
Kitabata, Hideyuki; Hayashi, Takaya; Sato, Tetsuya.
1995-11-01
Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author)
Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma
Energy Technology Data Exchange (ETDEWEB)
Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-01-15
Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.
Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection
Directory of Open Access Journals (Sweden)
R. A. Treumann
2017-08-01
Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is
Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection
Treumann, Rudolf A.; Baumjohann, Wolfgang
2017-08-01
The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular
High fidelity kinetic modeling of magnetic reconnection in laboratory plasma
Stanier, A.; Daughton, W. S.
2017-12-01
Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https
Bare Quantum Null Energy Condition.
Fu, Zicao; Marolf, Donald
2018-02-16
The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel between these two terms and the QNEC is intrinsically finite. We study the more general case here where they do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can be viewed as the special case of our bare QNEC for which the metric is on shell.
Visible nulling coronagraph testbed results
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Petrone, Peter; Madison, Timothy; Rizzo, Maxime; Melnick, Gary; Tolls, Volker
2009-08-01
We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 108 and approaching 109 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 109 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 1010 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.
Fundamental limitation of a two-dimensional description of magnetic reconnection
Firpo, Marie-Christine
2014-10-01
For magnetic reconnection to be possible, the electrons have at some point to ``get free from magnetic slavery,'' according to von Steiger's formulation. Stochasticity may be considered as one possible ingredient through which this may be realized in the magnetic reconnection process. It will be argued that non-ideal effects may be considered as a ``hidden'' way to introduce stochasticity. Then it will be shown that there exists a generic intrinsic stochasticity of magnetic field lines that does not require the invocation of non-ideal effects but cannot show up in effective two-dimensional models of magnetic reconnection. Possible implications will be discussed in the frame of tokamak sawteeth that form a laboratory prototype of magnetic reconnection.
Shock formation and structure in magnetic reconnection with a streaming flow.
Wu, Liangneng; Ma, Zhiwei; Zhang, Haowei
2017-08-18
The features of magnetic reconnection with a streaming flow have been investigated on the basis of compressible resistive magnetohydrodynamic (MHD) model. The super-Alfvenic streaming flow largely enhances magnetic reconnection. The maximum reconnection rate is almost four times larger with super-Alfvenic streaming flow than sub-Alfvénic streaming flow. In the nonlinear stage, it is found that there is a pair of shocks observed in the inflow region, which are manifested to be slow shocks for sub-Alfvénic streaming flow, and fast shocks for super-Alfvénic streaming flow. The quasi-period oscillation of reconnection rates in the decaying phase for super-Alfvénic streaming flow is resulted from the different drifting velocities of the shock and the X point.
Definition of spontaneous reconnection
International Nuclear Information System (INIS)
Schindler, K.
1984-01-01
The author discusses his view of driven versus spontaneous. There is a close link between ''spontaneous'' and ''instability.'' One of the prominent examples for instability is the thermal convection instability. Just to remind you, if you heat a fluid layer from below, it takes a certain Rayleigh number to make it unstable. Beyond the onset point you find qualitatively new features. That is called ''spontaneous,'' and this is a bit more than semantics. It's a new qualitative property that appears and it is spontaneous although we have an energy flux through the system. It's a misconception, to call this ''driven'' pointing at the energy flux through it. Of course, the convection would not exist without this energy flux. But what makes it ''spontaneous'' is that without any particular external signal, a new qualitative feature appears. And this is what is called an ''instability'' and ''spontaneous.'' From these considerations the author got a little reassured of what distinction should be made in the field of the magnetosphere. If we have a smooth energy transport into the magnetosphere and suddenly we have this qualitatively new feature (change of B-topology) coming up; then, using this terminology we don't have a choice other than calling this spontaneous or unstable, if you like. If we ''tell'' the system where it should make its neutral line and where it should make its plasmoids, then, it is driven. And this provides a very clear-cut observational distinction. The author emphasizes the difference he sees is a qualitative difference, not only a quantitative one
Relation of astrophysical turbulence and magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)
2012-01-15
Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.
On the cessation of magnetic reconnection
Directory of Open Access Journals (Sweden)
M. Hesse
2004-01-01
Full Text Available Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary. Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies
From vortex reconnections to quantum turbulence
International Nuclear Information System (INIS)
Lipniacki, T.
2001-01-01
An alternative approach to quantum turbulence is proposed in order to derive the evolution equation for vortex line-length density. Special attention is paid to reconnections of vortex lines. The summed line-length change ΔS of two vortex lines resulting from the reconnection (in the presence of counterflow V ns ) can be approximated in the form: δS=-at 1/2 +bV ns 2 t 3/2 , with a>0, b≥0, at least until δS≤0. For steady-state turbulence, the average line-length change left angle ΔS right angle between reconnections has to be zero. If, for a given value of the counterflow, the line density is smaller than the equilibrium one, the reconnections occur less frequently and left angle ΔS right angle becomes positive and the line density grows until the equilibrium is restored. When the line-density is too large, the reconnections are more frequent, the lines shorten between reconnections and the line density gets smaller. The time derivative of the total line density is proportional to the reconnection frequency multiplied by the average line-length change due to a single reconnection. The evolution equation obtained in the proposed approach resembles the alternative Vinen equation. (orig.)
Lessons on collisionless reconnection from quantum fluids
Directory of Open Access Journals (Sweden)
Yasuhito eNarita
2014-12-01
Full Text Available Magnetic reconnection in space plasmas remains a challenge in physics in that the phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless medium. Such a topology change can also be found in superfluidity, known as the quantum vortex reconnection. We give a plasma physicists' view of superfluidity to obtain insights on essential processes in collisionless reconnection, including discussion of the kinetic and fluid pictures, wave dynamics, and time reversal asymmetry. The most important lesson from the quantum fluid is the scenario that reconnection is controlled by the physics of topological defects on the microscopic scale, and by the physics of turbulence on the macroscopic scale. Quantum vortex reconnection is accompanied by wave emission in the form of Kelvin waves and sound waves, which imprints the time reversal asymmetry.
Relativistic reconnection in near critical Schwinger field
Schoeffler, Kevin; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis; Uzdensky, Dmitri
2017-10-01
Magnetic reconnection in relativistic pair plasma with QED radiation and pair-creation effects in the presence of strong magnetic fields is investigated using 2D particle-in-cell simulations. The simulations are performed with the QED module of the OSIRIS framework that includes photon emission by electrons and positrons and single photon decay into pairs (non-linear Breit-Wheeler). We investigate the effectiveness of reconnection as a pair- and gamma-ray production mechanism across a broad range of reconnecting magnetic fields, including those approaching the critical quantum (Schwinger) field, and we also explore how the radiative cooling and pair-production processes affect reconnection. We find that in the extreme field regime, the magnetic energy is mostly converted into radiation rather than into particle kinetic energy. This study is a first concrete step towards better understanding of magnetic reconnection as a possible mechanism powering gamma-ray flares in magnetar magnetospheres.
How Does the Electron Dynamics Affect the Global Reconnection Rate
Hesse, Michael
2012-01-01
The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.
Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde
2017-08-01
Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.
Physics of the saturation of particle acceleration in relativistic magnetic reconnection
Kagan, Daniel; Nakar, Ehud; Piran, Tsvi
2018-05-01
We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations σ. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at γ ≈ 4σ, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analysing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is γ ≈ 5σ, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power-law spectrum in reconnection is ≤40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrow-band flares observed in the Crab nebula but has difficulty producing the softer broad-band prompt gamma-ray burst emission.
Diagnosis of Acceleration, Reconnection, Turbulence, and Heating
Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.
2017-10-01
The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.
Energy Technology Data Exchange (ETDEWEB)
Longcope, D. W.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2012-09-10
Using a simple two-dimensional, zero-{beta} model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current-sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process, a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet, the wave front is either a rarefaction, with backward-directed flow, or a compression, with forward-directed flow.
Averaged null energy condition from causality
Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-07-01
Unitary, Lorentz-invariant quantum field theories in flat spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy, ∫ duT uu , must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form ∫ duX uuu··· u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.
Magnetic reconnection in the terrestrial magnetosphere
International Nuclear Information System (INIS)
Feldman, W.C.
1984-01-01
An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1
Tripolar electric field Structure in guide field magnetic reconnection
S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng
2018-01-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...
Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas
International Nuclear Information System (INIS)
Stenzel, R. L.
2004-01-01
Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas
Near-Earth Reconnection Ejecta at Lunar Distances
Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Zhou, X.-Z.
2018-04-01
Near-Earth magnetotail reconnection leads to formation of earthward and tailward directed plasma outflows with an increased north-south magnetic field strength(|Bz|) at their leading edges. We refer to these regions of enhanced |Bz| and magnetic flux transport Ey as reconnection ejecta. They are composed of what have been previously referred to as earthward dipolarizing flux bundles (DFBs) and tailward rapid flux transport (RFT) events. Using two-point observations of magnetic and electric fields and particle fluxes by the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun probes orbiting around Moon at geocentric distances R ˜ 60RE, we statistically studied plasma moments and particle energy spectra in RFTs and compared them with those observed within DFBs in the near-Earth plasma sheet by the Time History of Events and Macroscale Interactions during Substorms probes. We found that the ion average temperatures and spectral slopes in RFTs at R ˜ 60RE are close to those in DFBs observed at 15 balance, the average RFT ion temperature corresponds to a lobe field BL˜20 nT. This leads us to suggest that the ion population within the tailward ejecta originated in the midtail plasma sheet at 20≤R≤30RE and propagated to the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun location without undergoing any further energy gain. Conversely, electron temperatures in DFBs at 15 < R < 25RE are a factor of 2.5 higher than those in RFTs at R ˜ 60RE.
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth\\'s magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei; Li, Xiaoyesherry; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere
Slavin. James A.
2009-01-01
During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.
Magnetic Nulls and Super-radial Expansion in the Solar Corona
Energy Technology Data Exchange (ETDEWEB)
Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven; Toma, Giuliana de; Burkepile, Joan; Galloy, Michael [National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States); Rachmeler, Laurel A. [NASA Marshall Space Flight Center, Huntsville, AL 35811 (United States); Rosa, Marc L. De, E-mail: sgibson@ucar.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States)
2017-05-10
Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.
Endogenous Magnetic Reconnection in Solar Coronal Loops
Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.
2017-12-01
We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.
The Diffusion Region in Collisionless Magnetic Reconnection
Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji
2011-01-01
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.
Particle acceleration at a reconnecting magnetic separator
Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.
2015-02-01
Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.
On the Collisionless Asymmetric Magnetic Reconnection Rate
Liu, Yi-Hsin; Hesse, M.; Cassak, P. A.; Shay, M. A.; Wang, S.; Chen, L.-J.
2018-04-01
A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic-scale constraints.
Stochastic sawtooth reconnection in ASDEX Upgrade
International Nuclear Information System (INIS)
Igochine, V.; Dumbrajs, O.; Zohm, H.; Flaws, A.
2007-01-01
In this paper we investigate non-complete sawtooth reconnection in the ASDEX Upgrade tokamak. Such reconnection phenomena are associated with internal m/n = 1/1 kink mode which does not vanish after the crash phase (as would be the case for complete reconnection). It is shown that this sawtooth cannot be fully described by pure m/n = 1/1 mode and that higher harmonics play an important role during the sawtooth crash phase. We employ the Hamiltonian formalism and reconstructed perturbations to model incomplete sawtooth reconnection. It is demonstrated that stochastization appears due to the excitation of low-order resonances which are present in the corresponding q-profiles inside the q = 1 surface which reflects the key role of the q 0 value. Depending on this value two completely different situations are possible for one and the same mode perturbations: (i) the resonant surfaces are present in the q-profile leading to stochasticity and sawtooth crash (q 0 ∼ 0.7 ± 0.1); (ii) the resonant surfaces are not present, which means no stochasticity in the system and no crash event (q 0 ∼ 0.9 ± 0.05). Accordingly the central safety factor value is always less than unity in the case of a non-complete sawtooth reconnection. Our investigations show that the stochastic model agrees well with the experimental observations and can be proposed as a promising candidate for an explanation of the sawtooth reconnection
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Breakout Reconnection Observed by the TESIS EUV Telescope
Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.
2016-01-01
We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.
BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE
Energy Technology Data Exchange (ETDEWEB)
Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences (Russian Federation)
2016-01-10
We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R{sub ⊙} from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R{sub ⊙} above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s{sup −1}. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.
BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE
International Nuclear Information System (INIS)
Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.
2016-01-01
We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R ⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R ⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s −1 . At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario
Interplay between electric fields generated by reconnection and by secondary processes
Lapenta, G.; Innocenti, M. E.; Pucci, F.; Cazzola, E.; Berchem, J.; Newman, D. L.; El-Alaoui, M.; Walker, R. J.; Goldman, M. V.; Ergun, R.
2017-12-01
Reconnection regions are surrounded by several sources of free energy that push reconnection towards a turbulent regime: beams can drive streaming instabilities, currents can drive tearing like secondary instabilities, velocity and density shears can drive Kelvin-Helmholtz or Rayleigh-Taylor type of instabilities. The interaction between these instabilities can be very complex. For instance, from a kinetic point of view, instabilities resulting from shears are intermixed with drift-type instabilities, such as drift-kink, kink driven by relative species drift, lower hybrid modes of the electrostatic or electromagnetic type. In addition, the interaction with reconnection is two ways: reconnection causes the conditions for those instabilities to develop while the instabilities alter the progress of reconnection. Although MMS has observed features that can be associated with such instabilities: strong localized parallel electric fields (monopolar and bipolar), fluctuations in the drift range (lower hybrid, whistler), it has been difficult to determine which ones operate and how they differ depending on the symmetric and asymmetric reconnection configurations observed in the magnetotail and at the magnetopause, respectively. We present a comparison between the results of kinetic simulations obtained for typical magnetotail and the magnetopause configurations, using for each of them both analytical equilibria and results of global MHD simulations to initialize the iPIC3D simulations. By selecting what drivers (e.g. shear/no shear) are present, we can identify what instabilities develop and determine their effects on the progression of reconnection in the magnetotail and at the magnetopause. We focus especially on the role of drift waves and whistler instabilities, and discuss our results by comparing them with MMS observations.
Singular Null Hypersurfaces in General Relativity
International Nuclear Information System (INIS)
Dray, T
2006-01-01
Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of
Achieving fast reconnection in resistive MHD models via turbulent means
Directory of Open Access Journals (Sweden)
G. Lapenta
2012-04-01
Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.
Magnetic field line reconnection experiments
International Nuclear Information System (INIS)
Gekelman, W.; Stenzel, R.L.; Wild, N.
1982-01-01
A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Ji, Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)
2016-03-01
Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.
International Nuclear Information System (INIS)
Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda; Ji, Haisheng
2016-01-01
Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al
Assessing the Time Dependence of Reconnection With Poynting's Theorem: MMS Observations
Genestreti, K. J.; Cassak, P. A.; Varsani, A.; Burch, J. L.; Nakamura, R.; Wang, S.
2018-04-01
We investigate the time dependence of electromagnetic-field-to-plasma energy conversion in the electron diffusion region of asymmetric magnetic reconnection. To do so, we consider the terms in Poynting's theorem. In a steady state there is a perfect balance between the divergence of the electromagnetic energy flux ∇·S→ and the conversion between electromagnetic field and particle energy J→·E→. This energy balance is demonstrated with a particle-in-cell simulation of reconnection. We also evaluate each of the terms in Poynting's theorem during an observation of a magnetopause reconnection region by Magnetospheric Multiscale (MMS). We take the equivalence of both sides of Poynting's theorem as an indication that the errors associated with the approximation of each term with MMS data are small. We find that, for this event, balance between J→·E→=-∇·S→ is only achieved for a small fraction of the energy conversion region at/near the X-point. Magnetic energy was rapidly accumulating on either side of the current sheet at roughly 3 times the predicted energy conversion rate. Furthermore, we find that while J→·E→>0 and ∇·S→J→·E→. We note that due to the assumptions necessary to do this calculation, the accurate evaluation of ∇·S→ may not be possible for every MMS-observed reconnection event; but, if possible, this is a simple approach to determine if reconnection is or is not in a steady state.
3-D magnetic reconnection in colliding laser-produced plasmas
Matteucci, Jackson; Fox, Will; Moissard, Clement; Bhattacharjee, Amitava
2017-10-01
Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the expanding laser-produced plasmas by the Biermann battery effect. Using fully kinetic 3-D particle in cell simulations, we conduct the first end-to-end simulations of these experiments, including self-consistent magnetic field generation via the Biermann effect through driven magnetic field reconnection. The simulations show rich, temporally and spatially dependent magnetic field reconnection. First, we find fast, vertically-localized ``Biermann-mediated reconnection,'' an inherently 3-D reconnection mechanism where the sign of the Biermann term reverses in the reconnection layer, destroying incoming flux and reconnecting flux downstream. Reconnection then transitions to fast, collisionless reconnection sustained by the non-gyrotropic pressure tensor. To separate out the role 3-D mechanisms, 2-D simulations are initialized based on reconnection-plane cuts of the 3-D simulations. These simulations demonstrate: (1) suppression of Biermann-mediated reconnection in 2-D; (2) similar efficacy of pressure tensor mechanisms in 2-D and 3-D; and (3) plasmoids develop in the reconnection layer in 2-D, where-as they are suppressed in 3-D. Supported by NDSEG Fellowship. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Experimental study of two-fluid effect during magnetic reconnection in the UTST merging experiment
International Nuclear Information System (INIS)
Yamasaki, Kotaro; Takemura, Koichiro; Cao, Qinghong; Watanabe, Takenori G.; Itagaki, Hirotomo; Inomoto, Michiaki; Ono, Yasushi; Kamio, Shuji; Yamada, Takuma
2013-01-01
Radial profile of floating potential inside the current sheet was measured for the purpose of investigating the two-fluid (Hall) effect during magnetic reconnection in the UTST merging experiment. During magnetic reconnection, the floating potential drop was formed spontaneously inside the current sheet, forming a steep electric potential gradient on its both downstream areas. Magnetic probe array measurement indicates that this potential drop appears spontaneously when the reconnection rate rapidly increase due to change in current sheet structure. The IDS probe measurement observed outflow almost equal to poloidal Alfvén speed in radial direction from the X-point, where steep gradient of floating potential is formed. This fact suggests that ion acceleration/heating is caused by the steep potential gradient formed in the downstream by magnetized electrons. (author)
Simulation of small-scale coronal explosives due to magnetic reconnections
International Nuclear Information System (INIS)
Fan Quanlin; Feng Xueshang; Xiang Changqing; Zhong Dingkun
2003-01-01
The dynamics of small-scale explosive phenomena in the lower corona have been simulated by solving the compressible magnetohydrodynamic equations. Numerical results show that the magnetic reconnections in a long coronal current sheet consist of a series of discrete small reconnection events, coalescence of magnetic islands, and plasmoid ejections, corresponding to the explosive events occurring intermittently and as bursts in a mentioned observational case. The generation of magnetic islands via multiple-X-point reconnection and their coalescence processes, to some extent, are qualitatively similar to the sequence of brightenings in the active region NOAA 8668. The strong ejections are possibly related to the recorded extreme ultraviolet (EUV) emitting structures. Morphological comparison and quantitative check of the plasma parameters support this candidate mechanism, and the idea that explosive events that appear to last long may not be single events, but a succession of explosive events either resolved or unresolved. The temporal energy conversion process is also examined
Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma
Energy Technology Data Exchange (ETDEWEB)
Hirota, M.; Hattori, Y. [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8677 (Japan); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2015-05-15
A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally around the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.
Magnetic reconnection under anisotropic magnetohydrodynamic approximation
International Nuclear Information System (INIS)
Hirabayashi, K.; Hoshino, M.
2013-01-01
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p ∥ >p ⊥ ) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations
Magnetic Reconnection in Different Environments: Similarities and Differences
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim
2014-01-01
Depending on the specific situation, magnetic reconnection may involve symmetric or asymmetric inflow regions. Asymmetric reconnection applies, for example, to reconnection at the Earth's magnetopause, whereas reconnection in the nightside magnetotail tends to involve more symmetric geometries. A combination of review and new results pertaining to magnetic reconnection is being presented. The focus is on three aspects: A basic, MHD-based, analysis of the role magnetic reconnection plays in the transport of energy, followed by an analysis of a kinetic model of time dependent reconnection in a symmetric current sheet, similar to what is typically being encountered in the magnetotail of the Earth. The third element is a review of recent results pertaining to the orientation of the reconnection line in asymmetric geometries, which are typical for the magnetopause of the Earth, as well as likely to occur at other planets.
Plasma pressure tensor effects on reconnection: Hybrid and Hall-magnetohydrodynamics simulations
International Nuclear Information System (INIS)
Yin Lin; Winske, Dan
2003-01-01
Collisionless reconnection is studied using two-dimensional (2-D) hybrid (particle ions, massless fluid electrons) and Hall-magnetohydrodynamics (Hall-MHD) simulations. Both use the full electron pressure tensor instead of a localized resistivity in Ohm's law to initiate reconnection; an initial perturbation or boundary driving to the equilibrium is used. The initial configurations include one-dimensional (1-D) and 2-D current sheets both with and without a guide field. Electron dynamics from the two calculations are compared, and overall agreement is found between the calculations in both reconnection rate and global configuration [L. Yin et al., J. Geophys. Res. 106, 10761 (2001)]. It is shown that the electron drifts in the small-transverse-scale fields near the X point cause the electron motion to decouple from the ion motion, and that reconnection occurs due to electron viscous effects contained in the off-diagonal terms of the electron pressure tensor. Comparing the hybrid and Hall-MHD simulations shows that effects of the off-diagonal terms in the ion pressure tensor, i.e., the ion gyro-radius effects, are necessary in order to model correctly the ion out-of-plane motion. It is shown that these effects can be modeled efficiently in a particle Hall-MHD simulation in which particle ions are used in a predictor/corrector manner to implement ion gyro-radius corrections [L. Yin et al., Phys. Plasmas 9, 2575 (2002)]. For modeling reconnection in large systems, a new integrated approach is examined in which Hall-MHD calculations using a full electron pressure tensor model is embedded inside a MHD simulation. The embedded simulation of current sheet thinning and reconnection dynamics in a realistic 2-D magnetotail equilibrium exhibits smooth transitions of plasma and field quantities between the two regions, with small-scale physics represented well in the compressed current sheet and in the near-X-point region
Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-05-15
electron diffusion region. Unlike ions, electrons acquire energy mostly from the reconnection electric field, and the energy gain is localized near the X-point. However, the increase in the electron bulk flow energy remains negligible. These observations support the assertion that efficient electron heating mechanisms exist around the electron diffusion region and that the heat generated there is quickly transported along the magnetic field due to the high parallel thermal conductivity of electrons. Classical Ohmic dissipation based on the perpendicular Spitzer resistivity is too small to balance the measured heat flux, indicating the presence of anomalous electron heating.
Visible Nulling Coronagraphy for Exo-Planetary Detection and Characterization
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert; Vasudevan, Gopal; Shao, Mike; Levine, Martin; Melnick, Gary; Tolls, Volker; Petrone, Peter; Dogoda, Peter; Duval, Julia; Ge, Jian
Visible Nulling Coronagraphy (VNC) is the proposed method of detecting and characterizing exo-solar Jovian planets (null depth 10-9) for the proposed NASA's Extrasolar Planetary Imaging Coronagraph (EPIC) Clampin & Lyon 2004 and is an approach under evaluation for NASA's Terrestrial Planet Finder (TPF) mission. The VNC approach uses a single unobscured filled-aperture telescope and splits, via a 50:50 beamsplitter, its re-imaged pupil into two paths within a Mach-Zender interferometer. An achromatic PI phase shift is imposed onto one beam path and the two paths are laterally sheared with respect to each other. The two beams are recombined at a second 50:50 beamsplitter. The net effect is that the on axis (stellar) light is transmitted out of the bright interferometer arm while the off-axis (planetary) light is transmitted out of the nulled interferometer arm. The bright output is used for fine pointing control and coarse wavefront control. The nulled output is relayed to the science camera for science imagery and fine wavefront control. The actual transmission pattern, projected on the sky, follows a θ^2 pattern for a single shear, θ^4 for a double shear, with the spacing of the successive maxima proportional to the inverse of the relative lateral shear. Combinations of shears and spacecraft rolls build up the spatial frequency content of the sky transmission pattern in the same manner as imaging interferometer builds up the spatial frequency content of the image.
The Importance of Proving the Null
Gallistel, C. R.
2009-01-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is…
Magnetic Reconnection in Extreme Astrophysical Environments
Uzdensky, Dmitri
Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tion — reconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron
Role of compressibility on driven magnetic reconnection
International Nuclear Information System (INIS)
Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.
1991-08-01
Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)
Particle Demagnetization in Collisionless Magnetic Reconnection
Hesse, Michael
2006-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.
Magnetic field reconnection at the dayside magnetopause
International Nuclear Information System (INIS)
Rijnbeek, R.P.
1992-01-01
Magnetic field reconnection is a fundamental energy conversion process, and the energy liberated during this process gives rise to phenomena which can be observed in space and laboratory plasmas. At the dayside magnetopause reconnection results in a coupling between the solar wind and the magnetosphere. Manifestations of this include large disturbances in the magnetic field known as flux transfer events, and accelerated plasma flows along the magnetopause. Progress has been made in the development of a physical model incorporating such phenomena, aided by experimental data from various spacecraft missions
Anomalous heating and plasmoid formation in pulsed power driven magnetic reconnection experiments
Hare, Jack
2017-10-01
Magnetic reconnection is an important process occurring in various plasma environments, including high energy density plasmas. In this talk we will present results from a recently developed magnetic reconnection platform driven by the MAGPIE pulsed power generator (1 MA, 250 ns) at Imperial College London. In these experiments, supersonic, sub-Alfvénic plasma flows collide, bringing anti-parallel magnetic fields into contact and producing a well-defined, elongated reconnection layer. This layer is long-lasting (>200 ns, > 10 hydrodynamic flow times) and is diagnosed using a suite of high resolution, spatially and temporally resolved diagnostics which include laser interferometry, Thomson scattering and Faraday rotation imaging. We observe significant heating of the electrons and ions inside the reconnection layer, and calculate that the heating must occur on time-scales far faster than can be explained by classical mechanisms. Possible anomalous mechanisms include in-plane electric fields caused by two-fluid effects, and enhanced resistivity and viscosity caused by kinetic turbulence. We also observe the repeated formation of plasmoids in the reconnection layer, which are ejected outwards along the layer at super-Alfvénic velocities. The O-point magnetic field structure of these plasmoids is determined using in situ magnetic probes, and these plasmoids could also play a role in the anomalous heating of the electrons and ions. In addition, we present further modifications to this experimental platform which enable us to study asymmetric reconnection or measure the out-of-plane magnetic field inside the plasmoids. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the
The quantum null energy condition in curved space
Fu, Zicao; Koeller, Jason; Marolf, Donald
2017-11-01
The quantum null energy condition (QNEC) is a conjectured bound on components (Tkk = Tab ka k^b) of the stress tensor along a null vector k a at a point p in terms of a second k-derivative of the von Neumann entropy S on one side of a null congruence N through p generated by k a . The conjecture has been established for super-renormalizeable field theories at points p that lie on a bifurcate Killing horizon with null tangent k a and for large-N holographic theories on flat space. While the Koeller-Leichenauer holographic argument clearly yields an inequality for general ( p, k^a) , more conditions are generally required for this inequality to be a useful QNEC. For d≤slant 3 , for arbitrary backgroud metric we show that the QNEC is naturally finite and independent of renormalization scheme when the expansion θ of N at the point p vanishes. This is consistent with the original QNEC conjecture which required θ and the shear σab to satisfy θ \\vert _p= \\dotθ\\vert p =0 , σab\\vert _p=0 . But for d=4, 5 more conditions than even these are required. In particular, we also require the vanishing of additional derivatives and a dominant energy condition. In the above cases the holographic argument does indeed yield a finite QNEC, though for d≥slant6 we argue these properties to fail even for weakly isolated horizons (where all derivatives of θ, σab vanish) that also satisfy a dominant energy condition. On the positive side, a corrollary to our work is that, when coupled to Einstein-Hilbert gravity, d ≤slant 3 holographic theories at large N satisfy the generalized second law (GSL) of thermodynamics at leading order in Newton’s constant G. This is the first GSL proof which does not require the quantum fields to be perturbations to a Killing horizon.
Yang-Mills theory in null path space
International Nuclear Information System (INIS)
Kent, S.L.
1982-01-01
A reformulation of classical GL(n,c) Yang-Mills theory is presented. The reformulation is in terms of a single matrix-valued function G on a six-dimensional subspace of the space of paths in Minkowski space, M. This subspace is defined as the null paths beginning at each point, (X/sup a/), of M and ending at future null infinity. A convenient parametrization of these paths is to give the Minkowski coordinates x/sup a/ of the starting point and the (complex) stereographic coordinates (xi, antixi) on S 2 which label the light cone generators of x/sup a/. A path is thus labeled by (x/sup a/,xi, antixi). The function G(x/sup a/,xi, antixi) is defined by the parallel propagation (with a given connection) of n linearly independent fiber vectors from x/sup a/ to null infinity along the (xi, antixi) generator. From knowledge of G(x/sup a/,xi, antixi) the connection one-form γ/sub a/ at the point x/sup a/ can be obtained is shown. Furthermore how the vacuum Yang-Mills equations can be imposed on the G is shown. This results in a rather complicated integro-differential equation for G which involves the characteristic initial data (essentially the radiation field) acting as the driving term. Two simple special cases are immediately obtainable; in the case of self-dual (or anti-self dual) fields the author obtains a simple derivation of the Sparling equation, namely delta G = -GA, while for Abelian (Maxwell) theories obtained the equation delta anti delta log G = -anti delta A-anti delta A, where A and its conjugate anti A are the characteristic free data given on null infinity. The latter equation is equivalent to the vacuum Maxwell equations
Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares
Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo
2018-04-01
We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.
Superdiffusion revisited in view of collisionless reconnection
Directory of Open Access Journals (Sweden)
R. A. Treumann
2014-06-01
Full Text Available The concept of diffusion in collisionless space plasmas like those near the magnetopause and in the geomagnetic tail during reconnection is reexamined making use of the division of particle orbits into waiting orbits and break-outs into ballistic motion lying at the bottom, for instance, of Lévy flights. The rms average displacement in this case increases with time, describing superdiffusion, though faster than classical, is still a weak process, being however strong enough to support fast reconnection. Referring to two kinds of numerical particle-in-cell simulations we determine the anomalous diffusion coefficient, the anomalous collision frequency on which the diffusion process is based, and construct a relation between the diffusion coefficients and the resistive scale. The anomalous collision frequency from electron pseudo-viscosity in reconnection turns out to be of the order of the lower-hybrid frequency with the latter providing a lower limit, thus making similar assumptions physically meaningful. Tentative though not completely justified use of the κ distribution yields κ ≈ 6 in the reconnection diffusion region and, for the anomalous diffusion coefficient, the order of several times Bohm diffusivity.
Reconnecting Youth. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2015
2015-01-01
"Reconnecting Youth" is an elective, credit-bearing course for students at risk of dropping out of school due to frequent absenteeism, low grades, or a history of dropping out. The curriculum focuses on building self-esteem, decision making, personal control, and interpersonal communication skills. The What Works Clearninghouse (WWC)…
Colour reconnection in DELPHI at LEP
International Nuclear Information System (INIS)
Abreu, P.
2003-01-01
The preliminary results of two different methods for the search of colour reconnection effects (CR), used in the DELPHI experiment at LEP are presented. The methods were found to be largely uncorrelated, and a combined likelihood for values of the κ strength parameter in the SK-I model is given
About 'reconnection' in a collisionless plasma
International Nuclear Information System (INIS)
Pellat, R.
1979-01-01
Two kinds of mechanisms have been advertised for magnetic field line reconnection in plasmas: a slow diffusive process, proposed by Parker and Sweet (1958), related to the Tearing mode and field line stochasticity; an Alfenic flow, with a fast merging rate, the so-called Petschek theory. The present author considers both mechanisms successively and emphasizes the yet unsolved theoretical difficulties. (Auth.)
Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence
Loureiro, Nuno F.; Boldyrev, Stanislav
2017-12-01
It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .
Conformal symmetry inheritance in null fluid spacetimes
International Nuclear Information System (INIS)
Tupper, B O J; Keane, A J; Hall, G S; Coley, A A; Carot, J
2003-01-01
We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case
Null solution of the Yang-Mills equations
International Nuclear Information System (INIS)
Tafel, J.
1986-05-01
We investigate the correspondence between null solutions of the Yang-Mills equations and shearfree geodesic null congruences. We give an example of a non-Abelian null solution with twisting rays. (orig.)
A visualization of null geodesics for the bonnor massive dipole
Directory of Open Access Journals (Sweden)
G. Andree Oliva Mercado
2015-08-01
Full Text Available In this work we simulate null geodesics for the Bonnor massive dipole metric by implementing a symbolic-numerical algorithm in Sage and Python. This program is also capable of visualizing in 3D, in principle, the geodesics for any given metric. Geodesics are launched from a common point, collectively forming a cone of light beams, simulating a solid-angle section of a point source in front of a massive object with a magnetic field. Parallel light beams also were considered, and their bending due to the curvature of the space-time was simulated.
Null-strut calculus. II. Dynamics
International Nuclear Information System (INIS)
Kheyfets, A.; LaFave, N.J.; Miller, W.A.
1990-01-01
In this paper, we continue from the preceding paper to develop a fully functional Regge calculus geometrodynamic algorithm from the null-strut-calculus construction. The developments discussed include (a) the identification of the Regge calculus analogue of the constraint and evolution equations on the null-strut lattice, (b) a description of the Minkowski solid geometry for the simplicial blocks of the null-strut lattice, (c) a description of the evolution algorithm for the geometrodynamic scheme and an analysis of its consistency, and (d) a presentation of the dynamical degrees of freedom for a simplicial hypersurface and the description of an initial-value prescription. To demonstrate qualitatively this new approach to geometrodynamics, we present the most simple application of null-strut calculus that we know of---the Friedmann cosmology using the three-boundary of a 600-cell simplicial polytope to model the simplicial hypersurface
Null structure groups in eleven dimensions
International Nuclear Information System (INIS)
Cariglia, Marco; Mac Conamhna, Oisin A. P.
2006-01-01
We classify all the structure groups which arise as subgroups of the isotropy group (Spin(7)xR 8 )xR, of a single null Killing spinor in 11 dimensions. We construct the spaces of spinors fixed by these groups. We determine the conditions under which structure subgroups of the maximal null structure group (Spin(7)xR 8 )xR may also be embedded in SU(5), and hence the conditions under which a supersymmetric spacetime admits only null, or both timelike and null, Killing spinors. We discuss how this purely algebraic material will facilitate the direct analysis of the Killing spinor equation of 11 dimensional supergravity, and the classification of supersymmetric spacetimes therein
On smoothness-asymmetric null infinities
International Nuclear Information System (INIS)
Valiente Kroon, Juan Antonio
2006-01-01
We discuss the existence of asymptotically Euclidean initial data sets for the vacuum Einstein field equations which would give rise (modulo an existence result for the evolution equations near spatial infinity) to developments with a past and a future null infinity of different smoothness. For simplicity, the analysis is restricted to the class of conformally flat, axially symmetric initial data sets. It is shown how the free parameters in the second fundamental form of the data can be used to satisfy certain obstructions to the smoothness of null infinity. The resulting initial data sets could be interpreted as those of some sort of (nonlinearly) distorted Schwarzschild black hole. Their developments would be that they admit a peeling future null infinity, but at the same time have a polyhomogeneous (non-peeling) past null infinity
High-contrast Nulling Interferometry Techniques Project
National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...
Null-plane quantization of fermions
International Nuclear Information System (INIS)
Mustaki, D.
1990-01-01
Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields
On the Penrose inequality along null hypersurfaces
International Nuclear Information System (INIS)
Mars, Marc; Soria, Alberto
2016-01-01
The null Penrose inequality, i.e. the Penrose inequality in terms of the Bondi energy, is studied by introducing a functional on surfaces and studying its properties along a null hypersurface Ω extending to past null infinity. We prove a general Penrose-type inequality which involves the limit at infinity of the Hawking energy along a specific class of geodesic foliations called Geodesic Asymptotically Bondi (GAB), which are shown to always exist. Whenever this foliation approaches large spheres, this inequality becomes the null Penrose inequality and we recover the results of Ludvigsen–Vickers (1983 J. Phys. A: Math. Gen. 16 3349–53) and Bergqvist (1997 Class. Quantum Grav. 14 2577–83). By exploiting further properties of the functional along general geodesic foliations, we introduce an approach to the null Penrose inequality called the Renormalized Area Method and find a set of two conditions which imply the validity of the null Penrose inequality. One of the conditions involves a limit at infinity and the other a restriction on the spacetime curvature along the flow. We investigate their range of applicability in two particular but interesting cases, namely the shear-free and vacuum case, where the null Penrose inequality is known to hold from the results by Sauter (2008 PhD Thesis Zürich ETH ), and the case of null shells propagating in the Minkowski spacetime. Finally, a general inequality bounding the area of the quasi-local black hole in terms of an asymptotic quantity intrinsic of Ω is derived. (paper)
Latex allergy and filaggrin null mutations
DEFF Research Database (Denmark)
Carlsen, Berit C; Meldgaard, Michael; Hamann, Dathan
2011-01-01
to aeroallergens and it is possible that filaggrin null mutations also increase the risk of latex allergy. The aim of this paper was to examine the association between filaggrin null mutations and type I latex allergy. Methods Twenty latex allergic and 24 non-latex allergic dentists and dental assistants...... in the cases in this study may not have occurred through direct skin contact but through the respiratory organs via latex proteins that are absorbed in glove powder and aerosolized...
Electron Distribution Functions in the Diffusion Region of Asymmetric Magnetic Reconnection
Bessho, N.; Chen, L.-J.; Hesse, M.
2016-01-01
We study electron distribution functions in a diffusion region of antiparallel asymmetric reconnection by means of particle-in-cell simulations and analytical theory. At the electron stagnation point, the electron distribution comprises a crescent-shaped population and a core component. The crescent-shaped distribution is due to electrons coming from the magnetosheath toward the stagnation point and accelerated mainly by electric field normal to the current sheet. Only a part of magnetosheath electrons can reach the stagnation point and form the crescent-shaped distribution that has a boundary of a parabolic curve. The penetration length of magnetosheath electrons into the magnetosphere is derived. We expect that satellite observations can detect crescent-shaped electron distributions during magnetopause reconnection.
Experimental study of ion heating and acceleration during magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Hsu, S.C.
2000-01-28
This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational
Experimental study of ion heating and acceleration during magnetic reconnection
International Nuclear Information System (INIS)
Hsu, S.C.
2000-01-01
This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational
Magnetic reconnection simulation using the 2.5D em [electromagnetic] direct implicit code AVANTI
International Nuclear Information System (INIS)
Hewett, D.W.; Francis, G.E.; Max, C.E.
1988-01-01
Collisionless reconnection of magnetic field lines depends upon electron inertia effects and details of the electron and ion distribution functions, thus requiring a kinetic description of both. Though traditional explicit PIC techniques provide this description in principle, they are severely limited in parameters by time step constraints. This parameter regime has been expanded by using the recently constructed 2.5 D electromagnetic code AVANTI in this work. The code runs stably with arbitrarily large Δt and is quite robust with respect to large fluctuations occurring due to small numbers of particles per cell. We have found several qualitatively new features. The reconnection process is found to occur in distinct stages: early spontaneous reconnection fed by the free energy of an initial anisotropy in the electron component, coalescence of the resulting small-scale filaments of electron current, accompanied by electron jetting, and oscillatory flow of electrons through the magnetic X-point, superposed on continuing nonlinear growth of ion-mediated reconnection. The time evolution of stage is strongly dependent on M i /m e . 12 refs., 6 figs
PERSEE: a nulling interferometer with dynamic correction of external perturbations
Jacquinod, S.; Houairi, K.; Le Duigou, J.-M.; Barillot, M.; Cassaing, F.; Réess, J.-M.; Hénault, F.; Sorrente, B.; Morinaud, G.; Amans, J.-P.; Coudé du Foresto, V.; Ollivier, M.
2017-11-01
Nulling interferometry is one of the direct detection methods assessed to find and characterize extrasolar planets and particularly telluric ones. Several projects such as Darwin [1;2], TPF-I [3;4], PEGASE [5;6] or FKSI [7], are currently considered. One of the main issues is the feasibility of a stable polychromatic null despite the presence of significant disturbances, induced by vibrations, atmospheric turbulence on the ground or satellite drift. Satisfying all these requirements is a great challenge and a key issue of these missions. In the context of the PEGASE mission, it was decided (in 2006), to build a laboratory demonstrator named PERSEE. It is the first laboratory setup which couples deep nulling interferometry with a free flying GNC simulator [8]. It is developed by a consortium composed of CNES, IAS, LESIA, OCA, ONERA, and TAS. In this paper, we detail the main objectives, the set-up and the function of the bench. We describe all the subsystems and we focus particularly on two key points of PERSEE: the beam combiner and the Fringe tracker.
Nonlinear magnetic reconnection in low collisionality plasmas
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F [Politecnico di Torino, Turin (Italy)
1994-07-01
The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.
Magnetic Reconnection Driven by Thermonuclear Burning
Gatto, R.; Coppi, B.
2017-10-01
Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.
Introduction to Plasma Dynamo, Reconnection and Shocks
Energy Technology Data Exchange (ETDEWEB)
Intrator, Thomas P. [Los Alamos National Laboratory
2012-08-30
In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.
General connected and reconnected fields in plasmas
Mahajan, Swadesh M.; Asenjo, Felipe A.
2018-02-01
For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.
Multi-megajoule magnetic reconnection experiment
International Nuclear Information System (INIS)
Degnan, J.H.; Baker, W.L.; Holmes, J.L.; Price, D.W.; Cowan, M.; Graham, J.D.; Lopez, E.A.; Ralph, D.; Roderick, N.F.
1990-01-01
An experiment to combine many medium energy, current co-axial gun discharges into two high energy, current discharges is discussed. Multiple sub-megampere DPF-like guns are directed radially inward. Their discharges combine via magnetic reconnection to form two several megampere co-axial discharges. Experimental results and relevant 2D simulations are discussed. Diagnostics include current, voltage, fast photography, neutron and x-ray detectors
INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS
International Nuclear Information System (INIS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.
2010-01-01
We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.
Aspects of collisionless magnetic reconnection in asymmetric systems
Energy Technology Data Exchange (ETDEWEB)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha [Heliophysics Science Division, Code 670, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, Tokyo (Japan); Birn, Joachim [Space Science Institute, Boulder, Colorado 80301 (United States)
2013-06-15
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Aspects of collisionless magnetic reconnection in asymmetric systems
International Nuclear Information System (INIS)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide
Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems
Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere
Energy Technology Data Exchange (ETDEWEB)
Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)
2017-09-10
Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
Plasmoid statistics in relativistic magnetic reconnection
Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.
2018-04-01
Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.
Magnetic Reconnection in MHD and Kinetic Turbulence
Loureiro, Nuno; Boldyrev, Stanislav
2017-10-01
Recent works have revisited the current understanding of Alfvénic turbulence to account for the role of magnetic reconnection. Theoretical arguments suggest that reconnection inevitably becomes important in the inertial range, at the scale where it becomes faster than the eddy turnover time. This leads to a transition to a new sub-inertial interval, suggesting a route to energy dissipation that is fundamentally different from that envisioned in the usual Kolmogorov-like phenomenology. These concepts can be extended to collisionless plasmas, where reconnection is enabled by electron inertia rather than resistivity. Although several different cases must then be considered, a common result is that the energy spectrum exhibits a scaling with the perpendicular wave number that scales between k⊥- 8 / 3 and k⊥- 3 , in favourable agreement with many numerical results and observations. Work supported by NSF-DOE Partnership in Basic Plasma Science and Engineering, Award No. DE-SC0016215, and by NSF CAREER Award No. 1654168 (NFL); and by NSF Grant NSF AGS- 1261659 and by the Vilas Associates Award of UWM (SB).
Radio Emissions from Magnetopause Reconnection Events
Fung, S. F.; Kunze, J.
2017-12-01
A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.
Why fast magnetic reconnection is so prevalent
Boozer, Allen H.
2018-02-01
Evolving magnetic fields are shown to generically reach a state of fast magnetic reconnection in which magnetic field line connections change and magnetic energy is released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only the finiteness of the mass of the lightest charged particle, an electron, is required. The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its cause must be contained within the ideal evolution equation for magnetic fields, , where is the velocity of the magnetic field lines. For a generic , neighbouring magnetic field lines develop a separation that increases exponentially, as \\unicode[STIX]{x1D70E(\\ell ,t)}$ with the distance along a line. This exponentially enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the importance of stirring to produce a large-scale flow and enhance mixing, has been recognized by cooks through many millennia, but the importance of the large-scale flow to reconnection is customarily ignored. In part this is due to the sixty-year focus of recognition theory on two-coordinate models, which eliminate the exponential enhancement that is generic with three coordinates. A simple three-coordinate model is developed, which could be used to address many unanswered questions.
Null Subjects in European and Brazilian Portuguese
Directory of Open Access Journals (Sweden)
Pilar Barbosa
2005-12-01
Full Text Available The goals of this paper are twofold: a to provide a structural account of the effects of the informal ‘Avoid Pronoun Principle’, proposed in Chomsky (1981: 65 for the Null Subject Languages (NSLs, and b to compare, in European and Brazilian Portuguese (EP and BP, the distribution of the third person pronouns in its full and null forms, to check whether in written corpora BP incorporates signs of the ongoing loss of the null subject, largely attested in its contemporary spoken language. The strong theoretical claim is that in the Romance non-NSLs the pre-verbal subject is sitting in Spec of IP, while in the Romance NSLs it is Clitic Left-Dislocated (or is extracted by A-bar movement if it belongs to a restricted set of non-referential quantified expressions. The paper provides quantitative evidence that BP is losing the properties associated with the Null Subject Parameter. In its qualitative analysis, it shows that the contrasts between EP and BP are easily accounted for if the two derivations are assumed and if the null subjects in the two varieties are considered to be of a different nature: a pronoun in EP and a pronominal anaphor in BP.
International Nuclear Information System (INIS)
Kulsrud, Russell; Ji Hantao; Fox, William; Yamada, Masaaki
2005-01-01
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma-field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (magnetic reconnection experiment) [M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bertz, F. Jobes, Y. Ono, and F. Perkins, Phys. Plasmas 4, 1936 (1997)] that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating lower hybrid drift instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasilinear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX, the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process
International Nuclear Information System (INIS)
Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada
2005-01-01
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process
Supersymmetric null-like holographic cosmologies
International Nuclear Information System (INIS)
Lin Fengli; Wen Wenyu
2006-01-01
We construct a new class of 1/4-BPS time dependent domain-wall solutions with null-like metric and dilaton in type II supergravities, which admit a null-like big bang singularity. Based on the domain-wall/QFT correspondence, these solutions are dual to 1/4-supersymmetric quantum field theories living on a boundary cosmological background with time dependent coupling constant and UV cutoff. In particular we evaluate the holographic c function for the 2-dimensional dual field theory living on the corresponding null-like cosmology. We find that this c function runs in accordance with the c-theorem as the boundary universe evolves, this means that the number of degrees of freedom is divergent at big bang and suggests the possible resolution of big bang singularity
Null geodesic deviation II. Conformally flat space--times
International Nuclear Information System (INIS)
Peters, P.C.
1975-01-01
The equation of geodesic deviation is solved in conformally flat space--time in a covariant manner. The solution is given as an integral equation for general geodesics. The solution is then used to evaluate second derivatives of the world function and derivatives of the parallel propagator, which need to be known in order to find the Green's function for wave equations in curved space--time. A method of null geodesic limits of two-point functions is discussed, and used to find the scalar Green's function as an iterative series
Null-strut calculus. I. Kinematics
International Nuclear Information System (INIS)
Kheyfets, A.; LaFave, N.J.; Miller, W.A.
1990-01-01
This paper describes the kinematics of null-strut calculus---a 3+1 Regge calculus approach to general relativity. We show how to model the geometry of spacetime with simplicial spacelike three-geometries (TET's) linked to ''earlier'' and ''later'' momentumlike lattice surfaces (TET * ) entirely by light rays or ''null struts.'' These three-layered lattice spacetime geometries are defined and analyzed using combinatorial formulas for the structure of polytopes. The following paper in this series describes how these three-layered spacetime lattices are used to model spacetimes in full conformity with Einstein's theory of gravity
Kitamura, N.; Hasegawa, H.; Saito, Y.; Shinohara, I.; Yokota, S.; Nagai, T.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Dorelli, J. C.;
2016-01-01
At 02:13 UT on 18 November 2015 when the geomagnetic dipole was tilted by -27deg, the MMS spacecraft observed southward reconnection jets near the subsolar magnetopause under southward and dawnward interplanetary magnetic field conditions. Based on four-spacecraft estimations of the magnetic field direction near the separatrix and the motion and direction of the current sheet, the location of the reconnection line was estimated to be approx.1.8 R(sub E) or further northward of MMS. The Geotail spacecraft at GSM Z approx. 1.4 R(sub E) also observed southward reconnection jets at the dawnside magnetopause 30-40 min later. The estimated reconnection line location was northward of GSM Z approx.2 R(sub E). This crossing occurred when MMS observed purely southward magnetic fields in the magnetosheath. The simultaneous observations are thus consistent with the hypothesis that the dayside magnetopause reconnection line shifts from the subsolar point toward the northem (winter) hemisphere due to the effect of geomagnetic dipole tilt.
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John;
2016-01-01
Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.
Accessing the Asymmetric Collisionless Reconnection Regime in the Terrestrial Reconnection Experiment (TREX)
Greess, S.; Egedal, J.; Olson, J.; Millet-Ayala, A.; Myers, R.; Wallace, J.; Clark, M.; Forest, C.
2017-12-01
Kinetic effects are expected to dominate the collisionless reconnection regime, where the mean free path is large enough that the anisotropic electron pressure can develop without being damped away by collisional pitch angle scattering. In simulations, the anisotropic pressure drives the formation of outflow jets [1]. These jets are expected to play a role in the reconnection layer at the Earth's magnetopause, which is currently being explored by Magnetospheric Multiscale Mission (MMS) [2]. Until recently, this regime of anisotropic pressure was inaccessible by laboratory experiments, but new data from the Terrestrial Reconnection Experiment (TREX) shows that fully collisionless reconnection can now be achieved in the laboratory. Future runs at TREX will delve deeper into this collisionless regime in both the antiparallel and guide-field cases. [1] Le, A. et al. JPP, 81(1). doi: 10.1017/S0022377814000907. [2] Burch, J. L. et al. Space Sci. Rev. 199,5. doi: 10.1007/s11214-015-0164-9 Supported in part by NSF/DOE award DE-SC0013032.
Fine art of computing nulling interferometer maps
Hénault, F.
2008-07-01
Spaceborne nulling interferometers are often characterized by means of their nulling ratio, which is defined as the deepest possible extinction of one target star supposed to harbor an extra-solar system. Herein is shown that another parameter, which is the transmitting efficiency of nearby bright fringes, is also of prime importance. More generally, "nulling maps" formed by the whole destructive and constructive fringe pattern projected on-sky, are found to be very sensitive on the design of some subsystems constituting the interferometer. In particular, we consider Spatial Filtering (SF) and Achromatic Phase Shifter (APS) devices, both required achieving planet detection and characterization. Consequences of the SF choice (pinhole or single-mode optical fiber) and APS properties (with or without induced pupil-flip) are discussed, for both monochromatic and polychromatic cases. Examples of numerical simulations are provided for single Bracewell interferometer, Angel cross and X-array configurations, demonstrating noticeable differences in the aspect of resulting nulling maps. It is concluded that both FS and APS designs exhibit variable capacities for serendipitous planet discovery.
Matter sources for a null big bang
International Nuclear Information System (INIS)
Bronnikov, K A; Zaslavskii, O B
2008-01-01
We consider the properties of stress-energy tensors compatible with a null big bang, i.e., cosmological evolution starting from a Killing horizon rather than a singularity. For Kantowski-Sachs cosmologies, it is shown that if matter satisfies the null energy condition, then (i) regular cosmological evolution can only start from a Killing horizon, (ii) matter is absent at the horizon and (iii) matter can only appear in the cosmological region due to interaction with vacuum. The latter is understood phenomenologically as a fluid whose stress tensor is insensitive to boosts in a particular direction. We also argue that matter is absent in a static region beyond the horizon. All this generalizes the observations recently obtained for a mixture of dust and a vacuum fluid. If, however, we admit the existence of phantom matter, its certain special kinds (with the parameter w ≤ -3) are consistent with a null big bang without interaction with vacuum (or without vacuum fluid at all). Then in the static region there is matter with w ≥ -1/3. Alternatively, the evolution can begin from a horizon in an infinitely remote past, leading to a scenario combining the features of a null big bang and an emergent universe
Instabilities and the null energy condition
International Nuclear Information System (INIS)
Buniy, Roman V.; Hsu, Stephen D.H.
2006-01-01
We show that violation of the null energy condition implies instability in a broad class of models, including gauge theories with scalar and fermionic matter as well as any perfect fluid. When applied to the dark energy, our results imply that w=p/ρ is unlikely to be less than -1. than -1
Covariant quantum mechanics on a null plane
International Nuclear Information System (INIS)
Leutwyler, H.; Stern, J.
1977-03-01
Lorentz invariance implies that the null plane wave functions factorize into a kinematical part describing the motion of the system as a whole and an inner wave function that involves the specific dynamical properties of the system - in complete correspondence with the non-relativistic situation. Covariance is equivalent to an angular condition which admits non-trivial solutions
Null vectors in superconformal quantum field theory
International Nuclear Information System (INIS)
Huang Chaoshang
1993-01-01
The superspace formulation of the N=1 superconformal field theory and superconformal Ward identities are used to give a precise definition of fusion. Using the fusion procedure, superconformally covariant differential equations are derived and consequently a complete and straightforward algorithm for finding null vectors in Verma modules of the Neveu-Schwarz algebra is given. (orig.)
Ye, J.; Lin, J.; Raymond, J. C.; Shen, C.
2017-12-01
In this paper, we present a resistive magnetohydrodynamical study (2D) of the CME eruption based on the Lin & Forbes model (2000) regarding the cascading reconnection by a high-order Godunov scheme code, to better understand the physical mechanisms responsible for the internal structure of the current sheet (CS) and the high reconnection rate. The main improvements of this work include: 1) large enough spatial scale consistent with the stereo LASCO data that yields an observable current sheet 2) A realistic plasma environment (S&G, 1999) adopted rather than an isothermal atmosphere and higher resolution inside CS 3) The upper boundary condition set to be open. The simulation shows a typical acceleration below 2 R⊙, then its speed slightly fluctuated, and the flux rope velocity is estimated to be 100 km/s-250 km/s for a slow CME. The reconnection rates are around 0.02 estimated from inflow and outflow velocities. The dynamic features show a great consistence with the LASCO observations. Looking into the fine structure of CS, magnetic reconnection initializes with a Sweet-Parker stage, and undergoes the time-dependent Petschek/fractural patterns. While the CME continues climbing up, the outflow region becomes turbulent which enhances the reconnection rates furthermore. The local reconnection rates present a simple linear dependence with the length-width ratio of multiple small-scale CSs. The principal X-point is close to the Sun's surface during the entire eruption, causing the energy partition to be unequal. Energy conversion in the vicinity of the principal X-point has also been addressed by simply employing energy equations. And we demonstrate that the dominant energy transfer consists of a conversion of the incoming Poynting flux to enthalpy flux in the sunward direction and bulk kinetic energy in the CME direction. The spectrum of magnetic energy doesn't follow a simple power law after secondary islands appear, and the spectrum index varies from 1.5 to 2
International Nuclear Information System (INIS)
Stuchlik, Zdenek; Hledik, Stanislav; Soltes, Jiri; Ostgaard, Erlend
2001-01-01
Null geodesics and embedding diagrams of central planes in the ordinary space geometry and the optical reference geometry of the interior Schwarzschild--de Sitter spacetimes with uniform density are studied. For completeness, both positive and negative values of the cosmological constant are considered. The null geodesics are restricted to the central planes of these spacetimes, and their properties can be reflected by an 'effective potential.' If the interior spacetime is extremely compact, the effective potential has a local maximum corresponding to a stable circular null geodesic around which bound null geodesics are concentrated. The upper limit on the size of the interior spacetimes containing bound null geodesics is R=3M, independently of the value of the cosmological constant. The embedding diagrams of the central planes of the ordinary geometry into three-dimensional Euclidean space are well defined for the complete interior of all spacetimes with a repulsive cosmological constant, but the planes cannot be embedded into the Euclidean space in the case of spacetimes with subcritical values of an attractive cosmological constant. On the other hand, the embedding diagrams of the optical geometry are well defined for all of the spacetimes, and the turning points of these diagrams correspond to the radii of the circular null geodesics. All the embedding diagrams, for both the ordinary and optical geometry, are smoothly matched to the corresponding embedding diagrams of the external vacuum Schwarzschild--de Sitter spacetimes
pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis
White, J.; Brakefield, L. K.
2015-12-01
The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.
Reconnection in Solar Flares: Outstanding Questions Hiroaki Isobe ...
Indian Academy of Sciences (India)
Although the idea of magnetic reconnection for explaining the energy release in solar flares had been proposed many decades ago (Parker 1957; Sweet. 1958) it was after Yohkoh (Ogawara et al. 1991) observations that the reality of mag- netic reconnection occurring during solar flares was established. Examples of evi-.
Progress in the theory of magnetic reconnection phenomena
International Nuclear Information System (INIS)
Ottaviani, M.; Arcis, N.; Maget, P.; Zwingmann, W.; Grasso, D.; Militello, F.; Porcelli, F.
2004-01-01
Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasised. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported. (authors)
Review of recent experiments on magnetic reconnection in laboratory plasmas
International Nuclear Information System (INIS)
Yamada, M.
1995-02-01
The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed
The Time-Dependent Structure of the Electron Reconnection Layer
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2009-01-01
Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.
Magnetic Reconnection Results on the Swarthmore Spheromak Experiment
Kornack, T. W.; Sollins, P. K.; Brown, M. R.
1997-11-01
Linear and 2D arrays of magnetic probes are used to study magnetic reconnection in the Swarthmore Spheromak Experiment (SSX). Opposing coaxial plasma guns form two identical spheromaks into adjacent 0.5 m diameter copper flux conservers. The flux conservers have symmetrical openings that allow the spheromaks to merge in a controlled manner. The stable equilibrium of the spheromaks provides a reservoir of magnetic flux for reconnection experiments. Currently, the magnetic configuration of the spheromaks allows the study of counter-helicity reconnection. Preliminary analysis will be presented and may include 2D B field movies of the reconnection region, measurement of the reconnection rate and comparison to the Sweet-Parker and standard Petschek models.
Gravitational collapse of a cylindrical null shell in vacuum
Directory of Open Access Journals (Sweden)
S. Khakshournia
2008-03-01
Full Text Available Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .
MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere
DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya
2015-04-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which
Collisionless reconnection: magnetic field line interaction
Directory of Open Access Journals (Sweden)
R. A. Treumann
2012-10-01
Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.
Magnetic reconnection during eruptive magnetic flux ropes
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2017-08-01
Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org
FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION
International Nuclear Information System (INIS)
Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.
2011-01-01
Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.
Hall MHD reconnection in cometary magnetotail
International Nuclear Information System (INIS)
Jovanovic, Dusan; Shukla, Padma Kant; Morfill, Gregor
2005-01-01
The fine structure of cometary tails (swirls, loops and blobs) is studied in the framework of resistive magnetic reconnection without a guide field in a dusty plasma. For a high-beta plasma (β ∼ 1) consisting of electrons, ions, and immobile dust grains, a two-fluid description is used to study electromagnetic perturbations with the frequency below Ωi, propagating at an arbitrary angle, and including the effects of Hall current. A zero-order current associated with the anti-parallel magnetic configuration may exist even in the limit of zero plasma temperature in a dusty plasma due to a symmetry breaking between electrons and ions by dust grains that yields an E-vector x B-vector current. In the perturbed state, a new linear electromagnetic mode is found in dusty plasma which is evanescent below the Rao cut-off frequency and has the characteristic wavelength comparable to the ion skin depth, which enables the reconnection at short spatial scales. The role of the dust is found to be twofold, yielding a new mode outside of the current sheet and altering the continuity conditions at its edge by an inhomogeneous Doppler shift associated with the E-vector x B-vector current
Effect of magnetic reconnection in stellar plasma
Hammoud, M.; El Eid, M.; Darwish, M.
2017-06-01
An important phenomenon in Astrophysics is the process of magnetic reconnection (MGR), which is envisaged to understand the solar flares, coronal mass ejection, interaction of the solar wind with the Earth’s magnetic field (so called geomagnetic storm) and other phenomena. In addition, it plays a role in the formation of stars. MGR involves topological change of a set of magnetic field lines leading to a new equilibrium configuration of lower magnetic energy. The MGR is basically described in the framework of the Maxwell’s equations linked to Navier-Stockes equations. Nevertheless, many details are still not understood. In this paper, we investigate the MGR process in the framework of the Magnetohydrodynamic (MHD) model of a single conducting fluid using a modern powerful computational tool (OpenFOAM). We will show that the MGR process takes place only if resistivity exists. However, despite the high conductivity of the plasma, resistivity becomes effective in a very thin layer generating sharp gradients of the magnetic field, and thus accelerating the reconnection process. The net effect of MGR is that magnetic energy is converted into thermal and kinetic energies leading to heating and acceleration of charged particles. The Sun’s coronal ejection is an example of the MGR process.
Magnetic reconnection physics in the solar wind with Voyager 2
Stevens, Michael L.
2009-08-01
Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found
Nulling tomography with weak gravitational lensing
International Nuclear Information System (INIS)
Huterer, Dragan; White, Martin
2005-01-01
We explore several strategies of eliminating (or nulling) the small-scale information in weak lensing convergence power spectrum measurements in order to protect against undesirable effects, for example, the effects of baryonic cooling and pressure forces on the distribution of large-scale structures. We selectively throw out the small-scale information in the convergence power spectrum that is most sensitive to the unwanted bias, while trying to retain most of the sensitivity to cosmological parameters. The strategies are effective in the difficult but realistic situations when we are able to guess the form of the contaminating effect only approximately. However, we also find that the simplest scheme of simply not using information from the largest multipoles works about as well as the proposed techniques in most, although not all, realistic cases. We advocate further exploration of nulling techniques and believe that they will find important applications in the weak lensing data mining
Collapse and bounce of null fluids
Creelman, Bradley; Booth, Ivan
2016-01-01
Exact solutions describing the spherical collapse of null fluids can contain regions which violate the energy conditions. Physically the violations occur when the infalling matter continues to move inwards even when non-gravitational repulsive forces become stronger than gravity. In 1991 Ori proposed a resolution for these violations: spacetime surgery should be used to replace the energy condition violating region with an outgoing solution. The matter bounces. We revisit and implement this p...
Null balance type electrostatic generating voltmeters
International Nuclear Information System (INIS)
Mahant, A.K.; Sidhu, N.P.S.; Gupta, U.C.
1977-01-01
A description is given of a null balance type generating voltmeter for measuring high D.C. voltage upto about 400 kV. The paper discusses the principle of operation, design, calibration and performance of the instrument. Main advantages of the device are: (1) it does not load the high voltage source, (2) no physical connection is required with the H.T. terminal and (3) calibration is independent of the rotor's frequency and amplifier's gain. (author)
OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Ding, M. D.; Yang, K. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J.; Longcope, D. W., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2016-05-20
We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.
A new magnetic reconnection paradigm: Stochastic plasmoid chains
Loureiro, Nuno
2015-11-01
Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION
International Nuclear Information System (INIS)
Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin
2011-01-01
Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.
Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection
International Nuclear Information System (INIS)
Trintchouk, F.; Ji, H.; Yamada, M.; Kulsrud, R.; Hsu, S.; Carter, T.
1999-01-01
During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented
Total magnetic reconnection during a tokamak major disruption
International Nuclear Information System (INIS)
Goetz, J.A.
1990-09-01
Magnetic reconnection has long been considered to be the cause of sawtooth oscillations and major disruptions in tokamak experiments. Experimental confirmation of reconnection models has been hampered by the difficulty of direct measurement of reconnection, which would involve tracing field lines for many transits around the tokamak. Perhaps the most stringent test of reconnection in a tokamak involves measurement of the safety factor q. Reconnection arising from a single helical disturbance with mode numbers m and n should raise q to m/n everywhere inside of the original resonant surface. Total reconnection should also flatten the temperature and current density profiles inside of this surface. Disruptive instabilities have been studied in the Tokapole 2, a poloidal divertor tokamak. When Tokapole 2 is operated in the material limiter configuration, a major disruption results in current termination as in most tokamaks. However, when operated in the magnetic limiter configuration current termination is suppressed and major disruptions appear as giant sawtooth oscillations. The objective of this thesis is to determine if total reconnection is occurring during major disruptions. To accomplish this goal, the poloidal magnetic field has been directly measured in Tokapole 2 with internal magnetic coils. A full two-dimensional measurement over the central current channel has been done. From these measurements, the poloidal magnetic flux function is obtained and the magnetic surfaces are plotted. The flux-surface-averaged safety factor is obtained by integrating the local magnetic field line pitch over the experimentally obtained magnetic surface
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
In this paper, we study the null controllability of the viscous Camassa–. Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Keywords. Viscous Camassa–Holm equation; null controllability; moving control;.
Twisting null geodesic congruences and the Einstein-Maxwell equations
International Nuclear Information System (INIS)
Newman, Ezra T; Silva-Ortigoza, Gilberto
2006-01-01
In a recent article, we returned to the study of asymptotically flat solutions of the vacuum Einstein equations with a rather unconventional point of view. The essential observation in that work was that from a given asymptotically flat vacuum spacetime with a given Bondi shear, one can find a class of asymptotically shear-free (but, in general, twisting) null geodesic congruences where the class was uniquely given up to the arbitrary choice of a complex analytic 'worldline' in a four-dimensional complex space. By imitating certain terms in the Weyl tensor that are found in the algebraically special type II metrics, this complex worldline could be made unique and given-or assigned-the physical meaning as the complex centre of mass. Equations of motion for this case were found. The purpose of the present work is to extend those results to asymptotically flat solutions of the Einstein-Maxwell equations. Once again, in this case, we get a class of asymptotically shear-free null geodesic congruences depending on a complex worldline in the same four-dimensional complex space. However in this case there will be, in general, two distinct but uniquely chosen worldlines, one of which can be assigned as the complex centre of charge while the other could be called the complex centre of mass. Rather than investigating the situation where there are two distinct complex worldlines, we study instead the special degenerate case where the two worldlines coincide, i.e., where there is a single unique worldline. This mimics the case of algebraically special Einstein-Maxwell fields where the degenerate principle null vector of the Weyl tensor coincides with a Maxwell principle null vector. Again we obtain equations of motion for this worldline-but explicitly found here only in an approximation. Though there are ambiguities in assigning physical meaning to different terms it appears as if reliance on the Kerr and charged Kerr metrics and classical electromagnetic radiation theory helps
Dependence of the dayside magnetopause reconnection rate on local conditions
Wang, Shan; Kistler, Lynn M.; Mouikis, Christopher G.; Petrinec, Steven M.
2015-08-01
We estimate the reconnection rates for eight dayside magnetopause reconnection events observed by the Cluster spacecraft and compare them with the predictions of the Cassak-Shay Formula (Rcs) Cassak and Shay (2007). The measured reconnection rate is determined by calculating the product of the inflow velocity and magnetic field in the magnetosheath inflow region. The predicted reconnection rate is calculated using the plasma parameters on both sides of the current layer, including the contributions of magnetosheath H+, magnetospheric hot H+ and O+, and magnetospheric cold ions. The measured reconnection rates show clear correlations with Rcs with an aspect ratio of 0.07. The O+ and cold ions can contribute up to ~30% of the mass density, which may reduce the reconnection rate for individual events. However, the variation of the reconnection rate is dominated by the variation of the magnetosheath parameters. In addition, we calculated the predicted reconnection rate using only magnetosheath parameters (Rsh). The correlation of the measured rate with Rsh was better than the correlation with Rcs, with an aspect ratio of 0.09. This might indicate deviations from the Cassak-Shay theory caused by the asymmetric reconnection structure and kinetic effects of different inflow populations. A better aspect ratio is expected to be between the ones determined using Rcs and Rsh. The aspect ratio does not show a clear dependence on the O+ concentration, likely because the O+ contribution is too small in these events. The aspect ratio also does not show a clear correlation with density asymmetry or guide field.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Apoptosis in spermatogonia irradiated P53 null mice
International Nuclear Information System (INIS)
Streit-Bianchi, M.; Hendry, J.H.; Roberts, S.A.; Morris, J.D.; Durgaryan, A.A.
2007-01-01
Complete text of publication follows. The exposure of germ cells to ionizing radiations is of concern both from high-dose therapeutic exposures and from low doses causing deleterious trans-generational mutations. P53 protein plays an important role in cellular damage and is expressed in the testis normally during meiosis, its expression being localised to the preleptotene and early/mid pachytene spermatocytes. P53 null mice, heterozygotes possessing a 129 Sv/C57BL6 genetic background and B6D2F1 mice have been irradiated to 1 and 2 Gy single doses. Fractionated exposures of 1+1 Gy at 4 hours interval were also carried out. Apoptosis induction, spermatogonia and spermatocytes survival were assessed by microscope analysis of histological samples at 4 to 96 hours after irradiation in time-course experiments. The same end-points were also assessed at 72 and 96 hours after irradiation to single doses in the region between 20cGy to 2Gy. A dose dependent level of p53 expression was observed at 4 hours after irradiation to 1 and 2 Gy which returned to normal level by 24 hours. Our data support a two process mode of apoptosis with a first wave around 12 hours followed by a second wave at 2-3 days. The first wave apoptosis is substantially reduced in p53 null mice whereas the second wave is reduced in B6D2F1 mice. The initial increase in apoptosis was delayed in some stages of the of germ cells development which were identified by the spermatids shape. Clear correlation exists between apoptosis and survival assessed in stage XI-XII Tubules 72 hours after irradiation. The data are in agreement with other data in literature indicating that irradiated spermatogonia die through apoptosis. The lack of apoptosis observed in p53 null mice results in a very high survival rate of daughter cells assessed later. Theses spermatocytes and the following progenitor cells are likely to carry mutations as most will not die in the smaller second wave of apoptosis observed 3 days after
"Diffusion" region of magnetic reconnection: electron orbits and the phase space mixing
Kropotkin, Alexey P.
2018-05-01
The nonlinear dynamics of electrons in the vicinity of magnetic field neutral lines during magnetic reconnection, deep inside the diffusion region where the electron motion is nonadiabatic, has been numerically analyzed. Test particle orbits are examined in that vicinity, for a prescribed planar two-dimensional magnetic field configuration and with a prescribed uniform electric field in the neutral line direction. On electron orbits, a strong particle acceleration occurs due to the reconnection electric field. Local instability of orbits in the neighborhood of the neutral line is pointed out. It combines with finiteness of orbits due to particle trapping by the magnetic field, and this should lead to the effect of mixing in the phase space, and the appearance of dynamical chaos. The latter may presumably be viewed as a mechanism producing finite conductivity in collisionless plasma near the neutral line. That conductivity is necessary to provide violation of the magnetic field frozen-in condition, i.e., for magnetic reconnection to occur in that region.
Simultaneous high- and low-latitude reconnection: ESR and DMSP observations
Directory of Open Access Journals (Sweden)
F. Pitout
2002-09-01
Full Text Available We present EISCAT Svalbard Radar and DMSP observations of a double cusp during an interval of predominantly northward IMF on 26 November 2000. In the cusp region, the ESR dish, pointing northward, recorded sun-ward ionospheric flow at high latitudes (above 82° GL, indicating reconnection occuring in the magnetospheric lobe. Meanwhile, the same dish also recorded bursts of poleward flow, indicative of bursty reconnection at the subsolar magnetopause. Within this time interval, the DMSP F13 satellite passed in the close vicinity of the Svalbard archipelago. The particle measurement on board exhibited a double cusp structure in which two oppositely oriented ion dispersions are recorded. We interpret this set of data in terms of simultaneous merging at low- and high-latitude magnetopause. We discuss the conditions for which such simultaneous high-latitude and low-latitude reconnection can be anticipated. We also discuss the consequences of the presence of two X-lines in the dayside polar ionosphere.Key words. Magnetospheric physics (solar wind-magnetosphere interactions – Ionosphere (polar ionosphere; plasma convection
Energy Technology Data Exchange (ETDEWEB)
Zhao, Jie; Li, Hui; Feng, Li [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Schmieder, Brigitte; Pariat, Etienne [LESIA, Observatoire de Paris, Section de Meudon, F-92195, Meudon Principal Cedex (France); Zhu, Xiaoshuai [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Grubecka, Michalina, E-mail: nj.lihui@pmo.ac.cn [Astronomical Institute, University of Wrocław, Kopernika 11, 51-622, Wrocław (Poland)
2017-02-10
By using a new method of forced-field extrapolation, we study the emerging flux region AR11850 observed by the Interface Region Imaging Spectrograph and Solar Dynamical Observatory . Our results suggest that the bright points (BPs) in this emerging region exhibit responses in lines formed from the upper photosphere to the transition region, which have relatively similar morphologies. They have an oscillation of several minutes according to the Atmospheric Imaging Assembly data at 1600 and 1700 Å. The ratio between the BP intensities measured in 1600 and 1700 Å filtergrams reveals that these BPs are heated differently. Our analysis of the Helioseismic and Magnetic Imager vector magnetic field and the corresponding topology in AR11850 indicates that the BPs are located at the polarity inversion line and most of them are related to magnetic reconnection or cancelation. The heating of the BPs might be different due to different magnetic topology. We find that the heating due to the magnetic cancelation would be stronger than the case of bald patch reconnection. The plasma density rather than the magnetic field strength could play a dominant role in this process. Based on physical conditions in the lower atmosphere, our forced-field extrapolation shows consistent results between the bright arcades visible in slit-jaw image 1400 Å and the extrapolated field lines that pass through the bald patches. It provides reliable observational evidence for testing the mechanism of magnetic reconnection for the BPs and arcades in the emerging flux region, as proposed in simulation studies.
MMS Encounters with Reconnection Diffusion Regions in the Earth's Magnetotail
Torbert, R. B.; Burch, J. L.; Argall, M. R.; Farrugia, C. J.; Alm, L.; Dors, I.; Payne, D.; Rogers, A. J.; Strangeway, R. J.; Phan, T.; Ergun, R.; Goodrich, K.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Giles, B. L.; Rager, A. C.; Gershman, D. J.; Kletzing, C.
2017-12-01
The Magnetospheric Multiscale (MMS) fleet of four spacecraft traversed the Earth's magnetotail in May through August of 2017 with an apogee of 25 Re, and encountered diffusion regions characteristic of symmetric reconnection. This presentation will describe in-situ measurements of large electric fields, strong electron cross-tail and Hall currents, and electron velocity distributions (frequently crescent-shaped) that are commonly observed in these regions. Positive electromagnetic energy conversion is also typical. The characteristics of symmetric reconnection observations will be contrasted with those of asymmetric reconnection that MMS observed previously at the dayside magnetopause.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
International Nuclear Information System (INIS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2011-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2012-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
Helicity conservation under quantum reconnection of vortex rings.
Zuccher, Simone; Ricca, Renzo L
2015-12-01
Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.
Process of magnetic reconnection as a source of longitudinal currents
International Nuclear Information System (INIS)
Sidneva, M.V.; Semenov, V.S.
1987-01-01
Variations in magnetic field and current system as applied to conditions in the Earth magnetospheric tail are calculated so as to show that three-dimensional reconnection leads inevitably to the appearance of a system of longitudinal currents. With reference to current layer of the magnetospheric tail the longitudinal currents appearing in the process of reconnection are directed to the Earth on the morning side and from Earth - on the evening side. The results presented suggest that magnetic reconnection can serve as a sourse of the Birkeland current loop of a substorm
Macroscale particle simulation of externally driven magnetic reconnection
International Nuclear Information System (INIS)
Murakami, Sadayoshi; Sato, Tetsuya.
1991-09-01
Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)
LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION
Energy Technology Data Exchange (ETDEWEB)
Savage, Sabrina L.; Holman, Gordon; Su, Yang [NASA/Goddard Space Flight Center, Oak Ridge Associated Universities, 8800 Greenbelt Road, Code 671, Greenbelt, MD 20771 (United States); Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 58, Cambridge, MA 02138 (United States); Seaton, Daniel B. [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); McKenzie, David E. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)
2012-07-20
For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.
FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY
International Nuclear Information System (INIS)
Ni, Lei; Kliem, Bernhard; Lin, Jun; Wu, Ning
2015-01-01
Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10 6 -10 7 in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s –1 . Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10 4 K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets
FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
Ni, Lei; Kliem, Bernhard; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wu, Ning, E-mail: leini@ynao.ac.cn [School of Tourism and Geography, Yunnan Normal University, Kunming 650031 (China)
2015-01-20
Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.
LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION
International Nuclear Information System (INIS)
Savage, Sabrina L.; Holman, Gordon; Su, Yang; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.
2012-01-01
For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion—an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ∼150 to 690 km s –1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfvén speeds, we estimate the Alfvénic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be ∼10 2 km s –1 with outflow speeds ranging from ∼10 2 to 10 3 km s –1 —indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops—presumably exiting the reconnection site.
Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula
Energy Technology Data Exchange (ETDEWEB)
Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)
2014-02-20
The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.
Resistive instabilities and field line reconnection
International Nuclear Information System (INIS)
White, R.B.
1980-05-01
A review is given of the linear theory of reconnection for a plane current layer. The three basic modes are the Rippling Mode, the Gravitational Interchange Mode, and the Tearing Mode. A derivation is given of the magnetic field energy which provides the driving force for the tearing mode. The necessary concepts for the analysis of tearing modes in cylindrical geometry are introduced. The equations governing tearing mode evolution in a tokamak are expanded to lowest order in the inverse aspect ratio. The tearing mode in a toroidal device is closely related to the ideal magnetohydrodynamic kink mode, and this relationship is stressed in the derivations of the linear growth rates for modes with poloidal model number m > 2 and for the quite different m = 1 mode. The nonlinear theory of tearing mode development and the implications of this theory for the understanding of toroidal magnetic confinement devices is reviewed
Plasma Astrophysics, part II Reconnection and Flares
Somov, Boris V
2007-01-01
This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.
MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.
Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H
2009-05-01
Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.
Magnetic reconnection and self-organized plasma systems
International Nuclear Information System (INIS)
Yamada, Masaaki; Ji, Hantao
2000-01-01
In this paper the recent results from the Magnetic Reconnection Experiment (MRX) at PPPL are discussed along with their relationship to observations from solar flares, the magnetosphere, and current carrying pinch discharges such as tokamaks, reversed field pinches, spheromaks and field reversed configurations. It is found that the reconnection speed decreases as the angle of merging field lines decreases, consistent with the well-established observation in the dayside magnetosphere. This observation can also provide a qualitative interpretation of a generally observed trend in pinch plasmas, namely that magnetic field diffuses (or reconnects) faster when magnetic shear is larger. A recently conceived research project, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques), will also be discussed. (author)
Electron-Scale Measurements of Magnetic Reconnection in Space
Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.;
2016-01-01
Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
Electron and ion distribution functions in magnetopause reconnection
Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.
2015-12-01
We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.
Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, Amitava [University New Hampshire- Durham
2012-02-16
Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.
Experimental investigation of the trigger problem in magnetic reconnection
International Nuclear Information System (INIS)
Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Vrublevskis, Arturs; Bonde, Jeff
2011-01-01
Magnetic reconnection releases magnetic energy not only in steady state, but also in time-dependent and often explosive events. Here, we investigate the trigger mechanism for this explosive release by using a toroidal experiment in the strong guide-field regime. We observe spontaneous reconnection events with exponentially growing reconnection rates, and we characterize the full 3D dynamics of these events using multiple internal probes. The reconnection is asymmetric: it begins at one toroidal location and propagates around in both directions. The spontaneous onset is facilitated by an interaction between the x-line current channel and a global mode, which appears in the electrostatic potential. It is this mode which breaks axisymmetry and enables a localized decrease in x-line current. We apply a simple model - which relies on ion polarization currents for current continuity - to reproduce the exponential growth and compute the growth rate. The result agrees well with the experimental growth rate.
Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.
2017-12-01
The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scale flux ropes embedded within DFs observed during MMS first tail season. MMS high-resolution plasma measurements indicate that these earthward flux ropes embedded in DFs have a mean bulk flow velocity and diameter of 250 km/s and 1000 km ( 2‒3 ion inertial length λi), respectively. Magnetic reconnection signatures preceding the flux rope/DF encounter were also observed. As the southward-pointing magnetic field in the leading edge of the flux rope reconnects with the northward-pointing geomagnetic field, the characteristic quadrupolar Hall magnetic field in the ion diffusion region and electron outflow jets in the north-south direction are observed. Our results strongly suggest that the earthward moving flux ropes brake and gradually dissipate due to magnetic reconnection with the near Earth magnetic field. We have also examined the occurrence rate of these dissipating flux ropes/DF events as a function of downtail distances.
Clausius entropy for arbitrary bifurcate null surfaces
International Nuclear Information System (INIS)
Baccetti, Valentina; Visser, Matt
2014-01-01
Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation dS=đQ/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations. (paper)
Generalized frame of reference with null congruence
International Nuclear Information System (INIS)
Ferrarese, G.; Antonelli, R.
2000-01-01
The paper derives the main properties of a generalized frame of reference with a null congruence (light flux), by means of adapted non-holonomic techniques; then it studies the geometry of the space-time in terms of non-orthogonal projection: longitudinal and transverse covariant derivatives and corresponding commutation formulae, decomposition of the Riemann and gravitational tensors, lie derivatives of the Ricci rotation coefficients, transverse Bianchi identity. Application to the (absolute and relative) light flux: kinematical characteristics and screen, Sachs theorems etc. are also given
The simple map for a single-null divertor tokamak
International Nuclear Information System (INIS)
Punjabi, A.; Verma, A.; Boozer, A.
1996-01-01
We present the simple map for a single-null divertor tokamak. The simple map is an area-preserving map based on the idea that magnetic field lines are a single-degree-of-freedom time-dependent Hamiltonian system, and that the basic features of such systems near the X-point are generic. We obtain the properties of this map and the resulting footprints of field lines on the divertor plate. These include the width of the stochastic layer, the edge safety factor, the area of the footprint and the amount of magnetic flux diverted. We give the safety factor profile, the average and median values of strike angles, lengths and the Liapunov exponents. We describe how the effects of magnetic perturbations can be included in the simple map. We show how the map can be applied to the problem of the determination of heat flux on the divertor plate in tokamaks. (Author)
Total magnetic reconnection during a tokamak major disruption
International Nuclear Information System (INIS)
Goetz, J.A.; Dexter, R.N.; Prager, S.C.
1990-07-01
The safety factor within a tokamak plasma has been measured during a major disruption. During the disruption, the central safety factor jumps from below one to above one, while the total current is unchanged. This implies that total reconnection has occurred. This observation is in contract to the absence of total reconnection observed during a sawtooth oscillation in the same device. 11 refs., 6 figs
Origins of effective resistivity in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Singh, Nagendra [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)
2014-07-15
The mechanisms that provide effective resistivity for supporting collisonless magnetic reconnection have remained unsettled despite numerous studies. Some of these studies demonstrated that the electron pressure nongyrotropy generates the resistivity (η{sub npg}) in the electron diffusion region (EDR). We derive an analytical relation for the effective resistivity (η{sub kin}) by momentum balance in a control volume in the EDR. Both η{sub npg} and η{sub kin} mutually compare well and they also compare well with the resistivity required to support reconnection electric field E{sub rec} in multi-dimensional particle-in-cell simulations as well as in satellite observations when reconnection occurs in an EDR. But they are about an order of magnitude or so smaller than that required when the reconnection occurred in a much wider reconnecting current sheet (RCS) of half width (w) of the order of the ion skin depth (d{sub i}), observed in the Earth magnetosphere. The chaos-induced resistivity reported in the literature is found to be even more deficient. We find that for reconnection in RCS with w ∼ d{sub i}, anomalous diffusion, such as the universal Bhom diffusion and/or that arising from kinetic Alfven waves, could fairly well account for the required resistivity.
MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath
Vörös, Z.; Yordanova, E.; Varsani, A.; Genestreti, K. J.; Khotyaintsev, Yu. V.; Li, W.; Graham, D. B.; Norgren, C.; Nakamura, R.; Narita, Y.; Plaschke, F.; Magnes, W.; Baumjohann, W.; Fischer, D.; Vaivads, A.; Eriksson, E.; Lindqvist, P.-A.; Marklund, G.; Ergun, R. E.; Leitner, M.; Leubner, M. P.; Strangeway, R. J.; Le Contel, O.; Pollock, C.; Giles, B. J.; Torbert, R. B.; Burch, J. L.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.; Lavraud, B.; Saito, Y.
2017-11-01
In this paper we use the full armament of the MMS (Magnetospheric Multiscale) spacecraft to study magnetic reconnection in the turbulent magnetosheath downstream of a quasi-parallel bow shock. Contrarily to the magnetopause and magnetotail cases, only a few observations of reconnection in the magnetosheath have been reported. The case study in this paper presents, for the first time, both fluid-scale and kinetic-scale signatures of an ongoing reconnection in the turbulent magnetosheath. The spacecraft are crossing the reconnection inflow and outflow regions and the ion diffusion region (IDR). Inside the reconnection outflows D shape ion distributions are observed. Inside the IDR mixing of ion populations, crescent-like velocity distributions and ion accelerations are observed. One of the spacecraft skims the outer region of the electron diffusion region, where parallel electric fields, energy dissipation/conversion, electron pressure tensor agyrotropy, electron temperature anisotropy, and electron accelerations are observed. Some of the difficulties of the observations of magnetic reconnection in turbulent plasma are also outlined.
CRITICAL DIFFERENCES OF ASYMMETRIC MAGNETIC RECONNECTION FROM STANDARD MODELS
Energy Technology Data Exchange (ETDEWEB)
Nitta, S. [Hinode Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Wada, T. [Tsukuba University of Technology, 4-3-15 Amakubo, Tsukuba, 305-8520 (Japan); Fuchida, T. [Graduate School of Science and Engineering, Ehime Univesity, 2-5 Bunkyo-cho, Matuyama, Ehime, 790-8577 (Japan); Kondoh, K., E-mail: nittasn@yahoo.co.jp, E-mail: tomohide.wada@gmail.com, E-mail: fuchida@sp.cosmos.ehime-u.ac.jp, E-mail: kondo@cosmos.ehime-u.ac.jp [Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577 (Japan)
2016-09-01
We have clarified the structure of asymmetric magnetic reconnection in detail as the result of the spontaneous evolutionary process. The asymmetry is imposed as ratio k of the magnetic field strength in both sides of the initial current sheet (CS) in the isothermal equilibrium. The MHD simulation is carried out by the HLLD code for the long-term temporal evolution with very high spatial resolution. The resultant structure is drastically different from the symmetric case (e.g., the Petschek model) even for slight asymmetry k = 2. (1) The velocity distribution in the reconnection jet clearly shows a two-layered structure, i.e., the high-speed sub-layer in which the flow is almost field aligned and the acceleration sub-layer. (2) Higher beta side (HBS) plasma is caught in a lower beta side plasmoid. This suggests a new plasma mixing process in the reconnection events. (3) A new large strong fast shock in front of the plasmoid forms in the HBS. This can be a new particle acceleration site in the reconnection system. These critical properties that have not been reported in previous works suggest that we contribute to a better and more detailed knowledge of the reconnection of the standard model for the symmetric magnetic reconnection system.
Frequently Occurring Reconnection Jets from Sunspot Light Bridges
Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie
2018-02-01
Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.
Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare
International Nuclear Information System (INIS)
Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.
2017-01-01
Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.
MAVEN observations of magnetic reconnection in the Martian magnetotail
Harada, Y.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Connerney, J. E. P.; Espley, J. R.; Larson, D. E.; Brain, D. A.; Andersson, L.; DiBraccio, G. A.; Collinson, G.; Livi, R.; Hara, T.; Ruhunusiri, S.; Jakosky, B. M.
2015-12-01
Magnetic reconnection is a fundamental process that changes magnetic field topology and converts magnetic energy into particle energy. Although reconnection may play a key role in controlling ion escape processes at Mars, the fundamental properties of local physics and global dynamics of magnetic reconnection in the Martian environment remain unclear owing to the lack of simultaneous measurements of ions, electrons, and magnetic fields by modern instrumentation. Here we present comprehensive MAVEN observations of reconnection signatures in the near-Mars magnetotail. The observed reconnection signatures include (i) Marsward bulk flows of H+, O+, and O2+ ions, (ii) counterstreaming ion beams along the current sheet normal direction, (iii) Hall magnetic fields, and (iv) trapped electrons with two-sided loss cones. The measured velocity distribution functions of different ion species exhibit mass-dependent characteristics which are qualitatively consistent with previous multi-species kinetic simulations and terrestrial tail observations. The MAVEN observations demonstrate that the near-Mars magnetotail provides a unique environment for studying multi-ion reconnection.
Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)
2017-02-01
Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.
International Nuclear Information System (INIS)
Lu Quanming; Lu San; Huang Can; Wu Mingyu; Wang Shui
2013-01-01
The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is balanced mainly by the off-diagonal electron pressure tensor term. Two-dimensional particle-in-cell simulations are employed in this paper to investigate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. A theoretical model is proposed to demonstrate such a process in the electron diffusion region. In addition the reconnection electric field in the pileup region, which is balanced mainly by the electromotive force term, is also found to grow exponentially and its growth rate is twice that in the electron diffusion region. (paper)
Dall-Null tester for spaceborne applications
Wingler, R. L.
1984-12-01
This is a study to design a self correcting primary mirror system for a space telescope. The design is centered around a Dall-Null tester (a Foucault knife-edge tester with compensating lens). An indepth study of the theory of the Foucault test from Foucault's original publications to current work is presented. Also short comings of the diffraction approach are shown. The findings of a simple experiment showed the way to the correct explanation as to the workings of the test. Based on this new explanation, a computer program to find the error in the surface of the mirror from the irradiance pattern provided by the Dall-Null tester was developed. The computer program with a sample run is included in the appendixes A and B. The basic design of an adaptive optic system for a spaceborne application is also presented in the paper. This design has the desired quality of being able to correct the mirror while the telescope is in use. The equations being independent of wavelength allows for the design to be applied to systems working outside of the visible spectrum as well as the systems working in the visible.
Recent developments with the visible nulling coronagraph
Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark; Petrone, Peter; Helmbrecht, Michael A.; Howard, Joseph M.; Miller, Ian J.
2016-08-01
A wide array of general astrophysics studies including detecting and characterizing habitable exoplanets could be enabled by a future large segmented telescope with sensitivity in the UV, optical, and infrared bands. When paired with a starshade or coronagraph, such an observatory could enable direct imaging and detailed spectroscopic observations of nearby Earth-like habitable zone planets. Over the past several years, a laboratory-based Visible Nulling Coronagraph (VNC) has evolved to reach requisite contrasts over a 1 nm bandwidth at narrow source angle separation using a segmented deformable mirror in one arm of a Mach-Zehnder layout. More recent efforts targeted broadband performance following the addition of two sets of half-wave Fresnel rhomb achromatic phase shifters (APS) with the goal of reaching 10-9 contrast, at a separation of 2λ/D, using a 40 nm (6%) bandwidth single mode fiber source. Here we present updates on the VNC broadband nulling effort, including approaches to addressing system contrast limitations.
Global dynamics of magnetic reconnection in VINETA II
Energy Technology Data Exchange (ETDEWEB)
Bohlin, Hannes
2014-12-12
Magnetic reconnection is a fundamental plasma process where a change in field line connectivity occurs in a current sheet at the boundary between regions of opposing magnetic fields. In this process, energy stored in the magnetic field is converted into kinetic and thermal energy, which provides a source of plasma heating and energetic particles. Magnetic reconnection plays a key role in many space and laboratory plasma phenomena, e.g. solar flares, Earth's magnetopause dynamics and instabilities in tokamaks. A new linear device (VINETAII) has been designed for the study of the fundamental physical processes involved in magnetic reconnection. The plasma parameters are such that magnetic reconnection occurs in a collision-dominated regime. A plasma gun creates a localized current sheet, and magnetic reconnection is driven by modulating the plasma current and the magnetic field structure. The plasma current is shown to flow in response to a combination of an externally induced electric field and electrostatic fields in the plasma, and is highly affected by axial sheath boundary conditions. Further, the current is changed by an additional axial magnetic field (guide field), and the current sheet geometry was demonstrated to be set by a combination of magnetic mapping and cross-field plasma diffusion. With increasing distance from the plasma gun, magnetic mapping results in an increase of the current sheet length and a decrease of the width. The control parameter is the ratio of the guide field to the reconnection magnetic field strength. Cross-field plasma diffusion leads to a radial expansion of the current sheet at low guide fields. Plasma currents are also observed in the azimuthal plane and were found to originate from a combination of the field-aligned current component and the diamagnetic current generated by steep in-plane pressure gradients in combination with the guide field. The reconnection rate, defined via the inductive electric field, is shown to be
Yoon, Young Dae
2017-10-01
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q =me ∇ ×ue +qe B is perfectly frozen into the electron fluid. Q is the curl of P =meue +qe A , which is the electron canonical momenrum. Since ∇ . Q = 0 , the Q flux tubes are incompressible and so have a fixed volume. Because they are perfectly frozen into the electron fluid, the Q flux tubes cannot reconnect. Following the behavior of these Q flux tubes provides an intuitive insight into 2D collisionless reconnection of B . In the reconnection geometry, a small perturbation to the central electron current sheet effectively brings a localized segment of a Q flux tube towards the X-point. This flux tube segment is convected downwards with the central electron current, effectively stretching the flux tube, decreasing its cross-section to maintain a fixed volume and so increasing the magnitude of Q . Also, because Q is the sum of the electron vorticity and the magnetic field, the two terms may change in such a way that one term becomes smaller while the other becomes larger while preserving constant Q flux. This allows magnetic reconnection, which is a conversion of magnetic field into particle velocity, to occur without any dissipation mechanism. The entire process has positive feedback with no restoring mechanism and therefore is an instability. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, while helicity analysis shows that the canonical helicity ∫ P . QdV as a whole must be considered when
On the null origin of the ambitwistor string
Energy Technology Data Exchange (ETDEWEB)
Casali, Eduardo [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Tourkine, Piotr [Department of Applied Mathematics and Theoretical Physics,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2016-11-07
In this paper we present the null string origin of the ambitwistor string. Classically, the null string is the tensionless limit of string theory, and so too is the ambitwistor string. Both have as constraint algebra the Galilean Conformal Algebra in two dimensions. But something interesting happens in the quantum theory since there is an ambiguity in quantizing the null string. We show that, given a particular choice of quantization scheme and a particular gauge, the null string coincides with the ambitwistor string both classically and quantum mechanically. We also show that the same holds for the spinning versions of the null string and ambitwistor string. With these results we clarify the relationship between the ambitwistor string, the null string, the usual string and the Hohm-Siegel-Zwiebach theory.
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
Internal and External Reconnection Series Homologous Solar Flares
Sterling, Alphonse C.; Moore, Ronald L.
2001-01-01
Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Kelly, M.; Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Zhu, X. S. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China)
2017-10-20
We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph ( IRIS ). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si iv 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s{sup −1} with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si iv 1402.77 Å, C ii 1335.71 Å, and Mg ii 2803.52 Å lines show evident redshifts up to a velocity of 80 km s{sup −1}, which are consistent with the scenario of chromospheric evaporation/condensation.
Technology Advancement of the Visible Nulling Coronagraph
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve
2010-01-01
The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.
[Dilemma of null hypothesis in ecological hypothesis's experiment test.
Li, Ji
2016-06-01
Experimental test is one of the major test methods of ecological hypothesis, though there are many arguments due to null hypothesis. Quinn and Dunham (1983) analyzed the hypothesis deduction model from Platt (1964) and thus stated that there is no null hypothesis in ecology that can be strictly tested by experiments. Fisher's falsificationism and Neyman-Pearson (N-P)'s non-decisivity inhibit statistical null hypothesis from being strictly tested. Moreover, since the null hypothesis H 0 (α=1, β=0) and alternative hypothesis H 1 '(α'=1, β'=0) in ecological progresses are diffe-rent from classic physics, the ecological null hypothesis can neither be strictly tested experimentally. These dilemmas of null hypothesis could be relieved via the reduction of P value, careful selection of null hypothesis, non-centralization of non-null hypothesis, and two-tailed test. However, the statistical null hypothesis significance testing (NHST) should not to be equivalent to the causality logistical test in ecological hypothesis. Hence, the findings and conclusions about methodological studies and experimental tests based on NHST are not always logically reliable.
Broadband Active Segmented Aperture and Radial Shear Nulling
National Aeronautics and Space Administration — The Visible Nulling Coronagraph (VNC) is a starlight suppression system for enabling exoplanet detectionand atmospheric measurement. Conceptual space telescope...
Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate
International Nuclear Information System (INIS)
C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon
2003-01-01
A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10 2 V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase
Onset of Fast Magnetic Reconnection via Subcritical Bifurcation
Directory of Open Access Journals (Sweden)
ZHIBIN eGUO
2015-04-01
Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.
The auroral and ionospheric flow signatures of dual lobe reconnection
Directory of Open Access Journals (Sweden)
S. M. Imber
2006-11-01
Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.
Observations of significant flux closure by dual lobe reconnection
Directory of Open Access Journals (Sweden)
S. M. Imber
2007-07-01
Full Text Available We present an interval of dual lobe reconnection during which interplanetary magnetic field lines are captured by the magnetosphere by reconnecting at high latitudes in both the Northern and the Southern Hemispheres. This event was identified using measurements of the ionospheric convection flow and observations of the aurora using the SuperDARN radars and the IMAGE spacecraft. A cusp spot, characteristic of northward IMF, is clearly visible for a 30 min period enabling the ionospheric footprint of the Northern Hemisphere merging gap to be accurately determined. During the interval a strong burst of sunward flow across the dayside open/closed field line boundary (OCB is observed, which we interpret as the reconfiguration of the magnetosphere following a burst of reconnection. Noon-midnight and dawn-dusk keograms of the aurora show that the polar cap shrinks during the interval indicating that a large amount of flux was closed by the reconnection. Using the SuperDARN potential maps it is possible to calculate that the amount of flux closed during the interval is 0.13 GWb which represents approximately 10% of the pre-existing polar cap. The number of ions captured by the burst of dual lobe reconnection was calculated to be ~2.2×1031, more than sufficient to populate a cold, dense plasma sheet. That a dense plasma sheet was not subsequently observed is discussed in terms of subsequent changes in the IMF.
Tripolar electric field Structure in guide field magnetic reconnection
Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua
2018-03-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Tripolar electric field Structure in guide field magnetic reconnection
Directory of Open Access Journals (Sweden)
S. Fu
2018-03-01
Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region
Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.
2016-01-01
The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.
Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.
Directory of Open Access Journals (Sweden)
Cheng-Han Wu
Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.
An experimental platform for pulsed-power driven magnetic reconnection
Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.
2018-05-01
We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.
Test-electron analysis of the magnetic reconnection topology
Borgogno, D.; Perona, A.; Grasso, D.
2017-12-01
Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.
Structure of reconnection boundary layers in incompressible MHD
International Nuclear Information System (INIS)
Sonnerup, B.U.Oe.; Wang, D.J.
1987-01-01
The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process
Reconnection and merging of positive streamers in air
Energy Technology Data Exchange (ETDEWEB)
Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2009-02-21
Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p{center_dot}d = 50 {mu}m bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.
Reconnection and merging of positive streamers in air
International Nuclear Information System (INIS)
Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U
2009-01-01
Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p·d = 50 μm bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.
Ellerman bombs and UV bursts: reconnection at different atmospheric layers?
Hansteen, V. H.; Ortiz-Carbonell, A. N.; Rouppe van der Voort, L.
2017-12-01
The emergence of magnetic flux through the photosphere and into the outer solar atmosphere produces, amongst many other phenomena, the appearance of Ellerman bombs (EBs) in the photosphere. EBs are observed in the wings of H(alpha) and are highly likely to be due to reconnection in the photosphere, below the chromospheric canopy. However, signs of the reconnection process are also observed in several other spectral lines, typical of the chromosphere or transition region. An example are the UV bursts observed in the transition region lines of Si IV. In this work we analyze high cadence coordinated observations between the 1-m Swedish Solar Telescope and the IRIS spacecraft in order to study the possible relationship between reconnection events at different layers in the atmosphere, and in particular, the timing history between them. High cadence, high resolution H-alpha images from the SST provide us with the positions, timings and trajectories of Ellerman bombs in an emerging flux region. Simultaneous co-aligned IRIS slit-jaw images at 1400 and 1330 A and detailed Si IV spectra from the fast spectrograph raster allow us to study the transition region counterparts of those photospheric Ellerman bombs. Our main goal is to study whether there is a temporal relationship between the appearance of an EB and the appearance of a UV burst. Eventually we would like to investigate whether reconnection happens at discrete heights, or as a reconnection sheet spanning several layers at the same time.
Hall current effects in dynamic magnetic reconnection solutions
International Nuclear Information System (INIS)
Craig, I.J.D.; Heerikhuisen, J.; Watson, P.G.
2003-01-01
The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies c H >η, where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular 'separator' component in the magnetic field. Only if the stronger condition c H 2 >η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c H 2 >η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is 'head-on' (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced
Diffusive Shock Acceleration and Turbulent Reconnection
Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos
2018-05-01
Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.
Magnetic reconnection in magnetotail and solar plasmas
International Nuclear Information System (INIS)
Wang Xiaogang.
1991-01-01
The formation of current sheets which dominates the heating of the solar corona and the onset of substorms due to collisionless tearing instability in the magnetotail are investigated in the context of magnetic field line reconnection in space plasmas. In Chapters 2 and 3 of this thesis, the collisionless tearing instability and current disruption of the magnetotail are considered. The linear collisionless tearing instability, with wavelengths of the order of 10 R E , and with a growth rate γ ∼ 10 -2 /sec, is identified as a possible mechanism for the growth phase of a substorm. The linear analysis is carried out in the presence of an equilibrium B y -field, neglected in other theories. The nonlinear theory of collisionless tearing mode is dominated by mode coupling effects. From the evolution equations for electro-magnetic field perturbations, the author derived a nonlinear growth rate by generalizing the boundary layer techniques of linear theory. He finds that the nonlinear growth is of the order of 1 sec, much faster than the linear growth. It is proposed that collisionless tearing modes provide a mechanism for current disruption observed by spacecrafts. The electrical field generated during the nonlinear evolution can cause particle acceleration in the earth-tail direction. His estimates indicate ion energies up to 0.7 MeV and electron energies up to 8.1 MeV, which is not inconsistent with the observations. In the Chapter 4 it is shown that current sheets can be formed in Parker's model of the solar corona in the presence of smooth photospheric flows, despite van Ballegooijen and Field's proof that in an ideal plasma current sheets doe not occur unless the boundary velocity field is discontinuous
Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.
2017-12-01
One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our
Conical twist fields and null polygonal Wilson loops
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
Fire Hose Instability in the Multiple Magnetic Reconnection
Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.
2017-12-01
We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.
Effects of electron inertia in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)
2014-07-15
We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.
Collisionless magnetic reconnection associated with coalescence of flux bundles
International Nuclear Information System (INIS)
Tanaka, Motohiko.
1994-11-01
The basic process of collisionless reconnection is studied in terms of coalescence of magnetized flux bundles using an implicit particle simulation of two-dimensions. The toroidal electric field that directly relates to magnetic reconnection is generated solenoidally in a region much broader than the current sheet whose width is a few electron skin depths. The reconnected flux increases linearly in time, but it is insensitive to finite Larmor radii of the ions in this Sweet-Parker regime. The toroidal electric field is controlled by a balance of transit acceleration of finite-mass electrons and their removal by sub-Alfvenic E x B drift outflow. The simulation results supports the collisionless Ohm's law E t ≅η eq J t with η eq the inertia resistivity. (author)
Evidence for magnetic field reconnection at the earth's magnetopause
Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.
1981-01-01
Eleven Northern Hemisphere crossings of the dayside magnetopause by the ISEE spacecraft are examined to test the hypothesis that the large plasma flow speeds observed in the magnetopause and boundary layer are the result of the plasma acceleration intrinsic to the magnetic field reconnection process. In several cases energetic magnetospheric particles with the proper flow anisotropy, and in one case, reflected magnetosheath particles, were observed outside the magnetopause but adjacent to it. All results support the reconnection hypothesis. The energetic particles were also used to identify the outer separatrix surface, in one case of which is was possible to conclude from its location relative to the magnetopause that the reconnection site was in the vicinity of the equatorial plane rather than in the cusp. The electric field tangential to the magnetopause is inferred to be in the 0.4-2.8 mV/m range.
Limiting velocity of reconnection in a current layer
International Nuclear Information System (INIS)
Podgornyj, A.N.; Syrovatskij, S.I.
1981-01-01
Formation of a plasma current layer from a strong perturbation wave with the Mach magnetic number Msub(a)=1 is investigated numerically within the framework of magnetic hydrodynamics. It is shown that velocity of plasma flowing into the layer is established as small one as compared with the Alfven velocity. At the current layer boundary the Mach magnetic number Msub(a, c)=0.14-0.2. A great decrease in plasma velocity to the current layer results from the counterpressure of a magnetic field, intensity of which near the layer increases due to the storage of magnetic force lines which do not yet reconnect. Calculational results demonstrate the existence of limiting velocity of magnetic reconnection constituting tenth shares of the Mach magnetic number. Influence of this phenomenon on a character of reconnection in the Earth magnetosphere is discussed
Crab Flares and Magnetic Reconnection in Pulsar Winds
Harding, Alice K.
2012-01-01
The striped winds of rotation-powered pulsars are ideal sites for magnetic reconnection. The magnetic fields of the wind near the current sheet outside the light cylinder alternate polarity every pulsar period and eventually encounter a termination shock. Magnetic reconnection in the wind has been proposed as a mechanism for transferring energy from electromagnetic fields to particles upstream of the shock (the "sigma" problem), but it is not clear if, where and how this occurs. Fermi and AGILE have recently observed powerful gamma-ray flares from the Crab nebula, which challenge traditional models of acceleration at the termination shock. New simulations are revealing that magnetic reconnection may be instrumental in understanding the Crab flares and in resolving the "sigma" problem in pulsar wind nebulae.
Null geodesics and wave front singularities in the Gödel space-time
Kling, Thomas P.; Roebuck, Kevin; Grotzke, Eric
2018-01-01
We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.
Visual and Plastic Arts in Teaching Literacy: Null Curricula?
Wakeland, Robin Gay
2010-01-01
Visual and plastic arts in contemporary literacy instruction equal null curricula. Studies show that painting and sculpture facilitate teaching reading and writing (literacy), yet such pedagogy has not been formally adopted into USA curriculum. An example of null curriculum can be found in late 19th - early 20th century education the USA…
Euclidean null controllability of nonlinear infinite delay systems with ...
African Journals Online (AJOL)
Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly asymptotically stable and if the control system is controllable, then the non-linear infinite delay system is Euclidean null ...
Null infinity and extremal horizons in AdS-CFT
International Nuclear Information System (INIS)
Hickling, Andrew; Wiseman, Toby; Lucietti, James
2015-01-01
We consider AdS gravity duals to CFT on background spacetimes with a null infinity. Null infinity on the conformal boundary may extend to an extremal horizon in the bulk. For example it does so for Poincaré–AdS, although does not for planar Schwarzschild–AdS. If null infinity does extend into an extremal horizon in the bulk, we show that the bulk near-horizon geometry is determined by the geometry of the boundary null infinity. Hence the ‘infra-red’ geometry of the bulk is fixed by the large scale behaviour of the CFT spacetime. In addition the boundary stress tensor must have a particular decay at null infinity. As an application, we argue that for CFT on asymptotically flat backgrounds, any static bulk dual containing an extremal horizon extending from the boundary null infinity, must have the near-horizon geometry of Poincaré–AdS. We also discuss a class of boundary null infinity that cannot extend to a bulk extremal horizon, although we give evidence that they can extend to an analogous null surface in the bulk which possesses an associated scale-invariant ‘near-geometry’. (paper)
Logarithmic corrections to gravitational entropy and the null energy condition
Energy Technology Data Exchange (ETDEWEB)
Parikh, Maulik, E-mail: maulik.parikh@asu.edu; Svesko, Andrew
2016-10-10
Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.
Logarithmic corrections to gravitational entropy and the null energy condition
Directory of Open Access Journals (Sweden)
Maulik Parikh
2016-10-01
Full Text Available Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.
A new dynamic null model for phylogenetic community structure
Pigot, Alex L; Etienne, Rampal S
Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by
Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma
International Nuclear Information System (INIS)
Yang Ren; Masaaki Yamada; Stefan Gerhardt; Hantao Ji; Russell Kulsrud; Aleksey Kuritsyn
2005-01-01
In this letter we report a clear and unambiguous observation of the out-of-plane quadrupole magnetic field suggested by numerical simulations in the reconnecting current sheet in the Magnetic Reconnection Experiment (MRX). Measurements show that the Hall effect is large in collisionless regime and becomes small as the collisionality increases, indicating that the Hall effect plays an important role in collisionless reconnection
An Integrative Review of Scientific Evidence for Reconnective Healing
Trent, Natalie L.
2017-01-01
Abstract Background: Biofield therapies offer a novel, non-invasive approach to treating chronic diseases based on assessing and adjusting an individual's physiological and emotional responses through their bio-energetic field. Reconnective Healing™ (RH) is defined as: “…not just energy healing, but instead a more comprehensive spectrum of healing composed of energy, light, and information.” Objectives: Several biofield therapies, such as Reiki, Therapeutic Touch and Johrei, have already been reviewed in the literature but RH has received little attention even though it is taught and practiced worldwide. This review provides a critical assessment of RH as a healing modality. Methods: Scientific research articles published in peer-reviewed journals addressing RH were identified using relevant databases and archives. Information was extracted from each article that met selection criteria for evaluation of quality of reporting and design. This review summarizes and critically evaluates the five currently published peer-reviewed research papers involving RH and assesses whether RH provides consistent physiological outcomes between the studies. Results: These results, taken together, suggest: (i) exposure of a healer or healee to RH, either directly or indirectly, amplifies their degree of autonomic arousal and energy, (ii) RH can reduce pain and improve range of motion in people with shoulder limitations, and (iii) when individuals experience RH as a group, their autonomic nervous systems simultaneously show sudden similar responses consistent with the idea that RH is mitigated by entrainment of biofields. Conclusions: Since these studies are extremely varied in design it is not possible at this point to reach conclusions about the general effectiveness of RH. More clinical and physiological research performed on different populations under a range of conditions is needed in order to support this healthcare approach. PMID:28654301
Physical conditions in the reconnection layer in pulsar magnetospheres
Energy Technology Data Exchange (ETDEWEB)
Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)
2014-01-01
The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.
Observational Test of the Dayside Magnetopause Reconnection Rate
Wang, S.; Kistler, L. M.; Mouikis, C.
2014-12-01
In asymmetric reconnection, the reconnection rate (R) is expected to follow the Cassak-Shay formula with an aspect ratio of around 0.1. At the magnetopause, reconnection is asymmetric, with the dense shocked solar wind population on the magnetosheath side, and a normally hot and tenuous population on the magnetospheric side. However, the hot magnetospheric population can contain a significant O+ component that increases the mass density, and the magnetospheric population may also include a cold dense population of plasmaspheric origin. We perform a statistical study of 13 magnetopause reconnection events observed by Cluster to determine how the reconnection rate depends on these different populations. The events are mainly at high latitudes, due to the Cluster orbit. Our results show that the measured R generally follows the Cassak-Shay prediction when all populations are included. However, the predicted rate only considering the magnetosheath contribution also correlates well with the measured R. For individual events, cold ions can make a comparable contribution to the magnetosheath H+ when there are plasmaspheric drainage plumes; the contribution of the magnetospheric hot O+ can be up to ~30%. However, the variation of solar wind conditions has a larger effect on the variation in the reconnection rate. The aspect ratio does not vary systematically with the O+ content, and 0.1 is a reasonable estimation. The outflow velocity is around the hybrid Alfven speed, but there is not a strong correlation. This may be due to motion of the x-line, or effects of the magnetosheath shear flow.
Dynamics of Auroras Conjugate to the Dayside Reconnection Region.
Mende, S. B.; Frey, H. U.; Doolittle, J. H.
2006-12-01
During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.
An omnibus test for the global null hypothesis.
Futschik, Andreas; Taus, Thomas; Zehetmayer, Sonja
2018-01-01
Global hypothesis tests are a useful tool in the context of clinical trials, genetic studies, or meta-analyses, when researchers are not interested in testing individual hypotheses, but in testing whether none of the hypotheses is false. There are several possibilities how to test the global null hypothesis when the individual null hypotheses are independent. If it is assumed that many of the individual null hypotheses are false, combination tests have been recommended to maximize power. If, however, it is assumed that only one or a few null hypotheses are false, global tests based on individual test statistics are more powerful (e.g. Bonferroni or Simes test). However, usually there is no a priori knowledge on the number of false individual null hypotheses. We therefore propose an omnibus test based on cumulative sums of the transformed p-values. We show that this test yields an impressive overall performance. The proposed method is implemented in an R-package called omnibus.
The Visible Nulling Coronagraph--Architecture Definition and Technology Development
Shao, Michael; Levine, B. Martin; Wallace, J. Kent; Liu, Duncan T.; Schmidtlin, Edouard; Serabyn, Eugene; Mennesson, Bertrand; Green, Joseph J.; Aguayo, Francisco; Fregoso, S. Felipe;
2005-01-01
This paper describes the advantages of visible direct detection and spectroscopy of Earth-like extrasolar planets using a nulling coronagraph instrument behind a moderately sized single aperture space telescope. Our concept synthesizes a nulling interferometer by shearing the telescope pupil, with the resultant producing a deep null. We describe nulling configurations that also include methods to mitigate stellar leakage, such as spatial filtering by a coherent array of single mode fibers, and post-starlight suppression wavefront sensing and control. With diffraction limited telescope optics and similar quality components in the optical train (lambda/20), suppression of the starlight to 1e-10 is readily achievable. We describe key features of the architecture and analysis, present latest results of laboratory measurements demonstrating achievable null depth and component development, and discuss future key technical milestones.
Internalizing Null Extraterrestrial "Signals": An Astrobiological App for a Technological Society
Chaisson, Eric J.
2014-01-01
One of the beneficial outcomes of searching for life in the Universe is that it grants greater awareness of our own problems here on Earth. Lack of contact with alien beings to date might actually comprise a null "signal" pointing humankind toward a viable future. Astrobiology has surprising practical applications to human society; within the larger cosmological context of cosmic evolution, astrobiology clarifies the energetic essence of complex systems throughout the Universe, including tech...
Fast reconnection of magnetic fields in a plasma
International Nuclear Information System (INIS)
Hu, P.N.
1983-01-01
Reconnection process of magnetic fields in a plasma is analytically studied by perturbing the boundary conditions on a slab of incompressible plasma with a resonant surface inside. It is found, for small resistivity, that the reconnection takes place on Alfven time scale and continues into a slow time scale t 1 = eta/sup 1/3/t. Both time scales are faster than the usual tearing time scale. Furthermore, the plasma evolves globally from its initial equilibrium on the slow time scale and settles down to a different final equilibrium
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide
Endogenous magnetic reconnection and associated high energy plasma processes
Coppi, B.; Basu, B.
2018-02-01
An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.
Development of Turbulent Magnetic Reconnection in a Magnetic Island
International Nuclear Information System (INIS)
Huang, Can; Lu, Quanming; Wang, Rongsheng; Wu, Mingyu; Lu, San; Wang, Shui; Guo, Fan
2017-01-01
In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.
Scaling of Sweet-Parker reconnection with secondary islands
International Nuclear Information System (INIS)
Cassak, P. A.; Shay, M. A.; Drake, J. F.
2009-01-01
Sweet-Parker (collisional) magnetic reconnection at high Lundquist number is modified by secondary islands. Daughton et al. [Phys. Rev. Lett. 103, 065004 (2009)] suggested the Sweet-Parker model governs the fragmented current sheet segments. If true, the reconnection rate would increase by the square root of the number of secondary islands. High Lundquist number resistive magnetohydrodynamic simulations are presented which agree, in a time-averaged sense, with the predicted scaling. This result may have important implications for energy storage before a solar eruption and its subsequent release.
The physical foundation of the reconnection electric field
Hesse, M.; Liu, Y.-H.; Chen, L.-J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Norgren, C.; Genestreti, K. J.; Phan, T. D.; Tenfjord, P.
2018-03-01
Magnetic reconnection is a key charged particle transport and energy conversion process in environments ranging from astrophysical systems to laboratory plasmas [Yamada et al., Rev. Mod. Phys. 82, 603-664 (2010)]. Magnetic reconnection facilitates plasma transport by establishing new connections of magnetic flux tubes, and it converts, often explosively, energy stored in the magnetic field to kinetic energy of charged particles [J. L. Burch and J. F. Drake, Am. Sci. 97, 392-299 (2009)]. The intensity of the magnetic reconnection process is measured by the reconnection electric field, which regulates the rate of flux tube connectivity changes. The change of magnetic connectivity occurs in the current layer of the diffusion zone, where the plasma transport is decoupled from the transport of magnetic flux. Here we report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the reconnection electric field is essential to maintain the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. This collisionless viscosity, found in the pressure evolution equation
Fast Magnetic Reconnection in the Plasmoid-Dominated Regime
International Nuclear Information System (INIS)
Uzdensky, D. A.; Loureiro, N. F.; Schekochihin, A. A.
2010-01-01
A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.
Simulation experiment on magnetic field reconnection processes in tokamak
International Nuclear Information System (INIS)
Kiwamoto, Y.
1982-01-01
Two experimental studies on magnetic field line reconnection processes relevant to tokamak physics are going on in Japan. In Yokohama National University, reconnection of poloidal magnetic field lines is studied by the author when reversing the toroidal current of a small toroidal plasma in a short period (typically less than 4 μsec). Interaction of two current carrying plasma (linear) columns is being studied by Kawashima and his coleagues in Institute of Space and Aeronautical Sciences. Mutual attraction and merging of the plasma columns and resulting plasma heating are reported. (author)
Electromagnetic Fluctuations during Fast Reconnection in a Laboratory Plasma
International Nuclear Information System (INIS)
Hantao Ji; Stephen Terry; Masaaki Yamada; Russell Kulsrud; Aleksey Kuritsyn; Yang Ren
2003-01-01
Clear evidence for a positive correlation is established between the magnitude of magnetic fluctuations in the lower-hybrid frequency range and enhancement of reconnection rates in a well-controlled laboratory plasma. The fluctuations belong to the right-hand polarized whistler wave branch, propagating obliquely to the reconnecting magnetic field, with a phase velocity comparable to the relative drift velocity between electrons and ions. The short coherence length and large variation along the propagation direction indicate their strongly nonlinear nature in three dimensions
Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection
International Nuclear Information System (INIS)
Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.
2000-01-01
Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors
Wormholes minimally violating the null energy condition
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-López, Mariam [Departamento de Física, Universidade da Beira Interior, 6200 Covilhã (Portugal); Lobo, Francisco S N; Martín-Moruno, Prado, E-mail: mariam.bouhmadi@ehu.es, E-mail: fslobo@fc.ul.pt, E-mail: pmmoruno@fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal)
2014-11-01
We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted {sup t}he little sibling of the big rip{sup ,} where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyse the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalization of the equation of state considered above and analyse the respective stability regions. In particular, we obtain a specific wormhole solution with an asymptotic behaviour corresponding to a global monopole.
Bodyweight Assessment of Enamelin Null Mice
Directory of Open Access Journals (Sweden)
Albert H.-L. Chan
2013-01-01
Full Text Available The Enam null mice appear to be smaller than wild-type mice, which prompted the hypothesis that enamel defects negatively influence nutritional intake and bodyweight gain (BWG. We compared the BWG of Enam−/− and wild-type mice from birth (D0 to Day 42 (D42. Wild-type (WT and Enam−/− (N mice were given either hard chow (HC or soft chow (SC. Four experimental groups were studied: WTHC, WTSC, NHC, and NSC. The mother’s bodyweight (DBW and the average litter bodyweight (ALBW were obtained from D0 to D21. After D21, the pups were separated from the mother and provided the same type of food. Litter bodyweights were measured until D42. ALBW was compared at 7-day intervals using one-way ANOVA, while the influence of DBW on ALBW was analyzed by mixed-model analyses. The ALBW of Enam−/− mice maintained on hard chow (NHC was significantly lower than the two WT groups at D21 and the differences persisted into young adulthood. The ALBW of Enam−/− mice maintained on soft chow (NSC trended lower, but was not significantly different than that of the WT groups. We conclude that genotype, which affects enamel integrity, and food hardness influence bodyweight gain in postnatal and young adult mice.
International Nuclear Information System (INIS)
Gonzalez, W.D.; Gonzalez, A.L.C.
1981-01-01
Some general expressions for the convection and parallel electric fields as well as for the energy transfer, due to magnetopause reconnection, are derived using a nose-reconnection model that takes into account the presence of the clefts. For the case of equal geomagnetic and magnetosheath field amplitudes, the expression for the power dissipated by the convection electric field reduces to the substorm parameter e widely discussed in the recent literature. This result suggests that magnetopause reconnection is defined at the nose with a tilted reconnection line, but that the convection electric field is related only to the dawn-dusk component of the reconnection electric field, as defined at high latitudes
Energy flux due to electromagnetic fluctuations during guide field magnetic reconnection
International Nuclear Information System (INIS)
Kuwahata, Akihiro; Inomoto, Michiaki; Ono, Yasushi; Yanai, Ryoma
2016-01-01
Large electromagnetic fluctuations inside the current sheet and large reconnection electric fields are observed during fast magnetic reconnection in the presence of a guide field. The fluctuations transport 2.5% of the dissipated magnetic energy from the reconnection region. Although the energy gains of the ions and electrons are approximately 60% and 12%, respectively, of the dissipated magnetic energy after the fast reconnection, the energy of fluctuations is not comparable to their energy gains. The fluctuations do not directly contribute to the energy conversion but might cause the fast reconnection leading to the rapid release of magnetic energy. (author)
Global and local disturbances in the magnetotail during reconnection
Directory of Open Access Journals (Sweden)
T. V. Laitinen
2007-05-01
Full Text Available We examine Cluster observations of a reconnection event at x_{GSM}=−15.7 R_{E} in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in B_{z}, which are shown to be the Hall signature tilted in the yz plane with the current sheet.
Electron Heating and Acceleration in a Reconnecting Magnetotail
El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.
2017-12-01
Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.
Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared
Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.
2011-01-01
The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.
Study of Local Reconnection Physics in a Laboratory Plasma
International Nuclear Information System (INIS)
Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada
2001-01-01
A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory
The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection
Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie
2012-01-01
One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.
Magnetic reconnection and precursor effect in coaxial discharge
International Nuclear Information System (INIS)
Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.
1988-01-01
A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities
Reconnection Mediated by Magnetic Fractures and the Solar Flare
Haerendel, Gerhard
2018-03-01
Reconnection of sheared magnetic fields is commonly treated by regarding the component perpendicular to the antiparallel components as a largely inert guide field. In this paper an alternative is proposed in which the free energy residing in the shear field is being converted prior to reconnection. This happens in high-density, dissipative current sheets bordering the reconnection site. A global scenario is presented in which low-intensity currents out of the photosphere are converging into the narrow, high-intensity currents at high altitude. This is enabled by the obliqueness of the latter. The very short timescale of the energy conversion causes a lateral propagation of the current sheets. In a quasi-stationary situation, it balances the reconnection rate, which turns out to be much lower than in guide-field approaches. Another important consequence of the obliqueness is the field-parallel emission of runaway electrons. Accelerated up to tens of keV, they are possibly important contributors to the production of hard X-rays during the impulsive phase of a flare, but only in areas of upward-directed currents. Quantitative evaluation of the model predicts various potentially observable properties, such as width and propagation speed of the generated flare ribbons, spatial dependences of the electron spectrum, size of the area of energy deposition, and successive decrease of the shear angle between conjugate footpoints. The presented theoretical model can account for the observed brightness asymmetry of flare ribbons with respect to the direction of the vertical currents.
MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA
International Nuclear Information System (INIS)
Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.
2011-01-01
We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.
Conditions for substorm onset by the fast reconnection mechanism
Directory of Open Access Journals (Sweden)
M. Ugai
2008-12-01
Full Text Available The fast reconnection mechanism, involving slow shocks and Alfvénic fast plasma jets, is most responsible for the explosive conversion of magnetic energy associated with geomagnetic substorms and solar flares. In this paper, the spontaneous fast reconnection model is applied to well-known phenomena of substorms. When the east-west width of the tail current sheet becomes 3–4 times larger than its north-south thickness, the fast reconnection mechanism can fully be established, which may lead to substorm onset. The resulting Alfvénic jet can exactly explain, both qualitatively and quantitatively, the in-situ satellite observations of the traveling compression regions (TCRs associated with large-scale plasmoids propagating down the tail. Also, the earthward fast reconnection jet causes drastic magnetic field dipolarization, so that the sheet current ahead of the magnetic loop of closed field lines suddenly turns its direction toward the loop footpoint and a large-scale current wedge is formed according to the growth of field-aligned currents. It is demonstrated that an MHD generator arises ahead of the magnetic loop and drives the current wedge to distinctly enhance the current density in a pair of thin layers of the loop footpoint, giving rise to drastic heating in the form of two ribbons.
Wave driven magnetic reconnection in the Taylor problem
International Nuclear Information System (INIS)
Fitzpatrick, Richard; Bhattacharjee, Amitava; Ma Zhiwei; Linde, Timur
2003-01-01
An improved Laplace transform theory is developed in order to investigate the initial response of a stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation in the so-called Taylor problem. The novel feature of this theory is that it does not employ asymptotic matching. If the wall perturbation is switched on slowly compared to the Alfven time then the plasma response eventually asymptotes to that predicted by conventional asymptotic matching theory. However, at early times there is a compressible Alfven wave driven contribution to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly compared to the Alfven time then strongly localized compressible Alfven wave-pulses are generated which bounce backward and forward between the walls many times. Each instance these wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The maximum pulse driven reconnection rate can be much larger than that predicted by conventional asymptotic matching theory
Bursting reconnection of the two co-rotating current loops
Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi
2000-10-01
Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.
Color-reconnection in Z → 3 jets
International Nuclear Information System (INIS)
Rudolph, G.
2004-01-01
The electric charge distribution of gluon jets with a rapidity gap is sensitive to possible effects of color reordering in the final quark-gluon cascade. High statistics data from the ALEPH experiment at LEP-1 are used to test the predictions of different color reconnection models. (author)
Energy transfer by magnetopause reconnection and the substorm parameter epsilon
International Nuclear Information System (INIS)
Gonzalez-Alarcon, W.D.; Gonzalez, A.L.C. de.
1983-01-01
An expression for the magnetopause reconnection power based on the dawn-dusk component of the reconnection electric field, that reduces to the substorm parameter epsilon for the limit that involves equal geomagnetic (B sub(G)) and magnetosheath (B sub(M)) magnetic field amplitudes at the magnetopause, is contrasted with the expression based on the whole reconnection electric field vector obtained by Gonzalez. The correlation examples of this report show that this (more general) expression for the reconnection power seems to correlate with the empirical dissipation parameter U sub(T) from Akasofu, with slightly better correlation coefficients than those obtained from similar correlations between the parameter epsilon and U sub(T). Thus, these (better) correlations show up for the more familiar values of the ratio B sub(G) / B sub(M) > 1. Nevertheless, the (expected) relatively small difference that seems to exist between these correlation coefficients suggests that, for practical purposes, the parameter epsilon could be used as well (instead of the more general expression) in similar correlation studies due to its impler format. On the other hand, studies that refer mainly to the difference in the magnitudes of epsilon and of the more general expression are expected to give results with less negligible differences. (Author) [pt
Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.
2018-05-01
A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.
Lovelock vacua with a recurrent null vector field
Ortaggio, Marcello
2018-02-01
Vacuum solutions of Lovelock gravity in the presence of a recurrent null vector field (a subset of Kundt spacetimes) are studied. We first discuss the general field equations, which constrain both the base space and the profile functions. While choosing a "generic" base space puts stronger constraints on the profile, in special cases there also exist solutions containing arbitrary functions (at least for certain values of the coupling constants). These and other properties (such as the p p - waves subclass and the overlap with VSI, CSI and universal spacetimes) are subsequently analyzed in more detail in lower dimensions n =5 , 6 as well as for particular choices of the base manifold. The obtained solutions describe various classes of nonexpanding gravitational waves propagating, e.g., in Nariai-like backgrounds M2×Σn -2. An Appendix contains some results about general (i.e., not necessarily Kundt) Lovelock vacua of Riemann type III/N and of Weyl and traceless-Ricci type III/N. For example, it is pointed out that for theories admitting a triply degenerate maximally symmetric vacuum, all the (reduced) field equations are satisfied identically, giving rise to large classes of exact solutions.
Tensionless branes and the null string critical dimension
International Nuclear Information System (INIS)
Bozhilov, P.
1998-01-01
BRST quantization is carried out for a model of p-branes with second class constraints. After extension of the phase space the constraint algebra coincides with the one of null string when p=1. It is shown that in this case one can or cannot obtain critical dimension for the null string, depending on the choice of the operator ordering and corresponding vacuum states. When p>1, operator orderings leading to critical dimension in the p=1 case are not allowed. Admissible orderings give no restrictions on the dimension of the embedding space-time. Finally, a generalization to supersymmetric null branes is proposed
Simulations of Hall reconnection in partially ionized plasmas
Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni
2017-04-01
Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is
Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event
Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.
2017-12-01
During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.
Emission and null coordinates: geometrical properties and physical construction
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan J; Morales-Lladosa, Juan A
2011-01-01
A Relativistic Positioning System is defined by four clocks (emitters) broadcasting their proper time. Then, every event reached by the signals is naturally labeled by these four times which are the emission coordinates of this event. The coordinate hypersurfaces of the emission coordinates are the future light cones based on the emitter trajectories. For this reason the emission coordinates have been also named null coordinates or light coordinates. Nevertheless, other coordinate systems used in different relativistic contexts have the own right to be named null or light coordinates. Here we analyze when one can say that a coordinate is a null coordinate and when one can say that a coordinate system is null. Moreover, we examine the physical construction and the geometrical properties of several n ull coordinate systems : the emission and the reception coordinates, the radar coordinates, and the Bondi-Sachs coordinates, among others.
Relative null controllability of linear systems with multiple delays in ...
African Journals Online (AJOL)
varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...
Null canonical formalism 1, Maxwell field. [Poisson brackets, boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Wodkiewicz, K [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej
1975-01-01
The purpose of this paper is to formulate the canonical formalism on null hypersurfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null variables of the Maxwell field is obtained. The asymptotic properties of the theory are investigated. The Poisson bracket relations for the news-functions of the Maxwell field are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these news-functions is obtained.
Null controllability of a cascade system of Schrodinger equations
Directory of Open Access Journals (Sweden)
Marcos Lopez-Garcia
2016-03-01
Full Text Available This article presents a control problem for a cascade system of two linear N-dimensional Schrodinger equations. We address the problem of null controllability by means of a control supported in a region not satisfying the classical geometrical control condition. The proof is based on the application of a Carleman estimate with degenerate weights to each one of the equations and a careful analysis of the system in order to prove null controllability with only one control force.
Sequential weak continuity of null Lagrangians at the boundary
Czech Academy of Sciences Publication Activity Database
Kalamajska, A.; Kraemer, S.; Kružík, Martin
2014-01-01
Roč. 49, 3/4 (2014), s. 1263-1278 ISSN 0944-2669 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : null Lagrangians * nonhomogeneous nonlinear mappings * sequential weak/in measure continuity Subject RIV: BA - General Mathematics Impact factor: 1.518, year: 2014 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-sequential weak continuity of null lagrangians at the boundary.pdf
On the geometry of null congruences in general relativity
International Nuclear Information System (INIS)
Ahsan, Zafar; Malik, N.P.
1977-01-01
Some theorems for the null congruences within the framework of general theory of relativity are given. These theorems are important in themselves as they illustrate the geometric meaning of the spin coefficients. The newly developed Geroch-Held-Penrose (GHP) formalism has been used throughout the investigations. The salient features of GHP formalism that are necessary for the present work are given and these techniques are applied to a pair of null congruences C(l) and C(n). (author)
A parameter set for a double-null DEMO reactor
International Nuclear Information System (INIS)
Cooke, P.I.H.
1987-01-01
The present study is aimed at commenting on the reactor-relevance of the design principles and technology being proposed for NET. The authors propose that a double-null device serve as a basis for a NET-based demonstration reactor. Calculations are carried out to determine the parameter set for reactors based on the double-null NET design, and the results are presented in tabular form. (U.K.)
Vortical null orbits, repulsive barriers, energy confinement in Kerr metric
Energy Technology Data Exchange (ETDEWEB)
Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; De Felice, F
1978-10-01
The complete analytical description of the null trajectories in the field of a Kerr naked singularity is given. Two peculiar phenomena are described: the existence of repulsive barriers in the r < O world and the existence of null circular bound orbits which surround the singularity in 'shells'. They distribute around the surface at r = m, which is the position of the horizon in the extreme black-hole case; this suggests that a naked singularity 'remembers' the position of the last horizon.
Ambitwistor strings at null infinity and (subleading) soft limits
International Nuclear Information System (INIS)
Geyer, Yvonne; Lipstein, Arthur E; Mason, Lionel
2015-01-01
The relationship between BMS symmetries at null infinity and Weinberg's soft theorems for gravitons and photons together with their subleading extensions are developed using ambitwistor string theory. Ambitwistor space is the phase space of complex null geodesics in complexified space-time. We show how it can be canonically identified with the cotangent bundle of complexified null infinity. BMS symmetries of null infinity lift to give a Hamiltonian action on ambitwistor space, both in general dimension and in its twistorial four-dimensional representation. General vertex operators arise from Hamiltonians generating diffeomorphisms of ambitwistor space that determine the scattering from past to future null infinity. When a momentum eigenstate goes soft, the diffeomorphism defined by its leading and its subleading part are extended BMS generators realized in the world sheet conformal field theory of the ambitwistor string. More generally, this gives an explicit perturbative correspondence between the scattering of null geodesics and that of the gravitational field via ambitwistor string theory. (paper)
Observations of Reconnection Flows in a Flare on the Solar Disk
International Nuclear Information System (INIS)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G.
2017-01-01
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
Observations of Reconnection Flows in a Flare on the Solar Disk
Energy Technology Data Exchange (ETDEWEB)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G., E-mail: j.wang.4@research.gla.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-09-20
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
Theory and Simulations of Incomplete Reconnection During Sawteeth Due to Diamagnetic Effects
Beidler, Matthew Thomas
Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading approach proposed for the widespread production of fusion energy. The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes resulting from increasing diamagnetic effects in the nonlinear phase of magnetic reconnection. Physically, the reconnection inflow self-consistently convects the high pressure core of a tokamak toward the q=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface becomes large enough due to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic effects becoming large enough to suppress reconnection. Predictions of this model are borne out in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST). Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the model equations is essential for recovering timescales more closely in line with experimental results compared to resistive-MHD and contrast the dynamics in the two models. We use a novel approach to sample the data in the plane of reconnection perpendicular to the (m,n)=(1,1) mode to carefully assess the reconnection physics. Using local measures of
Reconnecting with the past on social network sites
DEFF Research Database (Denmark)
Shklovski, Irina
we do not know why people seek out such ties and whether they benefit from them. This paper presents findings from a qualitative study of how people in Russia and Kazakhstan used SNSs for communication and relational maintenance. For many of the participants SNSs had offered an opportunity...... for reconnection with lapsed ties that brought about deeply emotional experiences of nostalgic remembrances and intimate exchanges of current status. In this process of reconnecting, they established connections not only with each other but also with a kind of past that was long gone. These ties were not expected...... to function as social resources or as active providers of support. In many ways, these ties explicitly lacked a purpose beyond emotional remembrance, as they were rarely re-integrated into daily life. Nevertheless, these ties remained connections to a past even as they at times became digital connections...
Particle acceleration and reconnection in the solar wind
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama, Huntsville, AL 35805 (United States); Department of Space Science, University of Alabama, Huntsville, AL 35899 (United States); Khabarova, O. [Heliophysical Laboratory, IZMIRAN, Troitsk, Moscow 142190 (Russian Federation); Cummings, A. C.; Stone, E. C. [California Institute of Technology, Mail Code 290-17, Pasadena, CA 91125 (United States); Decker, R. B. [Johns Hopkins University/Applied Physics Lab., Laurel, MD 20723-6099 (United States)
2016-03-25
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a “sea of magnetic islands” in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed.
The generalized Ohm's law in collisionless magnetic reconnection
International Nuclear Information System (INIS)
Cai, H.J.; Lee, L.C.
1997-01-01
The generalized Ohm close-quote s law and the force balance near neutral lines in collisionless magnetic reconnection is studied based on two-dimensional full particle simulations in which the ion endash electron mass ratio is set to be 1836. The off-diagonal elements of a plasma pressure tensor are found to be responsible for the breakdown of the frozen-in condition in collisionless reconnection. While the off-diagonal elements of the electron pressure tensor are dominant terms in the generalized Ohm close-quote s law near neutral lines, the ion off-diagonal pressure terms are of significant importance when ions are main current carriers. The spatial scale of electron off-diagonal pressure term P xy (e) is also found to be proportional to the Dungey length scale, (m e E y /eβ 2 ) 1/3 , where β=∂B z /∂x. copyright 1997 American Institute of Physics
Ion distributions in a two-dimensional reconnection field geometry
International Nuclear Information System (INIS)
Curran, D.B.; Goertz, C.K.; Whelan, T.A.
1987-01-01
ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987
Scales of guide field reconnection at the hydrogen mass ratio
International Nuclear Information System (INIS)
Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.
2010-01-01
We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.
On the Penrose inequality for dust null shells in the Minkowski spacetime of arbitrary dimension
International Nuclear Information System (INIS)
Mars, Marc; Soria, Alberto
2012-01-01
A particular, yet relevant, case of the Penrose inequality involves null shells propagating in the Minkowski spacetime. Despite previous claims in the literature, the validity of this inequality remains open. In this paper, we rewrite this inequality in terms of the geometry of the surface obtained by intersecting the past null cone of the original surface S with a constant time hyperplane and the 'time height' function of S over this hyperplane. We also specialize to the case when S lies in the past null cone of a point and show the validity of the corresponding inequality in any dimension (in four dimensions this inequality was proved by Tod (1985 Class. Quantum Grav. 2 L65-8). Exploiting properties of convex hypersurfaces in the Euclidean space, we write down the Penrose inequality in the Minkowski spacetime of an arbitrary dimension n + 2 as an inequality for two smooth functions on the sphere S n . We finally obtain a sufficient condition for the validity of the Penrose inequality in the four-dimensional Minkowski spacetime and show that this condition is satisfied by a large class of surfaces. (paper)
Acceleration mechanisms flares, magnetic reconnection and shock waves
International Nuclear Information System (INIS)
Colgate, S.A.
1979-01-01
Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references
ISEE observations of the magnetopause: Reconnection and the energy balance
International Nuclear Information System (INIS)
Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Sonnerup, B.U.O.; Bame, S.J.; Russell, C.T.
1985-01-01
According to the usual magnetopause reconnection model, plasma flows across the magnetopause current sheet, which is a rotational discontinuity with a nonzero normal magnetic field component B/sub n/, from the magnetosheath into the magnetospheric boundary layer. As the plasma crosses the sheet, which has net current I, it is accelerated by the I x B/sub n/ force and flows toward the poles with speeds up to twice the Alfven speed
Colour annealing - a toy model of colour reconnections
International Nuclear Information System (INIS)
Sandhoff, Marisa; Wuppertal U.; Skands, Peter; Fermilab
2005-01-01
We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t(bar t) events at the Tevatron
The dependence of cusp ion signatures on the reconnection rate
Directory of Open Access Journals (Sweden)
S. K. Morley
2003-04-01
Full Text Available The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. "Stepped" and "sawtooth" signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating, magnetopause, cusp and boundary layers
Colour annealing - a toy model of colour reconnections
Energy Technology Data Exchange (ETDEWEB)
Sandhoff, Marisa; /Wuppertal U.; Skands, Peter; /Fermilab
2005-12-01
We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t{bar t} events at the Tevatron.
Fully kinetic simulations of magnetic reconnection in partially ionised gases
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
Stochastic Acceleration in Turbulent Electric Fields Generated by 3D Reconnection
International Nuclear Information System (INIS)
Onofri, Marco; Isliker, Heinz; Vlahos, Loukas
2006-01-01
Electron and proton acceleration in three-dimensional electric and magnetic fields is studied through test particle simulations. The fields are obtained by a three-dimensional magnetohydrodynamic simulation of magnetic reconnection in slab geometry. The nonlinear evolution of the system is characterized by the growth of many unstable modes and the initial current sheet is fragmented with formation of small scale structures. We inject at random points inside the evolving current sheet a Maxwellian distribution of particles. In a relatively short time (less than a millisecond) the particles develop a power-law tail. The acceleration is extremely efficient and the electrons absorb a large percentage of the available energy in a small fraction of the characteristic time of the MHD simulation, suggesting that resistive MHD codes are unable to represent the full extent of particle acceleration
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
International Nuclear Information System (INIS)
Shibayama, Takuya; Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory
2015-01-01
Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
Energy Technology Data Exchange (ETDEWEB)
Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kusano, Kanya [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Miyoshi, Takahiro [Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Vekstein, Grigory [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)
2015-10-15
Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.
Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Chen, L. J.; Lapenta, G.; Goldman, M. V.; Newman, D. L.; Schwartz, S. J.; Eastwood, J. P.; Phan, T. D.; Mozer, F. S.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Marklund, G.
2016-06-01
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E∥ ) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E∥ events near the electron diffusion region have amplitudes on the order of 100 mV /m , which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E∥ events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E∥ events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice
Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.
2015-01-01
Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP
Magnetic Reconnection and Particle Acceleration in the Solar Corona
Neukirch, Thomas
Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.
Model of magnetic reconnection in space and astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)
2013-03-15
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Magnetic reconnection processes induced by a CME expansion
Directory of Open Access Journals (Sweden)
A. Bemporad
2008-10-01
Full Text Available On 10–11 December 2005 a slow CME occurred in the Western Hemisphere in between two coronal streamers. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere: a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the CME expansion affects both of them and induces the release of plasma within or close to the nearby streamers. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion and occurring inside the streamer current sheet or between the CME flanks and the streamer. These events have been observed by the SOHO/UVCS with the spectrometer slit centered at 1.8 R⊙ over about a full day. In this work we focus on the interaction between the CME and the streamer: the UVCS spectral interval included UV lines from ions at different temperatures of maximum formation such as O VI, Si XIII and Al Xi. These data gave us the opportunity to infer the evolution of plasma temperature and density at the reconnection site and adjacent regions. These are relevant to characterize secondary reconnection processes occurring during a CME development.
Small-Scale Dayside Magnetic Reconnection Analysis via MMS
Pritchard, K. R.; Burch, J. L.; Fuselier, S. A.; Webster, J.; Genestreti, K.; Torbert, R. B.; Rager, A. C.; Phan, T.; Argall, M. R.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Giles, B. L.
2017-12-01
The Magnetospheric Multiscale (MMS) mission has the primary objective of understanding the physics of the reconnection electron diffusion region (EDR), where magnetic energy is transformed into particle energy. In this poster, we present data from an EDR encounter that occurred in late December 2016 at approximately 11:00 MLT with a moderate guide field. The spacecraft were in a tetrahedral formation with an average inter-spacecraft distance of approximately 7 kilometers. During this event electron crescent-shaped distributions were observed in the electron stagnation region as is typical for asymmetric reconnection. Based on the observed ion velocity jets, the spacecraft traveled just south of the EDR. Because of the close spacecraft separation, fairly accurate computation of the Hall, electron pressure divergence, and electron inertia components of the reconnection electric field could be made. In the region of the crescent distributions good agreement was observed, with the strongest component being the normal electric field and the most significant sources being electron pressure divergence and the Hall electric field. While the strongest currents were in the out-of-plane direction, the dissipation was strongest in the normal direction because of the larger magnitude of the normal electric field component. These results are discussed in light of recent 3D PIC simulations performed by other groups.
Intermittent bursts induced by double tearing mode reconnection
Wei, Lai; Wang, Zheng-Xiong
2014-06-01
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.
Intermittent bursts induced by double tearing mode reconnection
International Nuclear Information System (INIS)
Wei, Lai; Wang, Zheng-Xiong
2014-01-01
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines
Intermittent bursts induced by double tearing mode reconnection
Energy Technology Data Exchange (ETDEWEB)
Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2014-06-15
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.
Model of magnetic reconnection in space and astrophysical plasmas
International Nuclear Information System (INIS)
Boozer, Allen H.
2013-01-01
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Magnetic field, reconnection, and particle acceleration in extragalactic jets
Romanova, M. M.; Lovelace, R. V. E.
1992-01-01
Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.
Resistivity at the field null of the FRC plasma
International Nuclear Information System (INIS)
Gerwin, R.A.
1989-01-01
In the absence of the major destructive instabilities, the configuration time is ultimately determined by particle and flux containment. If the profiles are ''gentle,'' then the anomalous flux-loss rate depends essentially on the anomalous resistivity at the field null. Conventional electrostatic quasi-linear models of anomalous cross-field resistive diffusivity are based upon the use of rvec E x rvec B drift velocities, and hence break down at the magnetic field null. In this paper, an electromagnetic treatment valid at the field null is developed, based upon the presence of flute-parity perturbations. An expression for anomalous resistivity at the field null in the quasi-linear approximation is derived by averaging in the ignorable direction over the random phases of the perturbations. The expression is valid for arbitrary (non-local) radial shapes of the perturbing modes (for example, the eigenfunctions need not be centered at the field null), and for an arbitrary ratio of real frequency to growth rate. The effective resistivity due to flute perturbations of the MHD type will be considered. 1 ref
Visible nulling coronagraphy testbed development for exoplanet detection
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker
2010-07-01
Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 108, 109 and 1010 at an inner working angle of 2*λ/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.
Tolerance analysis of null lenses using an end-use system performance criterion
Rodgers, J. Michael
2000-07-01
An effective method of assigning tolerances to a null lens is to determine the effects of null-lens fabrication and alignment errors on the end-use system itself, not simply the null lens. This paper describes a method to assign null- lens tolerances based on their effect on any performance parameter of the end-use system.
Ramirez, Artemio; Sumner, Erin M; Hayes, Jameson
2016-08-01
Social network sites (SNSs) such as Facebook function as both venues for reconnecting with associates from a user's past and sources of social information about them. Yet, little is known about what factors influence the initial decision to reconnect with a past associate. This oversight is significant given that SNSs and other platforms provide an abundance of social information that may be utilized for reaching such decisions. The present study investigated the links among relational reconnection, information seeking (IS) behavior, and individual- and relationship-level factors in user decisions to reconnect on Facebook. A national survey of 244 Facebook users reported on their most recent experience of receiving a friend request from someone with whom they had been out of contact for an extended period. Results indicated that uncertainty about the potential reconnection partner and forecast about the reconnection's potential reward level significantly predicted IS behavior (passive on both target and mutual friends' SNS pages as well as active). However, the emergence of their two-way interaction revealed that the forecasts moderated the IS-uncertainty link on three of the strategies (extractive, both passive approaches). Moreover, social anxiety, sociability, uncertainty about the partner, the forecast about the reconnection's reward level, and extractive and passive (target SNS pages) strategies significantly predicted user decisions to reconnect. Future directions for research on relational reconnection on SNSs are offered.
Hot magnetospheric O+ and cold ion behavior in magnetopause reconnection: Cluster observations
Wang, S.; Kistler, L. M.; Mouikis, C. G.; Liu, Y.; Genestreti, K. J.
2014-12-01
In reconnection, the presence of heavy ions like O+ increases the ion mass density reducing the fluid's Alfvén speed. In addition, it may modify the reconnection structure, which can also change the reconnection rate. However, because O+ ions have a larger Larmor radii than H+ ions at the same velocity, they may not be fully entrained in the reconnection flow and may have kinetic effects other than just increasing the mass density. In this study, for the first time, the ion velocity distribution functions of H+ and O+ from one magnetopause reconnection event with a strong guide field are analyzed to determine in detail the behavior of the different ion populations. We show that the hot magnetospheric O+ ions, along with the hot magnetospheric H+ ions almost fully participate in the reconnection exhaust flows. Finite Larmor radius effects are also apparent and control how far the ions extend on the magnetosheath side. Ion signatures consistent with heating after being picked up in the reconnection exhaust flow are observed in the H+ and O+ distribution functions. The dynamics of the cold magnetospheric ions depends on where they enter the reconnection region. If they enter the reconnection region at the downstream separatrix, they will be taken away by the magnetic field in an adiabatic way as analyzed by Drake et al. (2009a); if they enter close to the diffusion region, they behave as pick-up ions.
Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.
Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander
2015-07-10
In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.
Null but not void: considerations for hypothesis testing.
Shaw, Pamela A; Proschan, Michael A
2013-01-30
Standard statistical theory teaches us that once the null and alternative hypotheses have been defined for a parameter, the choice of the statistical test is clear. Standard theory does not teach us how to choose the null or alternative hypothesis appropriate to the scientific question of interest. Neither does it tell us that in some cases, depending on which alternatives are realistic, we may want to define our null hypothesis differently. Problems in statistical practice are frequently not as pristinely summarized as the classic theory in our textbooks. In this article, we present examples in statistical hypothesis testing in which seemingly simple choices are in fact rich with nuance that, when given full consideration, make the choice of the right hypothesis test much less straightforward. Published 2012. This article is a US Government work and is in the public domain in the USA.
sirt1-null mice develop an autoimmune-like condition
International Nuclear Information System (INIS)
Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie; Saliba, Sarah; He Xiaohong; Jardine, Karen; Kennedy, Christopher; Staines, William; Rousseaux, Colin; Mueller, Rudi; McBurney, Michael W.
2008-01-01
The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistent with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease
Unicorns do exist: a tutorial on "proving" the null hypothesis.
Streiner, David L
2003-12-01
Introductory statistics classes teach us that we can never prove the null hypothesis; all we can do is reject or fail to reject it. However, there are times when it is necessary to try to prove the nonexistence of a difference between groups. This most often happens within the context of comparing a new treatment against an established one and showing that the new intervention is not inferior to the standard. This article first outlines the logic of "noninferiority" testing by differentiating between the null hypothesis (that which we are trying to nullify) and the "nill" hypothesis (there is no difference), reversing the role of the null and alternate hypotheses, and defining an interval within which groups are said to be equivalent. We then work through an example and show how to calculate sample sizes for noninferiority studies.
ISCO and Principal Null Congruences in Extremal Kerr Spacetime
International Nuclear Information System (INIS)
Pradhan, Parthapratim
2012-01-01
The effective potential in universal like coordinates(U, V, θ, φ), which are smooth across the event horizon is derived and investigated the ISCO(Innermost Stable Circular Orbits) explicitly in these coordinates for extremal Kerr spacetime. Extremization of the effective potential for timelike circular orbit shows that the existence of a stable circular geodesics in the extremal spacetime for direct orbit, precisely on the event horizon in terms of the radial coordinate which coincides with the principal null geodesic congruences of the event horizon. These null geodesic congruences mold themselves to the spacetime curvature in such a way that Weyl conformal tensor and its dual are vanished, that is why they are in-fact doubly degenerate principal null congruences.
Phase-space lagrangians for null spinning strings
International Nuclear Information System (INIS)
Barcelos-Neto, J.; Ruiz-Altaba, M.; Ramirez, C.
1990-01-01
The striking fact that normal-ordered null strings have the same critical dimension as their usual non-zero tension siblings can be understood from the observation that one must, in the tensionless case, keep all the conjugate momenta as independent dynamical variables, thus doubling the number of physical degrees of freedom. The fermionic momenta give rise to a second-class constraint which cannot be solved covariantly, but can be successfully incorporated into the first-class constraint algebra after gauge-fixing. The ghost contributions to the anomaly consist of two b-c (and also two β-γ systems in the supersymmetric case), of the single Virasoro sub(super)algebra for the closed null (spinning) string. In the appropriate gauge, the null (super)string is (super)chiral. (orig.)
Shojaei Ardakani, A.; Mouikis, C.; Kistler, L. M.; Torbert, R. B.; Roytershteyn, V.; Omelchenko, Y.
2017-12-01
A recent statistical study, using Cluster observations, showed that during substorms, a higher O+ content in the plasma sheet during the substorm growth phase, makes it more difficult to trigger reconnection [Liu et al, 2013]. In addition, they showed that, in contrast to predictions that the reconnection rate during the substorm expansion phase slows down in the presence of O+, the magnetotail unloading rate is actually faster when the O+ content is higher. This could be due to a faster local reconnection rate or due to reconnection occurring over a greater width in the tail when the O+ content of the plasma sheet is high. To address this question, we use reconnection events observed by Cluster that have different densities of O+ and we determine the local reconnection rate. For the calculation of the reconnection rate we use CODIF observations from the boundary layer/lobes around flow reversals where the distribution functions show signatures of the presence of cold plasma convecting towards the current sheet. In addition, we use timing analysis to deduce the movement of the x-line. This methodology will be compared with the estimation of the reconnection rate using results from fully kinetic and hybrid particle-in-cell simulations that model reconnection in the presence of O+ in both local geometry and in a model magnetotail equilibrium. Finally, we use the deduced local reconnection rate together with the total magnetotail pressure rate of change (from Liu et al., [2013]) to estimate the cross-tail extent of the reconnecting plasma sheet.
RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)
2017-01-01
Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.
Ion velocity distributions within the LLBL and their possible implication to multiple reconnections
Directory of Open Access Journals (Sweden)
O. L. Vaisberg
2004-01-01
Full Text Available We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a D-shaped distributions, (b ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b and (c ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions
Testing the null hypothesis: the forgotten legacy of Karl Popper?
Wilkinson, Mick
2013-01-01
Testing of the null hypothesis is a fundamental aspect of the scientific method and has its basis in the falsification theory of Karl Popper. Null hypothesis testing makes use of deductive reasoning to ensure that the truth of conclusions is irrefutable. In contrast, attempting to demonstrate the new facts on the basis of testing the experimental or research hypothesis makes use of inductive reasoning and is prone to the problem of the Uniformity of Nature assumption described by David Hume in the eighteenth century. Despite this issue and the well documented solution provided by Popper's falsification theory, the majority of publications are still written such that they suggest the research hypothesis is being tested. This is contrary to accepted scientific convention and possibly highlights a poor understanding of the application of conventional significance-based data analysis approaches. Our work should remain driven by conjecture and attempted falsification such that it is always the null hypothesis that is tested. The write up of our studies should make it clear that we are indeed testing the null hypothesis and conforming to the established and accepted philosophical conventions of the scientific method.
Euclidean null controllability of perturbed infinite delay systems with ...
African Journals Online (AJOL)
Euclidean null controllability of perturbed infinite delay systems with limited control. ... Open Access DOWNLOAD FULL TEXT ... The results are established by placing conditions on the perturbation function which guarantee that, if the linear control base system is completely Euclidean controllable, then the perturbed system ...
Euclidean null controllability of linear systems with delays in state ...
African Journals Online (AJOL)
Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...
Future null infinity of Robertson-Walker spacetimes
International Nuclear Information System (INIS)
Moreschi, O.M.
1988-08-01
The future null infinity for all non-contracting Robertson-Walker space time is studied systematically. A theorem is proved which establishes the expected relation between the nature of J + and the appearance or absence of cosmic event horizons. (author). 7 refs, 1 tab
The Many Null Distributions of Person Fit Indices.
Molenaar, Ivo W.; Hoijtink, Herbert
1990-01-01
Statistical properties of person fit indices are reviewed as indicators of the extent to which a person's score pattern is in agreement with a measurement model. Distribution of a fit index and ability-free fit evaluation are discussed. The null distribution was simulated for a test of 20 items. (SLD)
Spatial and null infinity via advanced and retarded conformal factors
International Nuclear Information System (INIS)
Hayward, Sean A.
2003-01-01
A new approach to space-time asymptotics is presented, refining Penrose's idea of conformal transformations with infinity represented by the conformal boundary of space-time. It is proposed that the Penrose conformal factor be a product of advanced and retarded conformal factors, which asymptotically relate physical and conformal null coordinates and vanish at future and past null infinity respectively. A refined definition of asymptotic flatness at both spatial and null infinity is given, including that the conformal boundary is locally a light cone, with spatial infinity as the vertex. It is shown how to choose the conformal factors so that this asymptotic light cone is locally a metric light cone. The theory is implemented in the spin-coefficient (or null-tetrad) formalism by a joint transformation of the spin-metric and spin-basis (or metric and tetrad). Asymptotic regularity conditions are proposed, based on the conformal boundary locally being a smoothly embedded metric light cone. These conditions ensure that the Bondi-Sachs energy-flux integrals of ingoing and outgoing gravitational radiation decay at spatial infinity such that the total radiated energy is finite, and that the Bondi-Sachs energy-momentum has a unique limit at spatial infinity, coinciding with the uniquely rendered ADM energy-momentum
Red hair is the null phenotype of MC1R.
Beaumont, Kimberley A; Shekar, Sri N; Cook, Anthony L; Duffy, David L; Sturm, Richard A
2008-08-01
The Melanocortin-1 Receptor (MC1R) is a G-protein coupled receptor, which is responsible for production of the darker eumelanin pigment and the tanning response. The MC1R gene has many polymorphisms, some of which have been linked to variation in pigmentation phenotypes within human populations. In particular, the p.D84E, p.R151C, p.R160W and p.D294 H alleles have been strongly associated with red hair, fair skin and increased skin cancer risk. These red hair colour (RHC) variants are relatively well described and are thought to result in altered receptor function, while still retaining varying levels of signaling ability in vitro. The mouse Mc1r null phenotype is yellow fur colour, the p.R151C, p.R160W and p.D294 H alleles were able to partially rescue this phenotype, leading to the question of what the true null phenotype of MC1R would be in humans. Due to the rarity of MC1R null alleles in human populations, they have only been found in the heterozygous state until now. We report here the first case of a homozygous MC1R null individual, phenotypic analysis indicates that red hair and fair skin is found in the absence of MC1R function.
On the null distribution of Bayes factors in linear regression
We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...
Null Lens Assembly for X-Ray Mirror Segments
Robinson, David W.
2011-01-01
A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.
Self-Nulling Beam Combiner Using No External Phase Inverter
Bloemhof, Eric E.
2010-01-01
A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.
Shaping Up the Practice of Null Hypothesis Significance Testing.
Wainer, Howard; Robinson, Daniel H.
2003-01-01
Discusses criticisms of null hypothesis significance testing (NHST), suggesting that historical use of NHST was reasonable, and current users should read Sir Ronald Fisher's applied work. Notes that modifications to NHST and interpretations of its outcomes might better suit the needs of modern science. Concludes that NHST is most often useful as…
Relative controllability and null controllability of linear delay systems ...
African Journals Online (AJOL)
Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...
A model for electron currents near a field null
International Nuclear Information System (INIS)
Stark, R.A.; Miley, G.H.
1987-01-01
The fluid approximation is invalid near a field null, since the local electron orbit size and the magnetic scale length are comparable. To model the electron currents in this region we propose a single equation of motion describing the bulk electron dynamics. The equation applies to the plasma within one thermal orbit size of the null. The region is treated as unmagnetized; electrons are accelerated by the inductive electric field and drag on ions; damping is provided by viscosity due to electrons and collisions with ions. Through variational calculations and a particle tracking code for electrons, the size of the terms in the equation of motion have been estimated. The resulting equation of motion combines with Faraday's Law to produce a governing equation which implicitly contains the self inductive field of the electrons. This governing equation predicts that viscosity prevents complete cancellation of the ion current density by the electrons in the null region. Thus electron dynamics near the field null should not prevent the formation and deepening of field reversal using neutral-beam injection
A comment on the null geodesic equations in Schwarzschild geometry
International Nuclear Information System (INIS)
Rosa, M.A.F.; Rodrigues Junior, W.A.
1986-01-01
An integration of the null geodesic equations in the Schwarzschild geometry, which is valid to first order in GM/Rc 2 is presented. The solution is compared with others published in the literature and their range of validity is analysed. Some misunderstandings are also clarified. (Author) [pt
Magnetic Reconnection at the Earliest Stage of Solar Flux Emergence
Tian, Hui; Zhu, Xiaoshuai; Peter, Hardi; Zhao, Jie; Samanta, Tanmoy; Chen, Yajie
2018-02-01
On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hr. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼1016 Mx s‑1. The emergence of magnetic fluxes and interactions between different polarities lead to the frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 Å images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to the enhancement of the magnetic fields and thus the formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue- and redshifts of ∼100 km s‑1 at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼1015 Mx s‑1. We also investigate the three-dimensional magnetic field topology through a magnetohydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.
Particle acceleration via reconnection processes in the supersonic solar wind
International Nuclear Information System (INIS)
Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.
2014-01-01
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler
Merger and reconnection of Weibel separated relativistic electron beam
Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.
2018-02-01
The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].
Electron-inertia effects on driven magnetic field reconnection
International Nuclear Information System (INIS)
Al-Salti, N.; Shivamoggi, B.K.
2003-01-01
Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place
International Nuclear Information System (INIS)
Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.
2009-01-01
Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.
Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.
Jia, T.; Liang, J. J.; Li, X.-M.; Sha, J.
2018-01-01
The refraction and reconnection of internal solitary waves (ISWs) around the Dongsha Atoll (DSA) in the northern South China Sea (SCS) are investigated based on spaceborne synthetic aperture radar (SAR) observations and numerical simulations. In general, a long ISW front propagating from the deep basin of the northern SCS splits into northern and southern branches when it passes the DSA. In this study, the statistics of Envisat Advanced SAR (ASAR) images show that the northern and southern wave branches can reconnect behind the DSA, but the reconnection location varies. A previously developed nonlinear refraction model is set up to simulate the refraction and reconnection of the ISWs behind the DSA, and the model is used to evaluate the effects of ocean stratification, background currents, and incoming ISW characteristics at the DSA on the variation in reconnection locations. The results of the first realistic simulation agree with consecutive TerraSAR-X (TSX) images captured within 12 h of each other. Further sensitivity simulations show that ocean stratification, background currents, and initial wave amplitudes all affect the phase speeds of wave branches and therefore shift their reconnection locations while shapes and locations of incoming wave branches upstream of the DSA profoundly influence the subsequent propagation paths. This study clarifies the variation in reconnection locations of ISWs downstream of the DSA and reveals the important mechanisms governing the reconnection process, which can improve our understanding of the propagation of ISWs near the DSA.
Maxwell fields and shear-free null geodesic congruences
International Nuclear Information System (INIS)
Newman, Ezra T
2004-01-01
We study and report on the class of vacuum Maxwell fields in Minkowski space that possess a non-degenerate, diverging, principal null vector field (null eigenvector field of the Maxwell tensor) that is tangent to a shear-free null geodesics congruence. These congruences can be either surface forming (the tangent vectors being proportional to gradients) or not, i.e., the twisting congruences. In the non-twisting case, the associated Maxwell fields are precisely the Lienard-Wiechert fields, i.e., those Maxwell fields arising from an electric monopole moving on an arbitrary worldline. The null geodesic congruence is given by the generators of the light-cones with apex on the worldline. The twisting case is much richer, more interesting and far more complicated. In a twisting subcase, where our main interests lie, the following strange interpretation can be given. If we allow the real Minkowski space to be complexified so that the real Minkowski coordinates x a take complex values, i.e., x a → z a = x a + iy a with complex metric g η ab dz a dz b , the real vacuum Maxwell equations can be extended into the complex space and rewritten as curl W=i W radical, div W=0 with W=E+iB. This subcase of Maxwell fields can then be extended into the complex space so as to have as source, a complex analytic worldline, i.e., to now become complex Lienard-Wiechart fields. When viewed as real fields on the real Minkowski space (z a = x a ), they possess a real principal null vector that is shear-free but twisting and diverging. The twist is a measure of how far the complex worldline is from the real 'slice'. Most Maxwell fields in this subcase are asymptotically flat with a time-varying set of electric and magnetic moments, all depending on the complex displacements and the complex velocities
2D numerical simulation of the resistive reconnection layer
International Nuclear Information System (INIS)
Uzdensky, D. A.; Kulsrud, R. M.
2000-01-01
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like
Numerical simulation of internal reconnection event in spherical tokamak
International Nuclear Information System (INIS)
Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya
1999-07-01
Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)
Building on partnerships: reconnecting kids with nature for health benefits.
Kruger, Judy; Nelson, Kristen; Klein, Patti; McCurdy, Leyla Erk; Pride, Patti; Carrier Ady, Janet
2010-05-01
In April 2008, several federal and nonprofit agencies organized an informational Web-based meeting titled "Reconnecting Kids With Nature for Health Benefits." This online meeting was convened by the Society for Public Health Education and delivered to public health educators, health professionals, environmental educators, and land conservationists to raise awareness of national efforts to promote children's involvement in outdoor recreation. This article describes eight programs discussed at this meeting. For public health professionals, partnership with land-management agencies conducting such programs may be an effective way to increase physical activity levels among children.
Observations of magnetic flux ropes during magnetic reconnection in the Earth's magnetotail
Directory of Open Access Journals (Sweden)
A. L. Borg
2012-05-01
Full Text Available We present an investigation of magnetic flux ropes observed by the four Cluster spacecraft during periods of magnetic reconnection in the Earth's magnetotail. Using a list of 21 Cluster encounters with the reconnection process in the period 2001–2006 identified in Borg et al. (2012, we present the distribution and characteristics of the flux ropes. We find 27 flux ropes embedded in the reconnection outflows of only 11 of the 21 reconnection encounters. Reconnection processes associated with no flux rope observations were not distinguishable from those where flux ropes were observed. Only 7 of the 27 flux ropes show evidence of enhanced energetic electron flux above 50 keV, and there was no clear signature of the flux rope in the thermal particle measurements. We found no clear correlation between the flux rope core field and the prevailing IMF By direction.
GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2016-12-01
In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.
Energy Technology Data Exchange (ETDEWEB)
Pucci, F.; Olshevsky, V.; Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department Wiskunde, KU Leuven, 200B Celestijnenlaan, Leuven, B-3001 (Belgium); Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Sorriso-Valvo, L. [Nanotec-CNR, U.O.S. di Cosenza, Via P. Bucci, Cubo 31C, Arcavacata di Rende, I-87036 (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Goldman, M. V.; Newman, D. L., E-mail: francesco.pucci@kuleuven.be [University of Colorado, Boulder, CO 80309 (United States)
2017-05-20
The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.
Role of magnetic reconnection phenomena in the reversed-field pinch
International Nuclear Information System (INIS)
Baker, D.A.
1983-01-01
The reversed-field pinch (RFP), an axisymmetric toroidal magnetic confinement experiment, has physics rich in the area commonly called field line reconnection or merging. This paper reviews the topics where reconnection plays a vital role: (a) RFP formation and the phenomenon of self-reversal, (b) RFP sustainment in which the RFP configuration has been shown to be capable of maintaining itself for times much longer than earlier predictions from classical resistive MHD theory, (c) steady state current drive in which dynamo action and associated reconnection processes give rise to the possibility of sustaining the configuration indefinitely by means of low frequency ac modulation of the toroidal and poloidal magnetic fields, (d) the effects of reconnection on the formation and evolution of the magnetic surfaces which are intimately related to the plasma containment properties. It appears that all phases of the RFP operation are intimately related to the reconnection and field regeneration processes similar to those encountered in space and astrophysics
Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.
2017-12-01
The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.
International Nuclear Information System (INIS)
Petrie, T.W.; Fenstermacher, M.E.; Allen, S.L.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Greenfield, C.M.; Hyatt, A.W.; Lasnier, C.J.; La Haye, R.J.; Leonard, A.W.; Mahdavi, M.A.; Osborne, T.H.; Porter, G.D.; Rhodes, T.L.; Thomas, D.M.; Watkins, J.G.; West, W.P.; Wolf, N.S.
1999-01-01
Tokamak plasma performance generally improves with increased shaping of the plasma cross section, such as higher elongation and higher triangularity. The stronger shaping, especially higher triangularity, leads to changes in the magnetic topology of the divertor. Because there are engineering and divertor physics issues associated with changes in the details of the divertor flux geometry, especially as the configuration transitions from a single-null (SN) divertor to a marginally balanced double-null (DN) divertor, we have undertaken a systematic evaluation of the plasma characteristics as the magnetic geometry is varied, particularly with respect to (1) energy confinement, (2) the response of the plasma to deuterium gas fueling, (3) the operational density range for the ELMing H-mode, and (4) heat flux sharing by the diverters. To quantify the degree of divertor imbalance (or equivalently, to what degree the shape is double-null or single-null), we define a parameter DRSEP. DRSEP is taken as the radial distance between the upper divertor separatrix and the lower divertor separatrix, as determined at the outboard midplane. For example, if DRSEP=O, the configuration is a magnetically balanced DN; if DRSEP = +1.0 cm, the divertor configuration is biased toward the upper divertor. Three examples are shown in Fig. 1. In the following discussions, VB drift is directed toward the lower divertor
Farrugia, C. J.; Lugaz, N.; Alm, L.; Vasquez, B. J.; Argall, M. R.; Kucharek, H.; Matsui, H.; Torbert, R. B.; Lavraud, B.; Le Contel, O.; Shuster, J. R.; Burch, J. L.; Khotyaintsev, Y. V.; Giles, B. L.; Fuselier, S. A.; Gershman, D. J.; Ergun, R.; Eastwood, J. P.; Cohen, I. J.; Dorelli, J.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Marklund, G. T.; Paulson, K.; Petrinec, S.; Phan, T.; Pollock, C.
2017-12-01
We present MMS) observations during two dayside magnetopause crossingsunder hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow, and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B ( 20 nT) pointing south, and (ii) a density profile with episodic decreases to values of 0.3 /cc followed by moderate recovery. During the crossings he magnetosheath magnetic field is stronger than the magnetosphere field by a factor of 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S-line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due kinetic Alfvén waves.During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Tperp>Tpar) were observed. Another aim of the paper isto distinguish bow shock-induced field and flow perturbations from reconnection-related signatures.The high resolution MMS data together with 2D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.
Directory of Open Access Journals (Sweden)
M. Pinnock
2003-07-01
Full Text Available Using ionospheric data from the SuperDARN radar network and a DMSP satellite we obtain a comprehensive description of the spatial and temporal pattern of day-side reconnection. During a period of southward interplanetary magnetic field (IMF, the data are used to determine the location of the ionospheric projection of the dayside magnetopause reconnection X-line. From the flow of plasma across the projected X-line, we derive the reconnection rate across 7 h of longitude and estimate it for the total length of the X-line footprint, which was found to be 10 h of longitude. Using the Tsyganenko 96 magnetic field model, the ionospheric data are mapped to the magnetopause, in order to provide an estimate of the extent of the reconnection X-line. This is found to be ~ 38 RE in extent, spanning the whole dayside magnetopause from dawn to dusk flank. Our results are compared with previously reported encounters by the Equator-S and Geotail spacecraft with a reconnecting magnetopause, near the dawn flank, for the same period. The SuperDARN observations allow the satellite data to be set in the context of the whole magnetopause reconnection X-line. The total potential associated with dayside reconnection was ~ 150 kV. The reconnection signatures detected by the Equator-S satellite mapped to a region in the ionosphere showing continuous flow across the polar cap boundary, but the reconnection rate was variable and showed a clear spatial variation, with a distinct minimum at 14:00 magnetic local time which was present throughout the 30-min study period.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionoshere interactions – Space plasma physics (magnetic reconnection
Detection of long nulls in PSR B1706-16, a pulsar with large timing irregularities
Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.
2018-04-01
Single pulse observations, characterizing in detail, the nulling behaviour of PSR B1706-16 are being reported for the first time in this paper. Our regular long duration monitoring of this pulsar reveals long nulls of 2-5 h with an overall nulling fraction of 31 ± 2 per cent. The pulsar shows two distinct phases of emission. It is usually in an active phase, characterized by pulsations interspersed with shorter nulls, with a nulling fraction of about 15 per cent, but it also rarely switches to an inactive phase, consisting of long nulls. The nulls in this pulsar are concurrent between 326.5 and 610 MHz. Profile mode changes accompanied by changes in fluctuation properties are seen in this pulsar, which switches from mode A before a null to mode B after the null. The distribution of null durations in this pulsar is bimodal. With its occasional long nulls, PSR B1706-16 joins the small group of intermediate nullers, which lie between the classical nullers and the intermittent pulsars. Similar to other intermediate nullers, PSR B1706-16 shows high timing noise, which could be due to its rare long nulls if one assumes that the slowdown rate during such nulls is different from that during the bursts.
Reconnecting fragmented sturgeon populations in North American rivers
Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.
2016-01-01
The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.
Magnetic reconnection mediated by hyper-resistive plasmoid instability
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-Min; Bhattacharjee, A. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Max Planck-Princeton Center for Plasma Physics and Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Forbes, Terry G. [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States)
2013-08-15
Magnetic reconnection mediated by the hyper-resistive plasmoid instability is studied with both linear analysis and nonlinear simulations. The linear growth rate is found to scale as S{sub H}{sup 1/6} with respect to the hyper-resistive Lundquist number S{sub H}≡L{sup 3}V{sub A}/η{sub H}, where L is the system size, V{sub A} is the Alfvén velocity, and η{sub H} is the hyper-resistivity. In the nonlinear regime, reconnection rate becomes nearly independent of S{sub H}, the number of plasmoids scales as S{sub H}{sup 1/2}, and the secondary current sheet length and width both scale as S{sub H}{sup −1/2}. These scalings are consistent with a heuristic argument assuming secondary current sheets are close to marginal stability. The distribution of plasmoids as a function of the enclosed flux ψ is found to obey a ψ{sup −1} power law over an extended range, followed by a rapid fall off for large plasmoids. These results are compared with those from resistive magnetohydrodynamic studies.
Utility reconnection services : a new threat to vulnerable consumers?
International Nuclear Information System (INIS)
Lott, S.
2002-10-01
The current status of deregulation or restructuring of the energy and telecommunications sector in Canada and the United States was examined along with its impact on low-income consumers. In particular, this report examined the electricity, natural gas and telephone utilities and the extent to which reconnection services have emerged in Canada. With deregulation and utility restructuring, investment and pricing decisions are made according to market forces and competition. The core functions of the utility are unbundled into generation, transmission and distribution functions. The main impact on residential consumers is that their source of supply may change. This report also examined the regulatory responses to utility reconnection services and the impact of market segmentation in the energy sector. It focused on Canada's legislative framework that protects vulnerable consumers. It also examined the federal regulatory role in energy and telecommunications, siting Ontario as an example. It was noted that the experience in the United States with market segmentation and its negative impact on vulnerable consumers should provide some warnings for Canada. 75 refs
Role of Magnetic Reconnection in Heating Astrophysical Plasmas
Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.
2017-12-01
The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.
Green's function of compressible Petschek-type magnetic reconnection
International Nuclear Information System (INIS)
Penz, Thomas; Semenov, V.S.; Ivanova, V.V.; Heyn, M.F.; Ivanov, I.B.; Biernat, H.K.
2006-01-01
We present a method to analyze the wave and shock structures arising from Petschek-type magnetic reconnection. Based on a time-dependent analytical approach developed by Heyn and Semenov [Phys. Plasmas 3, 2725 (1996)] and Semenov et al. [Phys. Plasmas 11, 62 (2004)], we calculate the perturbations caused by a delta function-shaped reconnection electric field, which allows us to achieve a representation of the plasma variables in the form of Green's functions. Different configurations for the initial conditions are considered. In the case of symmetric, antiparallel magnetic fields and symmetric plasma density, the well-known structure of an Alfven discontinuity, a fast body wave, a slow shock, a slow wave, and a tube wave occurs. In the case of asymmetric, antiparallel magnetic fields, additionally surface waves are found. We also discuss the case of symmetric, antiparallel magnetic fields and asymmetric densities, which leads to a faster propagation in the lower half plane, causing side waves forming a Mach cone in the upper half plane. Complex effects like anisotropic propagation characteristics, intrinsic wave coupling, and the generation of different nonlinear and linear wave modes in a finite β plasma are retained. The temporal evolution of these wave and shock structures is shown
OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION
Energy Technology Data Exchange (ETDEWEB)
Zeng Zhicheng; Cao Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102 (United States); Ji Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)
2013-06-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION
International Nuclear Information System (INIS)
Zeng Zhicheng; Cao Wenda; Ji Haisheng
2013-01-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size ∼ 4'' × 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 Å) He I 10830 Å and broadband (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow (∼2 km s –1 ) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
International Nuclear Information System (INIS)
Nakamura, Naoki; Shibata, Kazunari; Isobe, Hiroaki
2012-01-01
Three-dimensional (3D) component reconnection, where reconnecting field lines are not perfectly anti-parallel, is studied with a 3D magnetohydrodynamic simulation. In particular, we consider the asymmetry of the field strength of the reconnecting field lines. As the asymmetry increases, the generated reconnection jet tends to be parallel to stronger field lines. This is because weaker field lines have higher gas pressure in the initial equilibrium, and hence the gas pressure gradient along the reconnected field lines is generated, which accelerates the field-aligned plasma flow. This mechanism may explain penumbral microjets and other types of jets that are parallel to magnetic field lines.
Electric Current Filamentation at a Non-potential Magnetic Null-point Due to Pressure Perturbation
Czech Academy of Sciences Publication Activity Database
Jelínek, P.; Karlický, Marian; Murawski, K.
2015-01-01
Roč. 812, č. 2 (2015), 105/1-105/9 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Grant - others:EC(XE) 606862 Program:FP7 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * numerical methods * Sun corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015
Leverage points for sustainability transformation.
Abson, David J; Fischer, Joern; Leventon, Julia; Newig, Jens; Schomerus, Thomas; Vilsmaier, Ulli; von Wehrden, Henrik; Abernethy, Paivi; Ives, Christopher D; Jager, Nicolas W; Lang, Daniel J
2017-02-01
Despite substantial focus on sustainability issues in both science and politics, humanity remains on largely unsustainable development trajectories. Partly, this is due to the failure of sustainability science to engage with the root causes of unsustainability. Drawing on ideas by Donella Meadows, we argue that many sustainability interventions target highly tangible, but essentially weak, leverage points (i.e. using interventions that are easy, but have limited potential for transformational change). Thus, there is an urgent need to focus on less obvious but potentially far more powerful areas of intervention. We propose a research agenda inspired by systems thinking that focuses on transformational 'sustainability interventions', centred on three realms of leverage: reconnecting people to nature, restructuring institutions and rethinking how knowledge is created and used in pursuit of sustainability. The notion of leverage points has the potential to act as a boundary object for genuinely transformational sustainability science.
Directory of Open Access Journals (Sweden)
M. Lockwood
2003-04-01
Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-a intensities with oxygen emissions observed simultaneously by the SI-13
Directory of Open Access Journals (Sweden)
M. Lockwood
Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-
Nonparametric Regression Estimation for Multivariate Null Recurrent Processes
Directory of Open Access Journals (Sweden)
Biqing Cai
2015-04-01
Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.
Pair of null gravitating shells: III. Algebra of Dirac's observables
International Nuclear Information System (INIS)
Kouletsis, I; Hajicek, P
2002-01-01
The study of the two-shell system started in 'pair of null gravitating shells I and II' is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and outgoing shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is given
Local modular Hamiltonians from the quantum null energy condition
Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin
2018-03-01
The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .
Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update
Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler
2017-09-01
This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.
A symplectic map for trajectories of magnetic field lines in double-null divertor tokamaks
Crank, Willie; Ali, Halima; Punjabi, Alkesh
2009-11-01
The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in tokamaks can be any coordinates for which a transformation to (ψ,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψ is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct a map that represents the magnetic topology of double-null divertor tokamaks. For this purpose, the generating function of the simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is slightly modified. The resulting map equations for the double-null divertor tokamaks are: x1=x0-ky0(1-y0^2 ), y1=y0+kx1. k is the map parameter. It represents the generic topological effects of toroidal asymmetries. The O-point is at (0.0). The X-points are at (0,±1). The equilibrium magnetic surfaces are calculated. These surfaces are symmetric about the x- and y- axes. The widths of stochastic layer near the X-points in the principal plane, and the fractal dimensions of the magnetic footprints on the inboard and outboard side of upper and lower X-points are calculated from the map. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
Lovelock vacua with a recurrent null vector field
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2018-01-01
Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.044051
Spherical null geodesics of rotating Kerr black holes
International Nuclear Information System (INIS)
Hod, Shahar
2013-01-01
The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.
Null half-supersymmetric solutions in five-dimensional supergravity
International Nuclear Information System (INIS)
Grover, Jai; Gutowski, Jan B.; Sabra, Wafic
2008-01-01
We classify half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which all of the Killing spinors generate null Killing vectors. We show that there are four classes of solutions, and in each class we find the metric, scalars and gauge field strengths. When the scalar manifold is symmetric, the solutions correspond to a class of local near horizon geometries recently found by Kunduri and Lucietti.
Shearfree congruences of null geodesics and Killing tensors
International Nuclear Information System (INIS)
Dietz, W.; Ruediger, R.
1980-01-01
In this communication, the mutual connections between quantities that are generalizations of the notion of a a Killing vector field are investigated. A classification of these quantities in terms of a complex vector field αsub(a) is given. A common feature of all these quantities is that they imply the existence of a pair of shearfree geodetic null congruences. There are no explicit restrictions posed on the Ricci tensor. (author)
Lovelock vacua with a recurrent null vector field
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2018-01-01
Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.97.044051
In Search of the Null: The NCSA 2003 Presidential Address
Directory of Open Access Journals (Sweden)
Beth Davison
2003-10-01
Full Text Available Sociologists usually publish articles where the results show statistically significant differences between two groups of people. Results which show the opposite are generally called 'negative findings,' and are not considered publishable. Davison argues that we really ought to be looking for and encouraging the null finding, especially when social inequality and poverty are the issue. In addition, society as a whole should be working to eliminate poverty and inequality
Zero emission city. Preliminary study; Null-Emissions-Stadt. Sondierungsstudie
Energy Technology Data Exchange (ETDEWEB)
Diefenbach, N; Enseling, A; Werner, P; Flade, A; Greiff, R; Hennings, D; Muehlich, E; Wullkopf, U; Sturm, P; Kieslich, W; Born, R; Grossklos, M; Hatteh, R; Mueller, K; Ratschow, A; Valouch-Fornoff, C
2002-10-01
The idea of a 'zero emission city' is investigated by the Institut Wohnen und Umwelt on behalf of the Federal Minister of Education and Research. After describing the current situation and defining the key parameters of a 'zero emission city', settlement structures, power supply, production processes and transportation are analyzed and linked with the communal action level to obtain a framework for research, activities and actions. The study ends with recommendations for a research programme 'zero emission city'. (orig.) [German] Die von den Staedten der Industrielaender ausgehenden Emissionen stellen im Hinblick auf die globalen Belastungen wie z.B. Treibhauseffekt, Ozonabbau und Versauerung das Hauptproblem dar. Aus diesem Grunde bietet es sich an, den Gedanken der 'Null-Emissions-Stadt', der Vision einer moeglichst emissionsfreien Stadt, aufzugreifen und auf seine Tragfaehigkeit fuer innovative Handlungsmodelle forschungsstrategisch zu ueberpruefen. Das Bundesministerium fuer Bildung und Forschung hat das Institut Wohnen und Umwelt beauftragt, in einer Sondierungsstudie dieser Fragestellung nachzugehen. Nach der Festlegung der Ausgangsbedingungen und Eckpunkte der Vision 'Null-Emissions-Stadt' und der Analyse der vier Handlungsfelder Siedlungsstrukturen, Energieversorgung, Produktionsprozesse (Kreislaufwirtschaft) und Verkehr werden diese aufgegriffen und mit der kommunalen Handlungsebene verknuepft und zu einem Forschungs-, Handlungs- und moeglichen Aktionsrahmen zusammengefuegt. Die Studie schliesst mit Hinweisen fuer die Gestaltung eines Forschungsprogramms 'Null-Emissions-Stadt'. (orig.)
The Quantum Focussing Conjecture and Quantum Null Energy Condition
Koeller, Jason
Evidence has been gathering over the decades that spacetime and gravity are best understood as emergent phenomenon, especially in the context of a unified description of quantum mechanics and gravity. The Quantum Focussing Conjecture (QFC) and Quantum Null Energy Condition (QNEC) are two recently-proposed relationships between entropy and geometry, and energy and entropy, respectively, which further strengthen this idea. In this thesis, we study the QFC and the QNEC. We prove the QNEC in a variety of contexts, including free field theories on Killing horizons, holographic theories on Killing horizons, and in more general curved spacetimes. We also consider the implications of the QFC and QNEC in asymptotically flat space, where they constrain the information content of gravitational radiation arriving at null infinity, and in AdS/CFT, where they are related to other semiclassical inequalities and properties of boundary-anchored extremal area surfaces. It is shown that the assumption of validity and vacuum-state saturation of the QNEC for regions of flat space defined by smooth cuts of null planes implies a local formula for the modular Hamiltonian of these regions. We also demonstrate that the QFC as originally conjectured can be violated in generic theories in d ≥ 5, which led the way to an improved formulation subsequently suggested by Stefan Leichenauer.
Zero emission city. Preliminary study; Null-Emissions-Stadt. Sondierungsstudie
Energy Technology Data Exchange (ETDEWEB)
Diefenbach, N.; Enseling, A.; Werner, P.; Flade, A.; Greiff, R.; Hennings, D.; Muehlich, E.; Wullkopf, U.; Sturm, P.; Kieslich, W.; Born, R.; Grossklos, M.; Hatteh, R.; Mueller, K.; Ratschow, A.; Valouch-Fornoff, C.
2002-10-01
The idea of a 'zero emission city' is investigated by the Institut Wohnen und Umwelt on behalf of the Federal Minister of Education and Research. After describing the current situation and defining the key parameters of a 'zero emission city', settlement structures, power supply, production processes and transportation are analyzed and linked with the communal action level to obtain a framework for research, activities and actions. The study ends with recommendations for a research programme 'zero emission city'. (orig.) [German] Die von den Staedten der Industrielaender ausgehenden Emissionen stellen im Hinblick auf die globalen Belastungen wie z.B. Treibhauseffekt, Ozonabbau und Versauerung das Hauptproblem dar. Aus diesem Grunde bietet es sich an, den Gedanken der 'Null-Emissions-Stadt', der Vision einer moeglichst emissionsfreien Stadt, aufzugreifen und auf seine Tragfaehigkeit fuer innovative Handlungsmodelle forschungsstrategisch zu ueberpruefen. Das Bundesministerium fuer Bildung und Forschung hat das Institut Wohnen und Umwelt beauftragt, in einer Sondierungsstudie dieser Fragestellung nachzugehen. Nach der Festlegung der Ausgangsbedingungen und Eckpunkte der Vision 'Null-Emissions-Stadt' und der Analyse der vier Handlungsfelder Siedlungsstrukturen, Energieversorgung, Produktionsprozesse (Kreislaufwirtschaft) und Verkehr werden diese aufgegriffen und mit der kommunalen Handlungsebene verknuepft und zu einem Forschungs-, Handlungs- und moeglichen Aktionsrahmen zusammengefuegt. Die Studie schliesst mit Hinweisen fuer die Gestaltung eines Forschungsprogramms 'Null-Emissions-Stadt'. (orig.)
Kastor-Traschen black holes, null geodesics and conformal circles
International Nuclear Information System (INIS)
Casey, Stephen
2012-01-01
The Kastor-Traschen metric is a time-dependent solution of the Einstein-Maxwell equations with positive cosmological constant Λ which can be used to describe an arbitrary number of charged dynamical black holes. In this paper, we consider the null geodesic structure of this solution, in particular, focusing on the projection to the space of orbits of the timelike conformal retraction. It is found that these projected light rays arise as integral curves of a system of third-order ordinary differential equations. This system is not uniquely defined, however, and we use the inherent freedom to construct a new system whose integral curves coincide with the projection of distinguished null curves of Kastor-Traschen arising from a magnetic flow. We discuss our results in the one-centre case and demonstrate a link to conformal circles in the limit Λ → 0. We also show how to construct analytic expressions for the projected null geodesics of this metric by exploiting a well-known diffeomorphism between the K-T metric and extremal Reissner-Nordstrom-de Sitter. We make some remarks about the two-centre solution and demonstrate a link with the one-centre case. (paper)
"Time sweet time": circadian characterization of galectin-1 null mice
Directory of Open Access Journals (Sweden)
Rabinovich Gabriel A
2010-04-01
Full Text Available Abstract Background Recent evidence suggests a two-way interaction between the immune and circadian systems. Circadian control of immune factors, as well as the effect of immunological variables on circadian rhythms, might be key elements in both physiological and pathological responses to the environment. Among these relevant factors, galectin-1 is a member of a family of evolutionarily-conserved glycan-binding proteins with both extracellular and intracellular effects, playing important roles in immune cell processes and inflammatory responses. Many of these actions have been studied through the use of mice with a null mutation in the galectin-1 (Lgals1 gene. To further analyze the role of endogenous galectin-1 in vivo, we aimed to characterize the circadian behavior of galectin-1 null (Lgals1-/- mice. Methods We analyzed wheel-running activity in light-dark conditions, constant darkness, phase responses to light pulses (LP at circadian time 15, and reentrainment to 6 hour shifts in light-dark schedule in wild-type (WT and Lgals1-/- mice. Results We found significant differences in free-running period, which was longer in mutant than in WT mice (24.02 vs 23.57 h, p alpha (14.88 vs. 12.35 circadian h, p Conclusions Given the effect of a null mutation on circadian period and entrainment, we indicate that galectin-1 could be involved in the regulation of murine circadian rhythmicity. This is the first study implicating galectin-1 in the mammalian circadian system.
Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo
2018-02-01
Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.
International Nuclear Information System (INIS)
Shimizu, T.; Kondoh, K.
2013-01-01
The 3D instability of the spontaneous fast magnetic reconnection process is studied with magnetohydrodynamics (MHD) simulations, where the 2D model of the spontaneous fast magnetic reconnection is destabilized in three dimension. As well known in many 2D numerical MHD studies, when a 1D current sheet is destabilized with the current-driven anomalous resistivity, the 2D Petschek type fast magnetic reconnection is established. This paper shows that the 2D Petschek type fast magnetic reconnection can be destabilized in three dimension by an initial resistive disturbance which includes a weak fluctuation in the sheet current direction, i.e., along the magnetic neutral line. The resulting 3D fast magnetic reconnection finally becomes intermittent and random through a 3D instability. In addition, it is also shown that the 3D instability is suppressed by the uniform resistivity. It suggests that the 3D instability is caused in the Petschek-type reconnection process which is characterized by a strongly localized magnetic diffusion region and the slow shock acceleration of the plasma jets and is suppressed in the Sweet-Parker type reconnection process
Li, X.; Guo, F.; Li, G.; Li, H.
2016-12-01
Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle acceleration and plasma energization. However, the role of compression in particle acceleration during magnetic reconnection is unclear. We use two approaches to study this issue. First, using fully kinetic simulations, we quantitatively calculate the effect of compression in energy conversion and particle energization during magnetic reconnection for a range of plasma beta and guide field. We show that compression has an important contribution for the energy conversion between the bulk kinetic energy and the internal energy when the guide field is smaller than the reconnecting component. Based on this result, we then study the large-scale reconnection acceleration by solving the Parker's transport equation in a background reconnecting flow provided by MHD simulations. Due to the compression effect, the simulations suggest fast particle acceleration to high energies in the reconnection layer. This study clarifies the nature of particle acceleration in reconnection layer, and may be important to understand particle acceleration and plasma energization during solar flares.
EVIDENCE FOR NEWLY INITIATED RECONNECTION IN THE SOLAR WIND AT 1 AU
International Nuclear Information System (INIS)
Xu, Xiaojun; Ma, Yonghui; Wong, Hon-Cheng; Wang, Yi; Zuo, Pingbing; Wei, Fengsi; Feng, Xueshang; Zhou, Meng; Deng, Xiaohua
2015-01-01
We report the first evidence for a large-scale reconnection exhaust newly initiated in the solar wind using observations from three spacecraft: ACE, Wind, and ARTEMIS P2. We identified a well-structured X-line exhaust using measurements from ARTEMIS P2 in the downstream solar wind. However, in the upstream solar wind, ACE detected the same current sheet that corresponds to the exhaust identified by ARTEMIS P2 data without showing any reconnection signals. We cannot find any reconnection signals from Wind located between ACE and ARTEMIS P2. Within the exhaust, a magnetic island is identified, which is not consistent with the quasi-steady feature as previously reported and provides further evidence that the reconnection is newly initiated. Our observations show that the entering of energetic particles, probably from Earth's bow shock, makes the crucial difference between the non-reconnecting current sheet and the exhaust. Since no obvious driving factors are responsible for the reconnection initiation, we infer that these energetic particles probably play an important role in the reconnection initiation. Theoretical analysis also shows support for this potential mechanism
Observing Formation of Flux Rope by Tether-cutting Reconnection in the Sun
Energy Technology Data Exchange (ETDEWEB)
Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Zhao, Li, E-mail: zkxue@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming Yunnan 650216 (China)
2017-05-10
Tether-cutting reconnection is considered as one mechanism for the formation of a flux rope. It has been proposed for more than 30 years; however, so far, direct observations of it are very rare. In this Letter, we present observations of the formation of a flux rope via tether-cutting reconnection in NOAA AR 11967 on 2014 February 2 by combining observations with the New Vacuum Solar Telescope and the Solar Dynamic Observatory . The tether-cutting reconnection occurs between two sets of highly sheared magnetic arcades. Comprehensive observational evidence of the reconnection is as follows: changes of the connections between the arcades, brightenings at the reconnection site, hot outflows, formation of a flux rope, slow-rise motion of the flux rope, and flux cancelation. The outflows are along three directions from the reconnection site to the footpoints with the velocities from 24 ± 1 km s{sup −1} to 69 ± 5 km s{sup −1}. Additionally, it is found that the newly formed flux rope connects far footpoints and has a left-handed twisted structure with many fine threads and a concave-up-shape structure in the middle. All the observations are in agreement with the tether-cutting model and provide evidence that tether-cutting reconnection leads to the formation of the flux rope associated with flux shear flow and cancelation.
Denton, R. E.; Sonnerup, B. U. O.; Hasegawa, H.; Phan, T. D.; Russell, C. T.; Strangeway, R.; Giles, B. L.; Gershman, D.; Torbert, R. B.
2016-01-01
We analyze a magnetopause crossing by the Magnetospheric Multiscale (MMS) spacecraft at 1307 UT on 16 October 2016 that showed features of electron-scale reconnection. For this event, we find orthonormal LMN coordinates from the magnetic field, with N and L varying respectively along the maximum gradient and maximum variance directions. We find the motion along N from the Spatio-Temporal Difference analysis and motion along L from measured particle velocities. We locate the position of the magnetic X point, finding that MMS-4 passed within about 1A km from the X point and that MMS-3 and MMS-2 passed within about 1.7 km and 2.4 km, respectively, from the position of maximum out of plane current.
Energy Technology Data Exchange (ETDEWEB)
Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2014-09-01
Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.
Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy
2016-09-01
This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection
Magnetic reconnection in the presence of externally driven and self-generated turbulence
International Nuclear Information System (INIS)
Karimabadi, H.; Lazarian, A.
2013-01-01
Magnetic reconnection is an important process that violates flux freezing and induces change of magnetic field topology in conducting fluids and, as a consequence, converts magnetic field energy into particle energy. It is thought to be operative in laboratory, heliophysical, and astrophysical plasmas. These environments exhibit wide variations in collisionality, ranging from collisionless in the Earth's magnetosphere to highly collisional in molecular clouds. A common feature among these plasmas is, however, the presence of turbulence. We review the present understanding of the effects of turbulence on the reconnection rate, discussing both how strong pre-existing turbulence modifies Sweet-Parker reconnection and how turbulence may develop as a result of reconnection itself. In steady state, reconnection rate is proportional to the aspect ratio of the diffusion region. Thus, two general MHD classes of models for fast reconnection have been proposed, differing on whether they keep the aspect ratio finite by increasing the width due to turbulent broadening or shortening the length of the diffusion layer due to plasmoid instability. One of the consequences of the plasmoid instability model is the possibility that the current sheet thins down to collisionless scales where kinetic effects become dominant. As a result, kinetic effects may be of importance for many astrophysical applications which were considered to be in the realm of MHD. Whether pre-existing turbulence can significantly modify the transition to the kinetic regime is not currently known. Although most studies of turbulent reconnection have been based on MHD, recent advances in kinetic simulations are enabling 3D studies of turbulence and reconnection in the collisionless regime. A summary of these recent works, highlighting similarities and differences with the MHD models of turbulent reconnection, as well as comparison with in situ observations in the magnetosphere and in the solar wind, are presented
Turbulent transport in 2D collisionless guide field reconnection
Muñoz, P. A.; Büchner, J.; Kilian, P.
2017-02-01
Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic
Variational principle for gravity with null and non-null boundaries: a unified boundary counter-term
Energy Technology Data Exchange (ETDEWEB)
Parattu, Krishnamohan; Chakraborty, Sumanta; Padmanabhan, T. [IUCAA, Post Bag 4, Pune (India)
2016-03-15
It is common knowledge that the Einstein-Hilbert action does not furnish a well-posed variational principle. The usual solution to this problem is to add an extra boundary term to the action, called a counter-term, so that the variational principle becomes well-posed. When the boundary is spacelike or timelike, the Gibbons-Hawking-York counter-term is the most widely used. For null boundaries, we had proposed a counter-term in a previous paper. In this paper, we extend the previous analysis and propose a counter-term that can be used to eliminate variations of the ''off-the-surface'' derivatives of the metric on any boundary, regardless of its spacelike, timelike or null nature. (orig.)