WorldWideScience

Sample records for nucleus spin projection

  1. Compound nucleus effects in spin-spin cross sections

    International Nuclear Information System (INIS)

    Thompson, W.J.

    1976-01-01

    By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)

  2. Nucleus: A pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Finnell, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klein, Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-09

    The proposal is to provide institutional infrastructure that facilitates management of research projects, research collaboration, and management, preservation, and discovery of data. Deploying such infrastructure will amplify the effectiveness, efficiency, and impact of research, as well as assist researchers in regards to compliance with both data management mandates and LANL security policy. This will facilitate discoverability of LANL research both within the lab and external to LANL.

  3. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    dorsal cochlear nucleus, we concluded that the serotoninergic projection pattern to the cochlear nucleus is divergent and non-specific. Double-labeled fiber segments were also present, but sparse, in the superior olive, localized mainly in periolivary regions; this indicated that the divergence of dorsal and median raphe neurons that extends throughout regions of the cochlear nucleus also extended well beyond the cochlear nucleus to include at least the superior olivary complex as well.

  4. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  5. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  6. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  7. Nucleus retroambiguus projections to the periaqueductal gray in the cat

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Holstege, G

    2002-01-01

    The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections

  8. The spin-dependent neutralino-nucleus form factor for 127I

    International Nuclear Information System (INIS)

    Ressell, M.T.

    1996-01-01

    We present the results of detailed shell model calculations of the spin-dependent elastic form factor for the nucleus 127 I. the calculations were performed in extremely large model spaces which adequately describe the configuration mixing in this nucleus. Good agreement between the calculated and experimental values of the magnetic moment are found. Other nuclear observables are also compared to experiment. The dependence of the form factor upon the model space and effective interaction is discussed

  9. Spin-forming Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Henry, Dick

    2009-03-20

    In a second development order, spin-forming equipment was again evaluated using the test shape, a hemispherical shell. In this second development order, pure vanadium and alloy titanium (Ti-6Al-4V) were spin-formed, as well as additional copper and 21-6-9 stainless. In the first development order the following materials had been spin-formed: copper (alloy C11000 ETP), 6061 aluminum, 304L stainless steel, 21-6-9 stainless steel, and tantalum-2.5% tungsten. Significant challenges included properly adjusting the rotations-per-minute (RPM), cracking at un-beveled edges and laser marks, redressing of notches, surface cracking, non-uniform temperature evolution in the titanium, and cracking of the tailstock. Lessons learned were that 300 RPM worked better than 600 RPM for most materials (at the feed rate of 800 mm/min); beveling the edges to lower the stress reduces edge cracking; notches, laser marks, or edge defects in the preform doom the process to cracking and failure; coolant is required for vanadium spin-forming; increasing the number of passes to nine or more eliminates surface cracking for vanadium; titanium develops a hot zone in front of the rollers; and the tailstock should be redesigned to eliminate the cylindrical stress concentrator in the center.

  10. Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction

    International Nuclear Information System (INIS)

    Ahmad, I.; Auger, J.P.

    1981-12-01

    The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)

  11. Spin observables at intermediate energies: a tool in viewing the nucleus

    International Nuclear Information System (INIS)

    McClelland, J.B.

    1986-01-01

    This paper attempts to summarize some of the advances made in intermediate nuclear physics through measurements of spin observables, notably in the range of bombarding energies from 100 to 1000 MeV. Relative to measurements of cross section, spin observables offer a highly selective filter in viewing the nucleus. Their general utility is found in their sensitivity to particular nuclear transitions and is further augmented by their simple connections to the NN force. The advantage of higher energies is apparent from the dominance of single-step mechanisms even at large energy losses where general nuclear spin responses may be made. Experimentally, this is an energy range where efficient, high-analyzing-power polarimeters can be coupled with high resolution detection techniques. 29 refs., 5 figs

  12. Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus

    Science.gov (United States)

    Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.

    2018-02-01

    Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.

  13. Spin observables in inelastic proton-nucleus scattering at intermediate energy

    International Nuclear Information System (INIS)

    Smith, R.D.

    1984-01-01

    This dissertation is a study of spin observables in inelastic proton-nucleus reactions for incident proton energies near 1 GeV. At this energy, the dominant reaction mechanisms are (1) quasi-free knockout of one or more nucleons, and (2) pion production through the Δ resonance. The cross section due to quasi-free knockout can be reasonably well understood theoretically in a multiple scattering picture, which uses measured NN amplitudes as input. Calculations of this sort were carried out in reference [10] using scalar NN amplitudes parameterized as Gaussians. The author has extended this picture to include spin dependent NN amplitudes. This allows calculation of all the spin observables, Ay, DLL, DSS, DNN, DLS, and DSL, as well as the cross section dsigma/dOmegadp due to quasi-free knockout of one or more particles. The cross section and polarization Ay have been measured at the LAMPF High Resolution Spectrometer at T/sub L/ = 800 MeV on 12 C. The theoretical results agree well with the data in the quasi-free region. The results for the remaining spin observables provide predictions for experiments which can be performed at LAMPF. By comparing the calculations with the data, it may be possible to separate the contribution due to a quasi-free knockout, and see a signature of quasi-free Δ production in the spin observables

  14. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  15. High-spin lifetime measurements in the N=Z nucleus Kr72

    Science.gov (United States)

    Andreoiu, C.; Svensson, C. E.; Afanasjev, A. V.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Greene, J.; Grinyer, G. F.; Görgen, A.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.

    2007-04-01

    High-spin states in the N=Z nucleus Kr72 have been populated in the Ca40(Ca40, 2α)Kr72 fusion-evaporation reaction at a beam energy of 165 MeV using the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in Kr72 were extended to an excitation energy of ˜24 MeV and angular momentum of 30ℏ. Using the Doppler shift attenuation method the lifetimes of high-spin states were measured for the first time. Excellent agreement between the results of calculations within the isovector mean field theory and experiment is observed both for rotational and deformation properties. No enhancement of quadrupole deformation expected in the presence of isoscalar t=0 np pairing is observed. Current data do not show any evidence for the existence of the isoscalar np pairing.

  16. Projection operator and propagator for an arbitrary integral spin

    CERN Document Server

    Huang Shi Zhong; Wu Ning; Zheng Zhi Peng

    2002-01-01

    Based on the solution of the Bargmann-Wigner equation for an arbitrary integral spin, a direct derivation of the projection operator and propagator for an arbitrary integral spin is presented. The explicit form for the spin projection operators constructed by Behrends and Fronsdal is confirmed. The commutation rules and a general expression for the Feynman propagator for a free particle of arbitrary integral spin are deduced

  17. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    CERN Document Server

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  18. Shell model study of high spin states in the N=50 nucleus 93Tc

    International Nuclear Information System (INIS)

    Ghugre, S.S.; Patel, S.B.; Bhowmik, R.K.

    1994-01-01

    High spin states in the N=50 nucleus 93 Tc were reinvestigated by using the reaction 64 Zn ( 35 Cl, 4p 2n) at a beam energy of 140 MeV. This was done particularly with a view to observe any γ rays upto 2.7 MeV which may have been missed in our earlier study where the experimental conditions were set to observe γ rays upto 2 MeV. We found four new γ rays of energy: 2484, 2164, 2130 and 69 keV. We have placed these γ rays in the level scheme and it now gets extended to 49/2 - . Though there is no substantial change in the level scheme, placing the γ rays in the level scheme has resulted into two important conclusions: (1) We have performed shell model calculations for 93 Tc nucleus within a model space which encompasses an enlarged proton configuration and allows for the excitation of the neutron across the N=50 core. The excitation of a single neutron across the N=50 core satisfactorily explains the new level scheme. (2) The energy of the 17/2 - isomeric state is now unambiguously placed at 2185 keV. (orig.)

  19. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    International Nuclear Information System (INIS)

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs

  20. GABAergic projections to the oculomotor nucleus in the goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    M. Angeles eLuque

    2011-02-01

    Full Text Available The mammalian oculomotor nucleus receives a strong -aminobutyric acid (GABAergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly exclusive ipsilateral projection from vestibular neurons to the oculomotor nucleus via GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe, were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.

  1. PROJECTIONS OF THE PARVOCELLULAR RETICULAR-FORMATION TO THE CONTRALATERAL MESENCEPHALIC TRIGEMINAL NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    MINKELS, RF; JUCH, PJW; TERHORST, GJ; VANWILLIGEN, JD

    1991-01-01

    Projections of the parvocellular reticular nucleus (PCRt) to the contralateral mesencephalic trigeminal nucleus (Me5) were studied in the rat with neurophysiological and neuroanatomical techniques. Three types of responses (classified by latencies) were recorded extracellularly in the Me5 area after

  2. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    Science.gov (United States)

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  3. Microscopic approach of the spectral property of 1+ and high-spin states in 124Te nucleus

    International Nuclear Information System (INIS)

    Shi Zhuyi; Ni Shaoyong; Tong Hong; Zhao Xingzhi

    2004-01-01

    Using a microscopic sdIBM-2+2q·p· approach, the spectra of the low-spin and partial high-spin states in 124 Te nucleus are relatively successfully calculated. In particular, the 1 1 + , 1 2 + , 3 1 + , 3 2 + and 5 1 + states are successfully reproduced, the energy relationship resulting from this approach identifies that the 6 1 + , 8 1 + and 10 1 + states belong to the aligned states of the two protons. This can explain the recent experimental results that the collective structures may coexist with the single-particle states. So this approach becomes a powerful tool for successfully describing the spectra of general nuclei without clear symmetry and of isotopes located at transitional regions. Finally, the aligned-state structure and the broken-pair energy of the two-quasi-particle are discussed

  4. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  5. An autoradiographic study of the projections of the central nucleus of the monkey amygdala

    International Nuclear Information System (INIS)

    Price, J.L.; Amaral, D.G.

    1981-01-01

    The efferent connections of the central nucleus of the monkey amygdala have been studied using the autoradiographic method for tracing axonal projections. Small injections of 3H-amino-acids which are largely confined to the central nucleus lead to the labeling of several brainstem nuclei as far caudally as the spinomedullary junction. A number of intra-amygdaloid connections between the basal and lateral nuclei of the amygdala and the central nucleus are also described. The present findings, taken together with recently reported widespread projections from the temporal association cortex to the amygdala, point out a potentially trisynaptic route between neocortical association regions and a variety of brainstem nuclei, many of which are related to autonomic function

  6. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    International Nuclear Information System (INIS)

    Robinson, T.G.; Beart, P.M.

    1988-01-01

    High affinity uptake of D-[ 3 H]aspartate, [ 3 H]choline and [ 3 H]GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-[ 3 H]aspartate and [ 3 H]choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas [ 3 H]GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-[ 3 H]aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst [ 3 H]GABA uptake was unaltered. D-[ 3 H]aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both [ 3 H]GABA and [ 3 H]choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-[ 3 H]aspartate uptake (39% greater than control), whilst uptake of [ 3 H]GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter

  7. Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin

    NARCIS (Netherlands)

    Luiten, P.G.M.; Gaykema, R.P.A.; Traber, J.; Spencer Jr., D.G.

    1987-01-01

    The present paper deals with a detailed analysis of cortical projections from the magnocellular basal nucleus (MBN) and horizontal limb of the diagonal band of Broca (HDB) in the rat. The MBN and HDB were injected iontophoretically with the anterograde tracer Phaseolus vulgaris leucoagglutinin

  8. Serotonergic Projections and Serotonin Receptor Expression in the Reticular Nucleus of the Thalamus in the Rat

    Czech Academy of Sciences Publication Activity Database

    Rodríguez Arellano, Jose Julio; Noristani, H. N.; Hoover, W. B.; Linley, S. B.; Vertes, R. P.

    2011-01-01

    Roč. 65, č. 9 (2011), s. 919-928 ISSN 0887-4476 R&D Projects: GA ČR GA309/09/1696 Institutional research plan: CEZ:AV0Z50390703 Keywords : reticular nucleus * thalamus * serotonin receptors Subject RIV: FH - Neurology Impact factor: 2.945, year: 2011

  9. Nucleus retroambiguous projections to lumbosacral motoneuronal cell groups in the male cat

    NARCIS (Netherlands)

    Vanderhorst, VGJM; Holstege, G

    1997-01-01

    Recently, in the female cat, nucleus retroambiguus (NRA) projections have been described as distinct motoneuronal cell groups in the lumbar enlargement, possibly involved in lordosis behavior. The present study deals with the NRA-lumbosacral pathway in the male cat, Lumbosacral injections of wheat

  10. Direct projections from the nucleus retroambiguus to cricothyroid motoneurons in the cat

    NARCIS (Netherlands)

    Boers, J.; Klop, E.M.; Hulshoff, A.C.; Weerd, H. de; Holstege, G.

    2002-01-01

    Vocalization can be elicited by stimulation in the periaqueductal gray (PAG). Light-microscopical tracing and physiological studies have revealed that the PAG uses the nucleus retroambiguus (NRA) as a relay to excite the vocalization muscle motoneurons. Direct NRA projections have been demonstrated

  11. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  12. Nature of the Darwin term and (Zα)4m3/M2 contribution to the Lamb shift for an arbitrary spin of the nucleus

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Milstein, A.I.; Sen'kov, R.A.

    1997-01-01

    The contact Darwin term is demonstrated to be of the same origin as the spin-orbit interaction. The (Zα) 4 m 3 /M 2 correction for the Lamb shift, generated by the Darwin term is found for an arbitrary nonvanishing spin of the nucleus, both half-integer and integer. There is also a contribution of the same nature to the nuclear quadrupole moment

  13. Nature of the Darwin term and (Zα)4m3/M2 contribution to the Lamb shift for an arbitrary spin of the nucleus

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Mil'shtejn, A.I.; Sen'kov, R.A.

    1996-01-01

    The contact Darwin term is demonstrated to be of the same origin as the spin-orbit interactions. The (Zα) 4 m 3 /M 2 correction to the Lamb shift, generated by the Darwin term, is found for an arbitrary nonvanishing spin of the nucleus, both half-integer and integer. There is also a contribution of the same nature to the nuclear quadrupole moment [ru

  14. Nature of the Darwin term and (Zα)4 m3/M2 contribution to the Lamb shift for an arbitrary spin of the nucleus

    International Nuclear Information System (INIS)

    Khriplovich, I.B.

    1996-01-01

    The contact Darwin term is demonstrated to be of the same origin as the spin-orbit interaction. The (Zα) 4 m 3 /M 2 correction to the Lamb shift, generated by the Darwin term, is found for an arbitrary nonvanishing spin of the nucleus, both half-integer and integer. There is also a contribution of the same nature to the nuclear quadrupole moment. (orig.)

  15. Nature of the Darwin term and (Zα)4m3/M2 contribution to the Lamb shift for an arbitrary spin of a nucleus

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Milstein, A.I.; Sen'kov, R.A.

    1997-01-01

    The contact Darwin term is demonstrated to be of the same origin at the spin-orbit interaction. The (Zα) 4 m 3 /M 2 correction for the Lamb shift which is generated by the Darwin term, is found for an arbitrary nonvanishing spin of the nucleus, both half-integer and integer. There is also a contribution of the same nature to the nuclear quadrupole moment

  16. Projections of the optic tectum and the mesencephalic nucleus of the trigeminal nerve in the tegu lizard (Tupinambis nigropunctatus).

    Science.gov (United States)

    Ebbesson, S O

    1981-01-01

    Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.

  17. Two-spinor description of massive particles and relativistic spin projection operators

    Directory of Open Access Journals (Sweden)

    A.P. Isaev

    2018-04-01

    Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.

  18. Two-spinor description of massive particles and relativistic spin projection operators

    Science.gov (United States)

    Isaev, A. P.; Podoinitsyn, M. A.

    2018-04-01

    On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.

  19. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  20. Study on the high-spin states and signature inversion of odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2002-01-01

    The high-spin states of odd-odd nucleus 170 Ta were populated via the 155 Gd( 19 F, 4n) 170 Ta reaction with beam energy of 97 MeV provided by the HI-13 tandem accelerator of China Institute of Atomic Energy. Three rotational bands have been pushed to higher spin states and the signature inversion point of the semidecoupled band based on the πh 9/2 1/2 - [541] direct x νi 13/2 configuration has been observed to be 19.5 ℎ. The systematic features of the signature inversion in semidecoupled bands in odd-odd rare earth nuclei were summarized. The systematic differences of signature inversion, especially the difference in the energy splitting between the yrast hands and the semidecoupled hands in odd-odd rare earth nuclei are pointed out and discussed for the first time. It seems that p-n interaction between the odd proton and odd neutron in the odd-odd nuclei plays an important role

  1. Effect of g-boson on spectra of high-spin states in 100Pd nucleus

    International Nuclear Information System (INIS)

    Zhao Xingzhi; Ni Shaoyong; Tong Hong; Shi Zhuyi; Second Northwest Inst. for Minority, Yinchuan; Shi Zhuya

    2007-01-01

    By using a microscopic sdgIBM-2 approach which is the accomplishment of the phenomenological sdgIBM theory and the experimental single-particle energies, the levels of the more complex ground-state band and the high-angular momentum states of y-band on 100 Pd nucleus are successfully reproduced. The ground-state band and γ-band are described well up to J π =16 + and E x =7.00 MeV, and that is larger than that J π 6 + -8 + , E x =2.00 MeV can be successfully reproduced in IBM theory. It has been proved that its yrast states up to the 16 + state are ground states, there may not exist any broken pair quasi-particle state by boson in yrast states. Theoretical analysis and numerical calculation show that to describe successfully spectra on 100 Pd nucleus under the boson approach in IBM theory, it is impossible that the g-boson has been not considered in one. According to the microscopic sdgIBM-2 approach, the 14 1 + state is understood as a result that a neutron g-boson transites into a neutron d-boson and a pair of photos is radiated at same time, and the 14 2 + state is the decoupling state of the 16 1 + state, while the 14 3 + state is the actual ground state. (authors)

  2. A high-spin isomer at high excitation energy in the neutron deficient nucleus $^{152}$Dy

    CERN Document Server

    Jansen, J F W; Chmielewska, D; De Meijer, R J

    1976-01-01

    A T/sub 1/2/=60+or-5 ns isomer at E/sub x/ approximately=5 MeV is found in the /sup 154/Gd( alpha ,6n)/sup 152/Dy reaction. The possible spin values are 15

  3. Transverse spin observables in hadron-hadron and hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Sivers, D.

    1991-01-01

    Transverse, single-spin asymmetries offer a chance to test QCD at the level of ''twist-3'' observables. Early suggestions that such asymmetries necessarily vanish as m q → 0 or involve an extra power of α s can be refuted with a simple example. Recent experimental results support the interpretation of these data in hard-scattering QCD. The asymmetry in the scattering on nuclear targets can provide new, nontrivial information the space-time structure of the interaction. 10 refs., 6 figs

  4. Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect

    Energy Technology Data Exchange (ETDEWEB)

    Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun, E-mail: scopel@sogang.ac.kr, E-mail: koreasds@naver.com, E-mail: pledge200@gmail.com [Department of Physics, Sogang University, Seoul (Korea, Republic of)

    2015-07-01

    Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.

  5. High-Spin Structure in Odd-Odd 160Lu Nucleus

    International Nuclear Information System (INIS)

    Wang Lie-Lin; Lu Jing-Bin; Yang Dong; Ma Ke-Yan; Yin Li-Chang; Zhou Yin-Hang; Wu Xiao-Guang; Wen Shu-Xian; Li Guang-Sheng; Yang Chun-Xiang

    2012-01-01

    The high-spin states of 160 Lu are populated by the fusion-evaporation reaction 144 Sm( 19 F,3n) 160 Lu at beam energies of 90 and 106 MeV. A new level scheme of 160 Lu is established. A possible isomeric state based on the πh 11/2 νh 9/2 configuration is observed. The new decoupled band with the configuration of πd 3/2 [411]1/2 + νi 13/2 [660]1/2 + is established, and the configurations of these similar decoupled bands in the neighboring odd-odd 162−166 Lu nuclei are suggested. A positive parity coupled band is assigned as the πd 5/2 [402]5/2 + νi 13/2 [660]1/2 + configuration. (nuclear physics)

  6. On alignment of deformed nucleus spins as the result of coulomb excitation

    International Nuclear Information System (INIS)

    Aleshin, V.P.; Ofengenden, S.R.

    1981-01-01

    In the framework of sudden impact approximation excitation probabilities and spiral distributions at Coulomb excitation of rotational levels by means of heavy ions are considered. Considerable attention is given to the accuracy of the qsub(ef)(THETA) approximation being a particular case of impact sudden approximation according to which at Coulomb of the even-even nuclei excitation the I spins of excited states are aligned perpendicularly to the symmetry axis of the Rutherford orbit. The analysis of the problem in the framework of a quasiclassical approximation has shown that the greatest deviations of qsub(ef)(THETA) approximation (at fixed constant of a quadrupole interaction q) occur for average scattering angles. Quanta calculation results are given at THETA=90 deg in the range q=0-10 for I=0-18. It has been found that excitation probabilities for dominating transitions are described in the qsub(ef)(THETA) approximation with an error being not higher than 1-2%. At I>=6 the greatest relative errors of the qsub(ef)(THETA) approximation when describing P 1 excitation probabilities do not exceed 30-40%. The relative errors at the description of spiral distributions may reach values being several times greater than the errors in corresponding excitation probabilities. It has been found that at I>=6 spiral distributions have two symmetrically situated maxima concentrated near h=+-hm, where hm=I cos (THETA/2). In the framework the of qsub(ef)(THETA) approximation in these maxima concentrated are from 50 to 70%, or to he exact - up to 80% of P 1 excitation probability [ru

  7. New isomers and medium-spin structure of the 95Y nucleus

    International Nuclear Information System (INIS)

    Urban, W.; Sieja, K.; Simpson, G. S.; Faust, H.; Rzaca-Urban, T.; Zlomaniec, A.; Lukasiewicz, M.; Smith, A. G.; Durell, J. L.; Smith, J. F.; Varley, B. J.; Nowacki, F.; Ahmad, I.

    2009-01-01

    Excited states in 95 Y, populated following the spontaneous fission of 248 Cm and 252 Cf and following fission of 235 U induced by thermal neutrons, were studied by means of γ spectroscopy using the EUROGAM2 and GAMMASPHERE multidetector Ge arrays and the LOHENGRIN fission-fragment separator, respectively. We have found a new (17/2 - ) isomer in 95 Y at 3142.2 keV with a half-life of T 1/2 =14.9(5) ns. Another isomer was identified in 95 Y at 5022.1 keV and it was assigned a spin-parity (27/2 - ). For this isomer a half-life of T 1/2 =65(4) ns was determined and four decay branches were found, including an E3 decay. A new E3 decay branch was also found for the known, 1087.5-keV isomer in 95 Y, for which we measured a half-life of 51.2(9) μs. The B(E3) and B(E1) transition rates, of 2.0 and 3.8x10 -7 W.u., respectively, observed in 95 Y are significantly lower than in the neighboring 96 Zr core, suggesting that octupole correlations in this region are mainly due to the coupling of proton Δj=3 orbitals. Shell-model calculations indicate that the (27/2 - ) isomer in 95 Y corresponds to the πg 9/2 ν(g 7/2 h 11/2 ) maximally aligned configuration and that all three isomers in 95 Y decay, primarily, by M2 transitions between proton g 9/2 and f 5/2 orbitals.

  8. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  9. Investigation of the role of the rho-meson exchange in spin-isospin strength distribution effects in a finite nucleus

    International Nuclear Information System (INIS)

    Cohen, J.

    1984-01-01

    We present a unified study of the role of the rho-exchange interaction in spin-isospin strength distribution effects in a finite nuclear system. We study both the longitudinal (sigma-arrow-rightxqtau/sub lambda/, where q is the momentum transfer to the nucleus) and the transverse (sigma-arrow-right x qtau/sub lambda/) spin channels for a large range of momentum transfer (qapprox.0--600 MeV/c). We examine a number of effective rho-coupling schemes used in the literature. Using the finite-nucleus formalism of Toki and Weise, we examine in detail the response function in the presence of the rho-meson exchange term. The renormalization of matrix elements of spin-isospin sensitive probes is given for the J/sup P/ = 1 + , T = 1 level of 12 C. We analyze the results, gaining some insight into the nature of the longitudinal versus transverse channels and into approximations suggested in the past for handling finite-nucleus calculations. A comparison with local density approximation and infinite nuclear matter with a constant density results is presented for a variety of cases

  10. Spin-off strategies for the improvement of the performance national nuclear R and D project

    International Nuclear Information System (INIS)

    Lee, T. J.; Kim, H. J.; Jung, H. S.; Yang, M. H.; Choi, Y. M.

    1998-01-01

    In the light of the strategic utilization of the national R and D projects, this paper is to induce the spin-off strategies to improve the national R and D effectiveness through analyzing the spin-off characteristics of nuclear technologies, the spin-off status of the advanced countries and the case study of Korean nuclear spin-offs. Spin-off process is viewed as a three-stage operation, such as preparation stage, implementation stage and maintenance stage. In order to find the correlation between the influencing factors and spin-off effectiveness, the Spearman's correlation coefficient was employed as a specific statistical technique. By integrating this correlation, spin-off process and spin-off strategies, this paper presents an efficient frame work to improve the spin-off effectiveness

  11. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  12. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Vrang, N.; Larsen, P.J.

    2003-01-01

    Hypothalamus, Circadian rhythm, Serotonin, Nucleus, Neuronal connections, Phaseolus vulgaris-leucoagglutinin (PHA-L), Cholera toxin (ChB)......Hypothalamus, Circadian rhythm, Serotonin, Nucleus, Neuronal connections, Phaseolus vulgaris-leucoagglutinin (PHA-L), Cholera toxin (ChB)...

  13. VGLUT1 or VGLUT2 mRNA-positive neurons in spinal trigeminal nucleus provide collateral projections to both the thalamus and the parabrachial nucleus in rats.

    Science.gov (United States)

    Zhang, Chun-Kui; Li, Zhi-Hong; Qiao, Yu; Zhang, Ting; Lu, Ya-Cheng; Chen, Tao; Dong, Yu-Lin; Li, Yun-Qing; Li, Jin-Lian

    2018-04-12

    The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.

  14. Progress with the NESC spinning cylinder project and other NESC projects

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hurst, R.C.; Hemsworth, B.

    1995-01-01

    The first international project (NESC I) of the Network of Evaluating Steel Components is a spinning cylinder, pressurized thermal shock (PTS) experiment. The main objective of the project is to validate the non-destructive evaluation and structural mechanics procedures for PWR reactor pressure vessels under PTS conditions. Contributing organizations world-wide will participate in this blind trial which embraces all aspects of structural integrity assessment. This paper describes the progress of the project to date, covering cylinder manufacture and inspection, materials evaluation, structural analysis and test instrumentation. It emphasizes the importance of networking global expertise in a managed framework and of the partnership, co-operation and teamwork developed by the contributing organizations through the five Task Groups constituting the NESC I. Finally, five new initiatives for projects managed by the Network are currently under review and described in this paper

  15. Progress with the NESC spinning cylinder project and other NESC projects

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hurst, R.C.; Hemsworth, B.

    1995-01-01

    The first international project (NESC I) of the Network for Evaluating Steel Components is a spinning cylinder, pressurized thermal shock (PTS) experiment. The main objective of the project is to validate the non-destructive evaluation and structural mechanics procedures for PWR reactor pressure vessels under PTS conditions. Contributing organizations world-wide will participate in this blind trial which embraces all aspects of structural integrity assessment. This paper describes the progress of the project to date, covering cylinder manufacture and inspection, materials evaluation, structural analysis and test instrumentation. It emphasises the importance of networking global expertise in a managed framework and of the partnership, co-operation and teamwork developed by the contributing organizations through the five Task Groups constituting NESC I. Finally, five new initiatives for projects managed by the Network are currently under review and described in this paper. (author). 2 refs, 6 figs

  16. Approximate spin projected spin-unrestricted density functional theory method: Application to diradical character dependences of second hyperpolarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)

    2015-01-22

    We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.

  17. Ascending Projections from the Solitary Tract Nucleus to the Hypothalamus : A Phaseolus vulgaris Lectin Tracing Study in the Rat

    NARCIS (Netherlands)

    Horst, G.J. ter; de Boer, P.; Luiten, P.G.M.; Willigen, J.D. van

    1989-01-01

    The course of the ascending pathways originating from the anterior gustatory and posterior visceral sensory part of the solitary tract nucleus and the topographic organization of the projections to the hypothalamus in the rat were studied with anterogradely transported Phuseolus vulgaris lectin. In

  18. Projections of the central medial nucleus of the thalamus in the rat: Node in cortical, striatal and limbic forebrain circuitry

    Czech Academy of Sciences Publication Activity Database

    Vertes, R. P.; Hoover, W. B.; Rodríguez Arellano, Jose Julio

    2012-01-01

    Roč. 219, 6 SEP (2012), s. 120-136 ISSN 0306-4522 R&D Projects: GA ČR GA309/09/1696 Institutional research plan: CEZ:AV0Z50390703 Keywords : medial prefrontal cortex * insular cortex * nucleus acc umbens Subject RIV: FH - Neurology Impact factor: 3.122, year: 2012

  19. The vomeronasal cortex - afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice.

    Science.gov (United States)

    Gutiérrez-Castellanos, Nicolás; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2014-01-01

    Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  1. Spin-orbit maps and electron spin dynamics for the luminosity upgrade project at HERA

    International Nuclear Information System (INIS)

    Berglund, G.Z.M.

    2001-09-01

    HERA is the high energy electron(positron)-proton collider at deutsches elektronen-synchrotron (DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudinally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been modified to increase the luminosity by a factor of about five and spin rotators have been installed for the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping magnetic fields and other aspects which have profound implications for the polarization. This thesis addresses the problem of calculating the polarization in the upgraded machine and the measures needed to maintain the polarization. A central topic is the construction of realistic spin-orbit transport maps for the regions of overlapping fields and their implementation in existing software. This is the first time that calculations with such fields have been possible. Using the upgraded software, calculations are presented for the polarization that can be expected in the upgraded machine and an analysis is made of the contributions to depolarization from the various parts of the machine. It is concluded that about 50% polarization should be possible. The key issues for tuning the machine are discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model of spin motion to describe electron depolarization and thereby expose a misconception appearing in the literature. (orig.)

  2. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.

    Science.gov (United States)

    Li, Zhendong; Chan, Garnet Kin-Lic

    2017-06-13

    We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints

  3. Observation of high-spin states in the N=84 nucleus 152Er and comparison with shell-model calculations

    International Nuclear Information System (INIS)

    Kuhnert, A.; Alber, D.; Grawe, H.; Kluge, H.; Maier, K.H.; Reviol, W.; Sun, X.; Beck, E.M.; Byrne, A.P.; Huebel, H.; Bacelar, J.C.; Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.

    1992-01-01

    High-spin states in 152 Er have been populated through the 116 Sn( 40 Ar,4n) 152 Er reaction. Prompt and delayed γ-γ-γ-t and γ-e-t coincidences have been measured. Levels and transitions are assigned up to an excitation energy of 15 MeV and spin and parities up to 28 + at 9.7 MeV. A new isomer [t 1/2 =11(1) ns] has been observed at 13.4 MeV. The results are discussed in comparison with neighboring nuclei and with shell-model calculations

  4. Urocortin-1 within the centrally-projecting Edinger-Westphal nucleus is critical for ethanol preference.

    Directory of Open Access Journals (Sweden)

    William J Giardino

    Full Text Available Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp containing the neuropeptide Urocortin-1 (Ucn1 in excessive ethanol (EtOH intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO and wild-type (WT mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2 were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.. Results from these studies revealed that (1 genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2 lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3 genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward.

  5. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi.

    OpenAIRE

    Llano López, Luis H.; Caif, Fernando; Fraile, Miriam; Tinnirello, Belén; Landa-Gargiulo, Adriana I.; Lafuente, José V.; Baiardi, Gustavo Carlos; Gargiulo, Pascual Angel

    2015-01-01

    The effect of the agonism on g-aminobutyric acid (GABA) receptors was studied within medial prefrontal cortex (mPFC), amygdala (AMY) and ventral hipocampus (VH) in the plus-maze test in male rats bilaterally cannulated. These structures send glutamatergic projections to the nucleus accumbens septi (NAS), in which interaction and integration between these afferent pathways has been described. In a previous study of our group, blockade of glutamatergic transmission within NAS induced an anxioly...

  6. Medium-spin levels and a 360 ns Isup(π)=19-/2 isomer in the N=80 nucleus 137La

    International Nuclear Information System (INIS)

    Kortelahti, M.; Pakkanen, A.; Piiparinen, M.; Komppa, T.; Komu, R.

    1981-03-01

    The level structure of 137 La has been studied using the 138 Ba(p,2n) reaction and methods of in-beam γ-ray and conversion-electron spectroscopy. The 137 La level scheme has been established with 21 new levels with spins up to (19/2) - . A 360 ns (19/2) - isomer at 1870 keV has been identified and a (πgsub(7/2)(νhsub(11/2)sup(-1)dsub(3/2)sup(-1)sub(7 - ))sub(19/2) - configuration is suggested for it. The level ordering of the πhsub(11/2)x2 + multiplet has been discussed on the basis of the triaxial rotor-plus-particle model which suggests a slightly oblate triaxial shape to the 137 La nucleus. (author)

  7. SU-E-I-78: Neuromelanin in the Subthalamic Nucleus of Patients with Parkinson's Disease: An Electron Spin Resonance Spectroscopy Study.

    Science.gov (United States)

    Gomez, J; Salmon, C Garrido; Filho, O Baffa; Santos, J Peixoto; Pitella, J

    2012-06-01

    Parkinson disease and related syndromes are associated directly with the concentrations of neuromelanin, iron and other heavy metals, and nowadays it is discussed the possible protective role of neuromelanin by the sequester redox active iron ions, reducing the formation of free hydroxyl radicals and therefore inactivating the iron ions that induce oxidative stress. The aim of this work is to study the concentration ratios between iron ions and neuromelanin in subthalamic nucleus of patients with Parkinson's disease (PD) using Electron Spin Resonance (ESR). Necropsy samples of subthalamic nucleus from eight human brains were studied: three non-affected by any neurodegenerative disease and five with Parkinson's disease. The samples were stored in formaldehyde and washed with a solution of 0.01 molar of ethylenediaminetetraacetic acid. ESR experiments were development in a JEOL FA-200 X-Band spectrometer at different temperatures between -170° C to room temperature. The relative concentrations of each species were estimated from the double integral values of the fitted spectra. For all samples, ESR spectra showed to be composed of three different signals following the Curie's law. One signal was attributed to high-spin ferric ions (g∼ 4.3) in rhomboedric symmetry, Cu(II) ions (close to g=2.0) and neuromelanin (g∼ 2.01). The ferric ions concentration ratio between patients and controls was 3.0±0.2. The same ratio for neuromelanine was 0.24±0.06. Our preliminary results indicated a significant increment of iron concentration in PD samples which agrees with previous histochemical and biochemical reports. This finding and the clear reduction of neuromelanin concentration in PD samples suggest the possible role of neuromelanin as iron ions storage. © 2012 American Association of Physicists in Medicine.

  8. IN15 ultra-high-resolution spin-echo project. First experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schleger, P; Hayes, C [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Kollmar, A [Forschungszentrum Juelich GmbH (Germany)

    1997-04-01

    The IN15 project is a collaboration between the ILL, HMI (Berlin), and FZ (Juelich) to construct a spin-echo spectrometer with a fourier time-range surpassing half a microsecond. Three different operational modes are possible: normal, with neutron focusing, and time-of-flight. Present status of the project is described. (author). 3 refs.

  9. Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)

    2016-02-15

    The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.

  10. The Bell inequality and correlation of spin projection functions

    International Nuclear Information System (INIS)

    Andreev, V A

    2009-01-01

    The Bell inequality two-particle spin states are considered. It is shown that violation of this inequality at experimental verifications is connected with the fact that it is proved for some arbitrary random variables, but in experimental verification random variables of special type are used. A new inequality is constructed. It contains a correlation coefficient of random variables, measured at the experiment, and does not have to be violated at experimental verification. For factorizable and separable states it coincides with the usual Bell inequality.

  11. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2. Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4 µm(2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  12. LOCUS-COERULEUS PROJECTIONS TO THE DORSAL MOTOR VAGUS NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    TERHORST, GJ; TOES, GJ; VANWILLIGEN, JD

    1991-01-01

    The origin of the noradrenergic innervation of the preganglionic autonomic nuclei in the medulla oblongata and spinal cord is still controversial. In this investigation descending connections of the locus coeruleus to the dorsal motor vagus nucleus in the rat are studied with Phaseolus vulgaris

  13. On angular distribution of nucleus fission fragments by fast neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification

  14. Projective multifragments break-up and the electromagnetic field effect of target nucleus

    International Nuclear Information System (INIS)

    Nabil Yasin, M.

    1994-12-01

    This work presents a special type of interactions produced in emulsion targets exposed to different incident beams of light ions at a few GeV per nucleon. The events characterised by multifragment break-up of the projectile nucleus which are produced via peripheral collisions or due to the effect of the Coulomb field of the target nucleus have been selected. The size of impact parameter must be considered for determining the type of the interaction. The results are compared with other collected data at energies (up to 200 GeV/nucleon). The dependence of electromagnetic dissociation cross section on the incident projectile energy is investigated. Also, a comparison of the experimental data with the assumed virtual photon spectrum using Weizsaecker-Williams (WW) method is made. (author). 34 refs, 3 figs, 4 tabs

  15. Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, Yasuhiko

    1985-10-07

    Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of (/sup 3/H)leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface to the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of (/sup 3/H)leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 53 refs.; 9 figs.

  16. Scaling Projections on Spin-Transfer Torque Magnetic Tunnel Junctions

    Science.gov (United States)

    Das, Debasis; Tulapurkar, Ashwin; Muralidharan, Bhaskaran

    2018-02-01

    We investigate scaling of technologically relevant magnetic tunnel junction devices in the trilayer and pentalayer configurations by varying the cross-sectional area along the transverse direction using the non-equilibrium Green's function spin transport formalism. We study the geometry dependence by considering square and circular cross-sections. As the transverse dimension in each case reduces, we demonstrate that the transverse mode energy profile plays a major role in the resistance-area product. Both types of devices show constant tunnel magnetoresistance at larger cross-sectional areas but achieve ultra-high magnetoresistance at small cross-sectional areas, while maintaining low resistance-area products. We notice that although the critical switching voltage for switching the magnetization of the free layer nanomagnet in the trilayer case remains constant at larger areas, it needs more energy to switch at smaller areas. In the pentalayer case, we observe an oscillatory behavior at smaller areas as a result of double barrier tunneling. We also describe how switching characteristics of both kinds of devices are affected by the scaling.

  17. Projection operators and supplementary conditions for superfields with an arbitrary spin

    International Nuclear Information System (INIS)

    Sokatchev, E.

    1975-01-01

    It is shown that a superfield with an external spin j and a nonzero mass contains four non reducible representations of supersymmetry algebra. A general method is proposed for the evolution the representations out of the superfield by using projection operators, derived from Casimir operators. This expansion is also expressed in terms of additional differential conditions

  18. Bilateral cochlear implants in infants: a new approach--Nucleus Hybrid S12 project.

    Science.gov (United States)

    Gantz, Bruce J; Dunn, Camille C; Walker, Elizabeth A; Kenworthy, Maura; Van Voorst, Tanya; Tomblin, Bruce; Turner, Chris

    2010-10-01

    The purpose of this feasibility study was to evaluate whether the use of a shorter-length cochlear implant (10 mm) on one ear and a standard electrode (24 mm) on the contralateral ear is a viable bilateral option for children with profound bilateral sensorineural hearing loss. A secondary purpose of this study was to determine whether the ear with the shorter-length electrode performs similarly to the standard-length electrode. Our goal was to provide an option of electrical stimulation that theoretically might preserve the structures of the scala media and organ of Corti. The study is being conducted as a repeated-measure, single-subject experiment. University of Iowa-Department of Otolaryngology. Eight pediatric patients with profound bilateral sensorineural hearing loss between the ages of 12 and 24 months. Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in the contralateral ear. The Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) parent questionnaire, Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children's Vowel tests will be used to evaluate speech perception and the Minnesota Child Development Inventory and Preschool Language Scales 3 test will be used to evaluate language growth. Preliminary results for 8 children have been collected before and after the operation using the IT-MAIS. All 3 children showed incremental improvements in their IT-MAIS scores overtime. Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children's Vowel word perception results indicated no difference between the individual ears for the 2 children tested. Performance compared with age-matched children implanted with standard bilateral cochlear implants showed similar results to the children implanted with Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in contralateral ears. The use of a shorter-length cochlear implant on one ear and a standard-length electrode on the

  19. Bilateral Cochlear Implants in Infants: A New Approach—Nucleus Hybrid S12 Project

    Science.gov (United States)

    Gantz, Bruce J.; Dunn, Camille C.; Walker, Elizabeth A.; Kenworthy, Maura; Van Voorst, Tanya; Tomblin, Bruce; Turner, Chris

    2010-01-01

    Objective The purpose of this feasibility study was to evaluate whether the use of a shorter-length cochlear implant (10 mm) on one ear and a standard electrode (24 mm) on the contralateral ear is a viable bilateral option for children with profound bilateral sensorineural hearing loss. A secondary purpose of this study was to determine whether the ear with the shorter-length electrode performs similarly to the standard-length electrode. Our goal was to provide an option of electrical stimulation that theoretically might preserve the structures of the scala media and organ of Corti. Study Design The study is being conducted as a repeated-measure, single-subject experiment. Setting University of Iowa—Department of Otolaryngology. Patients Eight pediatric patients with profound bilateral sensorineural hearing loss between the ages of 12 and 24 months. Interventions Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in the contralateral ear. Main Outcome Measures The Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) parent questionnaire, Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children’s Vowel tests will be used to evaluate speech perception and the Minnesota Child Development Inventory and Preschool Language Scales 3 test will be used to evaluate language growth. Results Preliminary results for 8 children have been collected before and after the operation using the IT-MAIS. All 3 children showed incremental improvements in their IT-MAIS scores overtime. Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children’s Vowel word perception results indicated no difference between the individual ears for the 2 children tested. Performance compared with age-matched children implanted with standard bilateral cochlear implants showed similar results to the children implanted with Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in contralateral ears

  20. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  1. Reduction of collectivity at very high spins in 134Nd: Expanding the projected-shell-model basis up to 10-quasiparticle states

    Science.gov (United States)

    Wang, Long-Jun; Sun, Yang; Mizusaki, Takahiro; Oi, Makito; Ghorui, Surja K.

    2016-03-01

    Background: The recently started physics campaign with the new generation of γ -ray spectrometers, "GRETINA" and "AGATA," will possibly produce many high-quality γ rays from very fast-rotating nuclei. Microscopic models are needed to understand these states. Purpose: It is a theoretical challenge to describe high-spin states in a shell-model framework by the concept of configuration mixing. To meet the current needs, one should overcome the present limitations and vigorously extend the quasiparticle (qp) basis of the projected shell model (PSM). Method: With the help of the recently proposed Pfaffian formulas, we apply the new algorithm and develop a new PSM code that extends the configuration space to include up to 10-qp states. The much-enlarged multi-qp space enables us to investigate the evolutional properties at very high spins in fast-rotating nuclei. Results: We take 134Nd as an example to demonstrate that the known experimental yrast and the several negative-parity side bands in this nucleus could be well described by the calculation. The variations in moment of inertia with spin are reproduced and explained in terms of successive band crossings among the 2-qp, 4-qp, 6-qp, 8-qp, and 10-qp states. Moreover, the electric quadrupole transitions in these bands are studied. Conclusions: A pronounced decrease in the high-spin B (E 2 ) of 134Nd is predicted, which suggests reduction of collectivity at very high spins because of increased level density and complex band mixing. The possibility for a potential application of the present development in the study of highly excited states in warm nuclei is mentioned.

  2. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com [School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan Province, 650221 (China); Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221 (China)

    2014-10-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.

  3. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wang, Hanquan

    2014-01-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method

  4. The technique of the modified hamiltonian for construction of the spin-projected wave function

    International Nuclear Information System (INIS)

    Tsaune, A.Ya.; Glushkov, V.N.

    1991-01-01

    A method is suggested to construct the wave function, which is an eigenfunction for operator S 2 . A combination of Lowdin's projection operators and the method of taking into account the orthogonality conditions in variational problems previously developed by the authors is used for determination of the spin-current wave functions component. It is shown that the suggested method gives better results for the energies that the traditional restricted Hartee-Fock scheme

  5. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  6. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    Science.gov (United States)

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway. Copyright © 2015 the American Physiological Society.

  7. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal.

    Science.gov (United States)

    Huang, Hao; Ghosh, Prabhat; van den Pol, Anthony N

    2006-03-01

    The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.

  8. The SOAPS projectSpin-orbit alignment of planetary systems

    Directory of Open Access Journals (Sweden)

    Hebb L.

    2013-04-01

    Full Text Available The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.

  9. Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey : Implications for vocalization and reproductive behavior

    NARCIS (Netherlands)

    VanderHorst, VGJM; Terasawa, E; Ralston, HJ; Holstege, G

    2000-01-01

    The periaqueductal gray (PAG) is known to be essential for vocalization and reproductive behavior. The PAG controls components of these behaviors by means of projections to the nucleus retroambiguus (NRA), a group of premotor neurons in the caudal medulla oblongata. In the accompanying study

  10. Descending Projections From The Nucleus Retroambiguus To The Iliopsoas Motoneuronal Cell Groups In The Female Golden Hamster : Possible role in reproductive behavior

    NARCIS (Netherlands)

    Gerrits, Peter O.; Holstege, Gert

    1999-01-01

    In the cat, the nucleus retroambiguus (NRA) projects to expiratory motoneurons in the brainstem and spinal cord. Recently, it has been demonstrated that the NRA sends fibers to a specific set of motoneurons in the lumbosacral cord, which pathway is thought to play a crucial role in mating behavior.

  11. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: A non-fluorescent double labeling study

    NARCIS (Netherlands)

    T.M. Teune (Thea); J. van der Burg (Johannes); T.J.H. Ruigrok (Tom)

    1995-01-01

    textabstractIn the rat, the extent of collateralization of projections from the cerebellar nuclei to the red nucleus and inferior olive was investigated using a retrograde double labeling technique. The combination of tracers selected, cholera toxin-β-subunit and WGA-BSA-gold, not only enabled the

  12. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness.

    Science.gov (United States)

    Beatty, J A; Sylwestrak, E L; Cox, C L

    2009-08-04

    The lateral parafascicular nucleus (lPf) is a member of the intralaminar thalamic nuclei, a collection of nuclei that characteristically provides widespread projections to the neocortex and basal ganglia and is associated with arousal, sensory, and motor functions. Recently, lPf neurons have been shown to possess different characteristics than other cortical-projecting thalamic relay neurons. We performed whole cell recordings from lPf neurons using an in vitro rat slice preparation and found two distinct neuronal subtypes that were differentiated by distinct morphological and physiological characteristics: diffuse and bushy. Diffuse neurons, which had been previously described, were the predominant neuronal subtype (66%). These neurons had few, poorly-branching, extended dendrites, and rarely displayed burst-like action potential discharge, a ubiquitous feature of thalamocortical relay neurons. Interestingly, we discovered a smaller population of bushy neurons (34%) that shared similar morphological and physiological characteristics with thalamocortical relay neurons of primary sensory thalamic nuclei. In contrast to other thalamocortical relay neurons, activation of muscarinic cholinergic receptors produced a membrane hyperpolarization via activation of M(2) receptors in most lPf neurons (60%). In a minority of lPf neurons (33%), muscarinic agonists produced a membrane depolarization via activation of predominantly M(3) receptors. The muscarinic receptor-mediated actions were independent of lPf neuronal subtype (i.e. diffuse or bushy neurons); however the cholinergic actions were correlated with lPf neurons with different efferent targets. Retrogradely-labeled lPf neurons from frontal cortical fluorescent bead injections primarily consisted of bushy type lPf neurons (78%), but more importantly, all of these neurons were depolarized by muscarinic agonists. On the other hand, lPf neurons labeled by striatal injections were predominantly hyperpolarized by muscarinic

  13. Stimulation sites in the subthalamic nucleus projected onto a mean 3-D atlas of the thalamus and basal ganglia.

    Science.gov (United States)

    Sarnthein, Johannes; Péus, Dominik; Baumann-Vogel, Heide; Baumann, Christian R; Sürücü, Oguzkan

    2013-09-01

    In patients with severe forms of Parkinson's disease (PD), deep brain stimulation (DBS) commonly targets the subthalamic nucleus (STN). Recently, the mean 3-D Morel-Atlas of the basal ganglia and the thalamus was introduced. It combines information contained in histological data from ten post-mortem brains. We were interested whether the Morel-Atlas is applicable for the visualization of stimulation sites. In a consecutive PD patient series, we documented preoperative MRI planning, intraoperative target adjustment based on electrophysiological and neurological testing, and perioperative CT target reconstruction. The localization of the DBS electrodes and the optimal stimulation sites were projected onto the Morel-Atlas. We included 20 patients (median age 62 years). The active contact had mean coordinates Xlat = ±12.1 mm, Yap = -1.8 mm, Zvert = -3.2 mm. There was a significant difference between the initially planned site and the coordinates of the postoperative active contact site (median 2.2 mm). The stimulation site was, on average, more anterior and more dorsal. The electrode contact used for optimal stimulation was found within the STN of the atlas in 38/40 (95 %) of implantations. The cluster of stimulation sites in individual patients-as deduced from preoperative MR, intraoperative electrophysiology and neurological testing-showed a high degree of congruence with the atlas. The mean 3D Morel Atlas is thus a useful tool for postoperative target visualization. This represents the first clinical evaluation of the recently created atlas.

  14. NESC 1 Project - Status Report after the spinning of the NESC cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wintle, J.B. [Welding Inst., Abington (United Kingdom); Hurst, R. [Commission of the European Communities, Petten (Netherlands). Inst. for Advanced Materials; Hemsworth, B. [Nuclear Installations Inspectorate, Liverpool (United Kingdom)

    1998-11-01

    The International Network for Evaluating Steel Components (NESC) addresses issues relating to the validation of the entire process of structural integrity assessment. The first NESC Project is providing a unique insight into the relative roles which NDT, material properties, instrumentation measurements, and stress and fracture analyses can make in providing a robust safety case for pressurised thermal shock of a thick reactor pressure vessel of aged material containing defects. NESC I is unique insofar as the NDT and the analyses of stress and fracture have been carried out without exact knowledge of the defects as is the case in the real world. The project reached a major milestone on 20 March 1997 with the completion of the thermal shock test using the AEA Technology Spinning Cylinder facility at Risley. Early indications suggest that crack propagation has occurred in both the sub clad and through clad defects. (orig.)

  15. NESC I project - Status report after the spinning of the NESC cylinder

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hurst, R.; Hemsworth, B.

    1998-01-01

    The International Network for Evaluating Steel Components (NESC) addresses issues relating to the validation of the entire process of structural integrity assessment. The first NESC Project is providing a unique insight into the relative roles which NDT, material properties, instrumentation measurements, and stress and fracture analyses can make in providing a robust safety case for pressurised thermal shock of a thick reactor pressure vessel of aged material containing defects. NESC I is unique insofar as the NDT and the analyses of stress and fracture have been carried out without exact knowledge of the defects as in the case of the real world. The project reached a major milestone on 20 March 1997 with the completion of the thermal shock test using the AEA Technology Spinning Cylinder facility at Risley. Early indications suggest that crack propagation has occurred in both the sub clad and through clad defects. (author)

  16. NESC 1 Project - Status Report after the spinning of the NESC cylinder

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hurst, R.

    1998-01-01

    The International Network for Evaluating Steel Components (NESC) addresses issues relating to the validation of the entire process of structural integrity assessment. The first NESC Project is providing a unique insight into the relative roles which NDT, material properties, instrumentation measurements, and stress and fracture analyses can make in providing a robust safety case for pressurised thermal shock of a thick reactor pressure vessel of aged material containing defects. NESC I is unique insofar as the NDT and the analyses of stress and fracture have been carried out without exact knowledge of the defects as is the case in the real world. The project reached a major milestone on 20 March 1997 with the completion of the thermal shock test using the AEA Technology Spinning Cylinder facility at Risley. Early indications suggest that crack propagation has occurred in both the sub clad and through clad defects. (orig.)

  17. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin

    Science.gov (United States)

    Grabauskas, Gintautas; Moises, Hylan C

    2003-01-01

    Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30–300 nm) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage

  18. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat

    Science.gov (United States)

    Sanathara, Nayna M.; Moreas, Justine; Mahavongtrakul, Matthew; Sinchak, Kevin

    2014-01-01

    Background Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; aka nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. Methods We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. Results The number of PR and OFQ/N immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple-labeled indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. Conclusion Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis. PMID:24821192

  19. Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I

    1981-01-01

    The high affinity uptake of L-glutamate has been used to investigate the origin and distribution of putative glutamate fibers in restricted parts of the rostral caudatoputamen and the nucleus accumbens of the rat brain. Ablation of the frontal cortex reduced the glutamate uptake heavily (-77%) in the dorsal part of the ipsilateral caudatoputamen, but also led to significant decreases in the ventral parts of the ipsilateral caudatoputamen (-62% and -53%) in the ipsilateral nucleus accumbens (-25% and -18%) and in the contralateral dorsal part of the caudatoputamen (-21%). Lesion of the caudal neocortex reduced the glutamate uptake in the dorsal part of the ipsilateral caudatoputamen only (-23%). Lesions of the fimbria/fornix reduced the glutamate uptake in both parts of the ipsilateral nucleus accumbens (-46% and -34%) and by approximately 20% in the whole dorsoventral extent of the anterior caudatoputamen. The results indicate that the frontal neocortex distributes fibers which may use glutamate as neurotransmitter both to the whole ipsilateral caudatoputamen and to the nucleus accumbens, and also to the dorsal parts of the contralateral caudatoputamen. The caudal neocortex probably sends such fibers to the dorsal ipsilateral caudatoputamen and the caudal allocortex sends such fibers through the fimbria/fornix to the nucleus accumbens and the ventral part of the ipsilateral caudatoputamen. The results thus corroborate previous suggestions of close similarities between the nucleus accumbens and the ventral caudatoputamen.

  20. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi.

    Science.gov (United States)

    Llano López, Luis H; Caif, Fernando; Fraile, Miriam; Tinnirello, Belén; de Gargiulo, Adriana I Landa; Lafuente, José V; Baiardi, Gustavo C; Gargiulo, Pascual A

    2013-01-01

    The effect of the agonism on γ-aminobutyric acid (GABA) receptors was studied within medial prefrontal cortex (mPFC), amygdala (AMY) and ventral hipocampus (VH) in the plus-maze test in male rats bilaterally cannulated. These structures send glutamatergic projections to the nucleus accumbens septi (NAS), in which interaction and integration between these afferent pathways has been described. In a previous study of our group, blockade of glutamatergic transmission within NAS induced an anxiolytic like effect. Three rat groups received either saline or dipotassium chlorazepate (1 or 2 μg/1 μl solution) 15 min before testing. Time spent in the open arms (TSOA), time per entry (TPE), extreme arrivals (EA), open and closed arms entries (OAE, CAE) and relationship between open- and closed-arms quotient (OCAQ) were recorded. In the AMY injected group TSOA, OAE and EA were increased by the higher doses of dipotassium chlorazepate (p < 0.01). In the mPFC, TPE was decreased by both doses (p < 0.05). Injection within ventral hippocampus (VH) decreased TSOA, OAE and OCAQ with lower doses (p < 0.05). When the three studied saline groups were compared, TSOA, OAE, EA and OCAQ were enhanced in the VH group when compared to mPFC and AMY (p < 0.001). Insertion of inner canula (p < 0.001, p < 0.01, p < 0.01) and saline injection showed an increasing significant difference (p < 0.001 in all cases) with the action of guide cannula alone within VH in TSOA, OAE and EA. We conclude that the injection of dipotassium chlorazepate has a differential effect depending of the brain area, leading to facilitatory and inhibitory effects on anxiety processing.

  1. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats.

    Science.gov (United States)

    Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min

    2018-02-01

    The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.

  2. Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock

    International Nuclear Information System (INIS)

    Henderson, Thomas M.; Scuseria, Gustavo E.

    2013-01-01

    The accurate and efficient description of strong electronic correlations remains an important objective in electronic structure theory. Projected Hartree-Fock theory, where symmetries of the Hamiltonian are deliberately broken and projectively restored, all with a mean-field computational scaling, shows considerable promise in this regard. However, the method is neither size extensive nor size consistent; in other words, the correlation energy per particle beyond broken-symmetry mean field vanishes in the thermodynamic limit, and the dissociation limit of a molecule is not the sum of the fragment energies. These two problems are closely related. Recently, Neuscamman [Phys. Rev. Lett. 109, 203001 (2012)] has proposed a method to cure the lack of size consistency in the context of the antisymmetrized geminal power wave function (equivalent to number-projected Hartree-Fock-Bogoliubov) by using a Jastrow-type correlator in Hilbert space. Here, we apply the basic idea in the context of projected Hartree-Fock theory, linearizing the correlator for computational simplicity but extending it to include spin fluctuations. Results are presented for the Hubbard Hamiltonian and for some simple molecular systems

  3. Diabatic interaction potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Lukasiak, A.

    1984-01-01

    Within a refined method for the construction of diabatic states allowing for the treatment of the full spin-orbit coupling, characteristic features of the diabatic potential for nucleus-nucleus collisions are investigated. Approximately 90% of the strong repulsion results from diabatic particle-hole excitations, while only 10% is due to compression. The diabatic interaction potential describes a physical situation intermediate between adiabatic and sudden approximations. (orig.)

  4. Evaluation of excitation energy and spin in fission fragments using the statistical model, and the FIPPS project

    International Nuclear Information System (INIS)

    Faust, H.; Koester, U.; Kessedjian, G.; Sage, C.; Chebboubi, A.

    2013-01-01

    We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project. (authors)

  5. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus.

    Science.gov (United States)

    Brailoiu, Gabriela Cristina; Deliu, Elena; Rabinowitz, Joseph E; Tilley, Douglas G; Koch, Walter J; Brailoiu, Eugen

    2014-05-01

    Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection. © 2014 International Society for Neurochemistry.

  6. Intramedullary projections of the rostral nucleus of the solitary tract in the rat : Gustatory influences on autonomic output

    NARCIS (Netherlands)

    Streefland, C; Jansen, K

    1999-01-01

    The efferent connections of the rostral nucleus of the solitary tract (NTS) in the rat were studied by anterograde transport of Phaseolus vulgaris leucoagglutinin. Rostral to the injection site, fibers travel through the rostral parvocellular reticular formation and deflect medially or laterally

  7. Mesencephalic cuneiform nucleus and its ascending and descending projections serve stress-related cardiovascular responses in the rat

    NARCIS (Netherlands)

    Korte, Sijmen; Jaarsma, D.; Luiten, P.G.M.; Bohus, B.

    The aim of the present study was to explore the neuroanatomic network that underlies the cardiovascular responses of reticular formation origin in the region of the cuneiform nucleus (CNF). The study was performed in urethane anesthetized male Wistar rats. The left iliac artery was supplied with a

  8. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  9. The spin project: safety and performance indicators in different time frames

    International Nuclear Information System (INIS)

    Storck, R.; Becker, D.A.

    2002-01-01

    Safety and performance indicators have been under discussion for many years in several countries and international organisations. If those indicators refer to the long term safety of the total disposal system, they are often called safety indicators. If they refer to the performance of subsystems or the total system from a more technical point of view, they are sometimes called performance indicators. The need for indicators other than dose rates derives e.g. from the long time frames involved in safety assessments of waste disposal systems and the increasing uncertainty in dose rate calculations over time due to uncertainty in evolution of the surface environment and of behaviour of man. Before introducing additional indicators into a safety case of a potential repository site, the applicability and usefulness of different indicators have to be investigated and evaluated. The systematic analysis and testing of safety and performance indicators for use in different time horizons after closure of the disposal facility is the task of the SPIN project. This is done by re-calculating four recent studies concerning repository projects in granite formations. (authors)

  10. F-spin study of rare-earth nuclei using F-spin multiplets and angular momentum projected intrinsic states

    International Nuclear Information System (INIS)

    Diallo, A.F.

    1993-01-01

    The proton-neutron Interacting-Boson Model contains both symmetric and mixed-symmetry proton-neutron boson configurations. These states of different proton-neutron symmetry can be classified in terms of an SU(2) symmetry, called F-spin. This dissertation deals with some new applications of F-spin. Even-even nuclei drawn from the proton and neutron shells 50 + scissor mode, and the gyromagnetic ratios of the ground-band members, for which formulas are derived. A no-free-parameter calculation is performed for the summed M1 strength and the centroid energy of ( 146-158 )Sm isotopes. The g factors of deformed and transitional nuclei in the rare-earth mass region are also computed. The data in all cases are found to be well reproduced, in general. A weak L dependence is predicted for the g factors, and there appears to be no need to include two-body terms in the T(M1) operator for determining the M1 strength

  11. Magnetic dipole excitations of the 163Dy nucleus

    Science.gov (United States)

    Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber

    2014-03-01

    In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.

  12. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  13. Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip

    Science.gov (United States)

    Nakane, R.; Shuto, Y.; Sukegawa, H.; Wen, Z. C.; Yamamoto, S.; Mitani, S.; Tanaka, M.; Inomata, K.; Sugahara, S.

    2014-12-01

    We demonstrate monolithic integration of pseudo-spin-MOSFETs (PS-MOSFETs) using vendor-made MOSFETs fabricated in a low-cost multi-project wafer (MPW) product and lab-made magnetic tunnel junctions (MTJs) formed on the topmost passivation film of the MPW chip. The tunneling magnetoresistance (TMR) ratio of the fabricated MTJs strongly depends on the surface roughness of the passivation film. Nevertheless, after the chip surface was atomically flattened by SiO2 deposition on it and successive chemical-mechanical polish (CMP) process for the surface, the fabricated MTJs on the chip exhibits a sufficiently large TMR ratio (>140%) adaptable to the PS-MOSFET application. The implemented PS-MOSFETs show clear modulation of the output current controlled by the magnetization configuration of the MTJs, and a maximum magnetocurrent ratio of 90% is achieved. These magnetocurrent behaviour is quantitatively consistent with those predicted by HSPICE simulations. The developed integration technique using a MPW CMOS chip would also be applied to monolithic integration of CMOS devices/circuits and other various functional devices/materials, which would open the door for exploring CMOS-based new functional hybrid circuits.

  14. Spin in hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)

  15. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat.

    Science.gov (United States)

    Zhou, Ligang; Furuta, Takahiro; Kaneko, Takeshi

    2004-12-06

    Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. 2004 Wiley-Liss, Inc.

  16. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1, preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN, superior colliculus, and accessory optic system (AOS. In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs. Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.

  17. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections.

    Science.gov (United States)

    Ganchrow, Donald; Ganchrow, Judith R; Cicchini, Vanessa; Bartel, Dianna L; Kaufman, Daniel; Girard, David; Whitehead, Mark C

    2014-05-01

    The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2 -IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. Copyright © 2013 Wiley Periodicals, Inc.

  18. FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Science.gov (United States)

    Ayres, Thomas R.; Kashyap, V.; Saar, S.; Huenemoerder, D.; Korhonen, H.; Drake, J. J.; Testa, P.; Cohen, O.; Garraffo, C.; Granzer, T.; Strassmeier, K.

    2016-03-01

    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Comae Berenices (FK Com: HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet (UV) and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with the Hubble Space Telescope in the UV (1200-3000 Å), using mainly its high-performance Cosmic Origins Spectrograph, but also high precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of timescales over all wavelengths during the week-long main campaign, including a large X-ray flare; “super-rotational broadening” of the far-ultraviolet “hot lines” (e.g., Si IV 1393 Å 8 × 104 K) together with chromospheric Mg II 2800 Å and C II 1335 Å (1-3 × 104 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (˜10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution. COordinated Campaign of Observations and Analysis, Photosphere to Upper Atmosphere, of a Fast-rotating Star.

  19. FK COMAE BERENICES, KING OF SPIN: THE COCOA-PUFS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, Thomas R. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Kashyap, V.; Saar, S.; Drake, J. J.; Testa, P.; Cohen, O.; Garraffo, C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Huenemoerder, D. [Massachusetts Institute of Technology, Cambridge, MA (United States); Korhonen, H. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Granzer, T.; Strassmeier, K., E-mail: Thomas.Ayres@Colorado.edu [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2016-03-15

    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Comae Berenices (FK Com: HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet (UV) and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with the Hubble Space Telescope in the UV (1200–3000 Å), using mainly its high-performance Cosmic Origins Spectrograph, but also high precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5–10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of timescales over all wavelengths during the week-long main campaign, including a large X-ray flare; “super-rotational broadening” of the far-ultraviolet “hot lines” (e.g., Si iv 1393 Å; 8 × 10{sup 4} K) together with chromospheric Mg ii 2800 Å and C ii 1335 Å (1–3 × 10{sup 4} K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (∼10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.

  20. FK COMAE BERENICES, KING OF SPIN: THE COCOA-PUFS PROJECT

    International Nuclear Information System (INIS)

    Ayres, Thomas R.; Kashyap, V.; Saar, S.; Drake, J. J.; Testa, P.; Cohen, O.; Garraffo, C.; Huenemoerder, D.; Korhonen, H.; Granzer, T.; Strassmeier, K.

    2016-01-01

    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Comae Berenices (FK Com: HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet (UV) and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with the Hubble Space Telescope in the UV (1200–3000 Å), using mainly its high-performance Cosmic Origins Spectrograph, but also high precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5–10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of timescales over all wavelengths during the week-long main campaign, including a large X-ray flare; “super-rotational broadening” of the far-ultraviolet “hot lines” (e.g., Si iv 1393 Å; 8 × 10 4 K) together with chromospheric Mg ii 2800 Å and C ii 1335 Å (1–3 × 10 4 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (∼10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution

  1. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

    Science.gov (United States)

    Keistler, Colby R; Hammarlund, Emma; Barker, Jacqueline M; Bond, Colin W; DiLeone, Ralph J; Pittenger, Christopher; Taylor, Jane R

    2017-04-26

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic

  2. Anti p-nucleus interaction

    International Nuclear Information System (INIS)

    Peng, J.C.

    1986-05-01

    Status and future prospects of antiproton-nucleus scattering experiments are presented. These scattering experiments were conducted at antiproton beam momentums of 300 and 600 MeV/c on target nuclei of 6 Li, 12 C, 16 O, 18 O, 40 Ca, 48 Ca, and 208 Pb. Antiproton-proton reactions investigated antiproton-nucleus bound or resonant states in antiproton reactions with d, 6 Li, 12 C, 63 Cu, and 209 Bi. Inelastic scattering experiments investigated the spin-isospin dependence of the NN interactions. 19 refs., 1 fig., 1 tab

  3. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  4. The nucleus

    International Nuclear Information System (INIS)

    Marano, S.

    1998-01-01

    In 1911 E.Rutherford discovered the nucleus. Since then the nucleus has been investigated with more and more powerful tools but it remains the main field of study of nuclear physics. As it is impossible to take into account the interaction of all the nucleons, a theory based on the hypothesis that each nucleon undergoes an average interaction force has been set up. 2 representations have emerged: the Skyrme force and the Gogny force. Both representations match experimental results but are unable to describe fission yields or the multi-fragmentation of very hot nuclei. The mean-field theory can predict the shape of the nuclei according to its energy level. An experimental program involving the Vivitron accelerator and the Euroball detector is due to begin to validate it. By bombarding targets with exotic nuclei nuclear physicists detect new structures and test their collision models. About ten years ago nuclear halos were observed with lithium 11 nuclei. In this nucleus 2 neutrons move in a space larger than the nucleus itself. This discovery has triggered the elaboration of new theories based on nuclear clusters. At very high temperatures the mean-field theory predicts that nuclear matter acts as a fluid. Following the nuclei temperature different ways of decay appear: first evaporation then multi-fragmentation and vaporization. This ultimate stage occurs around 100 milliard celsius degree temperature when the nuclei decays in a multitude of light particles. Isomeric states are studied and could be seen as a way of storing energy. In a very pedagogical way this article gives information to understand the challenges that face nuclear physics today and highlights the contributions of Cea in this field. (A.C.)

  5. Investigation of high spin structure of N ∼ 28 nuclei with PHF model

    International Nuclear Information System (INIS)

    Naik, Z.

    2016-01-01

    Nucleus in 50 mass shows verity of high spin phenomena. Some of them are K-Isomer, Band termination, States Beyond Band termination, Superdeformed Structure, Shape co-existence and many more. Some of these phenomena with Projected Hartree-Fock (PHF) model are addressed and the microscopic structure associate with them is discussed

  6. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

    Science.gov (United States)

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways. PMID:22698695

  7. Involvement of Amylin and Leptin in the Development of Projections from the Area Postrema to the Nucleus of the Solitary Tract

    Directory of Open Access Journals (Sweden)

    Kathrin Abegg

    2017-11-01

    Full Text Available The area postrema (AP and the nucleus of the solitary tract (NTS are important hindbrain centers involved in the control of energy homeostasis. The AP mediates the anorectic action and the inhibitory effect on gastric emptying induced by the pancreatic hormone amylin. Amylin’s target cells in the AP project to the NTS, an integrative relay center for enteroceptive signals. Perinatal hormonal and metabolic factors influence brain development. A postnatal surge of the adipocyte-derived hormone leptin represents a developmental signal for the maturation of projections between hypothalamic nuclei controlling energy balance. Amylin appears to promote neurogenesis in the AP in adult rats. Here, we examined whether amylin and leptin are required for the development of projections from the AP to the NTS in postnatal and adult mice by conducting neuronal tracing studies with DiI in amylin- (IAPP−/− and leptin-deficient (ob/ob mice. Compared to wild-type littermates, postnatal (P10 and adult (P60 IAPP−/− mice showed a significantly reduced density of AP-NTS projections. While AP projections were also reduced in postnatal (P14 ob/ob mice, AP-NTS fiber density did not differ between adult ob/ob and wild-type animals. Our findings suggest a crucial function of amylin for the maturation of neuronal brainstem pathways controlling energy balance and gastrointestinal function. The impaired postnatal development of neuronal AP-NTS projections in ob/ob mice appears to be compensated in this experimental model during later brain maturation. It remains to be elucidated whether an amylin- and leptin-dependent modulation in neuronal development translates into altered AP/NTS-mediated functions.

  8. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  9. Estimation of spin contamination error in dissociative adsorption of Au2 onto MgO(0 0 1) surface: First application of approximate spin projection (AP) method to plane wave basis

    Science.gov (United States)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-06-01

    Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.

  10. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  11. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections

    Science.gov (United States)

    Alhadeff, Amber L.; Holland, Ruby A.; Nelson, Alexandra; Grill, Harvey J.

    2015-01-01

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss

  12. Ghrelin fibers from lateral hypothalamus project to nucleus tractus solitaries and are involved in gastric motility regulation in cisplatin-treated rats.

    Science.gov (United States)

    Gong, Yanling; Liu, Yang; Liu, Fei; Wang, Shasha; Jin, Hong; Guo, Feifei; Xu, Luo

    2017-03-15

    Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Control of intubator associated pneumonia in intensive care unit: results of the GISIO-SItI SPIN-UTI Project].

    Science.gov (United States)

    Agodi, Antonella; Auxilia, Francesco; Barchitta, Martina; D'Errico, Marcello Mario; Montagna, Maria Teresa; Pasquarella, Cesira; Tardivo, Stefano; Mura, Ida

    2014-01-01

    To document reported Intubator Associated Pneumonia (IAP) prevention practices in Intensive Care Units (ICUs) and attitudes towards the implementation of a measurement system. In the framework of the SPIN-UTI project the «Italian Nosocomial Infections Surveillance in ICUs network», two questionnaires were made available online. The first was filled out by physicians working in ICUs in order to collect data on characteristics of physicians and ICUs, on clinical and measurement practices for IAP prevention, and attitudes towards the implementation of a measurement system. The second questionnaire was filled out for each intubated patient in order to collect data on prevention practices during ICU stay. ICUs participating to the fourth edition (2012-2013) of the SPIN-UTI project. Compliance to the component of the European bundle. The components of the bundle for the prevention of IAP are implemented, although to a different level, in the 26 participating ICUs. Overall compliance to all five practices of the European bundle has been reported in 21.1% of the 768 included patients. The present survey has documented a large potential for improvement in clinical and non-clinical practices aimed at preventing IAP in ICUs.

  14. Green marketing - How to put an environmental spin on your energy product, service, program or project

    International Nuclear Information System (INIS)

    Flynn, J.

    1992-01-01

    This paper examines how some smart marketers have quickly picked up on the new consumer interest in protecting the environment, turned it into increased sales and profits and at the same time effectively increased energy conservation. They asked their product developers to improve the environmental benefits of their existing products and to design some new ones. Then they asked their advertising writers to put an environmental spin on their product advertising. Next they made frequent visits to the bank with the increased sales revenues from an expanding market share and at the same time are doing something worthwhile in energy and environmental conservation

  15. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  16. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Spin observables in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1982-01-01

    The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them

  18. Electronic correlation without double counting via a combination of spin projected Hartree-Fock and density functional theories

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Jiménez-Hoyos, Carlos A. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-06-28

    Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.

  19. Path integral for spinning particle in the plane wave field: Global and local projections

    International Nuclear Information System (INIS)

    Boudiaf, N.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation. (orig.)

  20. Antinucleon-nucleus elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs

  1. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    Science.gov (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  2. Thermal analysis simulation for a spin-motor used in the advanced main combustion chamber vacuum plasma spray project using the SINDA computer program

    Science.gov (United States)

    Mcdonald, Gary H.

    1990-01-01

    One of the many design challenges of this project is predicting the thermal effects due to the environment inside the vacuum chamber on the turntable and spin motor spindle assembly. The objective of the study is to model the spin motor using the computer program System Improved Numerical Differencing Analyzer (SINDA). By formulating the appropriate input information concerning the motor's geometry, coolant flow path, material composition, and bearing and motor winding characteristics, SINDA should predict temperatures at various predefined nodes. From these temperatures, hopefully, one can predict if the coolant flow rate is sufficient or if certain mechanical elements such as bearings, O ring seals, or motor windings will exceed maximum design temperatures.

  3. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S.

    Science.gov (United States)

    Ubaldi, Massimo; Giordano, Antonio; Severi, Ilenia; Li, Hongwu; Kallupi, Marsida; de Guglielmo, Giordano; Ruggeri, Barbara; Stopponi, Serena; Ciccocioppo, Roberto; Cannella, Nazzareno

    2016-03-15

    Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system. Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats. Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree. Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse. Copyright © 2016. Published by Elsevier Inc.

  4. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  5. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  6. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  7. Antibiotic consumption and resistance: results of the SPIN-UTI project of the GISIO-SItI.

    Science.gov (United States)

    Agodi, Antonella; Auxilia, Francesco; Barchitta, Martina; Brusaferro, Silvio; D'Errico, Marcello Mario; Montagna, Maria Teresa; Pasquarella, Cesira; Tardivo, Stefano; Mura, Ida

    2015-01-01

    To evaluate trends and association between antibiotic consumption and resistance during an eight-year period, from 2006 to 2013. Prospective multicenter study. Intensive Care Units (ICUs) participating in the four editions of the Italian nosocomial infections surveillance in the ICU Network (Sorveglianza Prospettica delle Infezioni Nosocomiali nelle Unità di Terapia Intensiva, SPIN-UTI project). The isolation density of selected species of microorganisms, antibiotic resistance rates (RRs), incidence density of resistant isolates and antimicrobial usage density were calculated. RRs of carbapenem-resistant Acinetobacter baumannii, of carbapenem-resistant Klebsiella pneumoniae, of third-generation cephalosporin (3GC)-resistant K. pneumoniae and of 3GC-resistant Escherichia coli showed significant increasing trends (p ≤0.001). The consumption of each antibiotic class varied with years, although not significantly. Significant strongly positive correlations were detected between RRs and antibiotic consumption. The present study describes high RRs and increasing trends of resistant microorganisms and highlights the need for continuous comprehensive strategies targeting not only the prudent use of antibiotics, but also infection control measures to limit the epidemic spread of resistant isolates.

  8. InterScience and fusion: Projects, collaborations, and spin-offs

    International Nuclear Information System (INIS)

    Castracane, J.

    1995-01-01

    InterScience, Inc. is a small, high technology research and development company which participates in the mission of the fusion energy research program in a variety of ways. The company specializes in basic physics and advanced technologies applied to research and commercial opportunities. InterScience has numerous federal and private sponsors for research and development activities in plasma physics, electro-optics, materials science, electronics, and biomedical engineering. The company currently has several direct research and development projects which involve the assembly of diagnostic hardware for installation and operation at tokamak facilities both in the U.S. and abroad. In addition, the company works in a technical support capacity for both the magnetic and inertial confinement fusion programs. Successful participation in the Small Business Innovation Research (SBIR) program has provided an avenue for the transfer of expertise from the fusion program to alternate agencies and research areas. Examples of this include fiberoptic sensors with data acquisition systems, advanced spectral imaging and image processing, fiberoptic imaging interferometry for biomedical instrumentation development and, micro-electro-mechanical systems

  9. Pontine and medullary projections to the nucleus retroambiguus : A wheat germ agglutinin horseradish peroxidase and autoradiographic tracing study in the cat

    NARCIS (Netherlands)

    Gerrits, Peter O.; Holstege, Gert

    1996-01-01

    The nucleus retroambiguus (NRA) in the caudal medulla oblongata plays a role in expiration, vocalization, vomiting, and possibly lordosis. The present study tried to determine which structures, in turn, control the NRA. One cell group is the periaqueductal gray (FAG), which is considered to be the

  10. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  11. Pion production in nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1975-06-01

    Current work on pion production in high-energy nucleus-nucleus collisions is reviewed. The majority of existing data are of the inclusive variety in which a single final state pion is detected. Experimental data are compared and their possible contributions to obtaining new information on nuclear structure is discussed. Various models which attempt to explain the observed single-inclusive-pion spectra either on the basis of a nucleon-nucleus interaction in which Fermi motion is included or on some type of cooperative model are examined. Other areas of interest involving pion production include tests of charge symmetry and pion multiplicities. (9 figures, 1 table) (U.S.)

  12. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  13. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    Science.gov (United States)

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  15. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  16. K+-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    The K + -nucleus system is reviewed and comparison with data is made. The principal conclusions are that the theoretical uncertainties in relating the K + -nucleus interaction to the K + -nucleon interaction are very small and hence the positive kaon makes an excellent probe of the nucleus. It is suggested that this particle may be more sensitive to non-nucleonic degrees of freedom (especially quarks) than classical probes

  17. Spin-offs of the Third Mission and social innovation: the case study of the research–training–intervention project of Geodata Ltd

    Directory of Open Access Journals (Sweden)

    Del Gottardo Ezio

    2016-12-01

    Full Text Available As a result of enactment of Law 297/1999, many Italian universities could improve the opportunities in applied research, activating spin-offs and start-ups in conformity with those regulations. This is a new challenge in the universities’ mission: universities are capable (and therefore they are asked to generate not only new knowledge and competent professional profiles, but also to make a new effort in implementing the “third mission” for promoting social innovation. Considering this background, we present a research project - a training intervention named “Participatory culture, personal branding and organisational wellness” - by Espéro Pvt, a spin-off of the University of Salento, for Geodata Engineering Ltd., located in Turin, Italy. Presented below are the theoretical framework (learning organisation, empowerment evaluation and organisational wellness and the methodology, as well as the first results.

  18. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  19. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  20. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  1. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  2. Spinning cylinder experiments SC-I and SC-II: A review of results and analyses provided to the FALSIRE project

    International Nuclear Information System (INIS)

    Morland, E.; Sherry, A.H.

    1993-01-01

    A series of six large-scale experiments have been carried out at AEA Technology using the Spinning Cylinder test facility. Results from two of those experiments (SC-I and SC-II) have been provided to Project FALSIRE and are reviewed in this paper. The Spinning Cylinder tests were carried out using hollow cylinders of 1.4m outer diameter, 0.2m wall thickness and 1.3m length, containing full-length axial defects and fabricated from a modified A508 Class 3 steel. The first Spinning Cylinder test (SC-I) was an investigation of stable ductile growth induced via mechanical (primary) loading and under conditions of contained yielding. Mechanical loading was provided in the hoop direction by rotating the cylinder about its major axis within an enclosed oven. The second test (SC-II) investigated stable ductile growth under severe thermal shock (secondary) loading again under conditions of contained yielding. In this case thermal shock was produced by spraying cold water on the inside surface of the heated cylinder whilst it was rotating. For each experiment, results are presented in terms of a number of variables, eg. crack growth, temperature, stress, strain and applied K and J. In addition, an overview of the analyses of the FALSIRE Phase-1 report is also presented with respect to test SC-I and SC-II. 4 refs., 14 figs., 13 tabs

  3. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  4. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  5. Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics

    International Nuclear Information System (INIS)

    Trukhanova, Mariya Iv.

    2015-01-01

    We have developed a method of quantum hydrodynamics (QHD) that describes particles with spin-up and with spin-down in separate. We have derived the equation of the spin current evolution as a part of the set of the quantum hydrodynamics equations that treat particles with different projection of spin on the preferable direction as two different species. We have studied orthogonal propagation of waves in the external magnetic field and determined the contribution of quantum corrections due to the Bohm potential and to magnetization energy of particles with different projections of spin in the spin-current wave dispersion. We have analyzed the limits of weak and strong magnetic fields. - Highlights: • We derive the spin current equation for particles with different projection of spin. • We predict the contribution of Bohm potential to the dynamics of spin current. • We derive the spin-current wave in the system of spin-polarized particles. • We study the propagation of spin-acoustic wave in magnetized dielectrics.

  6. Spin and parity assignments to dipole excitations of the odd-mass nucleus {sup 207}Pb from nuclear resonance fluorescence experiments with linearly-polarized {gamma}-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N; Fritzsche, M; Savran, D [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, T C [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Ahmed, M W; Tonchev, A P; Tornow, W; Weller, H R [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V, E-mail: pietralla@ikp.tu-darmstadt.d [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States)

    2010-01-01

    Pb({gamma}-vector ,{gamma}') photon scattering reactions were studied [1] with the nearly monochromatic, linearly polarized photon beams at the High Intensity {gamma}-ray Source (HI{gamma}S) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements.

  7. Phase space representations for spin23

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1991-01-01

    General properties of spin matrices and density ones are considered for any spin s. For spin 2 3 phase space representations are constructed. Representations, similar to the Bell one, for the correlator of projections of two spins 2 3 in the singlet state are found. Quantum analogs of the Bell inequality are obtained. 14 refs

  8. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  9. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  10. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  11. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  12. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  13. Inside a plant nucleus: discovering the proteins

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Šebela, M.; Doležel, Jaroslav

    2015-01-01

    Roč. 66, č. 6 (2015), s. 1627-1640 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell nucleus * chromatin * genome function Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  14. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  15. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  16. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  17. Drones, quasi-spin or iso-spin. A comparison of many-body techniques for general spin

    International Nuclear Information System (INIS)

    McKenzie, B.J.; Stedman, G.E.

    1976-01-01

    For an effective-spin system with 2S + 1 levels there are a number of possible mappings of spin onto pseudo-fermion operators. The relative merits of three of these methods are investigated by calculating to second order the dispersion relation for coupled spin-phonon modes in crystals containing S = 1 effective spin impurities. It is found that the drone formalism quickly becomes intractable at higher spin values, as does the related quasi-spin formalism developed in contrast with the iso-spin (or Abrinkosov projection) formalism. (author)

  18. The Kemmer-Duffin-Petiau formalism and intermediate-energy deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Kozack, R.E.; Clark, B.C.; Hama, S.; Mishra, V.K.; Kaelbermann, G.; Mercer, R.L.; Ray, L.

    1988-01-01

    The spin-1 Kemmer-Duffin-Petiau (KDP) equations are described and applied to deuteron-nucleus scattering. Comparison with d + 58 Ni elastic scattering data at 400 MeV shows that the KDP model; reproduces experimental spin observables very well. 11 refs., 1 fig

  19. Multifragmentation in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Trautmann, W.; Adloff, J.C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Mueller, W.F.J.; Ngo, C.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Rudolf, G.; Schuettauf, A.; Stuttge, L.

    1993-10-01

    The complete fragmentation of highly excited nuclear systems into fragments of intermediate mass is observed in heavy-ion reactions at relativistic bombarding energies in the range of several hundreds of MeV per nucleon. Similar features are found for peripheral collisions between heavy nuclei and for more central collisions between a heavy and a light nucleus. The partition space explored in multifragment decays is well described by the statistical multifragmentation models. The expansion before breakup is confirmed by the analysis of the measured fragment energies of ternary events in their own rest frame. Collective radial flow is confined to rather small values in these peripheral-type reactions. Many conceptually different models seem to be capable of reproducing the charge correlations measured for the multifragment decays. (orig.)

  20. The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho

    International Nuclear Information System (INIS)

    Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1978-01-01

    The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)

  1. Antiproton-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    Several facets of antinucleon-nucleus interactions are explored. The topics treated are: coherent interactions, production of unusual states and particles in the nuclear medium, and the creation of extreme states of matter by antimatter annihilation. It is found that temperatures of the magnitude necessary to achieve the predicted quark-gluon phase transition are obtained. 20 references

  2. Nucleus accumbens and impulsivity

    NARCIS (Netherlands)

    Basar, K.; Sesia, T.; Groenewegen, H.J.; Steinbusch, H.W.; Visser-vandewalle, V.; Temel, Y.

    2010-01-01

    The multifaceted concept of impulsivity implies that different impulsivity aspects, mediated by different neural processes, influence behavior at different levels. The nucleus accumbens (NAc) is a key component of the neural processes regulating impulsivity. In this review, we discuss the findings

  3. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  4. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  5. Moments of inertia in 162Yb at very high spins

    International Nuclear Information System (INIS)

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  6. Optical simulations for the S3 project - Super separator spectrometer - gamma-electron coincidence spectroscopy of a transfermium nucleus: the 251Md101

    International Nuclear Information System (INIS)

    Dechery, Fabien

    2012-01-01

    In analogy with the atomic closed shells giving rise to the stability and high ionisation energies of noble gases, nuclear physics also has its magic numbers of protons and neutrons which enhance nuclear structure stability. Knowledge of the structure of doubly-magic nuclei, both proton and neutron numbers, is crucial to parameterize theoretical models. The discovery of the next and ultimate magic numbers will provide a strong constraint on the many predictions. These two numbers are like the centre coordinates of an area of enhanced stability of the nuclear chart, well known as 'island of stability'. These superheavy nuclei only exist due to pure quantum shell effects. My thesis work deals with two distinct, but complementary, aspects of fundamental physics with the common goal of studying these extreme mass nuclei structure. The first part corresponds to the development of a next generation instrument for nuclear physics to allow synthesis and spectroscopy studies of superheavy nuclei: the Super Separator Spectrometer S 3 . This project will be installed at SPIRAL2 (GANIL) and has been approved by the French Research National Agency (ANR) within the EQUIPEX framework. It has been designed to take advantage of the high intensity heavy ion beam from the LINAC, giving access to a wide range of physical programs. The second part corresponds to the preparation, realisation and analysis of an experiment on 251-Mendelevium in which the very first prompt gamma-electron coincidence spectroscopy was performed for a transfermium nuclei. (author) [fr

  7. A new spin on nuclei

    International Nuclear Information System (INIS)

    Clark, R.; Wadsworth, B.

    1998-01-01

    of the nucleons (the protons and neutrons) are involved. These nucleons follow well defined orbits inside the nucleus, just like electrons in an atom. The stability of a particular nucleus is closely related to the energies of these orbits. Small changes in the spatial alignment of these orbits lead to changes in the angular momentum (or spin) of the nucleus. Like molecules, nuclei have magnetic moments that are proportional to their angular momentum for a fixed configuration of nucleons. (author)

  8. Characterizing Outbursts and Nucleus Properties of Comet 29P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Fernandez, Yanga

    2015-10-01

    Today's comets are remnant bodies leftover from the era of planet formation in our own Solar System. Therefore characterizing cometary structure and composition can give clues to the thermal, physical, and chemical environment of the protoplanetary disk. However before this long-term 'holy grail' of planetary astronomy can be achieved, we must understand cometary evolution so that we can know how comets have changed since their formation. The phenomenon of cometary activity, where a porous matrix of icy and rocky material turns into the gases and the dust grains we see in a comet's coma, remains a poorly-understood puzzle of short-term cometary evolution. We are in the midst of an ongoing project to understand cometary activity in a particular comet, 29P/Schwassmann-Wachmann 1, by taking advantage of existing imaging datasets that show the comet in outburst. Outbursts are useful for constraining the nucleus's spin state and the location of active areas. We propose here to analyze archival WFPC2 images of comet 29P obtained in March 1996 (Cycle 5, Project 5829), spanning 21 hours, that show the comet in outburst. These data are the highest-resolution imaging of this comet ever obtained while it was in outburst. We will analyze the morphology of the comet's dust coma to constrain properties of the nucleus and of the dust grains themselves. Additionally, we will analyze images taken in May 2000 (Cycle 8, Project 8274) that show the comet at its steady-state level of activity but may also allow us to place further constraints on the nucleus's active regions.

  9. Study of Relativistic Nucleus - Nucleus Collisions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to survey the reaction mechanisms involved in the collision of 60~GeV/nucleon and 200~GeV/nucleon light ions ($^{16}$0 and $^{32}$S provided by a new GSI-LBL injector) with different nuclei, to determine the stopping power of nuclear matter and to search for evidence of the formation of quark matter by comparison to hadron-nucleus reactions at the same incident energies. \\\\ The experimental set-up consists of a 2 m Streamer Chamber in the Vertex Magnet used to detect all the charged particles emerging from the interaction as well as the neutral strange particles that decay inside the chamber. The high energy of the forward-going particles are detected by four sets of calorimeters. A highly segmented Photon Position Detector (PPD) backed up by a 240 segment Ring Calorimeter will cover one unit of rapidity around mid-rapidity. An Intermediate Calorimeter will cover the rest of the forward phase space except for the region around beam rapidity, where a Veto Calorimeter will detect be...

  10. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  11. Universal intrinsic spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Culcer, D.; Sinitsyn, N. A.; Niu, Q.; Jungwirth, Tomáš; MacDonald, A. H.

    2004-01-01

    Roč. 92, č. 12 (2004), 126603/1-126603/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor quantum wells * spin-orbit interaction * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  12. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  13. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  14. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  15. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  16. International Halley Watch: Discipline specialists for near-nucleus studies

    Science.gov (United States)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  17. Spin 1990

    International Nuclear Information System (INIS)

    Anton, Gisela

    1990-01-01

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  18. Spin 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Gisela

    1990-12-15

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  19. Spin tomography

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)

    2003-02-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.

  20. Spin tomography

    International Nuclear Information System (INIS)

    D'Ariano, G M; Maccone, L; Paini, M

    2003-01-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique

  1. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  2. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  3. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  4. High spin rotational bands in 65 Zn

    Indian Academy of Sciences (India)

    The nucleus 30 65 Zn was studied using the 52Cr(16O, 2)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2ħ) with several newly observed transitions placed in it.

  5. Structure of Se at high spin

    Indian Academy of Sciences (India)

    the proton-rich mass-80 nuclei shows considerable variation in going from one nucleus to ... shell gaps at N, Z = 34, 36 and 38 at large deformation. ... systematic increase of the B(E2) values for spins up to I = 14-h has been observed [2] in. 72.

  6. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  7. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  8. Nuclear spin and isospin excitations

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1992-01-01

    A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton

  9. Reconstruction of spin-tensor of 4.43 MeV state density matrix of the 12C nucleus in the 12C(α,αsub(1)γsub(4,43))12C reaction at Esub(α)=25 MeV

    International Nuclear Information System (INIS)

    Gurevich, G.S.; Lebedev, V.M.; Orlova, N.V.; Spasskij, A.V.; Teplov, I.B.; Shakhvorostova, G.V.; Belkina, M.R.

    1984-01-01

    The results of measuring double differential cross sections of the reaction of inelastic scattering 24.8 MeV α-particles sup(12)C(α, αsub(1)γsub(4.43))sup(12)C in different planes of γ-quantum escape relatively to the plane of the reaction phisub(γ)=30, 60 and 90 deg are presented. Non-monochromaticity of the beam-made up 1%. Functions of angular correlation of the reaction are measured for four angles THETAsub(α)=21, 39, 59 and 135 deg corresponding to maxima of differential cross section in angular distribution of inelastically scattered α-particles and for THETAsub(α)=89 deg corresponding to the minimum of angular distribution. The results of measurements permit to reconstruct all the components of irreducible spin-tensors of the matrix of state density 4.43 MeV (2 + ) formed in this reaction. The values of populations of substates by the projection of the spin of this state are obtained. The analysis of the obtained results testify to the fact that mechanism of inelastic scattering is not reduced to impulse approximation and mechanisms associated with delay in interaction do not make noticeable contribution for the given angles of α-particle escape

  10. Reconstruction of spin-tensor of 4. 43 MeV state density matrix of the /sup 12/C nucleus in the /sup 12/C(. cap alpha. ,. cap alpha. sub(1). gamma. sub(4,43))/sup 12/C reaction at Esub(. cap alpha. )=25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G.S.; Lebedev, V.M.; Orlova, N.V.; Spasskij, A.V.; Teplov, I.B.; Shakhvorostova, G.V.; Belkina, M.R. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1984-01-01

    The results of measuring double differential cross sections of the reaction of inelastic scattering 24.8 MeV ..cap alpha..-particles sup(12)C(..cap alpha.., ..cap alpha..sub(1)..gamma..sub(4.43))sup(12)C in different planes of ..gamma..-quantum escape relatively to the plane of the reaction phisub(..gamma..)=30, 60 and 90 deg are presented. Non-monochromaticity of the beam made up 1%. Functions of angular correlation of the reaction are measured for four angles THETAsub(..cap alpha..)=21, 39, 59 and 135 deg corresponding to maxima of differential cross section in angular distribution of inelastically scattered ..cap alpha..-particles and for THETAsub(..cap alpha..)=89 deg corresponding to the minimum of angular distribution. The results of measurements permit to reconstruct all the components of irreducible spin-tensors of the matrix of state density 4.43 MeV (2/sup +/) formed in this reaction. The values of populations of substates by the projection of the spin of this state are obtained. The analysis of the obtained results testify to the fact that mechanism of inelastic scattering is not reduced to impulse approximation and mechanisms associated with delay in interaction do not make noticeable contribution for the given angles of ..cap alpha..-particle escape.

  11. The imaginary part of the nucleus - nucleus optical potential

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1978-01-01

    The contribution to the imaginary nucleus - nucleus optical potential has been estimated by evaluating the energy - conserving seocond-order term in the perturbation series. The incoming nuclear field is supposed to excite nucleons in a nucleus in this calculation and the nuclear excitations are approximated by particle-hole excitations in a Fermi gas. The resulting imaginary potential compares favourably with phenomenological potentials. (author)

  12. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    Science.gov (United States)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1place at J2c2/J1=0.610 (2 ) to the conventional Stripe phase. We compare our results with earlier DMRG and PEPS studies and suggest future directions for resolving remaining issues.

  13. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  14. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  15. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  16. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  17. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  18. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  19. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  20. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  1. Spin Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets

  2. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  3. Dirac phenomenology and hyperon-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mares, J; Jennings, B K [TRIUMF, Vancouver, British Columbia (Canada); Cooper, E D [Fraser Valley Univ. College, Chilliwack, British Columbia (Canada). Dept. of Physics

    1993-05-01

    We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of {Lambda}, {Sigma} and {identical_to} hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f{omega}y. Second, optical potentials for {Lambda} and {Sigma} scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of {Lambda} hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs.

  4. Decrease in collectivity at high spins in 79Rb nucleus

    International Nuclear Information System (INIS)

    Sinha, Rishi Kumar; Dhal, Anukul; Chaturvedi, L.; Agarwal, Priyanka; Suresh Kumar; Jain, A.K.; Monika; Thind, K.S.; Bikram Singh, Bir; Rajesh Kumar; Govil, I.M.; Bringel, P.; Neusser, A.; Rakesh Kumar; Golda, K.S.; Singh, R.P.; Muralithar, S.; Madhvan, N.; Das, J.J.; Bhowmik, R.K.; Sinha, A.K.; Pancholi, S.C.; Joshi, P.K.

    2004-01-01

    The life time for the +ve and -ve parity πg 9/2 πp 3/2 bands in 79 Rb were measured by the Doppler Shift Attenuation Methods (DSAM) to investigate nuclear collectivity as a function of rotational frequency

  5. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II.

    Science.gov (United States)

    Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K

    2014-06-28

    Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.

  6. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  7. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    Science.gov (United States)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  8. The intercalatus nucleus of Staderini.

    Science.gov (United States)

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  9. On the concept of spin

    International Nuclear Information System (INIS)

    Pestov, I.B.

    1997-01-01

    It is substantiated that spin is a notion associated with the group of internal symmetry that is tightly connected with the geometrical structure of spacetime. The wave equation for the description of a particle with spin one half is proposed. On this ground it is shown that the spin of electron is exhibited through the quantum number and accordingly the Dirac equation describes properties of particles with the projection of spin ±h/2. On the contrary, we put forward the conjecture that the spin of the quark cannot be considered as a quantum number, but only as an origin of a non-abelian gauge field. The reason is that the quark and electron from physical, geometrical and group-theoretical points of view differ from each other. It is a deep reason for understanding quark-lepton symmetry and such important phenomena as quark confinement

  10. Signature inversion of the semi-decoupled band in the odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Yang Chunxiang; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2001-01-01

    The high-spin states of the odd-odd nucleus 170 Ta have been studied by the 155 Gd( 19 F, 4n) 170 Ta reaction at the beam energy of 97 MeV. The α = 1 sequence of the semi-decoupled band has been pushed to higher-spin states and the signature inversion point was observed at 19.5 ℎ. the results are compared with those of the neighbouring odd-odd nuclei

  11. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  12. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Penionzhkevich, Yu.

    1993-01-01

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  13. Nucleus-nucleus interactions in the transition energy regime

    International Nuclear Information System (INIS)

    Volant, C.

    1985-02-01

    There are at least two ways for studying large interactions in nucleus-nucleus collisions. One way is to use the method of angular correlations between fission fragments. The aim of the experiments presented here was to make a survey on the role of the various experimental parameters. In that respect three targets have been studied and different projectiles and bombarding energies have been used. Results are presented and discussed

  14. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  15. Structure of the semi-decoupled π 1/2[411] band in odd proton nucleus 169Ta

    International Nuclear Information System (INIS)

    Song Hai; Deng Fuguo; Shao Liqin; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2003-01-01

    High spin states of the odd proton-nucleus 169 Ta have been populated in the reaction 155 Gd( 19 F, 5 n) with beam energies of 97 MeV. Rotational band based on d 3/2 proton 1/2[411] Nilsson state has been pushed up to 39/2 + in the α=1/2 decay sequence. Its signature partner, the α=-1/2 decay sequence with four link transitions has been established and 1/2[411] band in 169 Ta was reassigned to be a semi-decoupled band. The systematics of the signature splitting in the K=1/2 bands in the rear-earth region and the accidental degeneracy conclusion given by the angular projection shell model were discussed

  16. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  17. The effects of spin in gases

    International Nuclear Information System (INIS)

    Laloee, F.; Freed, J.H.

    1988-01-01

    Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids

  18. High spin states and backbending in the light tungsten isotopes

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Johnston, A.; Leigh, J.R.; Slocombe, M.G.; Wright, I.F.

    1976-09-01

    High spin states in 172 W, 174 W, 175 W and 176 W have been studied with ( 16 O,xn) reactions. The ground state bands in 174 W and 176 W backbend in contrast to the more regular gsb in the N = 98 nucleus 172 W. This behaviour and the anomalies in the odd nucleus 175 W are discussed in terms of the influence of neutrons on backbending. (author)

  19. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  20. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  1. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  2. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  3. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  4. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  5. Lifetime measurements in shape transition nucleus 188Pt

    Science.gov (United States)

    Rohilla, Aman; Gupta, C. K.; Singh, R. P.; Muralithar, S.; Chakraborty, S.; Sharma, H. P.; Kumar, A.; Govil, I. M.; Biswas, D. C.; Chamoli, S. K.

    2017-04-01

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4 n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2\\downarrow) values show an initial rise up to 4+ state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model B(E2\\downarrow) values up to 4^+ state suggests an increase in axial deformation of the nucleus. The average absolute β2 = 0.20 (3) obtained from measured B(E2\\downarrow) values matches well the values predicted by CHFB and IBM calculations for oblate ( β2 ˜ -0.19) and prolate (β2 ˜ 0.22) shapes. As the lifetime measurements do not yield the sign of β2, no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

  6. Lifetime measurements in shape transition nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Rohilla, Aman; Gupta, C.K.; Chamoli, S.K. [University of Delhi, Department of Physics and Astrophysics, New Delhi (India); Singh, R.P.; Muralithar, S. [Inter University Accelerator Centre, New Delhi (India); Chakraborty, S.; Sharma, H.P. [Banaras Hindu University, Department of Physics, Varanasi (India); Kumar, A.; Govil, I.M. [Panjab University, Department of Physics, Chandigarh (India); Biswas, D.C. [Bhabha Atomic Research Center, Nuclear Physics Division, Trombay, Mumbai (India)

    2017-04-15

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of {sup 188}Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via {sup 174}Yb({sup 18}O,4n){sup 188}Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2 ↓) values show an initial rise up to 4{sup +} state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in {sup 188}Pt at low spins. The good agreement between experimental and TPSM model B(E2 ↓) values up to 4{sup +} state suggests an increase in axial deformation of the nucleus. The average absolute β{sub 2} = 0.20 (3) obtained from measured B(E2 ↓) values matches well the values predicted by CHFB and IBM calculations for oblate (β{sub 2} ∝ -0.19) and prolate (β{sub 2} ∝ 0.22) shapes. As the lifetime measurements do not yield the sign of β{sub 2}, no definite conclusion can be drawn on the prolate or oblate collectivity of {sup 188}Pt on the basis of present measurements. (orig.)

  7. Shape study of the N=Z waiting-point nucleus 72Kr via beta decay

    CERN Document Server

    Briz Monago, Jose Antonio; Nácher González, Enrique

    The Ph.D. thesis entitled “Shape study of the N=Z waiting-point nucleus 72Kr via beta decay” is devoted to the study of the shape of the ground state of the 72Kr nucleus. It is an N=Z nucleus in the mass region A~70-80 where shape transitions and the shape coexistence phenomena have been identified. Furthermore, this nucleus participates in the rp-process as a waiting point due to the slowdown of the process taking place at the arrival to this nucleus. The study of the properties of this nucleus is interesting from the Nuclear Structure point of view, for the phenomena occurring in its mass region and have been predicted for it, and from the Nuclear Astrophysics for the accurate performance of astrophysical calculations. The β+/EC decay of the 72Kr nucleus has been studied through two complementary experiments at the ISOLDE facility at CERN in Geneva (Switzerland). In one of them, the low-spin structure of the daughter nucleus, 72Br, has been revised via conversion electron spectroscopy where the convers...

  8. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  9. High spin states in 143Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Mukherjee, G.; Mukherjee, A.; Banerjee, P.; Saha Sarkar, M.; Bhattacharya, S.; Goswami, A.; Bhattacharjee, T.; Basu, S.K.; Mukhopadhyaya, S.; Krishichayan; Chakraborty, A.; Gangopadhyay, G.

    2004-01-01

    Large amount of experimental data has been obtained in the recent past on several Nd (Z=60) and Pm (Z=61) isotopes near N=82 shell closure which exhibits an irregular yrast sequence, typical of a non-spherical shape at low spins. The nucleus 143 Sm (Z=62) with a single neutron hole in the N=82 closed shell was investigated as a part of this proposed study

  10. High-spin states in 60Cu

    International Nuclear Information System (INIS)

    Tsan, U.C.; Agard, M.; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1981-04-01

    The 60 Cu nucleus has been studied via the 58 Ni(α, pnγ) reaction using different in-beam γ spectroscopy techniques. As for the other odd-odd Cu, the gsub(9/2) shell plays an important role for the explanation of observed high-spin states. Some of them (in particular 6 - and 9 + states) could be interpreted as two-nucleon states in the framework of a crude shell model

  11. Multiparticle excitations in the 149 Gd superdeformed nucleus. Signature of new C4 nucleus symmetry

    International Nuclear Information System (INIS)

    Theisen, C.

    1995-01-01

    The use of 8 π and EUROGAM phase I multi-detectors for the study of high spin states of 149 Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C 4 symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs

  12. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  13. International Conference on Spin Observables of Nuclear Probes

    CERN Document Server

    Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes

    1988-01-01

    The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra­ tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...

  14. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then

  15. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    International Nuclear Information System (INIS)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L.

    1999-01-01

    The study of muon pairs in the mass region 1.5 μμ 2 in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A·B and centrality is observed

  16. Evidence for a periaqueductal gray-nucleus retroambiguus spinal cord pathway in the rat

    NARCIS (Netherlands)

    Holstege, G.; Kerstens, Lenka; Moes, M.C.; Horst, V.G.J.M. van der

    1997-01-01

    The nucleus retroambiguus in the cat has been shown to receive strong projections from the periaqueductal gray and to send fibres to distinct motoneuronal cell groups in brainstem and spinal cord. The nucleus retroambiguus plays a role in the production of vocalization and possibly copulatory

  17. Spectroscopic Studies of the Nucleus GOLD-195

    Science.gov (United States)

    Fischer, Susan Marie

    The nucleus ^{195}Au has been studied via in-beam gamma -ray and electron spectroscopy with the reactions ^{196}Pt(p,2n)^ {195}Au at beam energies of 12 and 16 MeV, and the reaction ^{rm nat }Ir(alpha,2n) ^{195}Au at a beam energy of 26 MeV. All experiments were performed at the University of Notre Dame tandem accelerator facility and utilized elements of the University of Pittsburgh multi-detector gamma-array and ICEBall mini-orange electron spectrometer. Fifty-five new transitions and thirty-six new energy levels have been observed. The U(6/4) supersymmetric algebra has been proposed to provide a simultaneous description for the positive parity states of the pair of nuclei ^{194 }Pt and ^{195}Au. The observed energy spectra for these nuclei show satisfactory agreement with the U(6/4) predicted spectra. The collective properties including relative B(E2) values for the Pt and Au nuclei in this mass region are also consistent with theoretical predictions. However, the measured E2/M1 mixing ratios for transitions in ^{195} Au indicate that the single particle description for the odd-A nucleus is incomplete. The new data for ^{195}Au is further combined with the existing data for ^{194} Pt and ^{195}Pt within the context of the larger U_{ nu}(6/12) otimes U_{pi}(6/4) supersymmetry. A consistent fit to the energy eigenvalue equation is obtained and a modified prediction for the negative parity states in the odd-odd nucleus ^{196} Au is made. Thus, the proposal of an underlying supersymmetry for the quartet of nuclei ^ {194}Pt-^{195} Pt-^{195}Au- ^{196}Au also appears valid. New transitions and levels involved in the negative parity h_{11/2} decoupled band in ^{195}Au have also been observed. The band appears to be much more fragmented at high spins than the analogous structures in the lighter odd-A Au nuclei, but it is unclear what the source of this difference is. It is, however, proposed that a consistent description for both the positive and negative parity

  18. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  19. Coexisting shape- and high-K isomers in the shape transitional nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: somm@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Biswas, D.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tandel, S.K. [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India); Danu, L.S.; Joshi, B.N.; Prajapati, G.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nag, Somnath [Dept. of Physics, IIT Kharagpur, Kharagpur 721302 (India); Trivedi, T.; Saha, S.; Sethi, J.; Palit, R. [Dept. of Nuclear and Atomic Physics, TIFR, Mumbai 400005 (India); Joshi, P.K. [Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088 (India)

    2014-12-12

    A high-spin study of the shape transitional nucleus {sup 188}Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  20. Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Science.gov (United States)

    Mukhopadhyay, S.; Biswas, D. C.; Tandel, S. K.; Danu, L. S.; Joshi, B. N.; Prajapati, G. K.; Nag, Somnath; Trivedi, T.; Saha, S.; Sethi, J.; Palit, R.; Joshi, P. K.

    2014-12-01

    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B (E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  1. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  2. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  3. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296 ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  4. Formin' actin in the nucleus.

    Science.gov (United States)

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  5. Semiclassical spin transport in spin-orbit-coupled bands

    Czech Academy of Sciences Publication Activity Database

    Culcer, D.; Sinova, J.; Sinitsyn, N. A.; Jungwirth, Tomáš; MacDonald, A. H.; Niu, Q.

    2004-01-01

    Roč. 93, č. 4 (2004), 046602/1-046602/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : spin Hall effect * semiconductor spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  6. Spin voltage generation through optical excitation of complementary spin populations

    Science.gov (United States)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  7. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  8. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    International Nuclear Information System (INIS)

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C.

    1988-01-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-[ 14 C]deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state

  9. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  10. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  11. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    Science.gov (United States)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  12. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  13. The nucleus as a laboratory

    International Nuclear Information System (INIS)

    Blin-Stoyle, R.J.

    1979-01-01

    The nucleus is a complicated many-body structure whose properties when carefully studied can frequently give important information about the underlying elementary particle interactions. This article reviews progress in research of this kind over the last twenty-five years. (author)

  14. The pion-nucleus interaction

    International Nuclear Information System (INIS)

    Afnan, I.R.

    1977-04-01

    The latest developments in the construction of pion-nucleus optical potential are presented and a comparison with the latest data on π+ 12 C is made. The suggested mechanisms for the (p,π) reaction are discussed with a comparison of the theoretical results with experiment. (Author)

  15. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  16. Spin transfer in reactions between heavy ions

    International Nuclear Information System (INIS)

    Dong Pil Min.

    1980-06-01

    The model presented affords a better understanding of the manner in which the orbital angular moment can be converted into an intrinsic spin in the collision between two heavy ions. After referring to the vector fields and the collective energy of a spheroidal nucleus, the calculation of the exchange of nucleons is described and the dissipation function is constructed. The spin transfer and the reorientation of the spin during the reaction are then examined (effect of friction and vibration). The estimated calculations are compared with the results of the 63 Cu+ 197 Au and 86 Kr+ 209 Bi experiments. The sensitivity of the calculation to the parameters of the model is discussed (nuclear potential, vibrational inertial parameter) [fr

  17. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references

  18. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  19. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  20. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  1. Single nucleon emission in relativistic nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors

  2. Transverse Energy in nucleus-nucleus collisions: A review

    International Nuclear Information System (INIS)

    Tincknell, M.

    1988-01-01

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs

  3. Unconventional spin texture of a topologically nontrivial semimetal Sb(110)

    DEFF Research Database (Denmark)

    Strózecka, A.; Eiguren, A.; Bianchi, Marco

    2012-01-01

    The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands...... signal.We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion....

  4. Kaonic nuclei and kaon-nucleus interactions

    CERN Document Server

    Ikuta, K; Masutani, K

    2002-01-01

    Although kaonic atoms provide valuable information concerning the K sup - -nucleus interaction at low energies, they cannot fully determine the K sup - - nucleus optical potential. We demonstrate that K sup - nuclear bound states, if they exist, can be useful in investigating the K sup - -nucleus interaction, especially in the interior of the nucleus. In order to show this possibility, we calculate the double differential cross sections for (K sup - , P) using the Green function method. (author)

  5. Color oscillations of nucleons in a nucleus

    International Nuclear Information System (INIS)

    Petrov, V.A.; Smirnov, A.Yu.

    1987-01-01

    Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom

  6. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  7. The Complex Spin State of 103P-Hartley 2: Kinematics and Orientation in Space

    Science.gov (United States)

    Belton, Michael J. S.; Thomas, Peter; Li, Jian-Yang; Williams, Jade; Carcich, Brian; A'Hearn, Michael F.; McLaughlin, Stephanie; Farnham, Tony; McFadden, Lucy; Lisse, Carey M.; hide

    2013-01-01

    We derive the spin state of the nucleus of Comet 103P/Hartley 2, its orientation in space, and its short-term temporal evolution from a mixture of observations taken from the DIXI (Deep Impact Extended Investigation) spacecraft and radar observations. The nucleus is found to spin in an excited long-axis mode (LAM) with its rotational angular momentum per unit mass, M, and rotational energy per unit mass, E, slowly decreasing while the degree of excitation in the spin increases through perihelion passage. M is directed toward (RA, Dec; J2000) = 8+/-+/- 4 deg., 54 +/- 1 deg. (obliquity = 48 +/- 1 deg.). This direction is likely changing, but the change is probably <6 deg. on the sky over the approx. 81.6 days of the DIXI encounter. The magnitudes of M and E at closest approach (JD 2455505.0831866 2011-11-04 13:59:47.310) are 30.0 +/- 0.2 sq. m/s and (1.56 +/- 0.02) X 10(exp -3) sq. m /sq. s respectively. The period of rotation about the instantaneous spin vector, which points in the direction (RA, Dec; J2000) = 300 +/- 3.2deg., 67 +/- 1.3 deg. at the time of closest approach, was 14.1 +/- 0.3 h. The instantaneous spin vector circulates around M, inclined at an average angle of 33.2 +/- 1.3 deg. with an average period of 18.40 +/- 0.13 h at the time of closest approach. The period of roll around the principal axis of minimum inertia (''long'' axis) at that time is 26.72 +/- 0.06 h. The long axis is inclined to M by approx. 81.2 +/- 0.6 deg. on average, slowly decreasing through encounter. We infer that there is a periodic nodding motion of the long axis with half the roll period, i.e., 13.36+/- 0.03 h, with amplitude of 1 again decreasing through encounter. The periodic variability in the circulation and roll rates during a cycle was at the 2% and 10-14% level respectively. During the encounter there was a secular lengthening of the circulation period of the long axis by 1.3 +/- 0.2 min/d, in agreement with ground-based estimates, while the period of roll around the

  8. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  9. Multi-particle excitations in the superdeformed {sup 149}Gd nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires]|[Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada)]|[AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Hackman, G. [Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada); Ragnarsson, I. [Department of Mathematical Physics, Lund institute of Technology, Box 118 S-221, Lund (Sweden); Theisen, C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Andrews, H.R. [AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Ball, G.C. [AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Beausang, C.W. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX (United Kingdom); Beck, F.A. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Belier, G. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Bentley, M.A. [Staffordshire University, Stoke on Trent (United Kingdom); Byrski, T. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Curien, D. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; France, G. de [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Disdier, D. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Duchene, G. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Haas, B. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Haslip, D.S. [Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada); Janzen, V.P. [Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada)]|[AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Jones, P.M. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX (United Kingdom); Kharraja, B.

    1995-02-20

    Six rotational bands built on superdeformed intrinsic configurations have been observed in the {sup 149}Gd nucleus with the Eurogam spectrometer. Orbital configuration assignments have been suggested on the basis of their effective alignments calculated with the Nilsson-Strutinsky cranking model. Most of the excited bands have identical partners in neighboring nuclei including one case differing by four mass units. Measurements of feeding patterns indicate that the {sup 149}Gd yrast superdeformed band is fed over a wider range of angular momentum than other yrast superdeformed bands in this mass region whereas weaker excited bands in the same nucleus are populated in narrower spin windows. ((orig.))

  10. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  11. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  12. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  13. What is a cometary nucleus

    International Nuclear Information System (INIS)

    Lyttleton, R.A.

    1977-01-01

    Descriptions of actual observed comets associate a range of ill-defined meanings with the term nucleus. In recent years use of the word has been even further extended (or contracted) to mean a postulated solid core constituting the permanent element of a comet and necessarily of size far below resolution and measurability. It is maintained by the postulants that this core, acted upon by solar radiation and the solar wind, is the fount and origin of practically the whole great variety of observed cometary physical phenomena. In order that this micro-nucleus shall 'explain' observed properties, it is endowed with a large number of entirely ad-hoc qualities specially devised to produce the very effects it is wished to explain, but the processes so proffered rely almost entirely on purely verbal asseverations that they will work in the way required. No source or mechanism of origin for the imaginary micro-nucleus, of which there would need to be myriads, is in sight, nor can the assumption explain the dynamical properties of long-period comets and their association with the galactic plane and the solar apex. The postulate is in any event ruled out by Occam's principle as having no basis in fact or theory and is not required to explain the observed properties of comets. The large number of additional special assumptions introduced mean that the structure as a whole does not constitute a proper scientific theory. (author)

  14. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  15. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.

    Science.gov (United States)

    Fu, Yu Hong; Watson, Charles

    2012-01-01

    The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus. Copyright © 2012 S. Karger AG, Basel.

  16. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  17. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  18. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  19. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  20. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  1. Strangeness production in nucleus-nucleus collisions: An experimental review

    International Nuclear Information System (INIS)

    Odyniec, G.

    1990-12-01

    In experiments with oxygen (60 and 200 GeV/N) and sulphur (200 GeV/N) ions at CERNSPS, large energy densities of the order of 2--3 GeV/fm 3 have been observed, which according to QCD calculations, satisfy necessary conditions for the formation of a quark gluon plasma (QGP) phase. Under such conditions, colour would no longer be confined to hadronic dimensions, and quarks and gluons will propagate freely throughout an extended volume. Somehow lower energy densities, of the order of 0.7--1 GeV/fm 3 , were observed in AGS experiments with 15 GeV/N silicon beams and heavy targets. These energy densities might be adequate for investigations of the pre-equilibrium stage, during which the momentum space distribution has been degradated from its initial value but is not yet thermal. First experimental results, available now, show promise of seeing signs of a new phase of matter. In this review the current status of the selective experimental results on strange-particle production, which are relevant to equilibration and QGP formation in nucleus-nucleus collisions, is presented

  2. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  3. Efferent projections of the septum in the Tegu lizard, Tupinambis nigropunctatus.

    Science.gov (United States)

    Sligar, C M; Voneida, T J

    1981-09-01

    A H3 proline or H3 leucine mixture was injected into the septal region of the Tegu lizard in order to determine its efferent projections. The brains were processed according to standard autoradiographic technique and counterstained with cresyl violet. Septal projections were limited to either telencephalic or diencephalic areas. Intratelencephalic projections consisted of efferents to medial pallium, nucleus accumbens, bed nucleus of the anterior commissure, preoptic area and septum itself. Fibers entering the diencephalon projected to medial habenular nucleus, dorsomedial thalamic nucleus, dorsolateral thalamic area, periventricular nucleus of the hypothalamus, lateral hypothalamic area and mammillary nucleus. The results are discussed in relation to the efferent projections of the septum in other vertebrates.

  4. Quarkonia Photoproduction at Nucleus Colliders

    International Nuclear Information System (INIS)

    D'Enterria, David

    2008-01-01

    Exclusive photoproduction of heavy quarkonia in high-energy ultraperipheral ion-ion interactions (γ A →V A, where V = J/ψ, Y and the nucleus A remains intact) offers a useful means to constrain the small-x nuclear gluon density. We discuss preliminary results on J/ψ photoproduction in Au-Au collisions at RHIC [D. d'Enterria [PHENIX Collaboration], Proceeds. Quark Matter'05, (arXiv:nucl-ex/0601001)], as well as full simulation-reconstruction studies of photo-produced Y in Pb-Pb interactions at the LHC [D. d'Enterria (ed.) et al. [CMS Collaboration], J. Phys. G. 34 2307 (2007)

  5. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  6. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  7. Notochord to Nucleus Pulposus Transition.

    Science.gov (United States)

    Lawson, Lisa; Harfe, Brian D

    2015-10-01

    A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

  8. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  9. Alternating spin chain compound AgVOAsO4 probed by 75As NMR

    Science.gov (United States)

    Ahmed, N.; Khuntia, P.; Ranjith, K. M.; Rosner, H.; Baenitz, M.; Tsirlin, A. A.; Nath, R.

    2017-12-01

    75As NMR measurements were performed on a polycrystalline sample of spin-1/2 alternating spin chain Heisenberg antiferromagnet AgVOAsO4. The temperature-dependent NMR shift K (T ) , which is a direct measure of the intrinsic spin susceptibility, agrees very well with the spin-1/2 alternating-chain model, justifying the assignment of the spin lattice. From the analysis of K (T ) , magnetic exchange parameters were estimated as follows: the leading exchange J /kB≃38.4 K and the alternation ratio α =J'/J ≃0.69 . The transferred hyperfine coupling between the 75As nucleus and V4 + spins obtained by comparing the NMR shift with the bulk susceptibility amounts to Ahf≃3.3 TμB. The effect of interchain couplings on the low-temperature activated behavior of K (T ) and the spin-lattice relaxation rate 1 /T1 is identified.

  10. Demand Response Spinning Reserve Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  11. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  12. High spin spectroscopy of 34Cl

    International Nuclear Information System (INIS)

    Bisoi, Abhijit; Ray, S.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.

    2011-01-01

    Spectroscopic information for 34 Cl is of interest for understanding the large 33 S abundance observed in nova. This nucleus has been extensively studied using proton, light ions and alpha beams but there are few experiments where heavy ions were used. In the present work, heavy ion beams are used to extract spectroscopic data for high spin states above ∼ 5 MeV, important for astrophysical scenario. Spherical shell model calculations have been done to interpret the experimental data. Several options of truncation adopted have provided useful insight into the sd - fp cross-shell calculations

  13. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  14. High spin states in 62Cu

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Agard, M.; Bruandet, J.F.; Giorni, A.; Glasser, F.; Longequeue, J.P.; Morand, C.

    1977-06-01

    The 62 Cu nucleus has been studied via the reactions 60 Ni(α,pnγ), 63 Cu(p,pnγ), 52 Cr( 14 N,2p2nγ) using different in beam γ-spectroscopy techniques. The intensity of the principal γ-lines observed in different reactions leading to the 62 Cu has been compared. A brief discussion is made in terms of the independent particle model. A level scheme including levels with spin up to 9 + is proposed [fr

  15. Molecular orbitals of nucleons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1986-05-01

    A formalism for the dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions at low bombarding energy is developed with the use of the coupled-reaction-channel (CRC) method. The Coriolis coupling effects as well as the finite mass effects of the nucleon are taken into account in this model, of rotating molecular orbitals, RMO. First, the validity of the concept is examined from the view point of the multi-step processes in a standard CRC calculation for systems containing two identical [core] nuclei. The calculations show strong CRC effects particularly in the case where the mixing of different l-parity orbitals - called hybridization in atomic physics - occurs. Then, the RMO representation for active nucleons is applied to the same systems and compared to the CRC results. Its validity is investigated with respect to the radial motion (adiabaticity) and the rotation of the molecular axis (radial and rotational coupling). Characteristic molecular orbitals of covalent molecules appear as rotationally stable states (K = 1/2) with good adiabaticity. Using the RMO's we obtain a new interpretation of various scattering phenomena. Dynamically induced changes in the effective Q-values (or scaling of energies), dynamically induced moments of inertia and an dynamically induced effective (L · S) interaction are obtained as a result of the molecular orbital formation. Various experimental data on transfer and subbarrier fusion reactions are understood in terms of the RMO's and their adiabatic potentials. Landau-Zener transitions, which strongly depend on the total angular momentum of the system, definitely predict the observation of characteristic changes in the cross sections for the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ) with the change of the bombarding energy. (author)

  16. Angular momentum projection of cranked PNC wave function

    International Nuclear Information System (INIS)

    Han Yong

    2000-01-01

    In studying the properties of nuclear higher-spin states, not only the K-mixture needed to be taken into account, but also the Coriolis interaction (the cranking term) should be introduced. The cranking term breaks the time reversal symmetry, and the projection of the single-particle angular momentum on the intrinsic symmetric axis is no longer a good quantum number. This makes the theoretical calculation somewhat complicated. However, considering some intrinsic symmetry in a nucleus, it is not very difficult to apply the angular momentum projection technique to the PNC wave functions including the cranking components (the cranked PNC wave functions). The fundamental expressions for calculating the nuclear energy spectra and the electromagnetic properties are deduced and evaluated in theory, consequently the feasibility of actualizing the present scheme is made clear

  17. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  18. The nuclear spin-orbit coupling

    International Nuclear Information System (INIS)

    Bell, J.S.; Skyrme, T.H.R.

    1994-01-01

    Analysis of the nucleon-nucleon scattering around 100 MeV has determined the spin-orbit coupling part of the two-body scattering matrix at that energy, and a reasonable extrapolation to lower energies is possible. This scattering amplitude has been used, in the spirit of Brueckner's nuclear model, to estimate the resultant single-body spin-orbit coupling for a single nucleon interacting with a large nucleus. This resultant potential has a radial dependence approximately proportional to r -1 d ρ /dr, and with a magnitude in good agreement with that required to explain the doublet splittings in nuclei and the polarization of nucleons scattered elastically off nuclei. (author). 14 refs, 2 figs

  19. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  20. A Beautiful Spin

    International Nuclear Information System (INIS)

    Ji Xiangdong

    2003-01-01

    Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin

  1. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  2. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  3. Study of various models of nuclear interaction potentials: nucleon-nucleus and nucleus-nucleus systems

    International Nuclear Information System (INIS)

    Ngo, H.

    1984-01-01

    Several models, performed within a mean field theory, are developed for the calculation of nucleon-nucleus interaction potentials. The first part of the thesis deals with the nucleon-nucleus average interaction. It is mainly devoted to the calculation of dynamical corrections to the Hartree-Fock approximation. Two approaches are used: a microscopic model performed in the framework of the nuclear structure approach and a semi-phenomenological one, based on the application of the dispersion relations to the empirical imaginary potential. Both models take into account finite size effects like collectivity or threshold effects which are important at low energy. The Green's function properties are used for both models. The second part of this work is devoted to the interaction potential between two heavy ions. This calculation, which is performed in the framework of the sudden approximation, uses the energy density formalism (Thomas-Fermi approximation). It has been extended to finite temperature. At T=0 the experimental fusion barriers of heavy systems are reproduced within 4%. Their temperature dependence is studied. The proximity scaling is checked and a universal function is obtained at T=0 and at finite temperature. It is found that the proximity theorem is well satisfied on the average. The dispersion around the mean behaviour increases with increasing temperature. At last, P+A* and α+A* interaction potentials are calculated within a double folding model using a schematic effective interaction [fr

  4. Gluon polarization measurements and the possible role of diffractive process in the transverse single spin asymmetry measurements in RHIC-PHENIX

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available Two selected topics from the latest RHIC spin results are discussed here. For the transversely polarized spin program, an unexpectedly large single spin asymmetry in the very forward neutron production observed in polarized proton + nucleus collisions at √s = 200 GeV is discussed in this document. For the longitudinal program, the latest highlights from the measurements on the gluon spin components of the proton spin is discussed. After a decade of continuous efforts to hunt for the gluon polarization, the RHIC collaboration is about to catch the tail of the experimental evidence that gluon carries substantially large portion of the proton spin.

  5. Likelihood analysis of parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, D.; Sharapov, E.

    1993-01-01

    We discuss the determination of the root mean-squared matrix element of the parity-violating interaction between compound-nuclear states using likelihood analysis. We briefly review the relevant features of the statistical model of the compound nucleus and the formalism of likelihood analysis. We then discuss the application of likelihood analysis to data on panty-violating longitudinal asymmetries. The reliability of the extracted value of the matrix element and errors assigned to the matrix element is stressed. We treat the situations where the spins of the p-wave resonances are not known and known using experimental data and Monte Carlo techniques. We conclude that likelihood analysis provides a reliable way to determine M and its confidence interval. We briefly discuss some problems associated with the normalization of the likelihood function

  6. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  7. Spin-Caloritronic Batteries

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2017-01-01

    The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...

  8. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  9. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  10. High-spin states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Poel, C.J. van der.

    1982-01-01

    A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)

  11. Laterodorsal nucleus of the thalamus: A processor of somatosensory inputs.

    Science.gov (United States)

    Bezdudnaya, Tatiana; Keller, Asaf

    2008-04-20

    The laterodorsal (LD) nucleus of the thalamus has been considered a "higher order" nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. (c) 2008 Wiley-Liss, Inc.

  12. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  13. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    Science.gov (United States)

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  14. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  15. High spin states in the f-p shell

    International Nuclear Information System (INIS)

    Delaunay, J.

    1975-01-01

    The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr

  16. Computer studies of multiple-quantum spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  17. Computer studies of multiple-quantum spin dynamics

    International Nuclear Information System (INIS)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment

  18. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  19. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2010-01-01

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus 94 Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for 94 Ag.

  20. Proton radioactivity at non-collective prolate shape in high spin state of {sup 94}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta, E-mail: mamta.a4@gmail.co [UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400 098 (India)

    2010-10-11

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus {sup 94}Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for {sup 94}Ag.

  1. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  2. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  3. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  4. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  5. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  6. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  7. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  8. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  9. High spin states in 63Cu. 17/2+ isomeric yrast state

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1979-01-01

    The 63 Cu nucleus has been studied via the reaction 61 Ni(α, pnγ), using different in beam γ spectroscopy techniques. An isomeric high-spin Yrast state 17/2 + (tau = 6.1 +- 0.6ns) is located at 4498 keV. The gsub(9/2) shell must be involved to explain positive high-spin states established in this work [fr

  10. RPA spin-isospin nuclear response in the deep inelastic region

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.; De Pace, A.; Johnson, M.B.; Ericson, M.

    1985-11-01

    The spin-isospin volume responses of a finite nucleus are evaluated in the RPA frame, utilizing a harmonic oscillator basis. Particular emphasis is given to the mixing between the longitudinal and transverse couplings, which arise at the nuclear surface. We show that it reduces somewhat the contrast between the two spin responses. We compare the calculated transverse response with the experimental one extracted from deep inelastic electron scattering

  11. Laser spectroscopy probes the nucleus

    International Nuclear Information System (INIS)

    Griffith, J.; Billowes, J.

    1998-01-01

    Extremely sensitive optical measurements are shedding new light on the shape and size of nuclei, and the properties of nuclear matter far from stability. Of the 7000 or so isotopes known to nuclear physicists, less than 270 are stable. In general isotopes become more and more unstable as we move away from the so-called valley of stability, and therefore become more difficult to study in experiments. The tests of the theory also become more demanding. Laser spectroscopy is one of the techniques that is helping to explore the properties of these isotopes and improve our understanding of the forces inside the nucleus. High-resolution laser spectroscopy of short-lived radioactive atoms now makes it possible to measure the nuclear charge radius of many elements, including many isotopes far from stability. The method can reveal fine details of the sizes, shapes and structures of nuclei. In addition, laser spectroscopy is making significant contributions to our understanding of the nuclear force in unstable nuclei with unusual, or extreme, proton-neutron ratios. In this article the authors discuss the latest advances in studying heavy nuclei. (author)

  12. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  13. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  14. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  15. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  16. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  17. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  18. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  19. Higher spins and matter interacting in dimension three

    Czech Academy of Sciences Publication Activity Database

    Kessel, P.; Lucena Gómez, Gustavo; Skvortsov, E.; Taronna, M.

    2015-01-01

    Roč. 2015, č. 11 (2015), s. 104 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : Higher Spin Gravity * Higher Spin Symmetry * AdS-CFT correspondence * Chern-Simons Theories Subject RIV: BD - Theory of Information Impact factor: 6.023, year: 2015

  20. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  1. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  2. Nuclear spin states and quantum logical operations

    International Nuclear Information System (INIS)

    Orlova, T.A.; Rasulov, E.N.

    2006-01-01

    Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)

  3. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  4. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  5. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  6. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  7. Topologically Massive Higher Spin Gravity

    NARCIS (Netherlands)

    Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.

    2011-01-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the

  8. Spin-orbit and spin-lattice coupling

    International Nuclear Information System (INIS)

    Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu

    2014-01-01

    We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)

  9. Tools for visualization of phosphoinositides in the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Kalasová, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Uličná, Lívia; Yildirim, Sukriye; Venit, Tomáš; Hozák, Pavel

    2016-01-01

    Roč. 145, č. 4 (2016), s. 485-496 ISSN 0948-6143 R&D Projects: GA ČR GA16-03403S; GA ČR GAP305/11/2232; GA MŠk(CZ) ED1.1.00/02.0109; GA CR GA16-03403S Grant - others: Human Frontier Science Program(FR) RGP0017/2013 Institutional support: RVO:68378050 Keywords : Nucleus * Phosphoinositides * PI(4,5)P2 * PI(4)P Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.553, year: 2016

  10. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  11. The nucleus in Finland - The second report

    International Nuclear Information System (INIS)

    Aurela, Jorma; Korteniemi, Virpi; Halme-Tapanainen, Kristina

    1993-01-01

    The Finnish Nuclear Society (FNS) started the distribution of the Nucleus bulletin at the beginning of 1988. The volume of distribution has been extended since, including today nearly 1,000 persons. Both the English and the Finnish version of the bulletin is sent to various opinion leaders of society, i.e. the members of the parliament, ministries, the media, representatives of industry and other decision-makers of the energy field. After the five-year history of the Nucleus in Finland, it is time to look back and sum up the present status of the Nucleus. This report gives a short summary concerning the present distribution and its efficiency, the experiences gained and the influence of the bulletin in Finland. The first questionnaire was sent in November 1988, and the survey was repeated among the Finnish readers of the Nucleus in autumn 1992. The results of the latter survey are given in this report

  12. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  13. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  14. Nuclear physics: Unexpected doubly-magic nucleus

    International Nuclear Information System (INIS)

    Janssens, R.V.F.

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope 24 O has been found to be one such nucleus - yet it lies just at the limit of stability

  15. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  16. Kaon-nucleus reactions and hypernuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1987-01-01

    Recent advances in hypernuclear physics and kaon-nucleus scattering are discussed, with emphasis on the spectroscopy of Λ single particle states in heavy systems, as revealed by the (π + ,K + ) reaction. 26 refs., 8 figs

  17. Polarization and alignment of nucleus fission fragments

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists

  18. New aspects of the atomic nucleus

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1987-01-01

    We are at last just beginning to identify convincing evidence for what we have long believed, namely that the nucleus is more than the sum of its neutron-proton parts taken pairwise because, for example, a cluster of three nucleons interacts differently from the sum of the interactions of its three pairs; there is an important collectivism in the life of a nucleus even before we ask what its nucleons are doing. (orig./WL)

  19. Testing string dynamics in lepton nucleus reactions

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-10-01

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus (ell A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs

  20. Numerical Simulation of the Kinetic Critical Nucleus

    OpenAIRE

    Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.

    1997-01-01

    Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...

  1. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  2. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  3. Spin density projection-assisted R2 magnetic resonance imaging of the liver in the management of body iron stores in patients receiving multiple red blood cell transfusions: an audit and retrospective study in South Australia.

    Science.gov (United States)

    Brown, G C; Patton, W N; Tapp, H E; Taylor, D J; St Pierre, T G

    2012-09-01

    To assess the impact of non-invasive monitoring of liver iron concentration (LIC) on management of body iron stores in patients receiving multiple blood transfusions. A retrospective audit was conducted on clinical data from 40 consecutive subjects with haemolytic anaemias or ineffective haematopoiesis who had been monitored non-invasively for LIC over a period of at least 1 year. LIC was measured with spin density projection-assisted proton transverse relaxation rate-magnetic resonance imaging. Nineteen clinical decisions were explicitly documented in the case notes as being based on LIC results. Decisions comprised initiation of chelation therapy, increasing chelator dose, decreasing chelator dose and change of mode of delivery of deferioxamine from subcutaneous to intravenous. The geometrical mean LIC for the cohort dropped significantly (P= 0.008) from 6.8 mg Fe/g dry tissue at initial measurement to 4.8 mg Fe/g dry tissue at final measurement. The proportion of subjects with LIC in the range associated with greatly increased risk of cardiac disease and death (>15 mg Fe/g dry tissue) dropped significantly (P= 0.01) from 14 of 40 subjects at initial measurement to 5 of 40 subjects at final measurement. No significant changes in the geometrical mean of serum ferritin or the proportion of subjects with serum ferritin above 2500 or 1500 µg/L were observed. The data are consistent with previous observations that introduction of non-invasive monitoring of LIC can contribute to a decreased body iron burden through improved clinical decision making and improved feedback to patients and hence improved adherence to chelation therapy.

  4. High spin states of 141Pm

    Science.gov (United States)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  5. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  6. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  7. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  8. Microadaptive Flow Control Applied to a Spinning Projectile

    National Research Council Canada - National Science Library

    McMichael, J; Lovas, A; Plostins, P; Sahu, J; Brown, G; Glezer, A

    2005-01-01

    The focus of this report is to provide a technical and programmatic summary of a Defense Advanced Research Projects Agency effort to explore the feasibility of producing steering forces on a spinning...

  9. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  10. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  11. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  12. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  13. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  14. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  15. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  16. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  17. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  18. Electromagnetic structure of spin-zero light nuclei from point of view of analyticity

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dumbrajs, O.

    1975-01-01

    The analysis of spin-zero light nuclei electromagnetic form factors from the point of view of analyticity is carried out. The interpretation of diffraction minima in elastic electron-nucleus scattering as real zeros of form factors is advocated. The model-independent charge radii and charge distributions are calculated on the base of present-day experimental data

  19. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  20. Spin physics at BNL

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    Spin Physics at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory is the most recent of new capabilities being explored at this facility. During the summer of 1984 the AGS accelerated beams of polarized protons to 16.5 GeV/c at 40% polarization to two experiments (E782, E785). These experiments; single spin asymmetry in inclusive polarized pp interactions; and spin-spin effects in polarized pp elastic scattering, operated at the highest polarized proton energy ever achieved by any accelerator in the world. These experiments are reviewed after the complementary spin physics program with unpolarized protons, and the future possibilities with a booster injector for the AGS and the secondary benefits of a Relativisitic Heavy Ion Collider (RHIC), are placed within the context of the present physics program

  1. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  2. Lateral cervical nucleus projections to periaqueductal gray matter in cat

    NARCIS (Netherlands)

    Mouton, LJ; Klop, EM; Broman, J; Zhang, ML; Holstege, G; Zhang, Mengliang

    2004-01-01

    The midbrain periaqueductal gray matter (PAG) integrates the basic responses necessary for survival of individuals and species. Examples are defense behaviors such as fight, flight, and freezing, but also sexual behavior, vocalization, and micturition. To control these behaviors the PAG depends on

  3. Development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.; Sierk, A.J.

    1997-01-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model

  4. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  5. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  6. The nucleus pararaphales in the human, chimpanzee, and macaque monkey.

    Science.gov (United States)

    Baizer, Joan S; Weinstock, Nadav; Witelson, Sandra F; Sherwood, Chet C; Hof, Patrick R

    2013-03-01

    The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name "pararaphales" has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the "PRa" in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.

  7. Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels

    Czech Academy of Sciences Publication Activity Database

    Zarbo, Liviu; Sinova, Jairo; Knezevic, I.; Wunderlich, Joerg; Jungwirth, Tomáš

    2010-01-01

    Roč. 82, č. 20 (2010), 205320/1-205320/7 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spintronics * spin dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  8. Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents.

    Science.gov (United States)

    Celio, Marco R; Babalian, Alexandre; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B

    2013-10-01

    A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus. © 2013 Wiley Periodicals, Inc.

  9. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    Science.gov (United States)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  10. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  11. Effective number of inelastically interacting nucleons in rare nucleus-nucleus production processes

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Lokhtin, I.P.

    1992-01-01

    A model of nucleus-nucleus interaction using one inelastic NN-interaction is suggested for the exclusive production processes with small cross-section. A-dependence nuclear coherent and incoherent production cross-section are predicted. 20 refs.; 4 figs

  12. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  13. Production of strange and multistrange hadrons in nucleus-nucleus collisions at the SPS

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 130c-139c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : production * nucleus-nucleus collisions * hadrons * strangeness * model predictions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  14. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  15. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using ...

  16. Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Document Server

    Bass, S; De Falco, A; Kuhn, C; Nardi, M; Peitzmann, T; Ullrich, T; Velkovska, J; Wiedemann, Urs Achim; HQ'06; Hot Quarks 2006

    2007-01-01

    One of the main challenges in nuclear and particle physics in the last 20 years has been to understand how the proton's spin is built up from its quark and gluon constituents. Quark models generally predict that about 60% of the proton's spin should be carried by the spin of the quarks inside, whereas high energy scattering experiments have shown that the quark spin contribution is small - only about 30%. This result has been the underlying motivation for about 1000 theoretical papers and a global program of dedicated spin experiments at BNL, CERN, DESY and Jefferson Laboratory to map the indi

  17. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  18. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Band termination in the N=Z nucleus 44Ti

    International Nuclear Information System (INIS)

    Ur, C.A.; Lenzi, S.M.; Martinez-Pinedo, G.

    1998-01-01

    Nuclei in the vicinity of the middle of the 1f 7/2 shell show strong prolate deformation at low spins resulting in rotational-like band structures. With increasing angular momentum the structure of these nuclei evolves through triaxial and spherical shapes. Recently, band terminating states corresponding to fully aligned configurations of valence nucleons in the f 7/2 shell have been reported. Further increase of the angular momentum can be achieved by particle excitations on the higher shell. This will result in high energy γ-ray transitions as it was observed in 50 Cr. We have investigated the structure of 44 Ti up to the band termination. Excited states in 44 Ti have been populated via the 28 Si + 24 Mg at 110 MeV beam energy. The target consisted of ∼0.5 mg/cm 2 of 24 Mg deposited on a gold backing. Gamma-rays were detected with the GASP multidetector array composed by 40 HPGe Compton-suppressed detectors and the inner ball built of 80 BGO detectors. The preliminary level scheme of 44 Ti, as determined in our work, is presented. This nucleus has 2 valence protons and 2 valence neutrons filling the f 7/2 shell. The band terminating state corresponding to their total alignment is the 12 + state. Several γ-rays transitions above this state have been identified. Also, we have identified two negative parity bands strongly connected to the yrast positive parity structure. Such structures have also been observed in other two even-even N=Z nuclei in the f 7/2 shell, namely, 44 Cr and 52 Fe, but they were less populated. The structure of 44 Ti is also interesting from the point of view of the cross-conjugate symmetry. Comparing the level structure of 44 Ti and the one of its cross-conjugate nucleus at the other end of the shell, 52 Fe, it can be noticed that up to spin 10ℎ their structure is very similar, but in 44 Ti the band terminating state 12 + is not below the 10 + state as in the case of 52 Fe. This was related to a reminiscent degree of collectivity in the

  20. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  1. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  2. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  3. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  4. Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory

    NARCIS (Netherlands)

    Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar

  5. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  6. Serotonin and dopamine in the parabrachial nucleus of rats during conditioned taste aversion learning

    Czech Academy of Sciences Publication Activity Database

    Zach, P.; Křivánek, Jiří; Valeš, Karel

    2006-01-01

    Roč. 170, č. 2 (2006), s. 271-276 ISSN 0166-4328 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z5011922 Keywords : taste aversion * microdialysis * parabrachial nucleus Subject RIV: FH - Neurology Impact factor: 2.591, year: 2006

  7. Control of the Estradiol-Induced Prolactin Surge by the Suprachiasmatic Nucleus

    NARCIS (Netherlands)

    Palm, Inge F.; van der Beek, Eline M.; Swarts, Hans J. M.; van der Vliet, Jan; Wiegant, Victor M.; Buijs, Ruud M.; Kalsbeek, Andries

    2001-01-01

    In the present study we investigated how the suprachiasmatic nucleus (SCN) controls the E(2)-induced PRL surge in female rats. First, the role of vasopressin (VP), a SCN transmitter present in medial preoptic area (MPO) projections and rhythmically released by SCN neurons, as a circadian signal for

  8. The Madison Plan: A New Approach to System-Wide Testing. The Nucleus Testing Committee.

    Science.gov (United States)

    Cleary, T. Anne; Mathews, Walter M.

    Steps in the development of a Nucleus Testing Committee to assist in the development of a system-wide testing program in the Madison, Wisconsin, school system are described. Over 60 participants were selected for the committee, using the following selection guidelines: interest in the project and the role to be assumed, commitment to the school…

  9. Conditioned taste aversion and Ca/calmodulin-dependent kinase II in the parabrachial nucleus of rats

    Czech Academy of Sciences Publication Activity Database

    Křivánek, Jiří

    2001-01-01

    Roč. 76, č. 1 (2001), s. 46-56 ISSN 1074-7427 R&D Projects: GA AV ČR IAA7011706 Institutional research plan: CEZ:AV0Z5011922 Keywords : calcium/calmodulin-dependent kinase II * conditioned taste aversion * parabrachial nucleus of rat Subject RIV: FH - Neurology Impact factor: 1.830, year: 2001

  10. Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus

    Czech Academy of Sciences Publication Activity Database

    Bendová, Zdeňka; Sumová, Alena; Illnerová, Helena

    2004-01-01

    Roč. 148, č. 1 (2004), s. 105-112 ISSN 0165-3806 R&D Projects: GA ČR GA309/02/1241; GA ČR GA309/00/1655 Institutional research plan: CEZ:AV0Z5011922 Keywords : suprachiasmatic nucleus * develop ment * photoperiod Subject RIV: ED - Physiology Impact factor: 1.854, year: 2004

  11. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  12. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  13. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  14. NUCLEON SPIN: Enigma confirmed

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy

  15. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto

    2007-01-01

    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  16. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  17. Spinning of refractory metals

    International Nuclear Information System (INIS)

    Chang Wenkua; Zheng Han

    1989-01-01

    The effects of spinning process parameters including max. pass percentage reduction, spinning temperature, feed rate, lubricant and annealing technology on the quality of shaped components are summarized and discussed in the present paper. The above mentioned parameters are adopted in the process of spinning of barrel-shaped and specially shaped components of refractory metals and their alloys W, Mo, Nb, Zr, TZM molybdenum alloy, C-103, C-752 niobium alloy etc. The cause of leading to usual defects of spun products of refractory metals such as lamellar as 'scaling', crack, swelling, wrinkle, etc. have been analysed and the ways to eliminate the defects have been put forward. 8 figs., 5 tabs. (Author)

  18. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  19. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. On the imaginary part of the S-wave pion-nucleus optical potential

    International Nuclear Information System (INIS)

    Germond, J.F.; Lombard, R.J.

    1991-01-01

    The contribution of pion absorption to the imaginary part of the S-wave pion-nucleus optical potential is calculated with Slater determinantal antisymmetrized nuclear wave funtions, taking fully into accout the spin and isospin degrees of freedom. The potential obtained has an explicit dependence on the proton and neutron nuclear densities whose coefficients are directly related to the two-nucleon absorption coupling constants. The values of these coefficients extracted from mesic atoms data are in good agreement with those deduced from exclusive pion absorption experiments in 3 He, but larger than the predictions of the pion rescattering model. (orig.)

  1. Measurement of the depolarization of the reaction 27Al (p vector, p vector.) 27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interactions in the optical potential the depolarization in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials resulted by the fit of those to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al (p vector,psub(o)) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richard, Tepel, and Weidenmueller. Because of the target nucleus 27 Al posesses in the ground state a spin I=5/2 also the possible quadrupole spin flip had to be included in the analysis. This was performed by coupled channel calculations. The depolarization data corrected according to compound contributions and quadrupole effects could now be applied to the study of the spin-spin potentials by means of DWBA calculations. As result it turned out that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. For the addition of a tensor term however no necessity resulted. (orig.) [de

  2. Measurement of the depolarization of the reaction 27Al(p vector,p vector.)27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interaction in the optical potential the depolarisation in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD-magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials was performed by the fitting of these to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al(p vector,p 0 ) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richert, Tepel and Weidenmueller. Because the target nucleus 27 Al possesses in the ground state a spin I=5/2, also the possible quadrupole spin flip had to be included. This was performed by coupled-channel calculations. The respecting compound contributions and quadrupole effects corrected depolarization data could by used for the study of the spin-spin potentials by means of DWBA calculations. As result it was shown that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. (orig.) [de

  3. The dynamic landscape of the cell nucleus.

    Science.gov (United States)

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  4. The atomic nucleus as a target

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.

    1981-01-01

    The purpose of this article is to characterize the atomic nucleus used as a target in hadron-nucleus collision experiments. The atomic nucleus can be treated as a lens-shaped ''slab'' of nuclear matter. Such ''slab'' should be characterized by the nuclear matter layer thickness at any impact parameter, by its average thickness, and by its maximal thickness. Parameters characterizing atomic nuclei as targets are given for the elements: 6 12 C, 7 14 N, 8 16 O, 9 19 F, 10 20 Ne, 13 27 Al, 14 28 Si, 16 32 S, 18 40 Ar, 24 52 Cr, 26 54 Fe, 27 59 Co, 29 64 Cu, 30 65 Zn, 32 73 Ge, 35 80 Br, 47 100 Ag, 53 127 I, 54 131 Xe, 73 181 Ta, 74 184 W, 79 197 Au, 82 207 Pb, 92 -- 238 U [ru

  5. Dynamics of hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1981-07-01

    Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of Δ-isobars in proton-nucleus dynamics is reviewed. 126 references

  6. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  7. Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain

    Directory of Open Access Journals (Sweden)

    L. Čanová

    2009-01-01

    Full Text Available The geometric frustration in a class of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chains is investigated by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. The ground state, the magnetization process and the specific heat as a function of the external magnetic field are particularly examined for different strengths of the geometric frustration. It is shown that the increase of the Heisenberg spin value S raises the number of intermediate magnetization plateaux, which emerge in magnetization curves provided that the ground state is highly degenerate on behalf of a sufficiently strong geometric frustration. On the other hand, all intermediate magnetization plateaux merge into a linear magnetization versus magnetic field dependence in the limit of classical Heisenberg spin S → ∞. The enhanced magnetocaloric effect with cooling rate exceeding the one of paramagnetic salts is also detected when the disordered frustrated phase constitutes the ground state and the external magnetic field is small enough.

  8. Spin-4 extended conformal algebras

    International Nuclear Information System (INIS)

    Kakas, A.C.

    1988-01-01

    We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

  9. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  10. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  11. Terwilliger and spin physics

    International Nuclear Information System (INIS)

    O'FAllon, J.R.

    1991-01-01

    The history of spin physics experiments is presented, with emphasis of Kent Terwilliger's involvement. Development of polarized beams and targets at the ZGS and AGS is recalled. P-P elastic scattering experiments are reviewed

  12. Transverse spin effects

    International Nuclear Information System (INIS)

    Ratcliffe, P.G.

    1993-01-01

    A discussion is presented of the role that transverse spin physics can play in providing information on the bound state dynamics in hadronic physics. Care is taken to distinguish between single- and double-spin measurements, each being discussed separately. In the case of single-spin effects it is stressed that as yet no satisfactory explanation has been provided within the framework if perturbative QCD which in fact generally predicts negligible effects. In order to clarify the situation experimental data at yet higher p T are necessary and semi-leptonic data could shed some light on the underlying scattering mechanisms. As regards double-spin correlations, the theoretical picture (although clouded by some ill-informed, often erroneous statements and even recent papers) is rather well understood and what is dearly missing is the experimental study of, for example, g 2 in deep-inelastic scattering. (author). 31 refs

  13. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  14. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  15. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  16. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  17. Exertional Rhabdomyolysis after Spinning

    OpenAIRE

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-01-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...

  18. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  19. Entangled spin chain

    Science.gov (United States)

    Salberger, Olof; Korepin, Vladimir

    We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].

  20. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  1. Neutrino-nucleus cross sections for oscillation experiments

    Science.gov (United States)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  2. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact

  3. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  4. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  5. On the origin of shape fluctuations of the cell nucleus.

    Science.gov (United States)

    Chu, Fang-Yi; Haley, Shannon C; Zidovska, Alexandra

    2017-09-26

    The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

  6. Pion inelastic scattering and the pion-nucleus effective interaction

    International Nuclear Information System (INIS)

    Carr, J.A.

    1983-01-01

    This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion

  7. Spin-current emission governed by nonlinear spin dynamics.

    Science.gov (United States)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  8. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  9. Microresonators for electron spin qubits

    International Nuclear Information System (INIS)

    Suter, D.; Stonies, R.; Voges, E.

    2005-01-01

    Full text: The traditional high-Q EPR resonators are optimized for large samples. For small samples and individual qubits, it is possible to design different resonators that have much better power handling properties, create less interference with other peripheral lines and, if they are used for detection, have better sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimizing its size and thus increasing the filling factor. In contrast to cavity type resonators, microcoils can be made much smaller than the operation wavelength. For this type of resonator, it has been established theoretically and experimentally that the sensitivity varies inversely with its linear dimensions. Moreover, the planar coil geometry is ideal to be manufactured in a small size by means of standard microtechnology. It also offers advantages for the excitation of electron spins in prototype quantum computer systems. High microwave power to the magnetic field conversion factor of the microresonator allows to achieve 24 ns L/2 - pulses with less than 20 mW of incident power. Within the QIPDDF-ROSES project, we are using such resonators to measure the EPR parameters of monolayer molecular films of N at C60 and for excitation of the single electron spin in a defect center in diamond. The microresonator prototypes consisting of a 200 μm planar microcoil tuned and matched at 14 GHz with distributed elements have been fabricated on Si substrate. The sensitivity tests with a DPPH samples resulted in the sensitivity value 10E9 spins/G/Hz1/2 at 300 K. The designed layouts of the microresonator can be scaled down up to a tens of micrometers, and with a different microwave coupling approach hundreds of nanometers could be achieved, allowing the operation frequency up to 100 THz (author)

  10. Future prospects in N-nucleus interactions

    International Nuclear Information System (INIS)

    Moss, J.M.

    1983-01-01

    A detailed examination of two research areas, polarization observables and antiproton-nucleus reactions, which should have near-term future impact on the understanding of the interaction of medium-energy nucleons in nuclei is made. More speculative future experiments employing cooled beams, double spectrometer systems, and large Q-value, low momentum-transfer reactions are also discussed. 25 references, 4 figures

  11. Consequences of hadron-nucleus multiplicity parametrization

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.

    1986-01-01

    Some interesting consequences are analyzed of a new parametrization for the hadron-nucleus multiplicity distributions and they are compared with the experimental data. Further, it is illustrated how the scaling property for the average multiplicity will be modified and it is found that the experimental data support this behaviour. (orig.)

  12. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  13. Large philipsite crystal as ferromanganese nodule nucleus

    Digital Repository Service at National Institute of Oceanography (India)

    Ghosh, A.K.; Mukhopadhyay, R.

    nodule accretion as approximately 2 mm/Ma and that of phillipsite growth as approximately 0.65 mm/Ka, the nucleus material appears to have been growing for approximately 4.5-5 Ma. Originally surfaced as a rock fragment from late Miocene volcanism...

  14. Correlations in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Wosiek, B.

    1976-09-01

    The correlations between the particles produced in interactions of hadrons with emulsion nuclei were investigated. The data are in qualitative agreement with the models which describe the interactions with nuclei as subsequent collisions of the fast part of excited hadronic matter inside the nucleus. (author)

  15. Iliacus Abscess with Radiculopathy Mimicking Herniated Nucleus ...

    African Journals Online (AJOL)

    2016-05-02

    May 2, 2016 ... radiculopathy mimicking herniated nucleus pulposus: Aadditional diagnostic value of magnetic resonance imaging. Niger J Clin Pract. 2017;20:392-3. This is an open access article distributed under the terms of the Creative Commons. Attribution-Non Commercial-Share Alike 3.0 License, which allows ...

  16. Resonances in η-light nucleus systems

    Indian Academy of Sciences (India)

    We locate resonances in -light nucleus elastic scattering using the time delay method. We solve few-body equations within the finite rank approximation in order to calculate the -matrices and hence the time delay for the - 3He and - 4He systems. We find a resonance very close to the threshold in - 3 He elastic ...

  17. Compound nucleus studies withy reverse kinematics

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1985-06-01

    Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs

  18. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    International Nuclear Information System (INIS)

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-01-01

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S ^ z , M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed

  19. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  20. Paramagnetic material for quantum information processing: electronic and nuclear spins manipulations in β - Ga2O3: Ti

    International Nuclear Information System (INIS)

    Mentink-Vigier, Frederic

    2011-01-01

    Quantum information processing is a major challenge both on fundamental and technological grounds. In this research field, the spin bus concept relies on the use of both the electronic and nuclear spins in which the electron is used as a reading and writing head over the nuclei system which makes the qubit register. The requested material to build a spin bus must have unpaired electrons delocalized over a great number of nuclear spins having long decoherence time. In this work, we studied a spin system composed of titanium (III) interacting with multiple gallium nuclei in gallium oxide. We synthesized and studied the titanium paramagnetic center in gallium oxide single crystals by continuous wave EPR and ENDOR spectroscopy and showed that the electron is delocalized over eight neighbouring gallium nuclei. This study also revealed a strong isotopic effect on the nucleus-nucleus interaction mediated by the electron. When the two nearest gallium nuclei surrounding the titanium are identical (same isotopes) this interaction is one order of magnitude higher than in the case of inequivalent nuclei. This effect can be used in order to reduce the computation time. Finally, the dynamical properties of the spin system have been characterized by pulsed EPR and ENDOR spectroscopy. The electron spin decoherence is driven by instantaneous and spectral diffusion. The nuclear dynamical properties have also been studied in order to determine the order of magnitude of nuclear spin relaxation and decoherence time. (author) [fr

  1. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  2. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  3. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  4. Magnetocaloric effect in quantum spin-s chains

    Directory of Open Access Journals (Sweden)

    A. Honecker

    2009-01-01

    Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.

  5. Rotational Invariance of the 2d Spin - Spin Correlation Function

    Science.gov (United States)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  6. A Review of the Pedunculopontine Nucleus in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Isobel T. French

    2018-04-01

    Full Text Available The pedunculopontine nucleus (PPN is situated in the upper pons in the dorsolateral portion of the ponto-mesencephalic tegmentum. Its main mass is positioned at the trochlear nucleus level, and is part of the mesenphalic locomotor region (MLR in the upper brainstem. The human PPN is divided into two subnuclei, the pars compacta (PPNc and pars dissipatus (PPNd, and constitutes both cholinergic and non-cholinergic neurons with afferent and efferent projections to the cerebral cortex, thalamus, basal ganglia (BG, cerebellum, and spinal cord. The BG controls locomotion and posture via GABAergic output of the substantia nigra pars reticulate (SNr. In PD patients, GABAergic BG output levels are abnormally increased, and gait disturbances are produced via abnormal increases in SNr-induced inhibition of the MLR. Since the PPN is vastly connected with the BG and the brainstem, dysfunction within these systems lead to advanced symptomatic progression in Parkinson's disease (PD, including sleep and cognitive issues. To date, the best treatment is to perform deep brain stimulation (DBS on PD patients as outcomes have shown positive effects in ameliorating the debilitating symptoms of this disease by treating pathological circuitries within the parkinsonian brain. It is therefore important to address the challenges and develop this procedure to improve the quality of life of PD patients.

  7. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    NARCIS (Netherlands)

    Buijs, Frederik N.; Guzmán-Ruiz, Mara; León-Mercado, Luis; Basualdo, Mari Carmen; Escobar, Carolina; Kalsbeek, Andries; Buijs, Ruud M.

    2017-01-01

    The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively

  8. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; Hermes, M. H.; Kalsbeek, A.

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the

  9. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  10. Efficient Spin Injection into Semiconductor

    International Nuclear Information System (INIS)

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  11. Coma morphology of comet 67P controlled by insolation over irregular nucleus

    Science.gov (United States)

    Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.

    2018-05-01

    While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.

  12. GABA in nucleus tractus solitarius participates in electroacupuncture modulation of cardiopulmonary bradycardia reflex.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Longhurst, John C

    2014-12-01

    Phenylbiguanide (PBG) stimulates cardiopulmonary receptors and cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus and nucleus tractus solitarius (NTS). Electroacupuncture (EA) at P5-6 stimulates sensory fibers in the median nerve and modulates these reflex responses. Stimulation of median nerves reverses bradycardia through action of γ-aminobutyric acid (GABA) in the nucleus ambiguus, important in the regulation of heart rate. We do not know whether the NTS or the neurotransmitter mechanisms in this nucleus participate in these modulatory actions by acupuncture. We hypothesized that somatic nerve stimulation during EA (P5-6) modulates cardiopulmonary inhibitory responses through a GABAergic mechanism in the NTS. Anesthetized and ventilated cats were examined during either PBG or direct vagal afferent stimulation while 30 min of EA was applied at P5-6. Reflex heart rate and blood pressure responses and NTS-evoked discharge were recorded. EA reduced the PBG-induced depressor and bradycardia reflexes by 67% and 60%, respectively. Blockade of GABAA receptors in the NTS reversed EA modulation of bradycardia but not the depressor response. During EA, gabazine reversed the vagally evoked discharge activity of cardiovascular NTS neurons. EA modulated the vagal-evoked cardiovascular NTS cellular activity for 60 min. Immunohistochemistry using triple labeling showed GABA immunoreactive fibers juxtaposed to glutamatergic nucleus ambiguus-projecting NTS neurons in rats. These glutamatergic neurons expressed GABAA receptors. These findings suggest that EA inhibits PBG-evoked bradycardia and vagally evoked NTS activity through a GABAergic mechanism, likely involving glutamatergic nucleus ambiguus-projecting NTS neurons. Copyright © 2014 the American Physiological Society.

  13. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  14. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  15. Overview of spin physics

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1992-01-01

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, π-nucleon physics looked attractive, since the determination of spin and parity of possible πp resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy

  16. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  17. Random matrix theory and analysis of nucleus-nucleus collision at high energies

    International Nuclear Information System (INIS)

    Shahaliev, E.I.; Inst. of Radiation Problems, Baku; ); Kuznetsov, A.A.; Suleymanov, M.K.; ); Teryaev, O.V.; )

    2006-01-01

    A novel method for analysis of experimental data obtained at relativistic nucleus-nucleus collisions is proposed. The method, based on the ideas of Random Matrix Theory, is applied to detect systematic errors that occur at measurements of momentum distributions of emitted particles. The unfolded momentum distribution is well described by the Gaussian orthogonal ensemble of random matrices, when the uncertainty in the momentum distribution is maximal. The method is free from unwanted background contributions [ru

  18. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  19. Strangeness and charm production in nucleus-nucleus collisions at beam energies near the thresholds

    International Nuclear Information System (INIS)

    Senger, P.

    2001-01-01

    The creation of strangeness and charm in nucleus-nucleus collisions at threshold beam energies is discussed as a probe for compressed baryonic matter. Experimental data on strangeness production at SIS energies indicate that the properties of kaons and antikaons are modified in the dense nuclear medium. An experiment is proposed to explore the QCD phase diagram in the region of highest baryon densities. An important observable will be charm production close to threshold. (orig.)

  20. Nucleon molecular orbitals and the transition mechanism between molecular orbitals in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Misono, S.; von Oertzen, W.; Voit, H.

    1988-08-01

    The molecular orbitals of the nucleon(s) in nucleus-nucleus collisions are dynamically defined as a linear combination of nucleon single-particle orbits (LCNO) in a rotating frame by using the coupled-reaction-channel (CRC) theory. Nucleon molecular orbitals and the promotions of nucleon, - especially due to the Landau-Zener radial coupling are discussed with the method above mentioned. (author)