Effective nucleon-nucleon interaction in the RPA
International Nuclear Information System (INIS)
Batista, E.F.; Carlson, B.V.; Conti, C. de; Frederico, T.
2001-01-01
The purpose of the present work is to study the properties of the effective nucleon-nucleon interaction, in a infinite system of mesons and baryons , using the relativistic Hartree-Fock-Bogoliubov approximation. To derive the RHFB equations in a systematic fashion, we use Dyson's equation to sum to all orders the self-consistent tadpole and exchange contributions to the extended baryon Green's function (the Gorkov propagator). The meson propagator is computed as a sum over ring diagrams which consist in repeated insertions of the lowest-order proper polarization graph. The sum is the diagrammatic equivalent of the relativistic random phase approximation (RPA) that describes the well-known collective modes. In the nuclear medium, the σ and ω propagators are linked because of scalar-vector mixing, a density-dependent effect that generates a coupling between the Dyson's equation for the meson propagators. We use the dressed meson propagator to obtain the effective interaction and investigate its effect on the 1 S 0 pairing in nuclear matter. The effective interaction has title effect on the self-energy mean field, since the latter is dominated by the Hartree contribution, which is determined by the free meson propagators. The pairing field, however, is obtained from an exchange term, in which the effective interaction can play an important role. As the polarization corrections to the meson propagators tend to increase the σ-meson mass and decrease the ω-meson mass, they result in an effective interaction which is more repulsive than the bare one. We would expect this to result in a decrease in the 1 S 0 pairing, similar to that seen in nonrelativistic calculations. (author)
International Nuclear Information System (INIS)
Smotritskij, L.M.
2001-01-01
Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru
The effect of including tensor forces in nucleon-nucleon interaction on three-nucleon binding energy
International Nuclear Information System (INIS)
Osman, A.; Ramadan, S.
1986-01-01
Separable two-body interactions are used in considering the three-nucleon problem. The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor forces. The separable approximation is used in order to investigate the effect of the tensor forces. The separable expansion is introduced in the three-nucleon problem, by which the Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical calculations are carried out for the obtained integral equations using potential functions of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated values of the binding energies of the 3 H and 3 He nuclei are in good agreement with the experimental values. The effect of including the tensor forces in the nucleon-nucleon interactions is found to improve the three-nucleon binding energy by about 4.490% to 8.324%. 37 refs., 2 tabs. (author)
International Nuclear Information System (INIS)
McClelland, J.B.; Aas, B.; Azizi, A.
1982-01-01
A complete measurement of the polarization transfer observables has been made for the first time in the (p,p') reaction at intermediate energies. Measurements are reported for the 12 C(p,p') 12 C reaction to the 1 + , T = 0(12.71 MeV) and 1 + , T = 1(15.11 MeV) states at 500 MeV at laboratory scattering angles of 3.5 0 , 5.5 0 , 7.5 0 , and 12.0 0 . Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers
Nucleon-nucleon interaction of a chiral σ-ω model at finite temperature
International Nuclear Information System (INIS)
Rukeng Su
1994-01-01
By using the imaginery time Green's function method, the nucleon-nucleon interaction of the chiral σ-ω model has been investigated under the one-loop approximation. The effective masses of the pion, σ-meson and ω-meson at finite temperature are given. We have found that the potential well of the nucleon-nucleon interaction becomes shallow as the temperature increases. At a critical temperature T c (70 MEV) the potential well disappears. (author)
International Nuclear Information System (INIS)
Tornow, W.; Howell, C.R.; Walter, R.L.; Slaus, I.
1992-01-01
Comparison of data for neutron-deuteron and proton-deuteron analyzing power A y for elastic scattering has become crucial for investigating charge-symmetry breaking in the 3 P nucleon-nucleon interactions. We extended this comparison down to 5 MeV and find that the relative difference between n-d and p-d scattering at the A y maximum near 120 degree increases with decreasing energy. By applying a straightforward Coulomb ''correction'' to the p-d data, we account for most of the difference, suggesting that the Coulomb force, rather than charge-symmetry breaking, is responsible for most of the observed difference
International Nuclear Information System (INIS)
Ghodsi, O. N.; Mahmodi, M.; Ariai, J.; O. N. Ghodsi)
2007-01-01
In this paper, the cross-sections of fusion reactions 16 O + 208 Pb, 28 Si + 208 Pb, 40 C + 40 Ca, 40 Ca + 48 Ca, 58 Ni + 58 Ni, and 16 O + 154 Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16 O + 208 Pb and 28 Si + 208 Pb reactions are due to the many particle effects on the nucleon-nucleon potential. (author)
Directory of Open Access Journals (Sweden)
Ghodsi Omid N.
2007-01-01
Full Text Available In this paper, the cross-sections of fusion reactions 16O + 208Pb, 28Si + 208Pb, 40C + + 40Ca, 40Ca + 48Ca, 58Ni + 58Ni, and 16O + 154Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16O + 208Pb and 28Si + 208Pb reactions are due to the many particle effects on the nucleon-nucleon potential.
International Nuclear Information System (INIS)
Brown, V.R.
1990-01-01
Nucleon-nucleon bremsstrahlung, NNγ, is a fundamental process, which involves the strong and electromagnetic fields acting simultaneously. Since the electromagnetic interaction is well known, NNγ provides a calculable tool for comparing off-energy-shell effects from different two-nucleon potentials compared to experiment and also provides a simple testing ground, which is sensitive to meson-exchange-current contributions that are so important in electronuclear physics. Historically, experimental studies have focused on ppγ, with only a few measurements of npγ. The present workshop was organized primarily to investigate the interest in, the value of, and the feasibility of doing an npγ experiment using the neutron white source at LANL. An increasing amount of US nuclear physics dollars are being spent on electronuclear physics. npγ is a fundamental process with large meson-exchange currents. In the npγ calculations of Brown and Franklin, the meson-exchange contributions increase the cross section by a factor of roughly two and later the angular distribution of the emitted photon dramatically. The details of these calculated effects have never been verified experimentally, but the proper quantum-mechanical inclusion of meson-exchange contributions, using the methods of brown and Franklin, has proved to be essential in understanding the heavy-ion results. The understanding of the importance of such terms is extremely important inelectronuclear processes, such as are presently under investigation or being planned at Bates, SLAC, and CEBAF. Just one example is in the electrodisintegration of the deuteron, where meson-exchange contributions must be included properly before any conclusions about nuclear models, such as QCD versus meson-exchange potentials can be made
Parity violation in the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs
International Nuclear Information System (INIS)
Osman, A.; Ramadan, S.
1989-01-01
Faddeev equations of bound three-nucleon system are presented as a set of integral equations. To solve them, a sutable form of the nucleon-nucleon interactions is used: with the exchange of a scalar meson, a pseudoscalar meson and a massless vector meson. Higher orders of these different meson exchanges in the nucleon-nucleon interactions have been taken into account. With these nuclear forces and nucleon-nucleon interactions, the three-nucleon binding energy is calculated by solving the Faddeev integral equations. The obtained value of the three-nucleon binding energy is 8.441 MeV. The inclusion of the higher order terms of the different meson exchange in the nuclear nucleon-nucleon interaction is found to affect the three-nucleon binding by about 3.92%. 3 figs., 16 refs
Chiral symmetry and the nucleon--nucleon interaction
International Nuclear Information System (INIS)
Brown, G.E.
1977-01-01
The nucleon--nucleon interaction is understood in terms of a dynamic model, the sigma model. The anti NN → ππ helicity amplitudes are assumed to be physical data, and the dynamical model must reproduce these data, more or less. 14 references
Solitary wave exchange potential and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Prema, K.; Raghavan, S.S.; Sekhar Raghavan
1986-11-01
Nucleon-nucleon interaction is studied using a phenomenological potential model called solitary wave exchange potential model. It is shown that this simple model reproduces the singlet and triplet scattering data and the deuteron parameters reasonably well. (author). 6 refs, 2 figs, 1 tab
Leading order relativistic chiral nucleon-nucleon interaction
Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie
2018-01-01
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )
The nucleon- nucleon interaction and symmetries
International Nuclear Information System (INIS)
Van Oers, W.T.H.
1992-11-01
With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state ι=ο and the other for the isotopic spin state ι=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or λλ system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp →λλ and pp→ ≡ ≡. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs
International Nuclear Information System (INIS)
Quentin, Philippe.
1975-01-01
A self-consistent description of deformed nuclei is presented in the Hartree-Fock approximation after correcting in an approximate but variational way for pairing correlations. Density dependent phenomenological effective interactions have been used, mainly according to the Skyrme's parametrization. Methods in use and various related approximations are reviewed in an extensive way. Calculated nuclei belong to the s-d shell, to the rare earth region, to the two transitional regions before and after the latter region, and to the actinide region. For all these nuclei, calculated deformation properties agree remarkably well with experimental data. Such results are extensively compared with those obtained in the more phenomenological approach due to Strutinsky. Finally the hypotheses formulated by Strutinsky are checked numerically in a systematic way, thus leading to the conclusion of the validity of the Strutinsky method [fr
The nucleon- nucleon interaction and symmetries
Energy Technology Data Exchange (ETDEWEB)
Van Oers, W T.H.
1992-11-01
With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state {iota}={omicron} and the other for the isotopic spin state {iota}=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or {lambda}{lambda} system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp {yields}{lambda}{lambda} and pp{yields} {identical_to} {identical_to}. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs.
International Nuclear Information System (INIS)
Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.
2004-01-01
Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei
Counter terms for low momentum nucleon-nucleon interactions
International Nuclear Information System (INIS)
Holt, Jason D.; Kuo, T.T.S.; Brown, G.E.; Bogner, Scott K.
2004-01-01
There is much current interest in treating low energy nuclear physics using the renormalization group (RG) and effective field theory (EFT). Inspired by this RG-EFT approach, we study a low-momentum nucleon-nucleon (NN) interaction, V low-k , obtained by integrating out the fast modes down to the scale Λ∼2 fm -1 . Since NN experiments can only determine the effective interaction in this low momentum region, our chief purpose is to find such an interaction for complex nuclei whose typical momenta lie below this scale. In this paper we find that V low-k can be highly satisfactorily accounted for by the counter terms corresponding to a short range effective interaction. The coefficients C n of the power series expansion ΣC n q n for the counter terms have been accurately determined, and results derived from several meson-exchange NN interaction models are compared. The counter terms are found to be important only for the S, P and D partial waves. Scaling behavior of the counter terms is studied. Finally we discuss the use of these methods for computing shell model matrix elements
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.
Wirth, Roland; Roth, Robert
2016-10-28
We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.
Medium corrections to nucleon-nucleon interactions
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1990-01-01
The Bethe-Goldstone equations have been solved for both negative and positive energies to specify two nucleon G-matrices fully off of the energy shell. Medium correction effects of Pauli blocking and of the auxiliary potential are included in infinite matter systems characterized by fermi momenta in the range 0.5 fm -1 to 1.8 fm -1 . The Paris interaction is used as the starting potential in most calculations. Medium corrections are shown to be very significant over a large range of energies and densities. On the energy shell values of G-matrices vary markedly from those of free two nucleon (NN) t-matrices which have been solved by way of the Lippmann-Schwinger equation. Off of the energy shell, however, the free and medium corrected Kowalski-Noyes f-ratios rate are quite similar suggesting that a useful model of medium corrected G-matrices are appropriately scaled free NN t-matrices. The choice of auxiliary potential form is also shown to play a decisive role in the negative energy regime, especially when the saturation of nuclear matter is considered. 30 refs., 7 tabs., 7 figs
Induced hyperon-nucleon-nucleon interactions and the hyperon puzzle
Energy Technology Data Exchange (ETDEWEB)
Wirth, Roland; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)
2016-07-01
There is a strong experimental and theoretical interest in determining the structure of hypernuclei and the effect of strangeness in strongly interacting many-body systems. Recently, we presented the first calculations of hypernuclei in the p shell from first principles. However, these calculations showed either slow convergence with respect to model-space size or, when the hyperon-nucleon potential is transformed via the Similarity Renormalization Group, strong induced three-body terms. By including these induced hyperon-nucleon-nucleon (YNN) terms explicitly, we get precise binding and excitation energies. We present first results for p-shell hypernuclei and discuss the origin of the YNN terms, which are mainly driven by the evolution of the Λ-Σ conversion terms. We find that they are tightly connected to the hyperon puzzle, a long-standing issue where the appearance of hyperons in models of neutron star matter lowers the predicted maximum neutron star mass below the bound set by the heaviest observed objects.
Semi-phenomenological model of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Houriet, A.; Bagnoud, Y.
1977-01-01
A nucleon with isobars is used to elaborate a model of the nucleon-nucleon interaction at low energy (Esub(CM) 2 sub(r), the pion-nucleon renormalized coupling constant. The model establishes a very good coordination for deuteron and p-p scattering-polarization measurements ( 1 K 0 , 1 D 2 , 1 G 4 phase shifts), and permits the determination of f 2 sub(r) for every independent experimental value. For 21 such values, the mean value 2 sub(r)>=0.0785 with Δf 2 sub(r)=0.0024(3%) is obtained. (Auth.)
Nucleon-nucleon interaction with quark exchange and prediction of the color van der Waals potential
International Nuclear Information System (INIS)
Osman, A.
1988-01-01
The nucleon-nucleon interaction is considered by including the color nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulting nucleon-nucleon potential, using a quark-quark potential, agress well with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction leads to a color van der Waals potential much stronger than that implied by experiments
Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential
International Nuclear Information System (INIS)
Osman, A.
1985-11-01
The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)
Nucleon-nucleon interaction in the soliton bag model
International Nuclear Information System (INIS)
Schuh, A.
1985-01-01
In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de
International Nuclear Information System (INIS)
Safronov, A.N.; Safronov, A.A.
2006-01-01
formation of a short-range repulsive core. In the given work this approach is generalized for constructing effective hadron-hadron interaction operators in framework multichannel formalism in arbitrary angular momentum states taking into account effects of inelasticity. The methods of taking into account mechanisms of formation a quark-gluon compound states in hadron-hadron interactions are elaborated also. The developed methods are applied to constructing nucleon-nucleon interaction operators in different partial-wave states. The boson-exchange model was used to calculate the discontinuities of the partial-wave scattering amplitudes taking into account π, σ, ρ, ω, η, a 0 -meson contributions. The effective nucleon-nucleon potentials in our approach (as against the one-boson-exchange model in usual sense) contain nonlinear contributions on dynamic discontinuities of partial-wave scattering amplitudes, which play essential role at small distances. Note that in realistic Bonn potential model [5] the short-range repulsion is due to ω-meson exchange contribution. It is required in this theory non-realistically large value (≅20 ) of the coupling constant g ωNN 2 /4π. The value of this coupling constant in our approach is consistent with available experimental data [6] and also with theoretical quark-model calculations. The theoretical predictions of the proposed approach are in fairly good agreement with partial-wave-analysis data for laboratory kinetic energies of incident nucleon up to T=1.5-2.0 GeV. The developed approach is applied also to pion-nucleon scattering at kinetic energies of incident pion up to T=2.0 GeV. This work was supported by the Russian Foundation for Basic Research under the project No 04-02-16967. (author)
International Nuclear Information System (INIS)
Akkermans, J.N.L.; Allaart, K.
1982-01-01
Like in earlier work by Schiffer et al. the effective interaction is derived from experimental two-body multiplets. However, now the assumption is that a multiplet state is formed by two unpaired fermions relative to a core of correlated J = 0 pairs. Then the need for two ranges, as proposed Schiffer, disappears for the force between identical nucleons in a model space which is large enough to include pairing correlations. A form with a single attractive medium range is preferred for the identical nucleon interaction in order to reproduce collective 2 + states in even-even nuclei. In contrast, the proton-neutron force requires a very short range or two ranges to reproduce the empirical values of multipole coefficients, observed in odd-odd nuclei. Therefore we discuss the fact that the effective interaction is not always isospin invariant. As a typical case broken-pair calculations in the N = 50 region are considered. But the conclusions drawn, will also apply to other regions of the periodic table. (orig.)
The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian
International Nuclear Information System (INIS)
Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)
Effective nucleon-nucleon t matrix in the (p,2p) reaction
International Nuclear Information System (INIS)
Kudo, Y.; Kanayama, N.; Wakasugi, T.
1989-01-01
The cross sections and the analyzing powers for the /sup 40/Ca(p-arrow-right,2p) reactions at E/sub p/ = 76.1, 101.3, and 200 MeV are calculated in the distorted-wave impulse approximation using the Love-Franey effective nucleon-nucleon interaction. It is shown that the calculated individual contributions of the central, spin-orbit, and tensor parts in the Love-Franey interaction to the cross sections and the analyzing powers strongly depend on the incident proton energies. The spectroscopic factors extracted are consistent with the other reaction studies
Parity violation in nuclei: studies of the weak nucleon-nucleon interaction
International Nuclear Information System (INIS)
Mcdonald, A.B.
1980-03-01
The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21 Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)
Compound-nuclear tests of time reversal invariance in the nucleon-nucleon interaction
International Nuclear Information System (INIS)
French, J.B.; Pandey, A.; Smith, J.
1987-01-01
The theory for the effects of time-reversal noninvariance (TRNI) in complex systems is reviewed. Applied to the compound-nuclear data for energy-level, width and cross-section fluctuations (the latter for detailed-balance pairs of reactions proceeding through the compound nucleus) this gives bounds on multiparticle TRNI Hamiltonian matrix elements. Using a fluctuation-free form of statistical spectroscopy the results are reduced to bounds on α, the relative magnitude of the TRNI nucleon-nucleon interaction. The level and width analyses for heavy nuclei gave α ≤ 2 x 10 -3 at high (∼99%) statistical confidence; preliminary calculations for detailed balance with 24 Mg(α,p) 27 Al and its inverse gives α ≤ 4 x 10 -3 at the same high confidence, but ≤0.2 x 10 -3 at 80% confidence. Suggestions are made about experiments which should yield sharper bounds. 28 refs., 1 tab
Aoki, Sinya
2013-07-01
We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.
Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Goyal, D.P.; Yugindro Singh, K.; Singh, S.
1986-01-01
The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)
The nucleon-nucleon spin-orbit interaction in the Skyrme model
International Nuclear Information System (INIS)
Riska, D.O.; Dannbom, K.
1987-01-01
The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component
Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction
Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi
2012-08-01
We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.
Effect of two-pion exchange in nucleon-nucleon scattering in high partial waves
International Nuclear Information System (INIS)
Harun ar Rashid, A.M.; Chaudhury, T.K.
1983-01-01
The work of Brown and Durso (Phys. Lett. 35B, 120 (1971)) on the soft-pion determination of the intermediate range nucleon-nucleon interaction is extended by using the most general form of the ΔNπ interaction which involves an arbitrary parameter Z. It is shown that both the annihilation channel helicity amplitude fsub(+)sup((O))(t) as well as peripheral proton-proton scattering phase shifts seem to favour Z=1/2. (author)
Quark compound bag (QCB) model and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Simonov, Yu.A.
1983-01-01
Quark degrees of freedom are treated in the NN system in the framework of the QCB model. The resulting QCB potential is in agreement with experimental data. P-matrix analysis inherent to the QCB model is discussed in detail. Applications of the QCB model are given including the weak NN interaction
Phenomenological renormalization of free nucleon-nucleon interaction
International Nuclear Information System (INIS)
Prakash, M.; Waghmare, Y.R.; Mehrotra, I.
1976-01-01
Low-lying spectra of 6 Li, 18 F, 18 O, 42 Sc, 42 Ca, 58 Ni and 92 Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the 3 S 1 relative state are made (1+α) times their bare interaction value, where α is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME. (orig.) [de
Coloured quarks and the short range nucleon nucleon interaction
International Nuclear Information System (INIS)
Ribeiro, J.E.F.T.
1978-02-01
The strong repulsive core that exists in the scattering of two nucleons is studied with the help of the Resonating Group Method (R.G.M.), where the Pauli Principle of fermion antisymmetry is taken explicitly into account. The quark-quark potential is described in terms of colour (long range confining potential) and hyperfine interactions alone. The mass differences N*(1688) - N(938) and Δ(1236) = N(938) are used to fit the two free constants of the assumed quark potential. It is shown that although the Pauli Principle does not exclude ab initio a S state of two nucleons, a strong repulsive potential is, nevertheless, found. Two cases are studied in detail: The Isosinglet case (neutron proton scattering) and the Isotriplet one (identical nucleons). Phase shifts for each case are presented and the obtained relative wave functions are found consistent with the observed experimental features for the repulsive potential. Some formal results concerning an important class of operators characteristic of the present R.G.M. calculations are also presented. (author)
Nucleon-nucleon interaction and the quark model
International Nuclear Information System (INIS)
Faessler, A.
1985-01-01
The NN phase shifts are calculated using the quark model with a QCD inspired quark-quark force. The short range part of the NN force is given by quark and gluon exchange. The long range part is described by π and σ-meson exchange. The data fitted in the model are five values connected with three quarks only: the nucleon mass, the Δ mass, the root mean square radius of the charge distribution of the proton including the pion cloud, the π-N and the σ-N coupling constant at zero momentum transfer. The 1 S and 3 S phase shifts are nicely reproduced. The short range repulsion is decisively influenced by the node in the [42] r relative wave function. Very important is the colour magnetic quark-quark force which enlarges the [42] r admixture. In the OBEP's the short range repulsion is connected with the exchange of the ω-meson. But to reproduce the short range repulsion one had to blow up the ω-N coupling constant by a factor 2 to 3 compared to flavour SU 3 . With quark and gluon exchange the best fit to the ω-N coupling constant lies close to the SU 3 flavour value. This fact strongly supports the notion that the real nature of the short range repulsion of the NN interaction have been found
Spin symmetry in the Dirac sea derived from the bare nucleon-nucleon interaction
Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan
2018-06-01
The spin symmetry in the Dirac sea has been investigated with relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. Taking the nucleus 16O as an example and comparing the theoretical results with the data, the definition of the single-particle potential in the Dirac sea is studied in detail. It is found that if the single-particle states in the Dirac sea are treated as occupied states, the ground state properties are in better agreement with experimental data. Moreover, in this case, the spin symmetry in the Dirac sea is better conserved and it is more consistent with the findings using phenomenological relativistic density functionals.
Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering
International Nuclear Information System (INIS)
Fuchs, M.
1993-01-01
After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance
Collective multipole excitations based on correlated realistic nucleon-nucleon interactions
International Nuclear Information System (INIS)
Paar, N.; Papakonstantinou, P.; Hergert, H.; Roth, R.
2006-01-01
We investigate collective multipole excitations for closed shell nuclei from 16 O to 208 Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1 - and 2 + channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)
Use of a finite range nucleon-nucleon interaction in the continuum shell model
International Nuclear Information System (INIS)
Faes, Jean-Baptiste
2007-01-01
The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)
The quark model and the nature of the repulsive core of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Faessler, A.; Fernandez, F.; Luebeck, G.; Shimizu, K.
1982-01-01
The nature of the repulsive core of the nucleon-nucleon is studied in the quark model. The resonating group equation for nucleon-nucleon scattering is solved with the colour Fermi-Breit interaction including further a linear or quadratic confinement potential. It is shown that the colour magnetic interaction which is adjusted to the Δ-nucleon mass splitting favours the orbital symmetry and disfavours the completely symmetric orbital state. For the important orbital symmetry the relative S wave function between the two nucleons has to have a node. In the framework of the resonating group including the NN, ΔΔ and the hidden colour (CC) channels it is shown that this node produces a 3 S and 1 S phase shift which is identical to a hard core phase shift with a hard core radius γ 0 between 0.3 and 0.6 fm depending on the assumed root mean square radius of the quark part of the nucleon. (orig./HSI)
International Nuclear Information System (INIS)
Gregersen, A.W.
1977-01-01
A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels
Regularization and the potential of effective field theory in nucleon-nucleon scattering
International Nuclear Information System (INIS)
Phillips, D.R.
1998-04-01
This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m π 2 /M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic
Skyrme-model πNN form factor and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Holzwarth, G.; Machleidt, R.
1997-01-01
We apply the strong πNN form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes it possible to use a soft pion form factor in the NN system. As a consequence, the πN and the NN systems can be described using the same πNN form factor, which is impossible with the monopole. copyright 1997 The American Physical Society
Studies of the nucleon-nucleus and the nucleon-nucleon interactions using polarized neutron beams
International Nuclear Information System (INIS)
Walter, R.L.; Howell, C.R.; Tornow, W.
1988-01-01
The results o four scattering measurements using beams of polarized neutrons are described. Results for the analyzing power A y (θ) for elastic scattering of neutrons from protons and deuterons are compared to calculations based on the Paris and the Bonn nucleon-nucleon interactions. Deficiencies particularly in the Bonn model are indicated. A nucleon-nucleus potential is derived from σ(θ) and A y (θ) data for n + 28 Si and p + 28 Si and the Coulomb correction terms are derived according to two approaches. A Fourier-Bessel expansion is used to investigate the form factors of the terms of the n + 208 Pb potential which are necessary to describe σ(θ) and A y (θ) data from 6 to 10 MeV. The nature of the spin-orbit term is also presented. (author)
International Nuclear Information System (INIS)
Burleson, G.R.
1987-01-01
We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs
General aspects of the nucleon-nucleon interaction and nuclear matter properties
Energy Technology Data Exchange (ETDEWEB)
Plohl, Oliver
2008-07-25
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
General aspects of the nucleon-nucleon interaction and nuclear matter properties
International Nuclear Information System (INIS)
Plohl, Oliver
2008-01-01
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
The nucleon-nucleon interaction in the framework of the boson exchange model
International Nuclear Information System (INIS)
Niephaus, G.H.
1984-01-01
The aim of this thesis was the description of the nucleon-nucleon interaction in a microscopically founded model. For this the description of the 2-nucleon problem by an interacting 2-nucleon-pion system was presented. The starting point of our description was a relativistic eigenvalue equation for the system of mesons and two baryons. The interaction of the baryons with the mesons was described by interaction Hamiltonians. By the elimination of antinucleon states by means of a unitary tansformation (Foldy-Wouthuysen transformation) the interaction Hamiltonians for nucleons could be generated for the field-theoretical Lagrangian densities. The Hamiltonians for resonant baryon states were obtained by means of a simplified procedure from the corresponding Lagrangian densities. Because the determination of Lagrangian densities is not unique, for the pion-nucleon coupling two alternative Lagrangian densities were allowed. For the interaction of positive-energy nucleonic states these two coupling yield nearly equal results; the production or annihilation of negative-energy nucleon states (antiparticles) the predictions however are very different. (orig./HSI) [de
Theoretical advancements and applications of the low-momentum nucleon-nucleon interaction
Holt, Jason Davidson
One of the most fundamental problems in low-energy nuclear physics is how to calculate nuclear structure observables from the most basic microscopic elements available. The low-momentum nucleon-nucleon interaction Vlow k provides a nearly-unique microscopic starting point for calculations involving finite nuclei. We first discuss the Renormalization Group and Effective Field Theory ideas behind the development of Vlow k and show that Vlow k is expressible as a bare interaction supplemented by a series of counter terms representing a short range interaction. One drawback of Vlow k is that it is necessarily non-Hermitian, and, as such not immediately suited for use in shell model calculations. To remedy this, we present a new method, based on Schmidt orthogonalization, that generates a family of Hermitian low-momentum interactions, and show it is a generalization of several well-known Hermitian transformations. Moreover, this transformation is shown to preserve phase shifts and deuteron properties. To get an effective interaction which takes into account the complicated processes taking place in the nuclear many-body system, Vlow k must be supplemented by the effects of core polarization. Typically calculated to second order, the higher order properties of core polarization have been long-debated. We develop a new method for calculating core polarization diagrams to all order, which, when applied to nuclei in the sd-shell region, is shown to be quite close to the second-order results. In the second part of the Dissertation, we study how the shell model effective interaction derived from Vlow k can predict and explain complex nuclear properties. In particular we will study in depth mixed-symmetry (MS) structures: collective nuclear excitations in which protons and neutrons move out of phase. After a basic theoretical description of these states in terms of the Interacting Boson Model and a discussion of the most important experimental studies, we show that shell model
International Nuclear Information System (INIS)
1988-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs
International Nuclear Information System (INIS)
Wells, T.B.
1978-01-01
The charge dependence and charge asymmetry of the nucleon-nucleon force arising from the exchange of a pion and a photon with the excitation of a nucleon resonance [Δ(1236)] is calculated. This charge dependence and asymmetry is studied through its effects on the 1 S nucleon-nucleon scattering lengths. The complexity of the calculation forces the use of approximations. The calculation is performed first with a pole approximation for the resonance and a second time with a Chew-Low description of the resonance. Both calculations neglect nuclear recoil. Estimates of this effect are made. The changes in the scattering lengths are small ( +- / 2 = 1.0225 G/sub π 0 / 2 will explain the proton-neutron scattering length
Relativistic one-boson-exchange model for the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Gross, F.; Van Orden, J.W.; Holinde, K.
1992-01-01
Nucleon-nucleon data below 300-MeV laboratory energy are described by a manifestly covariant wave equation in which one of the intermediate nucleons is restricted to its mass shell. Antisymmetrization of the kernel yields an equation in which the two nucleons are treated in an exactly symmetric manner, and in which all amplitudes satisfy the Pauli principle exactly. The kernel is modeled by the sum of one boson exchanges, and four models, all of which fit the data very well (χ 2 congruent 3 per data point) are discussed. Two models require the exchange of only the π, σ, ρ, and ω, but also require an admixture of γ 5 coupling for the pion, while two other models restrict the pion coupling to pure γ 5 γ μ , but require the exchange of six mesons, including the η, and a light scalar-isovector meson referred to as σ 1 . Deuteron wave functions resulting from these models are obtained. The singularities and relativistic effects which are a part of this approach are discussed, and a complete development of the theory is presented
Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies
International Nuclear Information System (INIS)
1990-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei
International Nuclear Information System (INIS)
Simon, G.G.
1978-01-01
In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)
NN → NN π: the new frontier in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Silbar, R.R.
1986-01-01
The torch in nucleon-nucleon scattering has been passed to experimental and theoretical studies of pion production. Comparing two unitary models shows that most of the structures predicted for spin observables in NN → NNπ are model independent and roughly in agreement with the data. The contribution of rho- exchange is small, indicating the reaction is largely ''peripheral''. The energy dependence of these isobar models is smooth. The largely unstudied reactions producing neutral and negatively-charged pions show richer structure than positively-charged pion production. 6 refs
Energy Technology Data Exchange (ETDEWEB)
Tornow, W.; Howell, C.R.; Alohali, M.; Chen, Z.P.; Felsher, P.D.; Hanly, J.M.; Walter, R.L.; Weisel, G. (Duke Univ., Durham, NC (USA). Dept. of Physics Triangle Universities Nuclear Lab., Durham, NC (USA)); Mertens, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Witala, H.; Gloeckle, W. (Bochum Univ. (Germany, F.R.). Inst. fuer Theoretische Physik 2)
1991-03-28
Data for the analyzing power A{sub y}({theta}) for the elastic scattering of neutrons from deuterons have been measured at 5.0, 6.5 and 8.5 MeV to an accuracy of +-0.0035. Surprisingly large differences have been observed at these low energies between the data and rigorous Faddeev calculations using the Paris and Bonn B nucleon-nucleon potentials. The A{sub y}({theta}) data provide a stringent test for our present understanding of the on-shell and off-shell {sup 3}P{sub 0,1,2} nucleon-nucleon interactions. (orig.).
Nucleon-nucleon theory and phenomenology
International Nuclear Information System (INIS)
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers
International Nuclear Information System (INIS)
Hassan, M.Y.; Ramadan, S.
1978-01-01
The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)
International Nuclear Information System (INIS)
1987-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1985-87. These studies have involved investigations of nucleon-nucleon and pion-nucleus interactions. They have been carried out at the LAMPF accelerator at the Los Alamos National Laboratory, at the SIN laboratory near Zurich, Switzerland, and at the TRIUMF accelerator in Vancouver, Canada. 86 refs., 5 figs
Weak interactions in deuterons: exchange currents and nucleon-nucleon interactions
International Nuclear Information System (INIS)
Dautry, F.; Rho, M.; Riska, D.O.
1976-01-01
While the meson-exchange electromagnetic current has been tested with an impressive success in the two-nucleon system, nothing much is known about the reliability of the exchange currents in weak interactions. This question is studied using muon absorption in the deuteron, μ - + d→n + n + γ. The meson-exchange current, previously derived in parallel to those of the electromagnetic interaction, is checked for consistency against the p-wave piece of the p + p→d + π + process near threshold and then tested with the total capture rate for which some (though not so accurate) data are available. The same Hamiltonian is then used to calculate the matrix elements for the solar neutrino processes p + p→d + e + + γ and p + p + e - → d + γ in the hope that they would be measured and help resolve the solar neutrino puzzle. Finally a detailed analysis is made of the differential capture rate dGAMMA/dEsub(n), Esub(n) being the kinematic energy in the c.m. of the two neutrons, in the expectation that it will be used to pin down the ever elusive n-n scattering length. (Auth.)
Distance- and momentum-dependence of modern nucleon-nucleon interactions
International Nuclear Information System (INIS)
Feldmeier, Hans; Neff, Thomas; Weber, Dennis
2015-01-01
A phase-space representation of nuclear interactions, which depends on the distance r vector and relative momentum p vector of the nucleons, is presented. It visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method (UCOM) or with the similarity renormalization group (SRG). It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities, and differences of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed. (author)
The study of nucleon-nucleon interaction from the 3 nucleon interaction D(n,nnp) at 14 MeV
International Nuclear Information System (INIS)
Gondrand, Jean-Claude
1970-01-01
The n-p spectrum for the neutron-proton final state interaction in a complete D(n,nnp) experiment at 14 MeV was measured with a two-dimensional time-of-flight spectrometer. A previously measured n-n spectrum, and the n-p spectrum are compared with theoretical convoluted spectra obtained from Faddeev equations (AMADO Model) for three nucleon-nucleon potentials. The cross-sections σ(E 1 ,Ω 1 ,Ω 2 ) are extracted from the two experimental spectra by a simulation method. (author) [fr
International Nuclear Information System (INIS)
Trefz, M.
1985-01-01
Starting from a realistic nucleon-nucleon interaction (Reid soft-core) in the model of two infinitely extended confusing nuclear matter complex energy densities are calculated by means of a G matrix. By means of a generalized local-density approximation the results are transferred to finite nuclei. In the framework of the frozen-density approximation in the energy-density formalism a complex potential between two nuclei is calculated. The potential calculated so contains not the contribution of 1-particle-1-hole states to the optical potential. The contribution of these states is therefore calculated in the Feshbach formalism, respectively these states are explicitely regarded in coupled-channel calculations. The model is applied to light (for instance 12 C+ 12 C), medium heavy (for instance 48 Ca+ 48 Ca), and heavy (for instance 40 Ar+ 208 Pb) systems. Potentials for incident energies of 5-84 MeV per projectile nucleon are calculated. By means of these potentials differential cross sections and reaction cross sections are determined and compared with the experimental data. The energy dependence of the reaction cross section is discussed. It is shown that at higher energies (40 MeV/N) the differential cross sections can be quantitatively reproduced. For the reaction cross section in the whole energy range good agreement with the experiment is obtained. Contrarily to current theoretical models it is proved that at low energies the excitation of collective states yields a large contribution to the reaction cross section and therefore must not be neglected. (orig.) [de
Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons
Directory of Open Access Journals (Sweden)
Alarcon R.
2014-03-01
Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.
The off-shell nucleon-nucleon interaction in the singlet s-state
International Nuclear Information System (INIS)
Groot, H. de
1975-01-01
This thesis studies the off-shell behaviour of the neutron-proton interaction in the singlet state. To generate phase-shift-equivalent potentials a particular type of inversion problem is solved. It requires the potential to contain a non-local, separable part which is supposed to describe part of the short-range interaction. A special solution of the general inversion problem that produces potentials consisting of two separable terms is studied. Criteria to accept or reject particular inversion solutions are discussed. Neutron-proton potentials in the 1 S 0 partial wave which form part of the input for the general inversion procedure are defined. Different local potential tails are chosen, as well as varying short-range interactions, both local and non-local. The input phase shifts are discussed including three extrapolations of the phase shifts at high energy. The half-shell transition matrix for the potentials defined is studied. Some problems introduced by the additional electromagnetic interaction in the proton-proton system is investigated. (Auth.)
Attractive component in the nucleon-nucleon interaction in the Skyrme model
International Nuclear Information System (INIS)
Nyman, E.M.; Riska, D.O.
1986-01-01
The spin- and isospin-independent part of the nulceon-nucleon interaction in the Skyrme model is shown to contain a weak attractive intermediate-range term in addition to the well-known short-range repulsion. The attraction is a consequence of the rotational degree of freedom of a skyrmion in the presence of the field of another one, and can be thought of as an enhancement of the moment of inertia of each skyrmion. While the attractive term is dominant at large distances it is not sufficiently strong for nuclear binding. (orig.)
Phenomenological renormalization of free nucleon-nucleon interaction. [Sussex matrix elements
Energy Technology Data Exchange (ETDEWEB)
Prakash, M; Waghmare, Y R [Indian Inst. of Tech., Kanpur. Dept. of Physics; Mehrotra, I [Allahabad Univ. (India). Dept. of Physics
1976-08-01
Low-lying spectra of /sup 6/Li, /sup 18/F, /sup 18/O, /sup 42/Sc, /sup 42/Ca, /sup 58/Ni and /sup 92/Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the /sup 3/S/sub 1/ relative state are made (1+..cap alpha..) times their bare interaction value, where ..cap alpha.. is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME.
Nucleon-nucleon scattering and different meson exchanges
International Nuclear Information System (INIS)
Osman, A.
1985-10-01
The iterative and noniterative diagrams with different meson exchange are investigated. The α, πβ and πγ meson exchange, (where α=π, rho, σ, ω, eta and delta; β=π, rho, σ and ω; γ=π and rho), are considered. These diagrams are taken to involve the nucleon-nucleon, the nucleon-isobar and the isobar-isobar intermediate states. The diagrams are calculated in momentum space following the noncovariant perturbation theory. The role of each of these diagrams is examined by calculating its contribution to the nucleon-nucleon interaction. The potential model is taken to include one-boson-exchange terms in addition to these diagrams. The nucleon-nucleon scattering phase shifts are described successfully showing the importance of tensor force. The contributions of the different parts are studied in the nucleon-nucleon scattering. (author)
Pionic background for nucleon-nucleon observables
International Nuclear Information System (INIS)
Ballot, J.L.; Robilotta, M.R.
1992-01-01
A method is presented that allows the unambiguous definition of the one pion exchange contribution to nucleon-nucleon scattering observables and then use it to determine those waves where values of phase shifts and mixing parameters may be understood as sums of pionic and non-pionic dynamical effects. This helps the assessment of the explicative power of the various existing phenomenological potentials and may eventually lead to ways of discriminating their effectiveness. (author) 16 refs.; 19 figs.; 2 tabs
Nucleon-nucleon scattering data
International Nuclear Information System (INIS)
Bystricky, J.; Lehar, F.
1981-01-01
The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)
Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions
International Nuclear Information System (INIS)
Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.
1988-02-01
Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)
Effects of recent measurements on phase shift analysis of nucleon--nucleon scattering
International Nuclear Information System (INIS)
Arndt, R.
1977-01-01
Four recent measurements in pp and np scattering below 250 MeV are used to indicate the substantial influence that new experiments can have upon phase parameters derived from the expanded data base. The cases are described separately, and the collective effect upon energy dependent analyses is discussed. It is indicated that the types of change are far from negligible. 7 refs
On the sensitivity of nucleon-nucleon correlations to the form of short-range potential
International Nuclear Information System (INIS)
Gmitro, M.; Kvasil, J.; Lednicky, R.; Lyuboshitz, V.L.
1986-01-01
Nucleon-nucleon correlation characteristics are calculated for several phenomenological and realistic strong potentials. The results show that a square-well potential reasonably well approximates the nucleon-nucleon interaction if one calculates the correlations between nucleons generated in a region with an r.m.s. radius larger than 1.5-2 fm. Vice versa, the correlations of nucleons emitted from a smaller generation region are sensitive to the form of the assumed nucleon-nucleon potential. (author)
Wang, Ting-Ting; Ma, Yu-Gang; Zhang, Chun-Jian; Zhang, Zheng-Qiao
2018-03-01
The proton-proton momentum correlation function from different rapidity regions is systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400 A MeV to 1500 A MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile or target rapidity and mid-rapidity protons.
International Nuclear Information System (INIS)
Knyaz'kov, O.M.; Kukhtina, I.N.
1989-01-01
The integral characteristics of the potential distribution in nuclei, namely the volume integrals, moments and mean square radii are studied in the framework of the semimicroscopic approach to the interaction of low energy nucleons with nuclei on the base of the exchange nucleon-nucleon correlations and the density dependence of effective forces. The ratio of the normalized multipole moments of potential and matter distributions is investigated. The energy dependence of the integral characteristics is analyzed. 15 refs.; 2 tabs
Ismail, M.; Adel, A.
2018-04-01
The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.
Energy dissipation process for 100-MeV protons and the nucleon-nucleon interactions in nuclei
International Nuclear Information System (INIS)
Cowley, A.A.; Chang, C.C.; Holmgren, H.D.; Silk, J.D.; Hendrie, D.L.; Koontz, R.W.; Roos, P.G.; Samanta, C.; Wu, J.R.
1980-01-01
Coincidence studies of two protons emitted from p+ 58 Ni at 100 MeV have been carried out. The proton spectra in coincidence with scattered protons suffering an average energy loss of 60 MeV are similar to those resulting from 60-MeV incident protons. This suggests that the initial interaction of the incident proton is with a bound nucleon and that one or both of these nucleons are emitted or initiates a cascade leading to more complex states
Li, Pengcheng; Wang, Yongjia; Li, Qingfeng; Guo, Chenchen; Zhang, Hongfei
2018-04-01
With the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, a systematic investigation of the effects of in-medium nucleon-nucleon (NN ) elastic cross section on the collective flow and the stopping observables in 197Au+197Au collisions at beam energies from 40 to 150 MeV/nucleon is performed. Simulations with the medium correction factors F =σNN in -medium/σNN free=0.2 ,0.3 ,0.5 and the one obtained with the FU3FP1 parametrization which depends on both the density and the momentum are compared to the FOPI and INDRA experimental data. It is found that, to best fit the experimental data of the slope of the directed flow and the elliptic flow at midrapidity as well as the nuclear stopping, the correction factors of F =0.2 and 0.5 are required for reactions at beam energies of 40 and 150 MeV/nucleon, respectively. Whereas calculations with the FU3FP1 parametrization can simultaneously reproduce these experimental data reasonably well. And, the observed increasing nuclear stopping with increasing beam energy in experimental data can also be reproduced by using the FU3FP1 parametrization, whereas the calculated stopping power in Au + Au collisions with beam energies from 40 to 150 MeV /nucleon almost remains constant when taking F equal to a fixed value.
Nucleon-Nucleon Potentials and Computation of Scattering Phase Shifts
Directory of Open Access Journals (Sweden)
Jhasaketan Bhoi
2015-12-01
Full Text Available By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.
International Nuclear Information System (INIS)
Liu Jianye; Xing Yongzhong; Guo Wenjun
2003-01-01
We study the isospin effects of the mean field and two-body collision on the nucleon emissions at the intermediate energy heavy-ion collisions by using an isospin-dependent transport theory. The calculated results show that the nucleon emission number N n depends sensitively on the isospin effect of nucleon-nucleon cross section and weakly on the isospin-dependent mean field for neutron-poor system in higher beam energy region. In particular, the correlation between the medium correction of two-body collision and the momentum-dependent interaction enhances the dependence of nucleon emission number N n on the isospin effect of nucleon-nucleon cross section. On the contrary, the ratio of the neutron-proton ratio of the gas phase to the neutron-proton ratio of the liquid phase, i.e., the degree of isospin fractionation [(N/Z) gas ] b /[(N/Z) liq ] b depends sensitively on the isospin-dependent mean field and weakly on the isospin effect of two-body collision for neutron-rich system in the lower beam energy region. In this case, N n and [(N/Z) gas ] b /[(N/Z) liq ] b are the probes for extracting the information about the isospin-dependent nucleon-nucleon cross section in the medium and the isospin-dependent mean field, respectively
The nucleon-nucleon potential in the chromodielectric soliton model
International Nuclear Information System (INIS)
Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.
1993-01-01
The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar σ field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function κ(σ). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme
Nucleon-nucleon theory and phenomenology. Progress report and renewal proposal
International Nuclear Information System (INIS)
Signell, P.
1981-01-01
Progress is outlined on five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction with the new dramatically altered ππ s-wave interaction and using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly, and determining which phases are given by theory at which energies; (4) the introduction of our K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated and verified permanent nucleon-nucleon data bank in the 0 to 1200 MeV range that can be used by all nucleon-nucleon researchers (or anyone else) via Telenet dial-in and by means of a published compendium
Energy Technology Data Exchange (ETDEWEB)
Su, Jun; Huang, Ching-Yuan [Sun Yat-sen University, Sino-French Institute of Nuclear Engineering and Technology, Zhuhai (China); Xie, Wen-Jie [Yuncheng University, Department of Physics, Yuncheng (China); Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Zhang, Feng-Shou [Beijing Normal University, The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing (China); Beijing Radiation Center, Beijing (China); National Laboratory of Heavy Ion Accelerator of Lanzhou, Center of Theoretical Nuclear Physics, Lanzhou (China)
2016-07-15
The effects of in-medium nucleon-nucleon cross sections on the stopping observable and ratio of free protons in heavy-ion collisions at 400 MeV/nucleon have been investigated within the framework of the IQMD+GEMINI model. Five kinds of in-medium corrections of nucleon-nucleon cross sections, which are considerably different in the referred energy and density, have been used in the model. It has been found that calculations of the stopping decrease when the in-medium cross sections decrease. Moreover, the ratio of free protons R{sub p} depends not only on the value of the in-medium factors but also on its isospin dependence. In order to investigate the isospin effect of in-medium factors on the ratio of free protons R{sub p}, the isospin dependence of in-medium factors has been adjusted and used in the model. The calculations have shown that the isospin dependence of in-medium factors does not impact the stopping, but impacts the ratio of free protons R{sub p}. When the in-medium factors relation f{sub nn}{sup med} > f{sub pp}{sup med} is used in the model, the calculated values of R{sub p} are larger than those in the f{sub nn}{sup med} < f{sub pp}{sup med} case. (orig.)
Radial excitations in nucleon-nucleon scattering
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.
1986-01-01
In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)
International Nuclear Information System (INIS)
Green, A.M.
1978-01-01
The first part of this talk is based on the one presented at the Tokyo conference last September and can be found in ref( 1 ). This coveres such topics as the Paris and Stonybrook potentials, the new values of the NN coupling constants and also our understanding of the NNω coupling constant. The second part reviews recent developments concerning the Paris potential, the application of the MIT bag model to the NN interaction, the effect of crossed pion processes and vertex form factors. Comments made about the possible future trends of NN potential calculations. The current status of the D-state probability of the deuteron is discussed. (orig./AH) [de
p-wave pion production from nucleon-nucleon collisions
International Nuclear Information System (INIS)
Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.
2009-01-01
We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn→ppπ - , pp→pnπ + , pp→dπ + channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN→NNπ.
Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models
International Nuclear Information System (INIS)
Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.
1999-01-01
We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society
Nucleon-nucleon scattering phase shifts
International Nuclear Information System (INIS)
Bryan, R.
1978-01-01
Here are presented 0 to 800 MeV nucleon-nucleon elastic and inelastic phase parameters derived by several groups: Arndt and Roper; Hoshizaki; Bugg; Bystricky, Lechanoine, and Lehar; and Bryan, Clark, and VerWest. Resonant-like behavior appears in the 1 D 2 and 3 F 3 states above the inelastic threshold in Hoshizaki's analysis but not in Arndt and Roper's. The np data are inadequate to permit determination of the I = O phase parameters above 600 MeV. 27 references
International Nuclear Information System (INIS)
Elliott, J.P.
1981-01-01
This chapter attempts to describe and compare some of the more important nucleon-nucleon interactions that have been used in nuclear structure calculations, and to relate them where possible to the real nucleon-nucleon interaction. Explains that different interactions have been used depending on whether one is fitting to total binding energies and densities with a Hartree Fock (HF) calculation or fitting to spectra and spectroscopic data in a shell model calculation. Examines both types of calculation after two preliminary sections concerned with notation and with the philosophy underlying the use of model spaces and effective interactions. Discusses Skyrme interactions, finite range interactions, small model space, large model space, and the Sussex potential matrix elements. Focuses on the more empirical approaches in which a simple form is chosen for the effective interaction in a given model space and the parameters are deduced from fitting many-body data
Covariant computation of e+e- production in nucleon-nucleon collisions
International Nuclear Information System (INIS)
Haglin, K.; Kapusta, J.; Gale, C.
1989-01-01
Electron-positron production differential cross sections in nucleon-nucleon collisions are calculated analytically via meson exchange with a realistic pseudovector coupling including strong interaction form factors. These results are compared with newly obtained data from the DLS at the BEVALAC of proton on beryllium. A comparison with the soft photon approximation is also made. (orig.)
Nucleon-nucleon correlations and the Coulomb Displacement Energy
International Nuclear Information System (INIS)
Van Neck, D.; Waroquier, M.; Heyde, K.
1997-01-01
Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)
Two-body Dirac equations for nucleon-nucleon scattering
International Nuclear Information System (INIS)
Liu Bin; Crater, Horace
2003-01-01
We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac equations of constraint dynamics. This approach to the two-body problem has been successfully tested for QED and QCD relativistic bound states. An important question we wish to address is whether or not the two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a Schroedinger-like equation in such a way that allows us to use techniques to solve them already developed for Schroedinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of Calogero's variable phase shift differential equation for coupled Schroedinger-like equations. Then we determine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering phase shifts for n-p scattering. The data involve seven angular momentum states including the singlet states 1 S 0 , 1 P 1 , 1 D 2 and the triplet states 3 P 0 , 3 P 1 , 3 S 1 , 3 D 1 . Two models that we have tested give us a fairly good fit. The parameters obtained by fitting the n-p experimental scattering phase shift give a fairly good prediction for most of the p-p experimental scattering phase shifts examined (for the singlet states 1 S 0 , 1 D 2 and triplet states 3 P 0 , 3 P 1 ). Thus the two-body Dirac equations of constraint dynamics present us with a fit that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange model for invariant potentials that may possibly improve the fit
Toy model for pion production in nucleon-nucleon collisions
International Nuclear Information System (INIS)
Hanhart, C.; Miller, G. A.; Myhrer, F.; Sato, T.; Kolck, U. van
2001-01-01
We develop a toy model for pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations
International Nuclear Information System (INIS)
Signell, P.
1981-01-01
This project has involved five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with signifantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 meV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 1-1200 MeV range that can be used by all nucleon-nucleon researchers
A new form for the nucleon-nucleon potential
International Nuclear Information System (INIS)
Agarwal, B.K.
1976-01-01
The form of the internucleon force is considered. It is assumed that the nucleon-nucleon potential depends, in general, both on the distance ν and the angle theta. It is also assumed that the potential V(ν,ω) admits an analytic continuation into the complex ω-plane so that when ω=costheta is real it denotes the direction in which the potential is being determined. The analysis leads to a new parametryzation of the nucleon-nucleon potential
Single nucleon-nucleon collision model for subthreshold pion production in heavy ion collisions
International Nuclear Information System (INIS)
Bellini, V.; Di Toro, M.; Bonasera, A.
1985-01-01
We show that inclusive experimental data on subthreshold pion production in 12 C + 12 C and 16 O + 12 C collisions can be reproduced using a first chance Nucleon-Nucleon (NN) collision mechanism. Pauli blocking effects are extremely important while π-resorption can be safely neglected for these light systems. We apply our method at various beam energies. The possible importance of collective dynamical effects around the physical threshold is finally suggested
Nucleon-nucleon correlations in dense nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1993-02-01
In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de
Nucleon-nucleon momentum correlation function for light nuclei
International Nuclear Information System (INIS)
Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.
2007-01-01
Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics
Coupled channels Marchenko inversion for nucleon-nucleon potentials
International Nuclear Information System (INIS)
Kohlhoff, H.; Geramb, H.V. von
1994-01-01
Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)
Density dependent effective interactions
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1994-01-01
An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs
Unitary three-body calculation of nucleon-nucleon scattering
International Nuclear Information System (INIS)
Tanabe, H.; Ohta, K.
1986-07-01
We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)
Symmetric nuclear matter with Skyrme interaction
International Nuclear Information System (INIS)
Manisa, K.; Bicer, A.; Atav, U.
2010-01-01
The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.
Jets in high energy nucleon-nucleon collisions
International Nuclear Information System (INIS)
Strugalski, Z.
1982-01-01
From the experimental studies of high-energy hardon-nucleon and nucleon-nucleon collisions, by means of nuclear targets applied as detectors, it follows that particles are produced via intermediate objects created first in a 2 → 2 type endoergic reaction. These objects, called generons, decay in flight into finally observed particles and resonances after their lifetime tausub(g) > or approximately 10 - 22 s. The jet structure of the outcome in nucleon-nucleon collisions is a simple and indispensable consequence of this particle production mechanism. The picture of the jet structure in the collision outcome observed in the CMS of the colliding nucleons depends on the energy of these nUcleons. New particle production scheme is proposed, which can be tested experimentally; corresponding simple relations between characteristics of colliding nucleons and of produced jets are proposed for a testing
Quark bags, P-matrix and nucleon-nucleon scattering
International Nuclear Information System (INIS)
Narodetskij, I.M.
1984-01-01
This paper is an extended version of the talk given at IX European Conference on Few Body Problems in Physics, Tbilisi, 1984. It reviews recent developments of the quark compound bag (QCB) model including explicit examples of the QCB nucleon-nucleon potentials, description of the deuteron properties, calculation of the six quark admixture in the deuteron and applications to the three-nucleon system
Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length
Directory of Open Access Journals (Sweden)
V. A. Babenko
2016-08-01
Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.
Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering
International Nuclear Information System (INIS)
Deng Yibing; Wang Shilai; Yin Gaofang
2006-01-01
Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)
Inequalities and bounds for nucleon-nucleon scattering
International Nuclear Information System (INIS)
Ramandurai, K.S.
1979-08-01
The objective of this work is to derive model-independent inequalities and bounds for nucleon-nucleon elastic scattering amplitudes based on well-established theoretical principles and symmetries. Two classes of methods are used: algebraic and variational. In the algebraic part, the author derives inequalities and bounds for NN amplitudes and observables using their mutual relations and x symmetries. In the variational part, he employs Lagrange's method of undetermined multipliers to evaluate the bounds. He tests the predictions of a sample of proposed phase shifts at three different energies using the results obtained
International Nuclear Information System (INIS)
Ghodsi, O. N.; Zanganeh, V.
2009-01-01
In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.
Some progress towards ''universal'' effective interactions
International Nuclear Information System (INIS)
Gomez, J.M.G.
1983-01-01
The approximation methods introduced to treat the nuclear many-body problem usually imply that the appropriate nuclear force is an effective interaction, different from the free nucleon-nucleon interaction. An effective interaction is thus intimately related to a given nuclear model and its scope is generally confined to the description of a limited number of nuclei or nuclear states. However, in recent years there has been some progress towards ''universal'' effective nucleon-nucleon interactions, in the sense that they may be reasonably suitable to describe bulk properties of nuclear ground states throughout the periodic table and also properties of excited states. The authors conclude that a finite-range density-dependent effective interaction of the Gogny's type is capable of describing a large number of static and dynamical nuclear properties throughout the periodic table, including open-shell nuclei. Hopefully it may provide clues for the definition of some ''universal'' effective force
Tables of density dependent effective interactions between 122 and 800 MeV
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1996-01-01
Coordinate space density dependent effective nucleon-nucleon interaction based upon half-off-shell t and g-matrices are presented. These interactions are based upon the Paris interactions and are presented over a range of energies. 5 refs., 8 tabs
International Nuclear Information System (INIS)
Miller, G.A.
1984-01-01
In the Cloudy Bag Model hadrons are treated as quarks confined in an M.I.T. bag that is surrounded by a cloud of pions. Computations of the charge and magnetism distributions of nucleons and baryons, pion-nucleon scattering, and the strong and electromagnetic decays of mesons are discussed. Agreement with experimental results is excellent if the nucleon bag radius is in the range between 0.8 and 1.1 fm. Underlying qualitative reasons which cause the pionic corrections to be of the obtained sizes are analyzed. If bags are of such reasonably large sizes, nucleon bags in nuclei will often come into contact. As a result one needs to consider whether explicit quark degrees of freedom are relevant for Nuclear Physics. To study such possibilities a model which treats a nucleus as a collection of baryons, pions and six-quark bags is discussed. In particular, the short distance part of a nucleon-nucleon wave function is treated as six quarks confined in a bag. This approach is used to study the proton-proton weak interaction, the asymptotic D to S state ratio of the deuteron, the pp → dπ reaction, the charge density of /sup 3/He, magnetic moments of /sup 3/He and /sup 3/H and, the /sup 3/He-/sup 3/H binding energy difference. It is found that quark effects are very relevant for understanding nuclear properties
Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation, Phase I
National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...
Braun, R. T.; Tornow, W.; Howell, C. R.; Trotter, D. E. Gonzalez; Roper, C. D.; Salinas, F.; Setze, H. R.; Walter, R. L.; Weisel, G. J.
2008-01-01
We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model s...
Energy Technology Data Exchange (ETDEWEB)
Braun, R.T. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)
2008-02-21
We present the most accurate and complete data set for the analyzing power A{sub y}({theta}) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E{sub n}=12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.
International Nuclear Information System (INIS)
Braun, R.T.; Tornow, W.; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.; Weisel, G.J.
2008-01-01
We present the most accurate and complete data set for the analyzing power A y (θ) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E n =12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study
Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification
Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.
2018-03-01
We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.
Interacting boson model with surface delta interaction between nucleons
International Nuclear Information System (INIS)
Druce, C.; Moszkowski, S.A.
1984-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits
Nucleon-nucleon optical model for energies to 3 GeV
International Nuclear Information System (INIS)
Funk, A.; Von Geramb, H.V.; University of Melbourne, VIC; Amos, K.A.
2001-01-01
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T Lab ≤ 300 MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T Lab > 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions
Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II
International Nuclear Information System (INIS)
Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.
1996-01-01
A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)
Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei
International Nuclear Information System (INIS)
Leitch, M.J.
1989-01-01
Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs
Nucleon-nucleon partial-wave analysis to 1100 MeV
International Nuclear Information System (INIS)
Arndt, R.A.; Hyslop, J.S. III; Roper, L.D.
1987-01-01
Comprehensive analyses of nucleon-nucleon elastic-scattering data below 1100 MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 22 single-energy solutions are obtained consists of 7223 pp and 5474 np data. A resonancelike structure is found to occur in the 1 D 2 , 3 F 3 , 3 P 2 - 3 F 2 , and 3 F 4 - 3 H 4 partial waves; this behavior is associated with poles in the complex energy plane. The pole positions and residues are obtained by analytic continuation of the ''production'' piece of the T matrix obtained in the energy-dependent solution. The new phases differ somewhat from previously published VPIandSU solutions, especially in I = 0 waves above 500 MeV, where np data are very sparse. The partial waves are, however, based upon a significantly larger data base and reflect correspondingly smaller errors. The full data base and solution files can be obtained through a computer scattering analysis interactive dial-in (SAID) system at VPIandSU, which also exists at many institutions around the world and which can be transferred to any site with a suitable computer system. The SAID system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base
Nucleon-nucleon scattering studies at small angles at COSY-ANKE
Energy Technology Data Exchange (ETDEWEB)
Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration
2015-07-01
The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The SAID database and analysis program comprise various experimental observables at different energies over the full angular range and express them in the partial waves. The goal of the experiments held at COSY-Juelich is to provide SAID with new valuable measurements. Scattering data was taken at small angles for six beam energies between 0.8 and 2.4 GeV with polarized proton beam incident on both proton and deuteron unpolarized targets using the ANKE spectrometer. First, the results of the proton-proton (pp) scattering analyzing power and cross section are presented. While pp data closes a very important gap at small angles in the database, proton-neutron (pn) data is a crucial contribution to the almost non-explored pn database above 800 MeV. Therefore, the talk will mainly concentrate on the proton-deuteron (pd) scattering studies, which includes the overview of the older COSY experiments with polarized deuteron beam, and the abovementioned new experiment with polarized proton beam and unpolarized deuteron target. The presentation will show the most recent results of the analyzing powers of pd elastic and pn scattering.
Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field
International Nuclear Information System (INIS)
Philipp, W.
1975-01-01
The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de
Double polarized neutron-proton scattering and nucleon-nucleon tensor force: An alternative analysis
International Nuclear Information System (INIS)
Tornow, W.; Gould, C.R.; Haase, D.G.; Walston, J.R.; Raichle, B.W.
2002-01-01
Previous neutron-proton total cross-section difference measurements Δσ L and Δσ T between E n =7.43 and 17.1 MeV have been analyzed in a new way that reduces experimental systematic uncertainties. The results obtained for the 3 S 1 - 3 D 1 mixing parameter ε 1 are very similar to the published values, substantiating the previous conclusion that the nucleon-nucleon tensor force at low energies is stronger than predicted by the Nijmegen partial-wave analysis and, therefore, by all the recent high-precision nucleon-nucleon potential models as well
Search for basic properties of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Gersten, A.
1981-01-01
Extraction of N-N amplitudes directly from phase-shift analysis is described and the results are compared to those obtained via potential or pseudopotential models at low and intermediate energies and through Regge trajectory exchanges and diffraction models at high energies. While potential models fit the experimental data up to about 400 MeV lab energy, the information obtained directly by phase-shift analysis of N-N amplitudes is obtained from experiments in the 400-800 MeV range. At higher energies the real part of the amplitudes becomes better approximated by the first Born term. In this way one can get an insight into the meson exchange structure of the N-N amplitudes. (O.T.)
Coherent generation of mesons in nucleon-nucleon interactions
Takibaev, Z S; Zaitsev, K G
1974-01-01
The authors have at an experiment conducted at CERN searched for events of 0 four-prong type which satisfy coherent pion production. The 2-meter hydrogen bubble chamber at CERN was bombarded by 19.07 GeV protons. The cross-section for four final state particle events was 13.04 mb. the cross-section for the process pp to pp pi /sup +/ pi /sup -/ was 1.1 mb and the cross section for coherent pion production was found to vary according to the criteria used between 0.044 mb. and 0.2 mb. Some theoretical work is given using the Glauber formalism in which it is assumed that the nucleon behaves like a nucleus and contains sub-particles. From the theory and data an upper limit of 10 is put on the number of subparticles in the nucleon. (9 refs).
Survey of structures revealed in nucleon-nucleon scattering experiments and dibaryon resonances
International Nuclear Information System (INIS)
Hidaka, K.; Yokosawa, A.
1979-01-01
Structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems are reviewed. Evidence is presented for the existence of dibaryon resonances with an emphasis on a diproton resonance in 3 F 3 (J/sup P/ = 3 - ) state. 38 references
Hyperspherical effective interaction for nonlocal potentials
International Nuclear Information System (INIS)
Barnea, N.; Leidemann, W.; Orlandini, G.
2010-01-01
The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.
Block, Martin M
2002-01-01
Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).
Centroids of effective interactions from measured single-particle energies: An application
International Nuclear Information System (INIS)
Cole, B.J.
1990-01-01
Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction
Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field
International Nuclear Information System (INIS)
Haegele, G.
1979-01-01
The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)
Nucleon-nucleon forces in the quark compound bag model and few-nucleon systems
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Narodetskij, I.M.
1984-01-01
Role of quark-gluon degrees of freedom is discussed in nucleon-nucleon scattering at low and intermediate energies. It is shown that the existence of six-quark hags fixes the form of NN potential at small distances, which leads to the P-matrix satisfying the criterion of Jaffe and Low. The dynamical model of three-nucleon system is discussed taking into accoint the contribution of six-quark bags
International Nuclear Information System (INIS)
Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong
2004-01-01
The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)
Nucleon-nucleon scattering length from three-body reactions
International Nuclear Information System (INIS)
Bodek, K.
1989-01-01
Experiments aimed at the measurement of the singlet scattering lengths 1 a np and 1 a nn of the NN-interaction in the presence of a heavy spectator are described. The values obtained are compared with the results of measurements of other reactions. The very good agreement of the experimental values of 1 a np from all breakup reactions and elastic scattering as well as agreement of the values of 1 a nn from breakup reactions and disagreement with the value from the π - d → nnγ reaction cast doubts on the hypothesis ascribing this discrepancy to a 3N-force. This result also suggests a stronger effect of a violation of the charge independence principle than previously accepted. 101 refs., 18 figs., 3 tabs. (author)
International Nuclear Information System (INIS)
Krebs, H.; Epelbaum, E.; Meissner, U.G.
2007-01-01
We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Δ degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading-order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading-order corrections are dominant in most partial waves considered. (orig.)
Analysis of parity violating nuclear effects at low energy
Energy Technology Data Exchange (ETDEWEB)
Desplanques, B; Missimer, J [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics
1978-05-15
The authors present an analysis of parity-violating nuclear effects at low energy which attempts to circumvent the uncertainties due to the weak and strong nucleon-nucleon interactions at short distances. Extending Danilov's parametrization of the parity-violating nucleon-nucleon scattering amplitude, they introduce six parameters: one for the long-range contribution due to the pion exchange and five for the shorter-range contributions. This choice gives an accurate representation of parity-violating effects in the nucleon-nucleon system up to a lab energy of 75 MeV. For calculations in nuclei, an effective two-body potential is derived in terms of the parameters. The analysis of presently measured effects shows that they are consistent, and, in particular, that the circular polarization of photons in n + p ..-->.. d + ..gamma.. is not incompatible with the other measurements. It does not imply a dominant isotensor component.
Boson-exchange nucleon-nucleon potential and nuclear structure
International Nuclear Information System (INIS)
Grange, Pierre.
1976-01-01
A fully momentum-dependent one-boson-exchange potential is derived which takes into account the mesons, π, eta, sigma, rho, ω and phi. Scattering bound states and nuclear matter properties are studied in momentum space. The use of such potential is shown to be as easy as the use of more simple phenomenological interactions. In nuclear matter the formalism of Bethe-Goldstone is chosen to compute the binding energy versus density in the approximation of two-body and three-body correlations. The three-body correlated wave function obtained is then used [fr
Investigation of the nucleon-nucleon tensor force in three-nucleon system
Energy Technology Data Exchange (ETDEWEB)
Clajus, M.; Egun, P.M.; Gruebler, W.; Hautle, P. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Vuaridel, B. (Michigan Univ., Ann Arbor (USA) Brookhaven National Lab., Upton, NY (USA)); Sperisen, F. (Indiana Univ., Bloomington (USA). Cyclotron Facility); Kretschmer, W.; Rauscher, A.; Schuster, W.; Weidmann, R.; Haller, M. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.)); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Witala, H.; Cornelius, T.; Gloeckle, W. (Bochum Univ. (Germany, F.R.)); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland))
1990-08-16
Proton-deuteron elastic scattering has been investigated at E{sub p}=22.7 MeV by comparison of rigorous Faddeev calculations with experimental results. The observable most sensitive to the tensor force is the nucleon-nucleon polarization transfer coefficient K{sub y}sup(y'). The new angular distribution of K{sub y}sup(y') clearly favours the tensor force of the Bonn A potential, which is weaker than the one of the Paris potential. (orig.).
On the nucleon-nucleon potential obtained from non-linear coupling
International Nuclear Information System (INIS)
El Ghabaty, S.S.
1975-07-01
The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons
Hard probes of short-range nucleon-nucleon correlations
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
One-boson-exchange approach to dilepton production in nucleon-nucleon collisions
International Nuclear Information System (INIS)
Haglin, K.L.
1991-01-01
The author calculates energy-dependent nucleon-nucleon elastic cross sections and electron-positron pair production differential cross sections for the processes pp → pp, np → np, and pp → ppe + e - , np → npe + e - at laboratory kinetic energies in the 1-5 GeV range. These calculations will be based on a one-boson-exchange (π, ρ, ω, σ, δ, η) approximation to the nucleon-nucleon scattering problem. Strong form factors are included in a manner which preserves gauge invariance. He finds excellent results as compared with data for the total elastic cross sections. The calculate differential elastic cross sections show only qualitative agreement with data. For dilepton production in n-p scattering the model overestimates the number of pairs as compared with proton on beryllium data. For the p-p case he finds the tensor coupling of the ρ to the nucleons to be clearly dominant. Data do not yet exist for the p-p case at these energies: the author predicts them
International Nuclear Information System (INIS)
Basrak, Z.; Zoric, M.; Eudes, P.; Sebille, F.
2009-01-01
It has been shown theoretically [1] and confirmed experimentally [2] that heavy ion reactions (HIR) at intermediate energies, especially for central collisions, are strongly dominated by the mid-rapidity emission, a component which is emitted early during the dynamical reaction phase. This prompt and copious dynamical emission is proportional to the impact parameter 6 and evacuates a large amount of available system energy [1,3]. Since this emission occurs in the early compact phase of HIR, it is crucial to study details of the early transformation of the initial relative motion of the entrance reaction channel into other forms of energy in particular to its main components, heat E th and compression E compr . We have carried out such a study within the framework of the semi-classical Landau-Vlasov model with the momentum-dependent Gogny interaction D1-G1 [4]. In this model, σ NN is the free nucleon-nucleon cross section with its usual energy and isospin dependence. For the sake of simplicity, σ NN is assumed to be isotropic and density independent, an approximation which is fully justified in HIR below 100 MeV/u. In an earlier work the free nucleon-nucleon cross section was considered [5]. Here, we investigate the in-medium effects, i.e. how the change of σ NN influences the early energy transformation and the early particle emission. The change is taken into account by multiplying σ NN by a corrective constant factor F. In other words, we examine how the E th and E compr evolve with the reaction time and how the dynamical emission behaves and both as a function of the factor F. We investigate two systems: 3 6A r + 6 8N i and 6 8N i + 6 8N i reactions at 52, 74, and 95 MeV/u (52, 74, and 90 MeV/u for the latter reaction) at all impact parameters from central to peripheral collisions. The results of the simulations show that the time evolution of heat E th and compression E compr during the early dynamical reaction phase present maxima at all incident energies
International Nuclear Information System (INIS)
Druce, C.H.; Moszkowski, S.A.
1986-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Moszkowski, S.A.
1986-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.
International Nuclear Information System (INIS)
Yakosawa, A.
1977-01-01
Results of various asymmetry measurements in nucleon-nucleon scattering with polarized beams and targets at ZGS energies are presented. A possible direct-channel resonance in the pp system is discussed. Most of the discussion above ZGS energies are aimed at future measurements
International Nuclear Information System (INIS)
Schwarz, K.; Froehlich, J.; Zingl, H.F.K.
1980-01-01
The Bethe-Salpeter equation is solved in closed form with the help of a four dimensional separable 'potential'. For possible applications to three-nucleon investigations the authors have fitted all nucleon-nucleon S-wave phase shifts in a sufficient way by this method; in addition they also present an example for a P-wave. (Auth.)
Advances in Nucleon-Nucleon Scattering Experiments and Their Theoretical Consequences
International Nuclear Information System (INIS)
Bekteshi, Sadik; Kabashi, Skender; Kamishi, Burim
2007-01-01
An overview of critical analysis of the experimental data obtained from nucleon-nucleon scattering is given and investigated in this work. Comparison of the experimental data with results of recent partial wave analysis of Nijmegen group, VPI/GWU and Saclay is given. Potentials of Nijmegen, Bonn and Argonne group are discussed. Experimental data which lead to the break of charge symmetry, to the break of the charge independence and to the determination of the off-shell tensor force, are particularly emphasized. Disagreements which exist between theoretical calculations related to the contribution of particular mechanism in different reactions are pointed out. In this relation, still open problems to be solved and measurement that should be undertaken in the future are identified, as well
Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables
International Nuclear Information System (INIS)
Field, R.D.; Stevens, P.R.
1975-01-01
A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions
One-Boson Approach to Dilepton Production in Nucleon-Nucleon Collisions.
Haglin, Kevin Lee
1990-01-01
We calculate energy dependent nucleon-nucleon total elastic cross sections and invariant mass dependent electron-positron pair production differential cross sections for the processes pp to pp, np to np and pp to ppe ^+e^-, pn to pne^+e ^- at laboratory kinetic energies in the 1-5 GeV range. These calculations will be based on relativistic quantum field theory in the one-boson-exchange (pi,rho,omega,sigma,delta, eta) approximation to the nucleon-nucleon scattering problem. There are several independent Feynman diagrams for each process--twenty-five for the case np to npe^+e^ - and forty-eight for the case pp to ppe^+e^- --which, for evaluation, require taking the trace of as many as ten gamma matrices and evaluating an angular integral of a quotient of polynomial functions of initial and final energies, particle masses, coupling constants and so on. These mathematical operations are carried out with the aid of the following algebraic manipulators: for the trace operations we use REDUCE 3.3 on the VAX at the ACS facility and for testing the angular integration algorithms we use MAPLE on the Cray-2 at the Minnesota Supercomputer Institute. Finally, we use Cray-2 Fortran for the resulting numerical substitutions. Gauge invariance is strictly observed while including strong and electromagnetic form factors. The numerical results for these calculations are compared with existing data from the Particle Data Group Booklet and compared with recently released data from the Dilepton Spectrometer (DLS) at the Bevalac of proton on Beryllium. For the latter comparison, the spectrometer's finite acceptance function is introduced before a rapidity and transverse momentum integration.
T20 measurements for 1H(d searrow,γ)3He and the P-wave component of the nucleon-nucleon force
International Nuclear Information System (INIS)
Schmid, G.J.; Chasteler, R.M.; Weller, H.R.; Tilley, D.R.; Fonseca, A.C.; Lehman, D.R.
1996-01-01
Measurements of T 20 (θ lab =90 degree) for 1 H(d searrow,γ) 3 He, in the energy range E d (lab)=12.7 endash 19.8 MeV, have been compared with the results of new exact three-body Faddeev calculations using the Paris and Bonn-A nucleon-nucleon (NN) potentials. This comparison indicates a strong sensitivity of the T 20 observable to the p-wave part of the NN force. In particular, we find that the 3 P 1 component of the P-wave interaction is the dominant P-wave term affecting the value of T 20 (θ lab =90 degree) at these energies. This contrasts with the results of polarized N-D scattering studies where the 3 P 0 component has been found to dominate. cents 1996 The American Physical Society
International Nuclear Information System (INIS)
Tornow, W.; Witala, H.; Kievsky, A.
1998-01-01
The 4 P J waves in nucleon-deuteron scattering were analyzed using proton-deuteron and neutron-deuteron data at E N =3 MeV. New sets of nucleon-nucleon 3 P j phase shifts were obtained that may lead to a better understanding of the long-standing A y (θ) puzzle in nucleon-deuteron elastic scattering. However, these sets of 3 P j phase shifts are quite different from the ones determined from both global phase-shift analyses of nucleon-nucleon data and nucleon-nucleon potential models. copyright 1998 The American Physical Society
Rahmat, M.; Modarres, M.
2018-03-01
The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.
Importance of momentum dependence interaction on the isospin effects of two-body dissipation
International Nuclear Information System (INIS)
Yang Yanfang; Guo Wenjun; Zhao Qiang; Liu Jianye; Zuo Wei
2002-01-01
The role of momentum dependence equation of state on the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section is studied by using the isospin dependence quantum molecular dynamics. The nuclear stopping depends strongly on the isospin dependence of in-medium nucleon-nucleon cross section and weakly on the isospin dependence of the mean field-symmetry potential from above the Fermi energy to about 150 MeV/u for the small impact parameters. A detail study indicates that the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section depends sensitively on the momentum dependence interaction, namely, the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section in the present of momentum dependence interaction is larger than that without the momentum dependence interaction (MDI) for the mass symmetry and mass asymmetry reaction systems, neutron-rich and neutron-poor reaction systems. Namely, MDI increases the sensitivity of the nuclear stopping on the isospin dependence nucleon-nucleon cross section. Therefore, the knowledge on the isospin dependence of in-medium nucleon-nucleon cross section can be extracted more accurately from nucleon stopping as a probe if the momentum dependence interaction is taken into account
Realistic effective interactions for nuclear systems
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.
1994-09-01
A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs
Operator representation for effective realistic interactions
Energy Technology Data Exchange (ETDEWEB)
Weber, Dennis; Feldmeier, Hans; Neff, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)
2013-07-01
We present a method to derive an operator representation from the partial wave matrix elements of effective realistic nucleon-nucleon potentials. This method allows to employ modern effective interactions, which are mostly given in matrix element representation, also in nuclear many-body methods requiring explicitly the operator representation, for example ''Fermionic Molecular Dynamics'' (FMD). We present results for the operator representation of effective interactions obtained from the Argonne V18 potential with the Uenitary Correlation Operator Method'' (UCOM) and the ''Similarity Renormalization Group'' (SRG). Moreover, the operator representation allows a better insight in the nonlocal structure of the potential: While the UCOM transformed potential only shows a quadratic momentum dependence, the momentum dependence of SRG transformed potentials is beyond such a simple polynomial form.
Pairing properties of realistic effective interactions
Directory of Open Access Journals (Sweden)
Gargano A.
2016-01-01
Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.
Effective mass of omega meson and NNω interaction at finite temperature and density
International Nuclear Information System (INIS)
Gao, S.; Su, R.; Yu, P.K.N.
1994-01-01
By means of the thermofield dynamical theory, the effective mass of omega meson is calculated by summing the bubble diagrams. It is found that the formula for the effective mass of the ρ meson can also be used to describe the ω meson in the low density region, but the parameter n and the critical temperature T c depend on the density. The temperature and density dependence of one omega exchage potential of nucleon-nucleon interaction are given. The conjecture of Brown and Rho about the effective masses of mesons is discussed
International Nuclear Information System (INIS)
Tornow, T.; Tornow, W.
1999-01-01
It Is shown that the 3 P j neutron-proton (proton-proton) phase shifts cannot be determined to less than ± 100 % (± 20 %) uncertainty at low energies (∼ 10 MeV), even if high-accuracy nucleon-nucleon data were to become available for currently inaccessible observables. For a more accurate determination, appropriate theoretical constraints have to be invoked, but their accuracy can be judged only from the comparison of rigorous three-nucleon continuum calculations with particular three-nucleon observables. (author)
International Nuclear Information System (INIS)
Suzuki, Toshio; Sagawa, H.; Giai, N. van.
1992-01-01
Effects of CIB (charge independence breaking) and CSB (charge symmetry breaking) interactions on the Coulomb displacement energies of isobaric analog states are investigated for 48 Ca, 90 Zr and 208 Pb. Mass number dependence of the Coulomb energy anomalies is well explained when CIB and CSB interactions are used which reproduce the differences of the scattering lengths as well as those of the effective ranges of low energy nucleon-nucleon scattering. (author) 17 refs., 3 figs., 3 tabs
Study of nuclear medium effects on the effective interaction based on the one-boson exchange model
International Nuclear Information System (INIS)
Nakayama, K.
1985-02-01
In this work, starting from a realistic nucleon-nucleon interaction based on the one-boson exchange model for the nuclear force, we attempted a microscopic derivation of the effective interaction which may be appropriate for nuclear structure as well as for nucleon-nucleus scattering problems. Short-range correlations and medium polarization as well as relativistic effects on both particle-hole and Δ-hole interactions have been investigated. For the nucleon-nucleon case short-range correlations are basically restricted to S-states and affect mainly the central components of the effective interaction. In contrast, the Δ-nucleon interaction is essentially unaffected by short-range correlations due to the Pauli principle restrictions and the momentum mismatch between the central components of the correlation operator and the tensor component of the bare transition potential. Based on these analyses it is shown that short-range correlation effects can be summarized in a very simple correlation operator. (orig./HSI)
Energy Technology Data Exchange (ETDEWEB)
Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.
2011-08-01
Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.
Time reversal violation in the nuclear interaction and p(pol)-/sup 3/He scattering
Energy Technology Data Exchange (ETDEWEB)
Simonius, M [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Kernphysik; Wyler, D [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics
1977-08-08
Using T-violating boson-exchange interactions T-violating effects in low energy p-/sup 3/He scattering are calculated. The results are below 10/sup -3/ even for full strong (not millistrong) T-violation in the nucleon-nucleon system. It is argued, that the smallness of the effects is not a particularity of the p-/sup 3/He system but a general property of low energy processes.
Nucleon-nucleon interaction in the quark-compound-bag model
International Nuclear Information System (INIS)
Simonov, Yu.A.
1982-01-01
The NN potential is investigated in the framework of the quark-compound-bag model. The cluster decomposition of the total six-quark wave function are obtained. The resulting potential is nonlocal and energy dependent with coefficients which can be derived both phenomenologically and theoretically. Stringent conditions exist for those coefficients. As an example the NN potentials for the 3 S 1 and 1 S 0 states are presented. The properties of the wave functions are studied both in the configurational and momentum space
Nuclear Stability and Nucleon-Nucleon Interactions in Introductory and General Chemistry Textbooks
Millevolte, Anthony
2010-01-01
The nucleus is a highly dense and highly charged substructure of atoms. In the nuclei of all atoms beyond hydrogen, multiple protons are in close proximity to each other in spite of strong electrostatic repulsions between them. The attractive internucleon strong force is described and its origin explained by using a simple quark model for the…
Color screening effect in the quark potential model
International Nuclear Information System (INIS)
Zhang Zongye; Yu Youwen; Shen Pengnian; Shen Xiaoyan; Dong Yubin
1993-01-01
By using the color confinement potential which includes the color screening effect, we studied the baryon spectra and the nucleon-nucleon interaction. The results show that the color screening effect not only improves the baryon spectrum calculation, but also can solve the long-tail problem of the color Van der Waals force. A part of the medium attraction of the nuclear force can be obtained from the color Van der Waals force. (orig.)
Energy Technology Data Exchange (ETDEWEB)
He, Zhi-Yong [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; [Academia Sinica, Lanzhou, GS (China). Inst. of Modern Physics; Peter, J; Angelique, J C; Bizard, G; Brou, R; Cussol, D [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, A; Cabot, C; Crema, E [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Buta, A [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; [Institute of Atomic Physics, Bucharest (Romania)] [and others
1996-09-01
Experimental measurement and theoretical comparison of collective flow can give important information about the nuclear equation of state (EOS) and the in-medium nucleon-nucleon cross section. Experimental measurements of {sup 64}Zn+{sup 27}Al collision from 35 to 79 MeV/u with the 4{pi} array MUR=TONNEAU are presented. The results are compared to BUU calculations. (K.A.).
Choice of single-particle potential and the convergence of the effective interaction
International Nuclear Information System (INIS)
Hjorth-Jensen, M.; Osnes, E.; Muether, H.; Schmid, K.W.
1990-02-01
The convergence of the expansion for the effective interaction is studied considering as example the shell model for the nuclei 18 O and 18 F. In this work the effective interaction is computed through third order in the Brueckner G matrix, using both a harmonic-oscillator (HO) basis and a Brueckner-Hartree-Fock (BHF) basis. The significant differences in the convergence behavior of the effective interaction in these two cases are reported. The results indicate that the choice of the BHF single-particle potential facilitates the convergence of the effective interaction in low-orders of the expansion, whereas the HO results exhibit a non-convergent behavior. The implications for the HO approach are discussed. All calculations have been performed considering a modern version of the Bonn one-boson-exchange potential for the nucleon-nucleon interaction. 23 refs., 4 figs., 2 tabs
Perturbative renormalizability of chiral two-pion exchange in nucleon-nucleon scattering
International Nuclear Information System (INIS)
Pavon Valderrama, M.
2011-01-01
We study the perturbative renormalizability of chiral two-pion exchange for singlet and triplet channels within effective field theory, provided that the one-pion exchange piece of the interaction has been fully iterated. We determine the number of counterterms/subtractions needed to obtain finite results when the cutoff is removed, resulting in three counterterms for the singlet channel and six for the triplet. The results show that perturbative chiral two-pion exchange reproduce the data up to a center-of-mass momentum of k∼200-300 MeV in the singlet channel and k∼300-400 MeV in the triplet.
Binding energies of sd-shell nuclei with a realistic effective Hamiltonian
International Nuclear Information System (INIS)
Dalton, B.J.; Vary, J.P.; Baldridge, W.J.
1977-01-01
The nuclear shell model with a second-order effective Hamiltonian derived within Brueckner theory from the free nucleon-nucleon interaction is shown to yield accurate binding energies of nuclei with 16 < A < 40. This agreement is obtained by choosing the spectrum of low-lying unoccupied orbitals in a justified manner and, when necessary, by employing a statistical method to approximate the lowest eigenvalue of very large shell-model diagonalizations
Effective charges in nuclei in the vicinity of $^{100}SN$
Ekström, Andreas
The shell structure of atomic nuclei far from the line of beta-stability and the properties of the nucleon-nucleon interaction in exotic isotopes are not well known. The development of radioactive ion beams (RIBs) puts certain unexplored regions of the nuclear chart within reach of detailed experimental investigations. The low-energy nuclear structure of the unstable isotopes 106,108,110Sn, 100,102,104Cd, and 106,108In have been studied using sub-barrier Coulomb excitation of postaccelerated RIBs. The experiments were carried out at the REX-ISOLDE facility at CERN. The deduced transition probabilities - B(E2) values - provide a detailed benchmark of modern models of the nucleon-nucleon interaction. The B(E2) values between the 0+ ground states and the first excited 2+ states in the Sn and Cd isotopes were compared with shell-model calculations. These are based on effective interactions derived from renormalized multi-meson and QCD-based nucleon-nucleon potentials. In order to reproduce the experimental result...
International Nuclear Information System (INIS)
Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.
1977-01-01
Data for the analyzing power A/sub y/(theta) for n-p scattering at 16.9 MeV have been measured for the range from 50 to 145 0 (c.m.). Eleven values are reported to an accuracy of about +- 0.002, the highest overall precision ever obtained in any fast-neutron polarization experiment. Predictions based on phase-shift sets obtained from global analyses of nucleon-nucleon scattering disagree significantly with the new data. The data are sufficiently precise to show a dependence on the f-wave spin-orbit phase parameter
Isospin nonconservation in nucleon-nucleon scattering by a color force
International Nuclear Information System (INIS)
Braeuer, K.; Henley, E.M.; Miller, G.A.
1986-01-01
A recently performed high accuracy measurement indicates the existence of a spin and isospin nonconserving force in neutron-proton scattering. One origin of this effect can be the influence of the up and down quark mass difference on the one gluon exchange spin-orbit force. We include this effect in a resonating group calculation, and find that its contribution is very small compared to that conventional meson-exchange forces
Energy Technology Data Exchange (ETDEWEB)
Chabanat, E.
1995-01-01
One of the main goal in nuclear physics research is the study of nuclei in extreme conditions of spin and isospin. The more performing tools for theoretical predictions in this field are microscopic methods such as the Hartree-Fock one based on independent particle approximation. The main ingredient for such an approach is the effective nucleon-nucleon interaction. The actual trend being the study of nuclei more and more far from the stability valley, it is necessary to cast doubt over the validity of usual effective interaction. This work constitute a study on the way one can construct a new interaction allowing some theoretical predictions on nuclei far from the stability. We have thus made a complete study of symmetric infinite nuclear matter and asymmetric one up to pure neutron matter. One shows that the asymmetry coefficient, which was considered until now as fixing isospin properties, is not sufficient to have a correct description of very exotic isospin states. A new type of constraint is shown for fixing this degree of freedom: the neutron matter equation of state. One include this equation of state, taken from a theoretical model giving a good description of radii and masses of neutron stars. One can thus expect to build up new Skyrme interaction with realistic properties of ground state of very neutron-rich nuclei. (author). 63 refs., 68 figs., 15 tabs.
International Nuclear Information System (INIS)
Northcliffe, L.C.
1976-01-01
Research is summarized on n-p differential cross sections for charge-exchange interactions, meson production in nucleon-nucleon collisions, the spectra of charged particles produced in the bombardment of various targets by monoenergetic neutrons
International Nuclear Information System (INIS)
Northcliffe, L.C.
1982-01-01
Investigations of the nucleon-nucleon interaction at LAMPF energies, in both elastic and inelastic channels, are briefly described. Experiments and results are reviewed, and abstracts of papers presented are included
Effective realistic interactions for low momentum Hilbert spaces
International Nuclear Information System (INIS)
Weber, Dennis
2012-01-01
Realistic nucleon-nucleon potentials are an essential ingredient of modern microscopic many-body calculations. These potentials can be represented in two different ways: operator representation or matrix element representation. In operator representation the potential is represented by a set of quantum mechanical operators while in matrix element representation it is defined by the matrix elements in a given basis. Many modern potentials are constructed directly in matrix element representation. While the matrix element representation can be calculated from the operator representation, the determination of the operator representation from the matrix elements is more difficult. Some methods to solve the nuclear many-body problem, such as Fermionic Molecular Dynamics (FMD) or the Green's Function Monte Carlo (GFMC) method, however require explicitly the operator representation of the potential, as they do not work in a fixed many-body basis. It is therefore desirable to derive an operator representation also for the interactions given by matrix elements. In this work a method is presented which allows the derivation of an approximate operator representation starting from the momentum space partial wave matrix elements of the interaction. For that purpose an ansatz for the operator representation is chosen. The parameters in the ansatz are determined by a fit to the partial wave matrix elements. Since a perfect reproduction of the matrix elements in general cannot be achieved with a finite number of operators and the quality of the results depends on the choice of the ansatz, the obtained operator representation is tested in nuclear many-body calculations and the results are compared with those from the initial interaction matrix elements. For the calculation of the nucleon-nucleon scattering phase shifts and the deuteron properties a computer code written within this work is used. For larger nuclei the No Core Shell Model (NCSM) and FMD are applied. The described
International Nuclear Information System (INIS)
Cobigo, Y.
2004-01-01
To understand the quark-gluon plasma formed in heavy-ion collisions, we have to understand the cold nuclear matter behavior. In this aim we studied deuteron-gold collisions at 200 GeV in the nucleon-nucleon center of mass at the collider RHIC. The J/Ψ was suggested to probe the plasma. We studied its production via its muon decay measured in the muon spectrometers of the PHENIX experiment. We developed a Kalman fit method for tracks and vertex, for the muon spectrometers data analysis. The J/Ψ production was analyzed in function of kinematic and geometric variables. Comparison between proton-proton and deuterium-gold data allowed a better understanding of shadowing and absorption phenomena present in collisions without any dense matter. (author) [fr
Nuclear interactions and hadronic matter
International Nuclear Information System (INIS)
Petrovici, Mihai; Pop, Amalia; Stoicea, Gabriel; Berceanu, Ionela; Moisa, Dorin; Petris, Mariana; Simion, Victor; Aiftimiei, Cristina; Cruceru, Ilie; Ciobanu, Mircea; Catanescu, Vasile; Caragheorgheopol; Gheorghe
2002-01-01
The new generation of heavy ion accelerators and complex experimental devices, developed in the last two decades, give access to new information concerning the dynamics of nuclear collisions and allow to obtain and study in the laboratory the nuclear matter under extreme conditions of density and temperature. Of special interest is the intermediate energy region where the reactions are dominated by the competition between the mean field and nucleon-nucleon interaction. Fundamental aspects of nuclear reaction studies are probed at different instants of a nuclear collision. One can learn about the transport properties of nuclear matter in pure nucleonic regime and understand the modification of the nucleon-nucleon cross section due to various in-medium effects: density effects, effective mass, quantum effects, three-body interactions. With increasing energy, fast particle emission associated with direct nucleon-nucleon collisions in the first steps of the reaction come into play too. At higher energy, flow measurements are crucial tests of the influence of medium effects by probing the elastic part of the nucleon-nucleon collisions. On the other side, at higher incident energies, the characteristics of the nuclear equation of state (EoS) can be studied if local thermal and chemical equilibrium turns out to be established. Understanding of the properties of the nuclear matter in extreme conditions is a fundamental goal. The EoS is also an essential ingredient in the description of the massive stars leading to supernova explosion and neutron star formation. Experimental studies of such aspects needs experimental devices of high complexity which can detect and identify event by event all products coming out from heavy ion interactions at intermediate, relativistic and ultra-relativistic energies, having as complete as possible information on their mass, charge, velocity vector. CHIMERA and FOPI are such devices for intermediate and relativistic energy, respectively. Our
Hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)
2016-01-15
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)
Approximated treatment of the Pauli principle effects in elastic collisons
International Nuclear Information System (INIS)
Schechter, H.
1984-08-01
Exact microscopic methods like the RGM (Resonanting Group Method) and the GCM (Generator Coordinate Method) and approximate methods like the OCM (Orthogonality Condition Model) are used to study the effects of Pauli Principle in α- 16 O elastic scattering. Using V2 and BL nucleon-nucleon interactions, nucleus-nucleus effective potentials are obtained from RGM 'exact' wave functions and also from an approximate method developed previoulsy. Using these potentials in the OCM Saito Equation phase-shifts are calculated for partial waves Λ = 0, 1, ... 11, in the energy range 0 [pt
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
Energy Technology Data Exchange (ETDEWEB)
Simula, S. [Instituto Nazionale di Fisica Nucleare, Roma (Italy)
1994-04-01
Semi-inclusive deep inelastic lepton scattering off nuclei is investigated assuming that virtual boson absorption occurs on a hadronic cluster which can be either a two-nucleon correlated pair or a six-quark bag. The differences in the energy distribution of nucleons produced in backward and forward directions are analyzed both at x<1 and x>1.
Non-pionic effects in deuteron asymptotic observables
International Nuclear Information System (INIS)
Ballot, J.L.; Robilotta, M.R.
1991-01-01
It is well known that pion dynamics dominates deuteron asymptotic observables, especially η, the D/S ratio and Q, the quadrupole moment. A procedure has been discussed earlier that allows the unambiguous determination of the pion contribution to these observables as function of the pion-nucleon coupling constant. This problem is discussed in the framework of a specific model for the nucleon-nucleon interaction, namely the potential developed by the Tourreil, Rouben and Sprung. The contribution of non-pionic dynamics to deuteron asymptotic observables is investigated. It is shown that effects due to ρ and ω exchanges are negligible. (K.A.) 8 refs., 1 fig., 1 tab
International Nuclear Information System (INIS)
Kim, Hyun-Chul.
1993-05-01
A microscopic model for the N anti N→ππ amplitude has been constructed based on nucleon and delta-isobar exchange, which in the pseudophysical region (4 m π 2 ≤t≤50 m π 2 ) roughly agrees with information obtained by analytic continuation of empirical πN and ππ data. Starting from these amplitudes, the correlated 2 π exchange contribution to the NN interaction has been derived using dispersion theoretic methods. It turns out that, in high partial waves, this contribution is considerably larger (by about 20%) compared to the effective σ'- and ρ-exchange used in the full Bonn potential. As a consequence, it turned out that a quantitative description of high NN partial wave phase shifts definitely favors a somewhat smaller πNN coupling constant, in agreement with recent findings in an empirical analysis by the Nijmegen group. The prediction of low NN partial wave phase shifts has been presented, being compared with empirical NN data. In addition to free NN scattering, medium modifications of the σ channel in the NN potential have been studied. These modifications arise from a change in the ππ rescattering through the in-matter pion dispersion relation. We also have considered the possibility of dropping meson masses as suggested by QCD sum rules. (orig.)
Directory of Open Access Journals (Sweden)
Oller J.A.
2010-04-01
Full Text Available We review on a novel chiral power counting scheme for in-medium chiral perturbation theory with nucleons and pions as degrees of freedom. It allows for a systematic expansion taking into account local as well as pion-mediated inter-nucleon interactions. Based on this power counting, one can identify classes of nonperturbative diagrams that require a resummation. As a method for performing those resummations we review on the techniques of Unitary Chiral Pertubation Theory for nucleon-nucleon interactions. We then apply both power counting and non-perturbative methods to the example of calculating the pion self-energy in asymmetric nuclear matter up-to-and-including next-to-leading order. It is shown that the leading corrections involving in-medium nucleon-nucleon interactions cancel between each other at given chiral orders.
What happened to the Kuo-Brown interaction?
International Nuclear Information System (INIS)
Osnes, E.
1987-01-01
Twenty years of efforts to calculate the shell-model effective interaction, starting from the free nucleon-nucleon (NN) interaction and using many-body perturbation theory, are briefly reviewed. A description is given of the pioneering work of Kuo and Brown, in which the effective interaction was approximated by the Bethe-Brueckner-Goldstone G-matrix and the lowest order core-polarization correction. Subsequent developments which cast doubt upon the simple Kuo-Brown approximation are reviewed. Some of these problems have been shown to arise from inadequate treatment of various higher order contributions, whereas other problems are related to the strong tensor component of the NN interaction used. In fact, modern meson-exchange potentials have much weaker tensor forces and give rise to effective interactions which are similar to the original Kuo-Brown interaction. Applications of these new effective forces to shell-model calculations in the sd-shell are discussed
The influence of the Coulomb-distortion effect on proton-proton observables
International Nuclear Information System (INIS)
Plessas, W.; Mathelitsch, L.
1980-01-01
The effect of the Coulomb distortion of the strong interaction is studied on the basis of nucleon-nucleon observables. In particular, cross sections, polarizations, spin-correlation parameters, and spin-transfer coefficients are considered for proton-proton as well as neutron-neutron scattering at laboratory kinetic energies Esub(Lab) = 10, 20, and 50 MeV. The calculations are performed for the meson-theoretical PARIS potential, the nonlocal separable GRAZ potential and also using the Arndt-Hackman-Roper parametrization of proton-proton scattering phase shifts. Important conclusions are drawn with respect to phenomenological phase-shift analyses. (Auth.)
The spin-orbit interaction in nuclei
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
The analysis previously made of the average nuclear potential has been extended to consideration of the spin-orbit interactions. It has not been possible to find a satisfactory two-body interaction consistent with all the data; that suggested by the phase-shift analysis of nucleon-nucleon scattering is just within the region of possible forms. (author). 13 refs, 1 fig
Schadow, W; Haidenbauer, J; Nogga, A
2000-01-01
The quality of two different separable expansion methods (W-matrix and Ernst-Shakin-Thaler) is investigated. We compare the triton binding energies and components of the triton wave functions obtained in this way with the results of the direct two-dimensional treatment. The Paris, Bonn A and Bonn B potentials are employed as underlying two-body interactions, their total angular momenta being incorporated up to j <= 2. It is found that the most accurate results based on the Ernst-Shakin-Thaler method agree within 1.5 % or better with the two-dimensional calculations, whereas the results for the W-matrix representation are less accurate. Refs. 29 (author)
Nuclear electric dipole moments in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)
2015-03-19
We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, Somnath; Basu, D.N. [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Atta, Debasis [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Government General Degree College, West Bengal (India); Imam, Kouser [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Aliah University, Department of Physics, Kolkata (India); Samanta, C. [Virginia Military Institute, Department of Physics and Astronomy, Lexington, VA (United States)
2017-07-15
The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon-nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∝1.94 M {sub CircleDot} with radius ∝10.4 km. (orig.)
Dirac phenomenology and hyperon-nucleus interactions
Energy Technology Data Exchange (ETDEWEB)
Mares, J; Jennings, B K [TRIUMF, Vancouver, British Columbia (Canada); Cooper, E D [Fraser Valley Univ. College, Chilliwack, British Columbia (Canada). Dept. of Physics
1993-05-01
We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of {Lambda}, {Sigma} and {identical_to} hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f{omega}y. Second, optical potentials for {Lambda} and {Sigma} scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of {Lambda} hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs.
Effective interactions and mean field theory: from nuclear matter to nuclei
International Nuclear Information System (INIS)
Cochet, B.
2005-07-01
The Skyrme force is a zero-range force that allows the construction of the mean field inside the nucleus in a simple way. Skyrme forces are reasonably predictive but some features of the infinite nuclear matter or the mass of heavy nuclei are not well computed. The aim of this work is to propose an expanded parametrization of the Skyrme force in order to improve its predictive power. The first part is dedicated to the construction of the expansion of the parametrization. We recall how the effective forces are linked to the nucleon-nucleon interaction then we show the limits of the standard Skyrme forces and we propose a relatively natural improvements based on the integration of spin and isospin instabilities. The second part deals with the validation of the model, first by describing infinite nuclear matter then by studying β-balanced nuclear matter which has enabled us to reproduce some features of neutron stars like mass and radius. The computation of properties of nuclei like binding energy, mass, radii depends strongly on the adjustment procedure. (A.C.)
Study of neutron-proton interaction in the 300-700 MeV energy region
International Nuclear Information System (INIS)
Northcliffe, L.C.
1989-08-01
The primary objective of the program is investigation of the nucleon-nucleon (NN) interaction, in the medium-energy region, in both elastic and inelastic channels. Most of the results of this research have already been published in refereed journals and will not be discussed here
The production of charmed particles in high-energy 16O-emulsion central interactions
International Nuclear Information System (INIS)
Aoki, S.; Hoshino, K.; Kitamura, H.; Kobayashi, M.; Kodama, K.; Miyanishi, M.; Nakamura, K.; Nakamura, M.; Nakanishi, S.; Niu, K.; Niwa, K.; Nomura, M.; Tajima, H.; Tsukagoshi, K.; Mazzoni, M.A.; Poulard, G.; Meddi, F.; Rosa, G.; Muciaccia, M.T.; Simone, S.; Nakazawa, K.; Tasaka, S.; Sato, Y.
1989-01-01
The production of charmed particles has been detected in 200 GeV per nucleon 16 O-emulsion central interactions. Their production cross section in elementary nucleon-nucleon processes has been estimated to be σ charm =[14.1±9.3(stat.) -8.4 +5.6 (syst.)]μb. (orig.)
Lyu, Mengjiao; Isaka, Masahiro; Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro; Yamada, Taiichi
2018-01-01
Many-body correlations play an essential role in the ab initio description of nuclei with nuclear bare interactions. We propose a new framework to describe light nuclei by the hybridization of the tensor-optimized antisymmetrized molecular dynamics (TOAMD) and the high-momentum AMD (HM-AMD), which we call "HM-TOAMD." In this framework, we describe the many-body correlations in terms of not only the correlation functions in TOAMD, but also the high-momentum pairs in the AMD wave function. With the bare nucleon-nucleon interaction AV8^', we sufficiently reproduce the energy and radius of the {^3}H nucleus in HM-TOAMD. The effects of tensor force and short-range repulsion in the bare interaction are nicely described in this new framework. We also discuss the convergence in calculation and flexibility of the model space for this new method.
Isospin effects in the disappearance of flow as a function of colliding geometry
International Nuclear Information System (INIS)
Gautam, Sakshi; Puri, Rajeev K.; Sood, Aman D.; Aichelin, J.
2011-01-01
We study the effect of isospin degree of freedom on the balance energy (E bal ) as well as its mass dependence throughout the mass range 48-270 for two sets of isobaric systems with N/Z=1 and 1.4 at different colliding geometries ranging from central to peripheral ones. Our findings reveal the dominance of Coulomb repulsion in isospin effects on E bal as well as its mass dependence throughout the range of the colliding geometry. Our results also indicate that the effect of symmetry energy and nucleon-nucleon cross section on E bal is uniform throughout the mass range and throughout the colliding geometry. We also present the counterbalancing of nucleon-nucleon collisions and mean field by reducing the Coulomb and the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions.
Mesonic effects in nuclear physics
International Nuclear Information System (INIS)
Johnson, M.
1978-01-01
The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references
Directory of Open Access Journals (Sweden)
P.H.L. Groenenboom
1978-03-01
Full Text Available Rank-three and -four separable3S1−3D1potentials have been constructed which reproduce the experimental phase shifts and a realistic deuteron wave function. The off-shell behaviour has been investigated and triton binding energies were calculated.
On a low energy, strong interaction model, unifying mesons and baryons
International Nuclear Information System (INIS)
Kalafatis, D.
1993-03-01
This thesis is concerned with the study of a unified theory of mesons and baryons. An effective Lagrangian with the low mass mesons, generalizing the Skyrme model, is constructed. The vector meson fields are introduced as gauge fields in the linear sigma model instead of the non linear sigma model. Topological soliton solutions of the model are examined and the nucleon-nucleon interaction in the product approximation is investigated. The leading correction to the classical skyrmion mass, the Casimir energy, is evaluated. The problem of the stability of topological solitons when vector fields enter the chiral Lagrangian is also studied. It is shown that the soliton is stable in very much the same way as with the ωmeson and that peculiar classical doublet solutions do not exist
International Nuclear Information System (INIS)
Khan, M. Saleem; Shukla, Praveen Prakash; Khushnood, H.
2015-01-01
The study of the characteristic of charged secondaries was the aim of most of the experiments on high energy nucleon-nucleon and nucleus-nucleus collisions. Investigation are carried out on the produced secondary charged particles with a common belief that these particles are more informative about the collisional dynamics and thus, could be effective in revealing the underlying physics of high energy relativistic interactions. So for understanding the mechanism of multiparticle production in high energy hadron-nucleus collisions, the correlations amongst the secondary charged particles are studied. Several workers have attempted to study the multiplicity correlations over widely different incident energies with different projectiles. The AALMT collaboration have also studied the multiplicity correlations in 200 GeV proton-nucleus collisions
Directory of Open Access Journals (Sweden)
H. Mariji
2016-01-01
Full Text Available The nucleon single-particle energies (SPEs of the selected nuclei, that is, O16, Ca40, and Ni56, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest-order constrained variational (LOCV calculations for the symmetric nuclear matter with the Aυ18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,ρ, with the Heaviside functions, the role of n(k,ρ in the nucleon SPEs at the major levels of the selected closed shell nuclei is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei by using the parameterized Wood-Saxon potential and the Aυ18 density-dependent mean field potential which is constructed by the LOCV method. Considering the point-like protons in the spherical Coulomb potential well, the single-proton energies are corrected. The results show the importance of including n(k,ρ, instead of the Heaviside functions, in the calculation of nucleon SPEs at the different levels, particularly the valence levels, of the closed shell nuclei.
Chiral effective field theory on the lattice at next-to-leading order
International Nuclear Information System (INIS)
Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.
2008-01-01
We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)
Hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)
2016-07-01
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.
Nuclear parity violation in effective field theory
International Nuclear Information System (INIS)
Zhu Shilin; Maekawa, C.M.; Holstein, B.R.; Ramsey-Musolf, M.J.; Kolck, U. van
2005-01-01
We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV πNN coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV
n+p→d+γ in effective field theory
International Nuclear Information System (INIS)
Savage, Martin J.; Scaldeferri, Kevin A.; Wise, Mark B.
1999-01-01
The radiative capture process n+p→d+γ provides clear evidence for meson exchange currents in nuclear physics. We compute this process at low energies using a recently developed power counting for the effective field theory that describes nucleon-nucleon interactions. The leading order contribution to this process comes from the photon coupling to the nucleon magnetic moments. At subleading order there are other contributions. Among these are graphs where the photon couples directly to pions, i.e. meson exchange currents. These diagrams are divergent and require the presence of a local four-nucleon-one-photon counterterm. The coefficient of this operator is determined by the measured cross section, σ expt = 334.2±0.5 mb, for incident neutrons with speed vertical bar ν vertical bar = 2200 m/s
Status of effective field theory of NN scattering
International Nuclear Information System (INIS)
Beane, S.R.
1998-06-01
There exist many nucleon-nucleon potentials which reproduce phase shifts and nuclear properties with remarkable accuracy. Three fundamental features are shared by these potential models: (1) pions are important at long distances, (2) there is a source of intermediate-range attraction, and (3) there is a source of short-distance repulsion. However, in general, distinct physical mechanisms in these models account for the same feature of the nuclear force. Agreement with experiment is maintained in spite of these differences because of the large number of fit parameters. Systematic approaches to the scattering of strongly interacting particles, such as chiral perturbation theory, are based on the ideas of effective field theory (EFT). The author reviews recent progress in developing a systematic power counting scheme for scattering processes involving more than one nucleon
Dynamics of hadron-nucleus interactions
International Nuclear Information System (INIS)
Wallace, S.J.
1981-07-01
Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of Δ-isobars in proton-nucleus dynamics is reviewed. 126 references
International Nuclear Information System (INIS)
Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.
2009-01-01
The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.
International Nuclear Information System (INIS)
Kubo, H.; Harada, K.; Sakaeda, T.; Yamamoto, Y.
2013-01-01
On the basis of the Wilsonian renormalization group (WRG) analysis of nuclear effective field theory (NEFT) including pions, we propose a practical calculational scheme in which the short-distance part of one-pion exchange (S-OPE) is removed and represented as contact terms. The long-distance part of one-pion exchange (L-OPE) is treated as perturbation. The use of dimensional regularization (DR) for diagrams consisting only of contact interactions considerably simplifies the calculation of scattering amplitude and the renormalization group equations. NLO results for nucleon-nucleon elastic scattering in the S-waves are obtained and compared with experiments. A brief comment on NNLO calculations is given. (author)
Two-nucleon S10 amplitude zero in chiral effective field theory
Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.
2018-02-01
We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.
Energy Technology Data Exchange (ETDEWEB)
Crochet, P.
1996-04-04
The present work has been carried out in the framework of the experimental program of the FOPI collaboration. It is devoted to a systematic study of the different forms of collective expansion of nuclear matter in semi-central Au+Au collisions at incident energies ranging from 100 AMeV to 800 AMeV. The aim is to investigate the influence of compressional effects, momentum dependence of the nuclear interaction and nucleon-nucleon cross section on the observed phenomena. Important changes in the reaction mechanisms are evidenced, in particular at low incident energies where one observes, on the one hand, a transition from an enhanced in-plane emission to a preferential out-of-plane emission pattern and, on the other hand, a strong reduction of the directed in-plane component. Experimental results are compared to the predictions of the Quantum Molecular Dynamics (QMD) model for different parametrizations of the nuclear interaction. (author).
International Nuclear Information System (INIS)
Galichet, Emmanuelle
1998-01-01
Following the advances in the detection techniques the study on the dynamical effects and their origin in heavy ion collisions at intermediate energies poses numerous questions, particularly concerning the role of nuclear interaction in the reaction mechanisms. This question is the reason of this work. We have studied the dynamical effects in the light system Ar + Ni at 95 A.MeV through the experimental analysis of the particles emitted at mid-rapidity, originating not in a statistical de-excitation of the projectile and target nuclei. The experiment has been developed at GANIL by means of the INDRA multidetector. By means of the global variables a complete characterisation of the emission zone at mid-rapidity was performed. It is present in all the binary collisions at any centrality and the matter amount, associated to this emission, increases with decreasing impact parameter. On the contrary, the nucleon energy available for the mid-rapidity particle production appears to be independent of the collision centrality. A methodology of comparison between experimental data and the prediction of a transport microscopic model has been developed to understand the origin of the mid-rapidity dynamical emission. This gave us information about the sensitivity of the mid-rapidity dynamical emission for different nuclear interaction parameters. The first results show that the mid-rapidity dynamical emission is not sensitive to the mean field part of the interaction but depends strongly on the nucleon-nucleon cross section. Therefore, the scenario that explains realistically the origin of mid-rapidity dynamical emission is the pre-equilibrium one in which the particles are emitted during the very first instants of the collision, by nucleon-nucleon shocks
Energy Technology Data Exchange (ETDEWEB)
Galichet, Emmanuelle [Universite Claude Bernard Lyon-1, 69 - Lyon (France)
1998-05-20
Following the advances in the detection techniques the study on the dynamical effects and their origin in heavy ion collisions at intermediate energies poses numerous questions, particularly concerning the role of nuclear interaction in the reaction mechanisms. This question is the reason of this work. We have studied the dynamical effects in the light system Ar + Ni at 95 A.MeV through the experimental analysis of the particles emitted at mid-rapidity, originating not in a statistical de-excitation of the projectile and target nuclei. The experiment has been developed at GANIL by means of the INDRA multidetector. By means of the global variables a complete characterisation of the emission zone at mid-rapidity was performed. It is present in all the binary collisions at any centrality and the matter amount, associated to this emission, increases with decreasing impact parameter. On the contrary, the nucleon energy available for the mid-rapidity particle production appears to be independent of the collision centrality. A methodology of comparison between experimental data and the prediction of a transport microscopic model has been developed to understand the origin of the mid-rapidity dynamical emission. This gave us information about the sensitivity of the mid-rapidity dynamical emission for different nuclear interaction parameters. The first results show that the mid-rapidity dynamical emission is not sensitive to the mean field part of the interaction but depends strongly on the nucleon-nucleon cross section. Therefore, the scenario that explains realistically the origin of mid-rapidity dynamical emission is the pre-equilibrium one in which the particles are emitted during the very first instants of the collision, by nucleon-nucleon shocks 76 refs., 96 figs., 7 tabs.
Study of the Hyperon-Nucleon Interaction in Exclusive Λ Photoproduction off the Deuteron
Zachariou, Nicholas; CLAS Collaboration
2014-09-01
Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the
Investigation of the neutron-proton-interaction in the energy range from 20 to 50 MEV
International Nuclear Information System (INIS)
Wilczynski, J.
1984-07-01
In the framework of the investigation of the isospin singlet part of the nucleon-nucleon-interaction in the energy range below 100 MeV two experiments were conducted, which were selected by sensitivity calculations. At the Karlsruhe polarized neutron facility POLKA the analyzing powers Asub(y) and Asub(yy) of the elastic n vector-p- and n vector-p vector-scattering were measured in the energy range from 20 to 50 MeV. The results of this epxeriment are compared to older data. In the energy range from 20 to 50 MeV the new data were analyzed together with other selected data of the nucleon-nucleon-system in phase shift analyses. The knowledge of the isospin singlet phase shifts 1 P 1 and 3 D 3 was improved by the new data. (orig./HSI) [de
Constraints on CP violating four-fermion interactions
International Nuclear Information System (INIS)
He, X.G.; McKellar, B.
1996-04-01
It has been shown that CP violating electron-nucleon and nucleon-nucleon interactions can induce atomic electric dipole moments and are therefore constrained from experimental data. We show that using the experimental upper bounds on neutron and electron electric dipole moments, one can also obtain constraints, in some cases better ones, on these interactions. In addition stringent constraints can also be obtained for muon-quark and tauon-quark four-fermion CP violating interactions, which cannot be constrained from atomic electric dipole moment experiments. 12 refs., 2 tabs., 1 fig
4He binding energy calculation including full tensor-force effects
Fonseca, A. C.
1989-09-01
The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the (2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy nucleon-nucleon potentials in the 1S0 and 3S1-3D1 channels. The resulting jp=1/2+ and (3/2+ three-body subamplitudes are represented in a separable form using the energy-dependent pole expansion. Converged bound-state results are calculated for the first time using the full interaction, and are compared with those obtained from a simplified treatment of the tensor force. The Tjon line that correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon potentials. In all calculations the Coulomb force has been neglected.
Color coherent effects in (e,e{prime}N) and (e,e{prime}N,N(h)) processes at CEBAF
Energy Technology Data Exchange (ETDEWEB)
Frankfurt, L.L.; Sargsyan, M.M. [Tel Aviv Univ. (Israel); Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States)]|[St. Petersburg Nuclear Physics Inst. (Russian Federation)
1994-04-01
The options for investigating color coherent effects and competing nuclear effects of nucleon-nucleon correlations in nuclei, nuclear shell effects in (e, e{prime}N) and (e, e{prime}NN(h)) reactions are considered. They argue that extension of CEBAF energies to reach Q{sup 2} = 10 GeV{sup 2} will allow systematical investigations of color coherent effects in nonperturbative regime of QCD and their interplay with nuclear effects.
Color coherent effects in (e,e'N) and (e,e'N,N(h)) processes at CEBAF
International Nuclear Information System (INIS)
Frankfurt, L.L.; Sargsyan, M.M.; Strikman, M.I.
1994-01-01
The options for investigating color coherent effects and competing nuclear effects of nucleon-nucleon correlations in nuclei, nuclear shell effects in (e, e'N) and (e, e'NN(h)) reactions are considered. They argue that extension of CEBAF energies to reach Q 2 = 10 GeV 2 will allow systematical investigations of color coherent effects in nonperturbative regime of QCD and their interplay with nuclear effects
Influence of six-quark bags on the NN interaction in a resonating group scattering calculation
International Nuclear Information System (INIS)
Zhang Zongye; Braeuer, K.; Faessler, A.; Shimizu, K.
1985-01-01
The influence of six-quark bags oin the nucleon-nucleon (NN) interaction is studied in a dynamical calculation of the NN scattering process. The NN interaction is described by the exchange of gluons and pions between quarks and a phenomenological sigma-meson exchange between nucleons. The quark wave functions are harmonic oscillators and the relative wave function between the two nucleons is determined by the resonating group method. At short distances the NN system is allowed to fuse to a six-quark bag where all six quarks are in a ground state or where two quarks are in excited Op states. The sizes of these six-quark bags are dynamical parameters in the resonating group calculation allowing for spatial polarisation effects during the interaction. The S-wave NN scattering data can be reproduced by adjusting the sigma-coupling strength. The main result is that the six-quark bags with an increased radius have a large influence on the NN scattering process. (orig.)
Recollections on the establishment of the weak interaction notion
International Nuclear Information System (INIS)
Pontecorvo, B.
1985-01-01
The generalization of conception of weak interaction to the processes where strange particles discovered is given. Indepene dently of Pais, the author came to an idea of pair production of new (strange) particles. In Dubna the experiments have been performed on the search for processes of production of the same pair of Λ-particles in nucleon-nucleon collisions. To interprete negative results of these experiments the author suggested a scheme based on an assumption that the isotopic spin is conserved in strong interaction and is not conserved in the weak one. It followed from this scheme, in particularly, that K 0 and anti K 0 - different particles
Static and Covariant Meson-Exchange Interactions in Nuclear Matter
International Nuclear Information System (INIS)
Carlson, B.V.; Hirata, D.
2011-01-01
The Dirac version of static meson exchange interactions provides a good description of low-energy NN scattering as well as very reasonable saturation properties in Dirac-Brueckner calculations of nuclear matter. We include retardation terms to make these interactions covariant and readjust the coupling constants so as to maintain a reasonable description of NN scattering. In this case, we find the Dirac-Brueckner approximation to nuclear matter to be extremely overbound. The Bonn meson-exchange interactions provide a good fit to low-energy nucleon-nucleon scattering and the deuteron binding energy using a static interaction and the Thompson form of the reduced two-nucleon interaction. We have readjusted the coupling constants of the these interactions to obtain almost equivalent fits to the scattering data and deuteron binding energy with a static interaction and the Blankenbecler-Sugar form of the reduced two-nucleon propagator and using both forms of the propagator with a covariant interaction. Dirac-Brueckner calculations using the static interactions furnish saturation properties similar to those found for the Bonn interactions. The covariant interactions, on the contrary, yield extreme overbinding and do not show signs of saturation before our calculations diverge. One of the advantages claimed for Dirac mean field calculations over nonrelativistic ones has been the fact that they yield reasonable saturation properties without the necessity of a three-body interaction. This is usually credited to the three-body effects introduced by virtual scattering through the Dirac sea states. These are included, in part, through the Dirac form of the self-energy in our calculations. However, we have explicitly excluded their contribution to the Brueckner scattering kernel. Dirac-Brueckner calculations in which both the positive and negative energy states are included in the scattering kernel result in less binding than those that include only the positive-energy ones
Nuclear interactions of high energy heavy ions and applications in astrophysics
International Nuclear Information System (INIS)
Wefel, J.P.
1992-01-01
This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays
Isospin effects in intermediate energy heavy ion collision
International Nuclear Information System (INIS)
Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun
2001-01-01
Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u
On the Orientation Barrier Distribution of the interacting spherical- Deformed Nuclei
International Nuclear Information System (INIS)
Ismail, M.; Seif, W.M.
2009-01-01
The effect of different multipole deformations on the Coulomb barrier distribution in the orientation degrees of freedom is studied. The demonstrated Coulomb barriers are calculated microscopically using the double folding model which is based on realistic density dependent nucleon nucleon interaction. A simple straight forward method, presented in recent work, has been used to predict the distribution of barriers at arbitrary orientations in presence of different deformations far away the complicated numerical calculations. The proposed interpretation is related to the half density radius change of the deformed nucleus involved in interaction where the orientation Coulomb barrier parameters distributions show similar patterns to that of orientation deformed nucleus one. The orientation Coulomb barrier radius distribution follows the same variation of the deformed nucleus radius, while the barrier height distribution is directly proportional to it. This correlation allows a simple evaluation of the orientation barrier distribution which greatly helps us to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. It helps also to estimate the optimum orientations for hot and cold fusion of colliding nuclei.
Two pion mediated scalar isoscalar NN interaction in the nuclear medium
International Nuclear Information System (INIS)
Kaskulov, Murat M.; Oset, E.; Vacas, M.J. Vicente
2006-01-01
We study the modification of the nucleon-nucleon interaction in a nuclear medium in the scalar isoscalar channel, mediated by the exchange of two correlated (σ channel) or uncorrelated pions. For this purpose we use a standard approach for the renormalization of pions in nuclei. The corrections obtained for the NN interaction in the medium in this channel are of the order of 20% of the free one in average, and the consideration of short-range correlations plays an important role in providing these moderate changes. Yet, the corrections are sizable enough to suggest further studies of the stability and properties of nuclear matter
Directory of Open Access Journals (Sweden)
Durães F.O.
2010-04-01
Full Text Available We apply the similarity renormalization group (SRG approach to evolve a nucleon-nucleon (N N interaction in leading-order (LO chiral eﬀective ﬁeld theory (ChEFT, renormalized within the framework of the subtracted kernel method (SKM. We derive a ﬁxed-point interaction and show the renormalization group (RG invariance in the SKM approach. We also compare the evolution of N N potentials with the subtraction scale through a SKM RG equation in the form of a non-relativistic Callan-Symanzik (NRCS equation and the evolution with the similarity cutoﬀ through the SRG transformation.
Low-energy operators in effective theories
International Nuclear Information System (INIS)
Felline, C.; Piekarewicz, J.; Mehta, N.P.; Shepard, J.R.
2003-01-01
Modern effective-theory techniques are applied to the nuclear many-body problem. A novel approach is proposed for the renormalization of operators in a manner consistent with the construction of the effective potential. To test this approach, a one-dimensional, yet realistic, nucleon-nucleon potential is introduced. An effective potential is then constructed by tuning its parameters to reproduce the exact effective-range expansion and a variety of bare operators are renormalized in a fashion compatible with this construction. Predictions for the expectation values of these effective operators in the ground state reproduce the results of the exact theory with remarkable accuracy (at the 0.5% level). This represents a marked improvement over a widely practiced approach that uses effective interactions but retains bare operators. Further, it is shown that this improvement is more impressive as the operator becomes more sensitive to the short-range structure of the potential. We illustrate the main ideas of this work using the elastic form factor of the deuteron as an example
Spectroscopy of light nuclei with realistic NN interaction JISP
International Nuclear Information System (INIS)
Shirokov, A. M.; Vary, J. P.; Mazur, A. I.; Weber, T. A.
2008-01-01
Recent results of our systematic ab initio studies of the spectroscopy of s- and p-shell nuclei in fully microscopic large-scale (up to a few hundred million basis functions) no-core shell-model calculations are presented. A new high-quality realistic nonlocal NN interaction JISP is used. This interaction is obtained in the J-matrix inverse-scattering approach (JISP stands for the J-matrix inverse-scattering potential) and is of the form of a small-rank matrix in the oscillator basis in each of the NN partial waves, providing a very fast convergence in shell-model studies. The current purely two-body JISP model of the nucleon-nucleon interaction JISP16 provides not only an excellent description of two-nucleon data (deuteron properties and np scattering) with χ 2 /datum = 1.05 but also a better description of a wide range of observables (binding energies, spectra, rms radii, quadrupole moments, electromagnetic-transition probabilities, etc.) in all s-and p-shell nuclei than the best modern interaction models combining realistic nucleon-nucleon and three-nucleon interactions.
An effective equation of state for dense matter with strangeness
International Nuclear Information System (INIS)
Balberg, S.; Gal, A.
1997-01-01
An effective equation of state which generalizes the Lattimer-Swesty equation for nuclear matter is presented for matter at supernuclear densities including strange baryons. It contains an adjustable baryon potential energy density, based on models of local potentials for the baryon-baryon interactions. The features of the equation rely on the properties of nuclei for the nucleon-nucleon interactions, and mainly on experimental data from hypernuclei for the hyperon-nucleon and hyperon-hyperon interactions. The equation is used to calculate equilibrium compositions and thermodynamic properties of high density matter with strangeness in two astrophysical contexts: neutron star matter (transparent to neutrinos) and proto-neutron star matter (opaque to neutrinos). The effective equation of state reproduces typical properties of high density matter found in theoretical microscopic models. Of these, the main result is that hyperons appear in both types of matter at about twice the nuclear saturation density, and that their appearance significantly softens the equation of state. The range of maximal masses of neutron stars found in a comprehensive parameter survey is 1.4-1.7 M s un. Another typical result is that the maximal mass of a proto-neutron star with strange baryons is higher than that of an evolved neutron star (opposite to the case of nuclear matter), setting the stage for a ''delayed collapse'' scenario. (orig.)
Hadron interactions in quark models
International Nuclear Information System (INIS)
Narodetskij, I.M.
1987-01-01
Some recent developments on the study of quark degrees of freedom in hadron scattering at intermediate energy are reviewed. Physical foundations of the P-matrix approach and the Quark Compound Bag method are discussed including applications to pion-pion, pion-nucleon, nucleon-nucleon and three-nucleon systems
Production and interaction of the η meson with nucleons and nuclei
Directory of Open Access Journals (Sweden)
Krzemień Wojciech
2016-01-01
Full Text Available We report on the status of the search for η-mesic nuclei and the studies of the interaction of the η meson with nucleons. Recently we have completed the analysis of the newWASA-at-COSY data on the production of the η meson with polarized proton beam. New results on the analyzing power for the p̄p → ppη reaction with more than an order of magnitude improved precision shed a new light on the production mechanism of the η meson in nucleon-nucleon collisions. Also, the latest results of the search for η-mesic nuclei are discussed.
Nucleon shadowing effects in Cu + Cu and Au + Au collisions at RHIC within the HIJING code
Abdel-Waged, Khaled; Felemban, Nuha
2018-02-01
The centrality dependence of pseudorapidity density of charged particles ({{{d}}{N}}{{ch}}/{{d}}η ) in Cu + Cu (Au + Au) collisions at Relativistic Heavy Ion Collider energy of \\sqrt{{s}{{NN}}}=22.4, 62.4 and 200 (19.6, 62.4 and 200) GeV, is investigated within an improved HIJING code. The standard HIJING model is enhanced by a prescription for collective nucleon-nucleon (NN) interactions and more modern parton distribution functions. The collective NN-interactions are used to induce both cascade and nucleon shadowing effects. We find collective cascade broadens the pseudorapidity distributions in the tails (at | η | > {y}{beam}) above 25%-30% collision centrality to be consistent with the {{{d}}{N}}{{ch}}/{{d}}η data at \\sqrt{{s}{{NN}}} =19.6,22.4,62.4 {GeV}. The overall contribution of nucleon shadowing is shown to depress the whole shape of {{{d}}{N}}{{ch}}/{{d}}η in the primary interaction region (at | η | data.
Energy Technology Data Exchange (ETDEWEB)
Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.
2011-08-01
A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.
Energy and target dependence of projectile breakup effect in the elastic scattering of 6Li
International Nuclear Information System (INIS)
Sakuragi, Y.
1986-03-01
Over the wide range of incident energy (E lab = 40 ∼ 170 MeV) and target mass number (A = 12 ∼ 208), projectile breakup effects in the elastic scattering of 6 Li have been investigated with a microscopic coupled-channel method. The coupling to the 6 Li → α + d breakup process is treated with the method of coupled discretized continuum channels (CDCC). 6 Li-target interactions are provided by the folding of the M3Y effective nucleon-nucleon potential with nucleon densities of colliding nuclei. The calculation well reproduces the observed elastic scattering for all the targets and incident energies without any renormalization in the real folding potentials. The breakup effect is found to depend little on the energy and target, which is confirmed by calculating the dynamical polarization potentials induced by the coupling to the breakup process. Almost irrespectively of energy and target, the potential has a repulsive real part with strength of about 40 % of the folding potential in addition to a negligible imaginary part, which explains well the empirical reduction factor of the double-folding model. Discussions are made on the origin of repulsive nature of the breakup effect. (author)
Effects of self-consistency in a Green's function description of saturation in nuclear matter
International Nuclear Information System (INIS)
Dewulf, Y.; Neck, D. van; Waroquier, M.
2002-01-01
The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy
QCD Structure of Nuclear Interactions
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos [Florida Intl Univ., Miami, FL (United States)
2011-05-25
This dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. Through these processes, this work explored the constituent structure of baryons and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. First, hard nucleon-nucleon elastic scattering was studied considering the quark exchange (QE) between the nucleons to be the dominant mechanism of interaction in the constituent picture. It was found that an angular asymmetry exhibited by proton-neutron (pn) elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) model. The latter yields an asymmetry around 90 deg center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and pn breakup in ^{3}He, and double Δ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the QE mechanism provides a QCD description of the reaction. Cross sections for both channels in ^{3}He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In double Δ-isobars production in deuteron breakup, HRM angular distributions for the two double Δ channels were compared to the pn channel and to each other. An important prediction from this study is that the Δ^{++} Δ^{-} channel consistently dominates Δ^{+}Δ^{0}, which is in contrast with models that unlike the HRM consider a double Δ system in the initial state of the interaction. For such models both channels should have the same strength.
International Nuclear Information System (INIS)
Northcliffe, L.C.
1988-08-01
The experimental program supported by the present grant is a continuation of the work supported under DOE Contract AS05-76ER04449. More detailed discussion of the experimental apparatus and earlier activities can be found in annual reports for that contract. The primary objective of the program the is investigation of the nucleon-nucleon (NN) interaction, in the medium-energy region, in both elastic and inelastic channels. This paper reviews experiments dealing with these types of high energy collisions. 41 refs
Theoretical aspects of the nucleon-nucleon workshop
International Nuclear Information System (INIS)
Silbar, R.R.
1984-01-01
This report concentrates on the inelastic NN system from 300 to 1500 MeV. Topics covered include the visibility of quark signals, dibaryons, the model dependence of predicted NN inelasticities, and a review of how well present conventional models compare with a rapidly expanding database. The general conclusion is that there is so far no clear evidence in the NN system at intermediate energies for unconventional dibaryon resonances. Short remarks are also made concerning one theoretical contribution on elastic scattering and on new experimental results for deuteron photo-disintegration and pion-nucleon charge exchange. 11 references
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Nucleon-nucleon scattering at LAMPF and KEK
International Nuclear Information System (INIS)
Glass, G.
1988-01-01
A review of current measurements of spin-dependent observables in p-p and n-p scattering is given for experiments done at two laboratories, Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF) and the National Laboratory for High Energy Physics in Japan (KEK). 18 refs., 12 figs
Pade expansion and the renormalization of nucleon-nucleon scattering
International Nuclear Information System (INIS)
Yang Jifeng; Huang Jianhua; Liu Dan
2006-01-01
The importance of imposing physical boundary conditions on the T-matrix to remove to nonperturbative renormalization prescription dependence is stressed and demonstrated in two diagonal channels 1 P 1 and 1 D 2 , with the help of Pade expansion. (authors)
International Nuclear Information System (INIS)
Hippchen, T.
1985-12-01
In a first part, nuclear matter calculations have been performed in the Dirac-Brueckner approach using a) a nucleon-nucleon potential of one-boson-exchange (OBE) type and b) a more realistic interaction in which the fictitious σ-exchange of the OBE-model is replaced by explicit 2π- and πρ-exchange diagrams. Both potential models yield the correct empirical binding energy and saturation density. It turns out that the total sum of relativistic effects caused by the emplicit 2 π- and πρ-exchanges is comparable to those due to σ-exchange. In a second part, the nuclear quasiparticle interaction, i.e. the Landau parameters, have been calculated in the central (F), isospin (F'), spin (G) and spin-isospin (G') channel, in an analogous way. Compared to nonrelativistic calculations (including conventional medium corrections like Pauli and dispersion effects), a strong improvement has been found, especially in the F- and G-channel. Finally, the influence of A 1 -exchange is studied, in NN scattering and in nuclear matter. It turns out that, after a suitable and necessary readjustment of some meson parameters, its role is negligibly small. (orig.)
Multinucleon effects in muon capture on 3He at high energy transfer
International Nuclear Information System (INIS)
Kuhn, S.E.; Cummings, W.J.; Dodge, G.E.; Hanna, S.S.; King, B.H.; Shin, Y.M.; Congleton, J.G.; Helmer, R.; Schubank, R.B.; Stevenson, N.R.; Wienands, U.; Lee, Y.K.; Mason, G.R.; King, B.E.; Chung, K.S.; Lee, J.M.; Rosenzweig, D.P.
1994-01-01
Energy spectra of both protons and deuterons emitted following the capture of negative muons by 3 He nuclei have been measured for energies above 15 MeV. A limited number of proton-neutron pairs emitted in coincidence were also observed. A simple plane wave impulse approximation (PWIA) model calculation yields fair agreement with the measured proton energy spectra, but underpredicts the measured rate of deuteron production above our energy threshold by a large factor. A more sophisticated PWIA calculation for the two-body breakup channel, based on a realistic three-body wave function for the initial state, is closer to the deuteron data at moderate energies, but still is significantly lower near the kinematic end point. The proton-neutron coincidence data also point to the presence of significant strength involving more than one nucleon in the capture process at high energy transfer. These results indicate that additional terms in the capture matrix element beyond the impulse approximation contribution may be required to explain the experimental data. Specifically, the inclusion of nucleon-nucleon correlations in the initial or final state and meson exchange current contributions could bring calculations into better agreement with our data. A fully microscopic calculation would thus open the possibility for a quantitative test of multinucleon effects in the weak interaction
International Nuclear Information System (INIS)
Mathews, G.J.; Bloom, S.D.; Hausman, R.F. Jr.
1983-01-01
Shell-model calculations of the Gamow-Teller strength function for 90 Zr have been performed utilizing a realistic finite-range two-body interaction in a model space consisting of the 2p and 1g shells. The effects of admixtures of two-particle two-hole excitations in 90 Nb, mostly due to the spin and isospin exchange components of the nucleon-nucleon force, are discussed. Ground state correlations in 90 Zr are also added via seniority-zero two-proton excitations from the 2p shell into the 1g/sub 9/2/ shell. With the correlations the Gamow-Teller strength function is in good agreement with the experimental results and accounts for essentially all of the observed dispersion of strength. The inclusion of these correlations does not, however, produce either a displacement of Gamow-Teller strength to higher excitation energies, or a significant change in the total strength. Thus, they cannot account for the observed Gamow-Teller quenching. The quenching factor derived by a comparison of our calculated results with experiment is 0.52
The study of the cumulative effect in meson and nucleonic system production
International Nuclear Information System (INIS)
Pentia, M.
1984-01-01
Relativistic nuclear reactions with protons (deuterons) 8.0 GeV/c in the limiting fraamentation region (4-momentum transfer Q >= 1 GeV), with the particle production energy exceeding the nucleon-nucleon kinematical limit, were studied. The data acqusition, processing and analysis methods are presented along with experimental results like enerqy, angular distributions and A-mass dependence, carried out on DISC-2 Spectrometer (Dubna). Scale invariance character of the meson production, tells about local, pointlike interactions, interpreted like violent quark collisions. The quark structure functions of nuclei was obtained, proving the existence of multiquark states in nuclei. (author)
Phenomenological two-nucleon interaction operator
International Nuclear Information System (INIS)
Lagaris, I.E.; Pandharipande, V.R.
1981-01-01
We report a phenomenological two-nucleon interaction operator obtained by fitting the nucleon-nucleon phase shifts up to 425 MeV in S, P, D and F waves, and the deuteron properties. The operator has the standard eight potentials associated with the two-body operators 1, sigma 1 x sigma 2 , tau 1 x tau 2 , sigma 1 x sigma 2 tau 1 x tau 2 , S 12 , S 12 tau 1 x tau 2 , L x S and L x Stau 2 ; and six phenomenological potentials associated with operators L 2 , L 2 sigma 1 x sigma 2 , L 2 tau 1 x tau 2 , L 2 sigma 1 x sigma 2 tau 1 xtau 2 (L x S) 2 tau 1 x tau 2 . The six quadratic L terms are relatively weak, and are chosen in order to make many-body calculations with this operator simpler. (orig.)
In-medium effects around the Fermi energy
Directory of Open Access Journals (Sweden)
Lopez O.
2015-01-01
Full Text Available We study nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi energy domain (15-100 AMeV. Using the large dataset provided by the 4π array INDRA, we determine that stopping can be directly related to the transport properties in the nuclear medium. By looking specifically at protons, we present a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter.
Interaction cross sections and matter radii of oxygen isotopes using the Glauber model
Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.
2017-05-01
Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.
Restricted Variance Interaction Effects
DEFF Research Database (Denmark)
Cortina, Jose M.; Köhler, Tine; Keeler, Kathleen R.
2018-01-01
Although interaction hypotheses are increasingly common in our field, many recent articles point out that authors often have difficulty justifying them. The purpose of this article is to describe a particular type of interaction: the restricted variance (RV) interaction. The essence of the RV int...
Up-down quark mass difference effect in nuclear many-body systems
International Nuclear Information System (INIS)
Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.
1995-01-01
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. (author)
Up-down quark mass difference effect in nuclear many-body systems
International Nuclear Information System (INIS)
Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.
1996-01-01
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect explains the systematic behavior of experiment. This contribution is large and may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. copyright 1996 The American Physical Society
Calculation of A (x) for the Proton-Deuteron Breakup Reaction at 135 MeV
Eslami-Kalantari, M.; Mehmandoost-Khajeh-Dad, A. A.; Shafaei, M. A.; Amir-Ahmadi, H. R.; Biegun, A.; Gasparic, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Ramazani Moghaddam Arani, Ahmad; Shende, S. V.; Stephan, E.; Sworst, R.
Observables in proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects (3NF). Several facilities in the world, including Kernfysisch Versneller Instituut (KVI), allow a detailed study a few-nucleon interaction below the pion-production
The production of {eta} and {omega} mesons in 3.5 GeV p+p interaction in HADES
Energy Technology Data Exchange (ETDEWEB)
Teilab, Khaled
2011-08-31
The study of meson production in proton-proton collisions in the energy range up to one GeV above the production threshold provides valuable information about the nature of the nucleon-nucleon interaction. Theoretical models describe the interaction between nucleons via the exchange of mesons. In such models, different mechanisms contribute to the production of the mesons in nucleon-nucleon collisions. The measurement of total and differential production cross sections provide information which can help in determining the magnitude of the various mechanisms. Moreover, such cross section information serves as an input to the transport calculations which describe e.g. the production of e{sup +}e{sup -} pairs in proton- and pion-induced reactions as well as in heavy ion collisions. In this thesis, the production of {omega} and {eta} mesons in proton-proton collisions at 3.5 GeV beam energy was studied using the High Acceptance DiElectron Spectrometer (HADES) installed at the Schwerionensynchrotron (SIS 18) at the Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. About 80 000 {omega} mesons and 35 000 {eta} mesons were reconstructed. Total production cross sections of both mesons were determined. Furthermore, the collected statistics allowed for extracting angular distributions of both mesons as well as performing Dalitz plot studies. The {omega} and {eta} mesons were reconstructed via their decay into three pions ({pi}{sup +}{pi}{sup -}{pi}{sup 0}) in the exclusive reaction pp {yields} pp{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The charged particles were identified via their characteristic energy loss, via the measurement of their time of flight and momentum, or using kinematics. The neutral pion was reconstructed using the missing mass method. A kinematic fit was applied to improve the resolution and to select events in which a {pi}{sup 0} was produced. The correction of measured yields for the effects of spectrometer acceptance was done as a function of four
Recent soft-core baryon-baryon interactions
International Nuclear Information System (INIS)
Rijken, Th.A.; Yamamoto, Y.
2005-01-01
We present recent results obtained with the extended soft-core (ESC) interactions. This ESC-model, henceforth called ESC03, describes nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in a unified manner using (broken) SUf(3)-symmetry. Novel ingredients are the inclusion of (i) the axial-vector meson potentials (ii) a zero in the scalar-meson form-factors. With these innovations, it proved possible for the first time to keep the parameters of the model closely to the predictions of the P03 quark-pair-creation model (QPC). This is the case for the meson-baryon coupling constants and F/(F+D)-ratio's as well. Also, the YN and YY results for this model are rather excellent
International Nuclear Information System (INIS)
Babaev, Z.R.; Shchelkachev, A.V.
1991-01-01
Prospects of decribing polarization effects within the framework of quark-parton models (QPM) using a density matrix in order to describe the parton spin states in hadrons are discussed. Such an approach allows one to get rid of contradictions occuring when describing the QPM of reactions of hadrons polarized in perpendicular to the scattering plane in case of applying spin distribution functions. Different model predictions for the observed one- and two-spin correlations in elastic nucleon-nucleon scattering are analyzed. 12 refs., 2 tabs
Properties of Nuclei up to A =16 using Local Chiral Interactions
Lonardoni, D.; Carlson, J.; Gandolfi, S.; Lynn, J. E.; Schmidt, K. E.; Schwenk, A.; Wang, X. B.
2018-03-01
We report accurate quantum Monte Carlo calculations of nuclei up to A =16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in O 16 these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of binding energies, charge radii, and form factors for all these nuclei, including open-shell systems in A =6 and 12.
Nuclear medium effects in the evaluation of Callan Gross relation
International Nuclear Information System (INIS)
Zaidi, F.; Haider, H.; Athar, M. Sajjad; Singh, S.K.
2015-01-01
JLab has recently measured F 1 (x) and F 2 (x) structure functions separately as well as studied the difference F 2 (x) - 2 xF 1 (x) (Callan-Gross relation) using electron-nucleus deep inelastic scattering (DIS) in the energy region of 2-6 GeV of the electron beam. Theoretically, it is important to understand nuclear medium effects for a fundamental process eN → eX (N is the nucleon and X is jet of hadrons) taking place with a nucleon bound inside the nucleus. Generally, nuclear medium effects in the DIS region are understood due to shadowing and antishadowing effects, mesonic cloud contributions, Fermi motion and binding energy etc. In the present paper we have studied nuclear medium effects in microscopic model using relativistic nucleon spectral function to describe nucleon momentum distribution. The Fermi motion, binding energy effect and nucleon-nucleon correlations are taken into account using spectral functions. The spectral functions that describe energy and momentum distribution of nucleon is obtained by using the Lehmann's representation for the relativistic nucleon propagator and nuclear many body theory is used to calculate it for an interacting Fermi sea in nuclear matter. A local density approximation is then applied to translate these results to a finite nucleus. We have taken into account pion and rho mesons cloud contributions which are found to have important contribution in the intermediate region of Bjorken variable x. Furthermore, shadowing and antishadowing effects are also taken into account using phenomenological model of Kulagin and Petti. Numerical evaluation have been performed both at the leading order (LO) and next-to-leading order (NLO)
Microscopic description of nuclear structure
International Nuclear Information System (INIS)
Girod, M.; Berger, J.F.; Peru, S.; Dancer, H.
2002-01-01
After briefly recalling the formalism of the mean field approach with an effective nucleon-nucleon interaction, the theoretical framework of the nuclear structure studies performed at CEA-DAM, applications of this theory to various nuclear systems: shape and spin isomeric states, neutron and proton rich nuclei, superheavy and hyper-heavy nuclei, and to the fission process are presented. (authors)
The heavy-ion total reaction cross-section and nuclear transparancy
International Nuclear Information System (INIS)
Rego, R.A.; Hussein, M.S.
1982-10-01
The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparancy is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determing σ sub(R) at lower energies. (Author) [pt
The heavy-ion total reaction cross-section and nuclear transparency
International Nuclear Information System (INIS)
Rego, R.A.; Hussein, M.S.
1982-01-01
The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparency is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determining σ(sub R) at lower energies. (Author) [pt
Microscopic calculation of four-nucleon scattering observables in dd → dd and dd → p3H
International Nuclear Information System (INIS)
Fonseca, A.C.
1998-01-01
The four-body equations of Alt, Grassberger and Sandhas are solved for a system of four nucleons, using realistic NN interactions. The results of the calculations are compared with data for the reactions and dd → dd and dd → p 3 H. Preliminary calculations indicate that the nucleon-nucleon p-waves have a strong effect on 4N observables. (orig.)
Azimuthal angle dependence of Coulomb and nuclear interactions between two deformed nuclei
International Nuclear Information System (INIS)
Ismail, M.; Ellithi, A. Y.; Botros, M. M.; Mellik, A. E.
2007-01-01
The azimuthal angle (φ) variation of the Coulomb and nuclear heavy ion (HI) potentials is studied in the framework of the double folding model, which is derived from realistic nuclear density distributions and a nucleon-nucleon (NN) interaction. The present calculation shows that the variation of HI potentials with the azimuthal angle depends strongly on the range of the NN forces. For the long-range Coulomb force, the maximum variation with φ is about 0.9%, and for HI potential derived from zero-range NN interaction the φ-variation can reach up to 90.0%. Our calculations are compared with the recent φ-dependence of the HI potential derived from proximity method. The present realistic φ-dependence calculations of the HI potential is completely different from the results of the proximity calculations
International Nuclear Information System (INIS)
Angelov, N.; Ahababyan, N.; Anoshin, A.I.
1979-01-01
Data are presented on inelastic cross sections and multiplicities of pions minus produced on collisions of protons, deuterons, helium-4 and carbon-12 nuclei at 4.2 GeV/c per nucleon in the propane bubble chamber witn tantalum and carbon plates. Average multiplicities and dispersions of multiplicity distributions are compared with those in nucleon-nucleon interactions. Deviation of C-Ta interaction data from universal dependence of dispersion on multiplicity is observed. Pion multiplicities are found proportional to the number of nucleons from incident nucleus which interacted in the target. The results are not in contradiction with the assumption that nucleons from the incident nucleus interact independently in the target. For C-Ta interactions the average radius of the pion emission volume has been determined by the interference method to be r=(3.3+-0.6) fm
Strong interactions and quantum chromodynamics at the leading logarithm approximation
International Nuclear Information System (INIS)
Mantrach, A.
1982-11-01
This thesis is a contribution to the study of Quantum Chromodynamics (QCD) at the leading logarithm approximation (LLA). We have used the interpretation of the LLA in terms of the generalized parton model to propose tests of elementary processes of QCD in large transverse momentum photoproduction reactions. We have used the LLA to sum gluon radiation effects induced in high energy hadronic reactions. We have obtained this way a rise of the nucleon-nucleon total cross section of 15 mb from 60 GeV to 540 GeV. We have exploited the existence of a preconfinement transition in the LLA to study scaling violations in the framework of the dual parton model [fr
Effects of quark structure on NN scattering: relevance to current data and bag models
International Nuclear Information System (INIS)
Lomon, E.L.
1984-01-01
The applicability of the R-matrix method to the transition from asymptotic freedom to confinement depends on the overlap of the regions in which asymptotic freedom is a good approximation and the region well described by hadronic field theory. This enables a quantitative description of hadron-hadron interactions at low and intermediate energies. ''Compound'' and ''Cloudy'' bag models and the P-matrix method are shown to be special or approximate versions of the R-matrix method in its f-matrix form. The f-matrix condition is applied to S-state nucleon-nucleon scattering where it (i) overcomes the deficiencies of the P-matrix applications, (ii) shows that some of the bag models which have had some success in describing mesons and baryons are inconsistent when applied to nucleon-nucleon scattering, and (iii) that the bag models which are consistent with that data predict inelastic resonant structures of 50-100 MeV width at barycentric energies between 2.3 GeV and 3.5 GeV
Jain, Anupriya; Kumar, Suneel
2014-10-01
We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions and symmetry potential clearly indicates the dominance of nucleon-nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified.
The nuclear equation of state: A tool to constrain in-medium hadronic interactions
International Nuclear Information System (INIS)
Sammarruca, F.; Krastev, P. G.
2006-01-01
Recently we have been concerned with the properties of the nuclear equation of state (EOS), a relation between thermodynamic variables characterizing a medium. At zero temperature, such relation can be expressed in terms of energy (or pressure) as a function of density. Mechanisms such as isospin and/or spin asymmetry can have a dramatic impact on the equation of state. After briefly reviewing our previous work concerning the isospin asymmetries of the EOS, we will concentrate on our most recent results and their relevance towards a better understanding of the nuclear force in exotic matter. The approach we take is microscopic and relativistic. The calculated EOS properties are derived self-consistently from realistic nucleon-nucleon interactions. This makes it possible to understand the predictions in terms of specific features of the nuclear force model.
π-exchange NN interaction model with overlapping nucleon form factors
International Nuclear Information System (INIS)
Bagnoud, X.
1986-01-01
The nucleon-nucleon (NN) interaction model includes a π-exchange and takes into account the first excited state Δ(1232) of the nucleon. It is supplemented by a short-range repulsion which has been derived from the nucleon form factor (rms radius b/sub f/) combined with the three-quark wave function (rms radius b/sub q/). The optimization of the model on empirical scattering phase shifts below 300 MeV gives, for a minimum chi 2 , the root-mean-square radii b/sub f/ = b/sub q/ = 0.51 fm and a coupling constant G/sub π/ 2 /4π = 13
International Nuclear Information System (INIS)
Mercer, D.J.
1993-01-01
Measurements of neutron polarization from (rvec p,rvec n) reactions can provide valuable clues toward understanding the isovector nucleon-nucleus interaction. A neutron time-of-flight polarimeter has been constructed at the Los Alamos Meson Physics Facility to perform such measurements, but before the polarimeter can be used, its effective analyzing powers must be determined. This is accomplished by using the 14 C(rvec p,rvec n) 14 N reaction at a bombarding energy of 494 MeV to produce a beam of neutrons with known polarization, illuminating the detector with these neutrons, and measuring the azimuthal asymmetries after scattering from a hydrogenous analyzer fluid within the detector. Secondary measurements are made using the 2 H(rvec p,rvec n) 2 p reaction with bombarding energies of 318 and 494 MeV to produce a polarized neutron beam. The results from (rvec np) analyzing reactions within the detector agree with values anticipated from free nucleon-nucleon analyzing powers, but the results from (rvec np) analyzing reactions display a more than 33% reduction from the anticipated values. Additionally, measurements are made of the polarization transfer coefficient D LL (0 degree) for rvec p,rvec n Gamow-Teller reactions on 2 H, 7 Li 12 C, and 14 C targets. For a purely central interaction, one would expect that D LL (0 degree) ∼ -1/3 in the plane wave limit, but a simple average of the Jπ = 0 + → 1 + results at a bombardment energy of 494 MeV gives D LL (0 degree) = -0.689 ± 0.044. Thus, the measurements indicate that the nucleon-nucleus interaction -- which is largely central at 200 MeV -- has strong tensor contributions at higher energy
López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.
2018-03-01
Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.
Gadioli, E; Birattari, C; Cavinato, M; Fabrici, E; Gadioli-Erba, E; Pigni, M; Steyn, G F; Förtsch, S V; Lawrie, J J; Connell, S H; Sellschop, J P Friedel; Sideras-Haddad, E; Cowley, A A
2003-01-01
In this paper we study the emission of sup 8 Be sub g sub s , B and N fragments in the interaction of sup 1 sup 6 O ions with sup 5 sup 9 Co, sup 9 sup 3 Nb and sup 1 sup 9 sup 7 Au at incident energies varying from 6 to 25 MeV/nucleon. The spectra of these fragments, as well as those of C fragments studied in a previous paper, are dominated at forward angles by a component originating from break-up of sup 1 sup 6 O. At the higher incident energies break-up occurs after quite a sizeable projectile energy loss. Another mechanism which dominates at large emission angles, favours the emission of low-energy fragments and is attributed to the coalescence of nucleons during the cascade of nucleon-nucleon interactions by means of which the excited nuclei produced in the primary two-ion interaction thermalize. (orig.)
Unified theory of effective interaction
Energy Technology Data Exchange (ETDEWEB)
Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp
2016-09-15
We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.
Casimir effect for interacting fields
International Nuclear Information System (INIS)
Kay, B.S.
1982-01-01
The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)
International Nuclear Information System (INIS)
Tannenbaum, M.J.
1985-01-01
Measurements of neutral transverse energy spectra in p-p, d-d and α-α interactions at the CERN ISR are presented. The source of transverse energy is the emission of relatively low P/sub T/ particles distributed uniformly. Analysis of the αα data in terms of multiple nucleon-nucleon collisions is most convenient when Gamma distributions are used to represent the spectral shapes. This distribution bears a strong relationship to the Negative Binomial Distribution which describes multiplicity distributions in pp and p anti p interactions over the full available energy range. Extensive analysis of the data is presented in terms of Nuclear Models. However, the best fit to the pp and αα data is a single Gamma distribution scaled by the mean value. This property is also known as KNO scaling. 15 refs., 2 figs
Light hypernuclei and hyperon-nucleon interaction
International Nuclear Information System (INIS)
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the Δ - N mass difference of ∼ 300 MeV, the Σ resonance is only about 80 MeV above the Λ. In addition, although there is no one-pion-exchange in the ΛN diagonal channel, this longest-range term does contribute to the transition ΛN - ΣN interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs
Light hypernuclei and hyperon-nucleon interaction
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the {Delta} {minus} N mass difference of {approx} 300 MeV, the {Sigma} resonance is only about 80 MeV above the {Lambda}. In addition, although there is no one-pion-exchange in the {Lambda}N diagonal channel, this longest-range term does contribute to the transition {Lambda}N {minus} {Sigma}N interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Stauf, M.
2007-07-13
The aim of this work was, to describe the global characteristics like binding energy and radius of atomic nuclei on basis of realistic nucleon nucleon interactions. Because of the strong short-range components of the nucleon nucleon interaction, methods of many-body-theory have to be used, that go beyond mean field method or Hartree Fock method. (orig.)
International Nuclear Information System (INIS)
Safronov, A.N.
1983-01-01
A system of nonsingular integral equations is formulated for the calculation of hadron-hadron partial amplitudes in the low-and intermediate-energy range taking into account meson and quark-gluon degrees of freedom. The quark-gluon degrees of freedom are included in the framework of the composite-quark-bag model, and the meson degrees of freedom are treated by the methods of the relativistic quantum field theory. It is shown that including the quark-gluon degrees of freedom leads to suppression of meson exchange effects, mostly of heavy meson (rho, ω) exchanges. The method has been applied to the calculation of the 3 S 1 , 1 S 0 , 3 P 0 , 3 P 1 , and 1 P 1 phase shifts for the nucleon-nucleon scattering at the incident nucleon energies T=0-1050 MeV, as well as to the S-wave scattering lengths and effective radii
Effective lagrangian for strong interactions
International Nuclear Information System (INIS)
Jain, P.
1988-01-01
We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model
Medium effects on spin observables of proton knockout reactions
International Nuclear Information System (INIS)
Krein, G.; Maris, T.A.J.; Rodrigues, B.B.; Veit, E.A.
1994-07-01
Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs
Medium effects on spin observables of proton knockout reactions
Energy Technology Data Exchange (ETDEWEB)
Krein, G [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Maris, T A.J.; Rodrigues, B B; Veit, E A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica
1994-07-01
Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs.
Final State Interactions Effects in Neutrino-Nucleus Interactions
Energy Technology Data Exchange (ETDEWEB)
Golan, Tomasz [Univ. of Wroctaw (Poland); Juszczak, Cezary [Univ. of Wroctaw (Poland); Sobczyk, Jan T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
2012-07-01
Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.
N-N potentials in QCD-motivated quark models
International Nuclear Information System (INIS)
Bender, I.; Dosch, H.G.
1982-01-01
Nucleon-nucleon interaction has been investigated in different QCD-inspired quark models, particularly the influence of configuration mixing. A string-motivated model is advocated, which yields a realistic short-range part of the nucleon-nucleon potential. (author)
Soliton-soliton effective interaction
International Nuclear Information System (INIS)
Maki, J.N.
1986-01-01
A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The S col matrix of two punctual bodies was determined, and it is shown that, in the limit of 1 2 2 /mN 4 it reproduces the exact S 2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the S col matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.) [pt
Pauli blocking and medium effects in nucleon knockout reactions
International Nuclear Information System (INIS)
Bertulani, C. A.; De Conti, C.
2010-01-01
We study medium modifications of the nucleon-nucleon (NN) cross sections and their influence on the nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross sections and momentum distributions up to 10% in the energy range E lab =50-300 MeV/nucleon. The effect is more evident in reactions involving halo nuclei.
More effective field theory for non-relativistic scattering
International Nuclear Information System (INIS)
Kaplan, D.B.
1997-01-01
An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)
Nuclear structure theory. Annual technical progress report, July 1, 1975--September 30, 1976
International Nuclear Information System (INIS)
French, J.B.; Koltun, D.S.
1976-01-01
This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: Meson interactions with nucleons and nuclei, including elastic and inelastic scattering of pions, three-body theories of scattering and absorption of pions by deuterons, π-p bremsstrahlung, and multiple-excitation models for meson absorption by heavier nuclei. Studies of the inverse scattering problem including 1 S 0 nucleon-nucleon scattering; the relativistic two-body problem, particularly for relativistic effects at low energies: the unitary-pole expansion in nucleon-nucleon scattering with hard-core interactions. Statistical spectroscopy including: strength distributions and sum rules(both energy weighted and inverse energy weighted) for nuclear excitations; fluctuations and correlations in spectra, strengths and expectation values; studies of Garvey-Kelson and similar mass relationships; spectroscopy in huge spaces including spectral methods for renormalization of the interaction and for using (two + three)-body Skyrme interactions; technical aspects of operator averaging
Moderating influences on interactivity effects
Voorveld, H.; van Noort, G.
2012-01-01
Research on website interactivity is widespread and there are two important reasons for this popularity. The first is that interactivity is assumed to be the key characteristic that distinguishes communication in traditional media from communication in new media such as websites (Chung and Zhao,
International Nuclear Information System (INIS)
Geesaman, D.F.
1984-01-01
The role of hadron dynamics in the nucleus is illustrated to show the importance of nuclear medium effects in hadron interactions. The low lying hadron spectrum is considered to provide the natural collective variables for nuclear systems. Recent studies of nucleon-nucleon and delta-nucleon interactions are reviewed, with emphasis on the type of experimental phenomena which signal the importance of the many-body dynamics. 28 references
Causality and relativistic effects in intranuclear cascade calculations
International Nuclear Information System (INIS)
Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.
1983-01-01
Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt
Advanced modeling of reaction cross sections for light nuclei
International Nuclear Information System (INIS)
Resler, D.A.
1991-01-01
The shell model/R-matrix technique of calculating nuclear reaction cross sections for light projectiles incident on light nuclei is discussed, particularly in the application of the technique to thermonuclear reactions. Details are presented on the computational methods for the shell model which display how easily the calculations can be performed. Results of the shell model/R-matrix technique are discussed as are some of the problems encountered in picking an appropriate nucleon-nucleon interaction for the large model spaces which must be used for current problems. The status of our work on developing an effective nucleon-nucleon interaction for use in large-basis shell model calculations is presented. This new interaction is based on a combination of global constraints and microscopic nuclear data. 23 refs., 6 figs., 2 tabs
Warfarin Side Effects: Watch for Interactions
Warfarin side effects: Watch for interactions Although commonly used to treat blood clots, warfarin (Coumadin, Jantoven) can have dangerous side effects or ... bleeding. Here are precautions to take to avoid warfarin side effects. By Mayo Clinic Staff If you' ...
Fundamental principles of nanostructures and multiple exciton generation effect in quantum dots
International Nuclear Information System (INIS)
Turaeva, N.; Oksengendler, B.; Rashidova, S.
2011-01-01
In this work the theoretical aspects of the effect of multiple exciton generation in QDs has been studied. The statistic theory of multiple exciton generation in quantum dots is presented based on the Fermi approach to the problem of multiple generation of elementary particles at nucleon-nucleon collisions. Our calculations show that the quantum efficiencies of multiple exciton generation in various quantum dots at absorption of single photon are in a good agreement with the experimental data. The microscopic mechanism of this effect is based on the theory of electronic 'shaking'. In the work the deviation of averaged multiplicity of MEG effect from the Poisson law of fluctuations has been investigated. Besides, the role of interface electronic states of quantum dot and ligand has been considered by means of quantum mechanics. The size optimization of quantum dot has been arranged to receive the maximum multiplicity of MEG effect. (authors)
Description of nuclear properties
International Nuclear Information System (INIS)
Faessler, A.
1991-01-01
The lectures want to give a survey about new developments in the description of nuclei. In a first chapter we try to derive nuclear properties from the basis theory of quantum chromodynamics. This is not rigorously possible. There are still many cracks in the bridge between QCD and nuclear structure. The basic ingredient for nuclear structure calculations is the nucleon-nucleon interaction. We shall discuss the nucleon-nucleon interaction in a quark model. In a further chapter we discuss the way to come from a bare nucleon-nucleon interaction in free space to an effective nucleon-nucleon interaction in a limited model space for nuclear structure calculations. Such nuclear structure calculations can be done as shell model calculations. But they are due to the large number of configurations limited to light nuclei. We discuss possibilities (MONSTER and VAMPIR) to enlarge the model space for medium heavy and heavy nuclei. As the example of the low lying isovector 1 + states we discuss collective models (Bohr - Mottelson Model, interacting Boson Model) with proton and neutron degrees of freedom. The same states can also be described microscopically with the Quasi-Particle Random Phase Approximation (QRPA). We discuss the removal of spurious states in RPA. We also discuss the calculation of form factors and compare with inelastic electron scattering data. Finally we apply QRPA to the double-beta decay. Grand unified models predict, that the neutrino is identical with his antiparticle, that it has a finite mass and a weak right-handed interaction. If these properties are found the standard model of the strong and the electro-weak interaction can not be correct. Presently we can only derive from lower limits of the half lives of neutrinoless double-beta decays upper limits of the neutrino mass and of the right-handedness of the weak interaction and lower limits of the mass of the right handed heavy vector boson, if a specific grand unified model is given. (author)
Selected topics in nuclear structure
International Nuclear Information System (INIS)
Faessler, A.
1990-01-01
Today's dream of nuclear structure physics is to calculate the properties of nuclei starting from Quantum-Chromodynamics (QCD). However, we are definitely not able to do that today and may be even in the future one would wish only to show in principle that this is possible. It probably will never be a daily approach to study excitation energies, transitions probabilities and other properties of nuclei. This paper discusses the possibility of coming from the shore of QCD to the other side of the river, to nuclear structure, not in one great arch buy like medieval bridges in several arches grounded each solidly on pillars going down to the river floor and by that connecting theory with the solid ground of experiments. The first arch is meant to connect QCD and the nucleon-nucleon phase shifts with the help to the nucleon-nucleon phase shifts with the experimentally fitted effective interactions for the final model spaces used in nuclear structure calculations. This is at the moment still by far the weakest arch although a large amount of work and ideas have been invested since about the middle of the 60's to derive a theory of effective interactions and to establish the connection of the effective interaction fitted to nuclear structure data with the bare interaction between nucleons in the vacuum. The last arch is connecting the effective nucleon-nucleon interaction with nuclear structure properties
Isospin and angular momentum effects in the peripheral heavy ion reactions
International Nuclear Information System (INIS)
Jouault, B.; De La Mota, V.; Sebille, F.; Royer, G.; Lecolley, J. F.
1997-01-01
The semi-classical Landau Vlasov model has been used to investigate the decay modes of peripheral Pb + Au reactions at 29 MeV/n. Statics and dynamics of these very massive nuclei are analyzed especially through the isospin dependence of the effective nuclear force. The degree of dissipation of the collisions is studied for different bins of impact parameter pointing out the influence of the nucleon-nucleon cross section. The appearance of intermediate mass fragments from neck-like structures is evidenced and the effects of angular momentum transfers are shown to play a fundamental role in this phenomenon. The theoretical results are compared with experimental data, showing the importance of the dynamical and out of equilibrium effects on the observables. (authors)
Data management design: nucleon-nucleon data bank (0 to 1200 MeV)
International Nuclear Information System (INIS)
Signell, P.; Freiheit, F.
1981-01-01
This is a guide to the design of the on-line data records in this bank, covering all energies and particle combinations up to about 1200 MeV. The design of the bank's management system satisfies almost all of the conditions set forth in the proposed Design Principles for Physics Data Banks
Banerjee, S. N.; Chakraborty, S. N.
1980-01-01
Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)
The new nucleon-nucleon scattering data and the Paris potential predictions
International Nuclear Information System (INIS)
Lacombe, M.; Loiseau, B.; Vinh Mau, R.; Cote, J.; Pires, P.
1980-11-01
New data (cross section, polarization, Wolfenstein parameters and spin-correlations) on proton-proton and neutron-proton scattering have been recently published by different groups. These include high precision and/or original measurements covering the energy range 6 MeV < Tsub(lab)< 800 MeV. A direct comparison of these data with the values produced by the Paris NN potential for energies Tsub(lab) < 350 MeV is reported here. The agreement between theory and experiment is very satisfactory both for low and medium energies. The total chi-squared for the world NN data set for Tsub(lab) < 350 MeV is also reported and compared with those given by the Arndt et al. phase shift-analysis and by the phenomenological Reid soft-core potential
Compilation of nucleon-nucleon and nucleon-antinucleon elastic scattering data
International Nuclear Information System (INIS)
Carter, M.K.; Collins, P.D.B.; Whalley, M.R.
1986-01-01
A compilation of the data on pp, pn, nn, p-barp, p-barn, n-barp, and n-barn is presented, in both tabular and graphical form, including when available the total and elastic cross sections, the differences of the total cross section in different spin states, the ratio of the real to imaginary part of the forward scattering amplitude, the elastic differential cross sections, the polarization asymmetry and the spin correlation parameters, for all laboratory-frame momenta >=2 GeV/c. All the data in this review can be found in and retrieved from the Durham-RAL HEP data base together with data on a wide variety of other reactions. (author)
Hyperfine interactions by Moessbauer effect
International Nuclear Information System (INIS)
Constantinescu, S.
1980-01-01
Moessbauer spectroscopy has been used to investigate hyperfine interactions in materials endowed with complex electromagnetic crystallographic structures. Such structures (Me 3 B 7 O 13 X boracite-type systems, for instance), equally interesting from both scientific and applications viewpoint, are drawing a special attention lately on account of their being examined by means of increasingly refined experimental techniques. In view of the wide prospects of using these materials in various practical fields, this thesis counts among the studies aiming to ameliorate the methods of processing and determining the Moessbauer spectra parameters, characterized by complex hyperfine interactions, as well as among the studies of electric, magnetic and crystallographic investigation of the Moessbauer nucleus neighbourhood, in boracite-type structures. (author)
On the theory of deuteron disintegration with collective states excitation in nuclei
International Nuclear Information System (INIS)
Evlanov, M.V.
1981-01-01
Differential cross sections of diffraction disintegration of deuterons with excitation of collective states in nuclei have been theoretically investigated. Effects of nucleon-nucleon interaction as well as smearing of nucleus boundary on differential characteristics of deuteron disintegration accompanying with change in state of target- nuclei have been studied. Spectra of protons liberated during the reaction of 2 + level deuteron disintegration in 114 Cd nucleus are presented [ru
Research in theoretical nuclear physics. Annual progress report No. 18
International Nuclear Information System (INIS)
1986-01-01
Research programs in four major areas are described: the structure of the nucleon and the nucleon-nucleon interaction, strangeness, and strange baryons; the equation of state of dense matter with specific concern both for the problems of stellar collapse and supernova explosions and of relativistic heavy-ion collisions, nuclear structure physics; and relativistic effects in nuclear particularly heavy ion reactions and quark matter physics. New research efforts in many-body theory are also described
Light nuclei: an experimental proving ground for the microscopic cluster model
International Nuclear Information System (INIS)
Brown, R.E.
1978-01-01
A selected review is given of comparisons of experimental data for low-mass nuclear systems with results of calculations using microscopic cluster models. Stress is on the mass-4, -7, and -8 systems. Topics include influence of components of the nucleon-nucleon force, some consequences of the Pauli principle, effects of the Coulomb-exchange interaction, specific distortion, absorption in elastic scattering, and future needs and directions. Some as yet unpublished results are presented
International Nuclear Information System (INIS)
Ermer, M.; Clement, H.; Frank, G.; Grabmayr, P.; Heberle, N.; Wagner, G.J.
1989-01-01
High-quality data for elastic proton, deuteron and α-particle scattering on 40 Ca and 208 Pb at 26-30 MeV/N have been analyzed in terms of the model-unrestricted Fourier-Bessel concept. While extracted scattering potentials show substantial deviations from Woods-Saxon shapes, their real central parts are well described by folding calculations using a common effective nucleon-nucleon interaction with a weak density dependence. (orig.)
Effects of Pauli's principle in the. cap alpha. - /sup 16/O elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Schechter, H; Canto, L F; Breitschaft, A M
1986-03-01
'Exact' microscopic methods like the RGM (Resonating Group Method) and the GCM (Generator Coordinate Method) and approximate methods like the OCM (Orthogonality Condition Model) are used to study the effects of Pauli's Principle in the ..cap alpha..-/sup 16/O elastic scattering. A method to derive 'exact' effective potentials for the OCM is introduced. These potentials, derived from RGM wave functions, make the OCM identical to the RGM and they have the advantage of being free from poles associated to the forbidden states. Numerical calculations are made with V2 and B1 nucleon-nucleon forces at energies in the range 0-30 MeV. The potentials and the resulting phase-shifts are compared to those obtained from the approximate method suggested by Friedrich and Canto. The problem of searching for local, state independent, potentials for the OCM is discussed.
International Nuclear Information System (INIS)
Cohen, T.D.
1998-04-01
The physics goals of the effective field theory program for nuclear phenomena are outlined. It is pointed out that there are multiple schemes for implementing EFT and it is presently not clear if any of these schemes is viable. Most of the applications of effective field theory ideas have been on nucleon-nucleon scattering. It is argued that this is little more than curve fitting and that other quantities need to be calculated to test the ideas. It is shown that EFT methods work well for certain bound state properties of the deuteron electric form factor. However, it is also shown that this success depends sensitively on the fact that the majority of the probability of the deuteron's wave function is beyond the range of the potential. This circumstance is special to the deuteron suggesting that it will be very difficult to achieve the same kinds of success for tightly bound nuclei
Study of p-4He Total Reaction cross section using Glauber and Modified Glauber Models
International Nuclear Information System (INIS)
Tag El Din, I.M.A.; Taha, M.M.; Hassan, S.S.A.
2012-01-01
The total nuclear reaction cross-section for p - 4 He in the energy range from 25 to 1000 MeV is calculated within Glauber and modified Glauber models. The modified Glauber model is introduced via both Coulomb trajectory of the projectile and calculation of the effective radius of interaction. The effects of density dependent total cross-section and phase variation of nucleon-nucleon scattering amplitude are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR at E p 2 at e = e0 = 0 and γ=2fm 2 at e = e0 = 0.17fm -3 .
Effects of economic interactions on credit risk
International Nuclear Information System (INIS)
Hatchett, J P L; Kuehn, R
2006-01-01
We study a credit-risk model which captures effects of economic interactions on a firm's default probability. Economic interactions are represented as a functionally defined graph, and the existence of both cooperative and competitive business relations is taken into account. We provide an analytic solution of the model in a limit where the number of business relations of each company is large, but the overall fraction of the economy with which a given company interacts may be small. While the effects of economic interactions are relatively weak in typical (most probable) scenarios, they are pronounced in situations of economic stress, and thus lead to a substantial fattening of the tails of loss distributions in large loan portfolios. This manifests itself in a pronounced enhancement of the value at risk computed for interacting economies in comparison with their non-interacting counterparts
Mass dependence of short-range correlations in nuclei and the EMC effect
Directory of Open Access Journals (Sweden)
Cosyn Wim
2014-03-01
Full Text Available We sketch an approximate method to quantify the number of correlated pairs in any nucleus A. It is based on counting independent-particle model (IPM nucleon-nucleon pairs in a relative S-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the a2 ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-ofmass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.
Radial Dependence of the Nucleon Effective Mass in B sup 1 sup 0
Bever, L J D; Hicks, R; Jager, K D; Kelly, J; Lapikas, L; Miskimen, R; Neck, D V; Peterson, G; Steenhoven, G; Vries, H D
1998-01-01
The dynamic properties of the atomic nucleus depend strongly on correlations between the nucleons. We present a combined analysis of inelastic electron-scattering data and electron-induced proton knockout measurements in an effort to obtain phenomenological information on nucleon-nucleon correlations. Our results indicate that the ration of radial wave functions extracted from precise B sup 1 sup 0 (e,e') and B sup 1 sup 0 (e, e'p) measurements evolve from an interior depression for small Em, characteristic of short-range correlations, to a surface-peaked enhancement for larger Em, characteristic of long-range correlations. This observation can be interpreted in terms of the nucleon effective mass.
Constraints on a Parity-Conserving Interaction
van Oers, Willem T. H.
Time-reversal-invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with parity violating (P-odd)/time-reversal-invariance-odd (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron (with a present upper limit of 6 × 10-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is less than 10-4 times the weak interaction strength. Experimental limits on a P-even/T-odd interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges it can be shown that only charged rho-meson exchange and A1-meson exchange can lead to a P-even/T-odd interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which will possibly be comparable. All other experiments, like gamma decay experiments, detailed balance experiments, polarization-analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order of magnitude less sensitive. The question then emerges: is there room for further experimentation?
Energy Technology Data Exchange (ETDEWEB)
Cohen, T.D.
1998-04-01
The physics goals of the effective field theory program for nuclear phenomena are outlined. It is pointed out that there are multiple schemes for implementing EFT and it is presently not clear if any of these schemes is viable. Most of the applications of effective field theory ideas have been on nucleon-nucleon scattering. It is argued that this is little more than curve fitting and that other quantities need to be calculated to test the ideas. It is shown that EFT methods work well for certain bound state properties of the deuteron electric form factor. However, it is also shown that this success depends sensitively on the fact that the majority of the probability of the deuteron`s wave function is beyond the range of the potential. This circumstance is special to the deuteron suggesting that it will be very difficult to achieve the same kinds of success for tightly bound nuclei.
International Nuclear Information System (INIS)
1996-01-01
This brochure contains the abstracts of reports delivered by 22 participants at the 15. International Workshop on Nuclear Theory organized by the Institute for Nuclear Research and Nuclear Energy, Bulgaria. The main topics discussed are: hot giant dipole resonance problem, nuclear dynamics in the phase space, heavy ion collisions, ground state correlations beyond RPA, short-range nucleon-nucleon correlation effects in various applications (semiclassical models, magnetic form factors, nucleon momentum distributions, charge densities), nucleon-nucleon interactions in the frame of the semiclassical distorted wave model and O(8) model , nuclear surface in preequilibrium reactions at low energies, magnetic excitations in deformed nuclei, particle decay and E2 transitions, fragmentation at near-barrier energies in heavy ion reactions, IBM models, representations of deformed groups and HF method. All items are recorded in INIS separately
A parametrisation scheme for effective interactions
International Nuclear Information System (INIS)
Geramb, H.V. von; Amos, K.; Berge, L.
1991-01-01
An algorithm is developed by which two nucleon effective interactions are constructed to fit on- and off-shell t- and/or g-matrix elements. The effective interaction is defined as plane wave matrix elements of local operators that may have explicit energy and medium dependencies. It comprises central, tensor, spin-orbit, quadratic spin-orbit and angular momentum square operators, all with Yukawa form factors. As examples, the Paris and Bonn potentials are used to construct t-matrices for projection onto chosen forms of effective interactions. 23 refs., 3 tabs., 5 figs
Interaction Effects of Students, Drugs and Alienation
Jones, Woodrow, Jr.
1977-01-01
This study examined the interaction effect of students, drugs, and alienation in a large university, i.e., the linkages of both social and political alienation with drug behavior. The interaction terms which composed these forms of alienation were evaluated as to their comparative ability to produce drug behavior. (Author)
Modeling of interaction effects in granular systems
International Nuclear Information System (INIS)
El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.
2000-01-01
Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; De La Mota, V.; Sebille, F.; Royer, G. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France); Lecolley, J. F. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)
1997-10-01
The semi-classical Landau Vlasov model has been used to investigate the decay modes of peripheral Pb + Au reactions at 29 MeV/n. Statics and dynamics of these very massive nuclei are analyzed especially through the isospin dependence of the effective nuclear force. The degree of dissipation of the collisions is studied for different bins of impact parameter pointing out the influence of the nucleon-nucleon cross section. The appearance of intermediate mass fragments from neck-like structures is evidenced and the effects of angular momentum transfers are shown to play a fundamental role in this phenomenon. The theoretical results are compared with experimental data, showing the importance of the dynamical and out of equilibrium effects on the observables. (authors) 7 refs.
Effective interactions and coupling schemes in nuclei
International Nuclear Information System (INIS)
Talmi, I.
1994-01-01
Eigenstates of the shell model are obtained by diagonalization of the Hamiltonian submatrix defined by a given shell model subspace. Matrix elements of the effective nuclear interaction can be determined from experiment in a consistent way. This approach was introduced in 1956 with the 38 Cl- 40 K spectra, has been applied in many cases and its latest success is in the s, d shell. This way, general features of the effective interaction have been determined. The T=1 interaction is diagonal in the seniority scheme as clearly demonstrated in proton 1g 9/2 n and 1h 11/2 n configurations and in the description of semimagic nuclei by generalized seniority. Apart from a strong and attractive pairing term, T=1 interactions are repulsive on the average. The T=0 interaction is attractive and is the origin of the central potential well in which nucleons are bound. It breaks seniority in a major way leading to deformed nuclei and rotational spectra. Such an interaction may be approximated by a quadrupole-quadrupole interaction which is the basis of the interacting boson model. Identical nucleons with pairing and quadrupole interactions cannot be models of actual nuclei. Symmetry properties of states with maximum T are very different from those of ground states of actual nuclei. The T=1 interaction between identical nucleons cannot be approximated by pairing and quadrupole interactions. The rich variety of nuclear spectra is due to the competition between seniority conserving T=1 interactions and the T=0 quadrupole interaction between protons and neutrons. (orig.)
Electron and pion interactions with nuclei. Progress report and research plans
International Nuclear Information System (INIS)
McCarthy, J.S.
1982-08-01
A series of electron scattering experiments is proposed for a quantitative investigation of the structure and dynamics of nuclei. The information developed from the electromagnetic interaction will be used as complement to a series of experiments at LAMPF in which a systematic investigation of the reaction dynamics of pion-nucleus interactions is carried out. Pion induced reactions can supply information on inelastic channels of the nucleon-nucleon interaction which are not as readily available to an electromagnetic probe. Pion absorption experiments designed to measure the off-shell behavior are complemented with a program on pion elastic and inelastic scattering to pursue the on-shell aspect of the π + N interaction. The single (SCE) and double charge exchange (DCE) reactions are unique aspects of π interactions in nuclei. The complementarity of information from different reactions is emphasized in our studies of (e,e'), (p,p'), (π,p) and (p,d) reactions at large momentum transfers (Q greater than or equal to 0.5 GeV/c). Along with the search for the reaction dynamics, the question of new nuclear structure is pursued. We now plan to start a series of experiments that will detect hadrons in the final state along with the scattered electrons. The present success of quantum chromodynamics (QCD) gives increased impetus to pursue experiments that can result in a synthesis of nuclear structure within the framework of the elementary quark; carrying the charge and weak currents within hadrons
Meissner effect and a stringlike interaction
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Chandrasekhar [Keio University, Department of Physics at Hiyoshi, and Research and Education Center for Natural Sciences, Yokohama, Kanagawa (Japan); Choudhury, Ishita Dutta; Lahiri, Amitabha [S N Bose National Centre for Basic Sciences, Kolkata, Salt Lake (India)
2017-05-15
We find that a recently proposed interaction involving the vorticity current of electrons, which radiatively induces a photon mass in 3 + 1 dimensions in the low-energy effective theory, corresponds to confining strings (linear potential) between electrons. (orig.)
Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26
Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F
2015-01-01
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...
Analysis of Three-Nucleon Forces Effects in the A = 3 System
International Nuclear Information System (INIS)
Kievsky, A.
2011-01-01
Using modern nucleon-nucleon interactions in the description of the A = 3, 4 nuclear systems the χ 2 per datum results to be much bigger than one. In particular it is not possible to reproduce the three- and four-nucleon binding energies and the n .d scattering length simultaneously. This is one manifestation of the necessity of including a three-nucleon force in the nuclear Hamiltonian. In this paper we perform an analysis of some, widely used, three-nucleon force models.We analyze their capability to describe the aforementioned quantities and, to improve their description, we propose modifications in the parametrization of the models. The effects of these new parametrizations are studied in some polarization observables at low energies. Due to the fact that some of the widely used TNF models do not reproduce simultaneously the triton and 4 He binding energies and the n -d doublet scattering length, possible modifications of their parametrizations have been analyzed. To this end we have used the AV18 as the reference NN interaction and we have analyze possible modifications of the URIX model. We have modified the regularization of the profile functions Y (r ) and T (r ) at the origin and we have introduced the Z 0 (r ) function in the central repulsive E-term. We have used one-parameter functions that have been chosen to match the short-range behavior of the corresponding functions in the N2LOL model. Furthermore the strengths of the b-, d-terms and E-terms have been fixed to reproduce the triton binding energy and 2 a nd . Then the predictions for some selected scattering observables in p - d scattering at 3 MeV have been compared to the results of the original model and the experimental data. We can observe that the description using the new parametrizations has the same quality of the original model. However, with the proposed parametrizations, the AV18+URIX model describes correctly B( 3 H) and 2 a nd . This analysis can be consider as a preliminary step in a
International Nuclear Information System (INIS)
Teterson, G.A.; Hicks, R.S.; Dubach, J.F.; Miskimen, R.A.
1987-06-01
This paper discusses the experimental electron scattering studies at SLAC and Bates Accelerator Center. Some theoretical work on nucleon-nucleon interactions, electromagnetic interactions, weak interactions and nuclear structure are also discussed
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Zykunov, Vladimir; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Sharma, Archana; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Lobelle Pardo, Patricia; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Markin, Oleg; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bruner, Christopher; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Mc Donald, Jeffrey; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2017-03-24
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range $| \\eta | < $ 2.4, and a third particle measured in the hadron forward calorimeters (4.4 $ < | \\eta | < $ 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and $\\eta$ gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N
2017-03-24
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
The effect of dipolar interaction on the magnetic isotope effect
DEFF Research Database (Denmark)
Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita
2010-01-01
A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...... interaction is responsible for the effect. Our calculations provide support for the proposed mechanism....
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Effect of situation on mother infant interaction
Maas, A.J.B.M.; Vreeswijk, C.M.J.M.; van Bakel, H.J.A.
2013-01-01
Research has shown that the early parent–infant relationship is of critical importance for children's developmental outcomes. While the effect of different settings on mother–infant interactive behavior is well studied, only few researchers systematically examined the effect of situational variables
Effective interactions in p-shell nuclei and the realistic interactions - I
International Nuclear Information System (INIS)
Upadhyaya, G.K.; Joshi, K.P.
1984-04-01
The effective interaction of Jain et al. derived from the Yale interaction by including the prominent core polarization diagrams is analyzed in terms of the interaction radial integrals and their spin tensor components. The interaction is also compared with some phenomenological effective interactions. The general features of the effective force in the 1 p shell region are discussed. (author)
Modeling of interaction effects in granular systems
El-Hilo, M; Al-Rsheed, A
2000-01-01
Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...
Effective Interactions between Multilayered Ionic Microgels
Directory of Open Access Journals (Sweden)
Clemens Hanel
2014-12-01
Full Text Available Using a one-component reduction formalism, we calculate the effective interactions and the counterion density profiles for microgels that feature a multilayered shell structure. We follow a strategy that involves second order perturbation theory and obtain analytical expressions for the effective interactions by modeling the layers of the particles as linear superpostion of homogeneously charged spheres. The general method is applied to the important case of core–shell microgels and compared with the well-known results for a microgel that can be approximated by a macroscopic, and homogeneously charged, spherical macroion.
Self-consistent velocity dependent effective interactions
International Nuclear Information System (INIS)
Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.
1993-09-01
The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)
International Nuclear Information System (INIS)
Anon.
The studies in 1977 are reviewed. In theoretical nuclear physics: nuclear structure, nuclear reactions, intermediate energy physics; in elementary particle physics: field theory, strong interactions dynamics, nucleon-nucleon interactions, new particles, current algebra, symmetries and quarks are studied [fr
Interaction effects in magnetic oxide nanoparticle systems
Indian Academy of Sciences (India)
The interaction effects in magnetic nanoparticle system were studied through a Monte Carlo simulation. The results of simulations were compared with two different magnetic systems, namely, iron oxide polymer nanocomposites prepared by polymerization over core and nanocrystalline cobalt ferrite thin films prepared by ...
Iterative approach to effective interactions in nuclei
International Nuclear Information System (INIS)
Heiss, W.D.
1982-01-01
Starting from a non-linear equation for the effective interaction in a model space, various iteration procedures converge to a correct solution irrespective of the presence of intruder states. The physical significance of the procedures and the respective solution is discussed
Effects of Group Interactive Brainstorming on Creativity
Park-Gates, Shari Lane
2001-01-01
Effects of Group Interactive Brainstorming on Creativity By Shari Park-Gates Committee Co Chairs: Anna Marshall-Baker and Jeanete E. Bowker Near Environments (ABSTRACT) Corporations spend a great deal of time and money trying to facilitate innovation in their employees. The act of introducing something new, a product or a service that is viable and innovative is often increased by enhancing or nurturing creativity. This experimental study investigated the effect o...
Nuclear reaction inputs based on effective interactions
Energy Technology Data Exchange (ETDEWEB)
Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2016-11-15
Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)
Effective interactions for description of multistep processes
International Nuclear Information System (INIS)
Avrigeanu, M.; Stetcu, I.; Avrigeanu, V.; Antonov, A.N.; Lenske, H.
2000-01-01
The reliability of realistic M3Y effective NN interactions to describe multistep direct (MSD) processes is proved by analysing the corresponding real optical potentials. This trial is done in order to overcome the uncertainties of the effective NN-interaction strength V 0 obtained by direct fit to the experimental data. The microscopic potential for the nucleon-nucleus scattering at energies lower than 100 MeV has been calculated by using nucleonic and mesonic form factors. It has been analysed through (i) a comparison with phenomenological optical potentials, and (ii) its use for description of nucleon elastic scattering angular distributions. It results that the strongly simplified model interactions usually involved within MSD reaction theory, e.g. 1 fm range Yukawa (1Y) term, neglect important dynamical details of such processes. An 1Y-equivalent V 0 strength of a realistic effective NN interaction is determined by corresponding optical-potential volume integrals, and involved within Feshbach-Kerman-Koonin theory calculations with the final goal of MSD studies without any V 0 free parameter. (authors)
Nature of the effective interaction between dendrimers
International Nuclear Information System (INIS)
Mandal, Taraknath; Dasgupta, Chandan; Maiti, Prabal K.
2014-01-01
We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic [C. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation [I. Götze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian
Nature of the effective interaction between dendrimers
Energy Technology Data Exchange (ETDEWEB)
Mandal, Taraknath, E-mail: taraknath@physics.iisc.ernet.in; Dasgupta, Chandan, E-mail: cdgupta@physics.iisc.ernet.in; Maiti, Prabal K., E-mail: maiti@physics.iisc.ernet.in [Centre for Condensed Matter Theory, Physics Department, Indian Institute of Science, Bangalore-560012 (India)
2014-10-14
We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic [C. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation [I. Götze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian.
Marginal and Interaction Effects in Ordered Response Models
Debdulal Mallick
2009-01-01
In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...
Lebedev, V M; Struzhko, B G
2002-01-01
Heterogeneous data on the double and triple differential cross sections of d + p -> np + p and d + t(h) -> np + t(h) or d + t -> nn + h nuclear reactions are reduced by Migdal-Watson approximation to the unified shape of the differential cross section angular dependence having in mind just singlet nucleon-nucleon pair formation. The results are compared with the supermultiplet potential model of the lightest nuclei interaction. The d + t(h) collision is characterized by the fact that the power of V sup [ sup 4 sup 1 sup ] (r) potential is 50% higher than that of the V sup [ sup 3 sup 2 sup ] (r) one ([f] = [41] and [f] = [32] are the orbital Young patterns. This is why the theory is able to describe quantitatively both the above experiment and the elastic scattering one. However, for d + p collision the difference of potential powers for the [f] = [3] and [f] = [21] patterns equals 20% only and the agreement of theory with experiment on deuteron spin-flip is merely qualitative
Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions
Karavicheva, T; Atayan, M; Bordalo, P; Constans, N P; Gulkanyan, H; Kluberg, L
2002-01-01
%NA50 %title\\\\ \\\\The experiment studies dimuons produced in Pb-Pb and p-A collisions, at nucleon-nucleon c.m. energies of $ \\sqrt{s} $ = 18 and 30 GeV respectively. The setup accepts dimuons in a kinematical range roughly defined as $0.1$ $1 GeV/c$, and stands maximal luminosity (5~10$^{7}$~Pb ions and 10$^7$ interactions per burst). The physics includes signals which probe QGP (Quark-Gluon Plasma), namely the $\\phi$, J/$\\psi$ and $\\psi^\\prime$ vector mesons and thermal dimuons, and reference signals, namely the (unseparated) $\\rho$ and $\\omega$ mesons, and Drell-Yan dimuons. The experiment is a continuation, with improved means, of NA38, and expands its study of {\\it charmonium suppression} and {\\it strangeness enhancement}.\\\\ \\\\The muons are measured in the former NA10 spectrometer, which is shielded from the hot target region by a beam stopper and absorber wall. The muons traverse 5~m of BeO and C. The impact parameter is determined by a Zero Degree Calorimeter (Ta with silica fibres). Energy dissipation ...
Stress Effects on Multiple Memory System Interactions
Ness, Deborah; Calabrese, Pasquale
2016-01-01
Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour. PMID:27034845
Stress Effects on Multiple Memory System Interactions
Directory of Open Access Journals (Sweden)
Deborah Ness
2016-01-01
Full Text Available Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour.
Order effect in interactive information retrieval evaluation
DEFF Research Database (Denmark)
Clemmensen, Melanie Landvad; Borlund, Pia
2016-01-01
, and the good-subject effect shed light on how and why order effect may affect test participants’ IR system interaction and search behaviour. Research limitations/implications – Insight about order effect has implications for test design of IIR studies and hence the knowledge base generated on the basis...... of such studies. Due to the limited sample of 20 test participants (Library and Information Science (LIS) students) inference statistics is not applicable; hence conclusions can be drawn from this sample of test participants only. Originality/value – Only few studies in LIS focus on order effect and none from...... the perspective of IIR. Keywords Evaluation, Research methods, Information retrieval, User studies, Searching, Information searches...
Stress Effects on Multiple Memory System Interactions.
Ness, Deborah; Calabrese, Pasquale
2016-01-01
Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour.
Modality shift effects mimic multisensory interactions
DEFF Research Database (Denmark)
Gondan, Matthias; Vorberg, D.; Greenlee, M.W.
2007-01-01
be avoided using an additional tactile stimulus (T) and evaluating the ERP difference (T + TAV) - (TA + TV). A second possible confound is the modality shift effect (MSE): for example, the auditory N1 is increased if an auditory stimulus follows a visual stimulus, whereas it is smaller if the modality......A frequent approach to study interactions of the auditory and the visual system is to measure event-related potentials (ERPs) to auditory, visual, and auditory-visual stimuli (A, V, AV). A nonzero result of the AV - (A + V) comparison indicates that the sensory systems interact at a specific...... processing stage. Two possible biases weaken the conclusions drawn by this approach: first, subtracting two ERPs from one requires that A, V, and AV do not share any common activity. We have shown before (Gondan and Röder in Brain Res 1073-1074:389-397, 2006) that the problem of common activity can...
Grain interaction effects in polycrystalline Cu
DEFF Research Database (Denmark)
Thorning, C.; Somers, Marcel A.J.; Wert, John A.
2005-01-01
Crystal orientation maps for a grain in a deformed Cu polycrystal have been analysed with the goal of understanding the effect of grain interactions on orientation subdivision. The polycrystal was incrementally strained in tension to 5, 8, 15 and 25% extension; a crystal orientation map...... was measured after each strain increment. The measurements are represented as rotations from the initial crystal orientation. A coarse domain structure forms in the initial 5% strain increment and persists at higher strains. Crystal rotations for all coarse domains in the grain are consistent with the full...... range of Tailor solutions for axisymmetric strain; grain interactions are not required to account for the coarse domain structure. Special orientation domains extend 20-100 µm into the grain at various locations around its periphery. The special orientation domain morphologies include layers along...
Contamination Effects Due to Space Environmental Interactions
Chen, Philip T.; Paquin, Krista C. (Technical Monitor)
2001-01-01
Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.
International Nuclear Information System (INIS)
Hassan, M.Y.M.; Ramadan, S.
1983-11-01
The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)
Assessing Spurious Interaction Effects in Structural Equation Modeling
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming
2015-01-01
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Molecular effects: interactions with chemicals and viruses
International Nuclear Information System (INIS)
Hanawalt, P.C.
1980-01-01
Research focused upon an understanding of the cellular responses to the molecular effects of ionizing radiation should be an essential program component in the Federal Strategy for Research into the Biological Effects of Ionizing Radiation. Although we know that DNA is a principal target molecule for some highly significant biological effects of ionizing radiation, we need to learn which other target substances such as membrane components may also be important. Most of the emphasis should continue to be on DNA effects and highest priority should be assigned to the identification of the complete spectrum of products produced in DNA. Once the lesions are known we can proceed to determine how these behave as blocks to replication and transcription or as modulators on the fidelity of these crucial processes. Considerable work should be done on the repair of these lesions. High priority should be given to the search for mutants in mammalian cell systems with evident defects in the processing of specific lesions. Viruses should provide important tools for the research in this area, as probes for host cell repair responses and also for the isolation of mutants. Furthermore, it is important to consider the interaction of viruses and ionizing radiation with regard to possible modulating effects on repair processes and tumorigenesis. Finally we must consider the important problem of the modification of repair responses by environmental factors
International Nuclear Information System (INIS)
Xu Chang; Li Baoan
2010-01-01
Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.
Constraints on effective interactions imposed by antisymmetry and charge independence
Energy Technology Data Exchange (ETDEWEB)
Stringari, S [Trento Univ. (Italy). Dipartimento di Matematica e Fisica; Brink, D M [Oxford Univ. (UK). Dept. of Theoretical Physics
1978-07-24
Restrictions on the form of the energy functional following antisymmetry and charge independence have been investigated for a Hartree-Fock theory based on effective interactions. These restrictions impose severe constraints on density dependent effective interactions.
Few body problems in nuclear and particle physics
International Nuclear Information System (INIS)
Slobodrian, R.J.; Cujec, B.; Ramavataram, K.
1975-01-01
Nucleon-nucleon interactions at all energies, meson-nucleon and meson-deuteron interactions, nuclear bremsstrahlung, on-shell and off-shell interactions, final-state interactions, bound and scattering states, few-body forces, polarization phenomena, short range correlations, quasi-free scattering, composite hadron models, subnucleon structure, multiparticle and coherent production processes, break-up reactions, electrodisintegration, relativistic effects and future resources in nuclear and particle physics are discussed in relation to the state of few-body physics in 1974. (B.F.G.)
Nuclear spectroscopy with density dependent effective interactions
International Nuclear Information System (INIS)
Krewald, S.
1976-07-01
The paper investigates excited nuclear states with density-dependent effective interactions. In the first part of the paper, the structure and the width of the multipole giant resonances discovered in 1972 are derived microscopically. Because of their high excitation energy, these giant resonances are unstable to particle emission and thus often have a considerable decay width. Due to their collective structure, the giant resonances can be described by RPA in good approximation. In this paper, the continuum RPA is applied to the spherical nuclei 16 O, 40 Ca, 90 Zr and 208 Pb. The experimental centroid energy are in very good agreement with the calculations performed in the paper. (orig./WL) [de
Hadronization of QCD and effective interactions
International Nuclear Information System (INIS)
Frank, M.R.
1994-01-01
An introductory treatment of hadronization through functional integral calculus and bifocal Bose fields is given. Emphasis is placed on the utility of this approach for providing a connection between QCD and effective hadronic field theories. The hadronic interactions obtained by this method are nonlocal due to the QCD substructure, yet, in the presence of an electromagnetic field, maintain the electromagnetic gauge invariance manifest at the quark level. A local chiral model which is structurally consistent with chiral perturbation theory is obtained through a derivative expansion of the nonlocalities with determined, finite coefficients. Tree-level calculations of the pion form factor and π - π scattering, which illustrate the dual constituent-quark-chiral-model nature of this approach, are presented
Quasiconfigurations and the theory of effective interactions
International Nuclear Information System (INIS)
Poves, A.; Zuker, A.
1980-01-01
Perturbation theory is reformulated. Schroedinger's equation is recast as a non linear integral equation which yields by Neumann expansion a linked cluster series for the degenerate, quasi degenerate or non degenerate problem. An effective interaction theory emerges that can be formulated in a biorthogonal basis leading to a non Hermitian secular problem. Hermiticity can be recovered in a clear and rigorous way. As the mathematical form of the theory is dictated by the request of physical clarity the latter is obtained naturally. When written in diagrammatic many body language, the integral equation produces a set of linked coupled equations for the degenerate case. The classic summations (Brueckner, Bethe-Faddeev and RPA) emerge naturally. Possible extensions of nuclear matter theory are suggested
State densities and spectrum fluctuations: Information propagation in complex nuclei
International Nuclear Information System (INIS)
French, J.B.; Kota, V.K.B.
1988-01-01
At excitation energies in nuclei where the state density is unambiguously defined there is a sharp separation between the smoothed spectrum (which defines the density) and fluctuations about it which have recently been studied with a view to understanding some aspects of quantum chaos. We briefly review these two complementary subjects, paying special attention to: the role of the effective interaction in determining the density; the calculation of interacting-particle state and level densities, and of expectation values of interesting operators; the information about the effective nucleon-nucleon interaction which is carried both by the density and the fluctuations. 28 refs., 1 fig
Spiritual Values and Spiritual Practices: Interactive Effects on Leadership Effectiveness
Directory of Open Access Journals (Sweden)
Zakiyulfikri Ali
2018-02-01
Full Text Available The relationship between spirituality and leadership effectiveness has been discussed over decades. These relations have been separated in two big perspective—first, an esoteric realm of intangible ideas and emotions; and second, a practical area and scientific inquiry. This research tries to integrate these two different perspectives. Specifically, this research examines the effects of spiritual values and spiritual practices on leadership effectiveness. The findings indicate that spiritual values and spiritual practices have positive effects on leadership effectiveness. This research also shows that spiritual values and spiritual practices have interactive effects on leadership effectiveness. This result implies that organizations should enhance the spiritual values and practices. Discussion, practical, and theoretical implications for further researches are offered. DOI: 10.15408/etk.v17i1.6497
Relativistic scalar-vector models of the N-N and N-nuclear interactions
International Nuclear Information System (INIS)
Green, A.E.S.
1985-01-01
This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs
Constraints of a parity-conserving/time-reversal-non-conserving interaction
International Nuclear Information System (INIS)
Oers, Willem T.H. van
2002-01-01
Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron ( -26 e.cm [95% C.L.]). It provides a limit on a T-odd/P-odd pion-nucleon coupling constant which is less than 10 -4 times the weak interaction strength. Experimental limits on a T-odd/P-even interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged ρ-meson exchange and A 1 -meson exchange can lead to a T-odd/P-even interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). All other experiments, like detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order to magnitude less sensitive. Is there room for further experimentation?
Interactive effects of pests increase seed yield.
Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo
2016-04-01
Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.
Low-energy coupling of individual and collective degrees of freedom: a general microscopic approach
International Nuclear Information System (INIS)
Quentin, P.; Meyer, M.
1988-01-01
A general microscopic approach of low energy coupling of individual and collective degrees of freedom is presented. The ingredients of a Bohr-Mottelson unified model description are determined consistently from the Skyrme SIII effective interaction, through the adiabatic limit of the time-dependent Hartree-Fock-Bogoliubov approximation. Three specific aspects will be mostly developed: i) the effect of pairing correlations on adiabatic mass parameters and collective dynamics; ii) a consistent coupling of collective and individual degrees of freedom to describe odd nuclei; iii) a study of spectroscopic data in odd-odd nuclei as a test of effective nucleon-nucleon interactions. (author)
Nuclear theory group. Progress report and renewal proposal
International Nuclear Information System (INIS)
1979-01-01
The work discussed covers a broad range of topics in theoretical nuclear and intermediate-energy physics and nuclear astrophysics. Primary emphasis is placed on understanding the underlying nucleon-nucleon and meson-nucleon interactions. The research is categorized as follows: fundamental interactions; intermediate-energy physics; effective interactions, nuclear models and many-body theory; structure of finite nuclei; nuclear astrophysics; heavy-ion physics; and numerical analysis. Page-length summaries of the work are given; completed work has been or will be published. Staff vitas, recent publications, and a proposed budget complete the report
Neutrino interactions, proton production and a nuclear effect
International Nuclear Information System (INIS)
Guy, J.; Allport, P.P.; Cooper-Sarkar, A.; Sansum, R.A.; Venus, W.; Berggren, M.; Morrison, D.R.O.; Parker, M.A.; Wachsmuth, H.; Clayton, E.F.; Mobayyen, M.M.; Hulth, P.O.; Katz, U.; Wittek, W.; Marage, P.; Sacton, J.; Matsinos, E.; Simopoulou, E.; Myatt, G.; Neveu, M.; Apeldoorn, G.W. van
1989-01-01
Neutrino interactions are classified by the presence or absence of protons with momentum below 600 MeV/c at the interaction vertex. Interactions producing protons have softer x distributions for hydrogen and deuterium targets as well as for neon. In contrast to a recent claim, the effect is therefore not directly related to any nuclear effect in neon. (orig.)
Neutrino interactions, proton production and a nuclear effect
Guy, J.; Allport, P. P.; Berggren, M.; Clayton, E. F.; Cooper-Sarkar, A.; Hulth, P. O.; Jones, G. T.; Katz, U.; Marage, P.; Matsinos, E.; Mobayyen, M. M.; Morrison, D. R. O.; Myatt, G.; Neveu, M.; O'Neale, S.; Parker, M. A.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; van Apeldoorn, G. W.; Varvell, K.; Venus, W.; Wachsmuth, H.; Wittek, W.
1989-10-01
Neutrino interactions are classified by the presence or absence of protons with momentum below 600 MeV/c at the interaction vertex. Interactions producing protons have softer x distributions for hydrogen and deuterium targets as well as for neon. In contrast to a recent claim, the effect is therefore not directly related to any nuclear effect in neon.
Hoffman, Daniel L.
2013-01-01
The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…
Genetic Allee effects and their interaction with ecological Allee effects.
Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk
2018-01-01
It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects
Effect of Interaction of Methanol Leaf Extract of Spondias mombin ...
African Journals Online (AJOL)
Purpose: To study the effect of interaction between methanol leaf extract of Spondias mombin and ... Keywords: Diarrheagenic E. coli, Drug interaction, Spondias mombin, Amoxicillin, ..... coli isolated from cattle, food, and children during a one-.
The effect of interactive digital storytelling gamification on microbiology classroom interactions
Molnar, Andreea
2018-01-01
In this research, we study the use of interactive digital storytelling in teaching microbiology. More specifically, we carried out an exploratory study assessing the effect of using the gamification of an interactive digital storytelling on classroom dynamics and students’ interaction. The results show that the presence of gamification led to an increase in classroom discussions and in students’ engagement with the learning objectives taught by the interactive digital storytelling.
Self-consistency corrections in effective-interaction calculations
International Nuclear Information System (INIS)
Starkand, Y.; Kirson, M.W.
1975-01-01
Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)
Strong interaction effects in hadronic atoms
International Nuclear Information System (INIS)
Kaufmann, W.B.
1977-01-01
The WKB method is applied to the calculation of strong interaction-induced level widths and shifts of hadronic atoms. The calculation, while elementary enough for undergraduate quantum mechanics students, gives a good account of kaonic and antiprotonic atom data
Isovector couplings for nucleon charge-exchange reactions at intermediate energies
International Nuclear Information System (INIS)
Love, W.G.; Nakayama, K.; Franey, M.A.
1987-01-01
The isovector parts of the effective nucleon-nucleon interaction are studied by examination of the reaction /sup 14/C(p,n) at intermediate energies near zero momentum transfer with use of recently developed G-matrix and free--t-matrix interactions. The spin-independent coupling (V/sub tau/) exhibits a strong energy and density dependence which, in the case of the G matrix based on the Bonn potential, significantly improves the agreement between calculated values of chemical bondV/sub σ//sub tau//V/sub tau/chemical bond 2 at q = 0 and those recently extracted from the reaction /sup 14/C
Microscopic description of low-energy nuclear collisions: review and perspective
International Nuclear Information System (INIS)
Bonche, Paul
2000-01-01
The primary goal of this lecture is a review of the microscopic approaches to nuclear reactions. Semi-phenomenological theories will not be discussed. First the Time-Dependent Hartree-Fock formalism is recalled. The effective nucleon-nucleon interactions used in TDHF calculations are discussed. Applications to collisions are presented in different approximation scheme, one-dimensional dynamics, approximate three-dimensional ones.... Finally two microscopic extensions beyond mean-field are reviewed: the variational principal of Balian and Veneroni and the implementation of residual two-body interactions in the Time-Dependent Density Matrix (TDDM) and the Extended Time-Dependent Hartree-Fock schemes (ET-DHF). (author)
Few-body physics investigated through polarized neutron experiments in A /le/ 3 systems at TUNL
Energy Technology Data Exchange (ETDEWEB)
Tornow, W.; Howell, C.R.; Walter, R.L.
1989-04-01
Accurate polarization data obtained with neutrons below 20 MeV in the A /le/ 3 systems provide important new information on details of the nucleon-nucleon (NN) interaction. The two-nucleon and three-nucleon data favor the Paris potential over the new Bonn (OBEPQ) potential. However, one of the realistic potential models describes the elastic neutron-deuteron analyzing power satisfactorily. Charge independence breaking in the /sup 3/P NN interactions and/or three-body force effects must be considered. (orig.).
Few-body physics investigated through polarized neutron experiments in A ≤ 3 systems at TUNL
International Nuclear Information System (INIS)
Tornow, W.; Howell, C.R.; Walter, R.L.
1989-01-01
Accurate polarization data obtained with neutrons below 20 MeV in the A ≤ 3 systems provide important new information on details of the nucleon-nucleon (NN) interaction. The two-nucleon and three-nucleon data favor the Paris potential over the new Bonn (OBEPQ) potential. However, one of the realistic potential models describes the elastic neutron-deuteron analyzing power satisfactorily. Charge independence breaking in the 3 P NN interactions and/or three-body force effects must be considered. (orig.)
Induced isospin mixing in direct nuclear reactions
International Nuclear Information System (INIS)
Lenske, H.
1979-07-01
The effect of charge-dependent interactions on nuclear reactions is investigated. First, a survey is given on the most important results concerning the charge dependence of the nucleon-nucleon interaction. The isospin symmetry and invariance principles are discussed. Violations of the isospin symmetry occuring in direct nuclear reactions are analysed using the soupled channel theory, the folding model and microscopic descriptions. Finally, induced isospin mixing in isospin-forbidden direct reactions is considered using the example of the inelastic scattering of deuterons on 12 C. (KBE)
International Nuclear Information System (INIS)
Harvey, M.; Khanna, F.C.
1975-01-01
The general problem of what constitutes a physical model and what is known about the free nucleon-nucleon interaction are considered. A time independent formulation of the basic equations is chosen. Construction of the average field in which particles move in a general independent particle model is developed, concentrating on problems of defining the average spherical single particle field for any given nucleus, and methods for construction of effective residual interactions and other physical operators. Deformed shell models and both spherical and deformed harmonic oscillator models are discussed in detail, and connections between spherical and deformed shell models are analyzed. A section on cluster models is included. 11 tables, 21 figures
The deuteron bound state wave function with tensor forces
International Nuclear Information System (INIS)
Takemasa, Tadashi
1991-01-01
A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)
International Nuclear Information System (INIS)
Antonov, A.N.; Christov, Chr.V.; Nikolov, E.N.
1989-01-01
Differential cross-section of the 1.04 GeV - proton elastic scattering from 40 Ca is calculated within the Glauber-Sitenko theoretical scheme using the coherent density fluctuation model (CDFM). It is shown that the use of exact noneikonal expression for the two-body scattering amplitude (which describes the p-p data) leads to a satisfactory agreement with the experimental data. The influence of the flucton correlations on the differential cross-sections is considerable as the use of a realistic charge density distribution leads to a better agreement with the experimental data of the CDFM which is not for the case of the independent-particle model. 20 refs.; 4 figs
Non-perturbative effective interactions in the standard model
Arbuzov, Boris A
2014-01-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...
Effective interactions from q-deformed inspired transformations
International Nuclear Information System (INIS)
Timoteo, V.S.; Lima, C.L.
2006-01-01
From the mass term for the transformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting transformed fields into quarks interacting via NJL contact terms are discussed
Effective interactions from q-deformed quark fields
International Nuclear Information System (INIS)
Timoteo, V. S.; Lima, C. L.
2007-01-01
From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed
Effects of interactions between humans and domesticated animals
Bokkers, E.A.M.
2006-01-01
Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace,
Maris polarization in neutron-rich nuclei
Shubhchintak; Bertulani, C. A.; Aumann, T.
2018-03-01
We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.
Reputation Effects in Public and Private Interactions
Ohtsuki, Hisashi; Iwasa, Yoh; Nowak, Martin A.
2015-01-01
We study the evolution of cooperation in a model of indirect reciprocity where people interact in public and private situations. Public interactions have a high chance to be observed by others and always affect reputation. Private interactions have a lower chance to be observed and only occasionally affect reputation. We explore all second order social norms and study conditions for evolutionary stability of action rules. We observe the competition between “honest” and “hypocritical” strategies. The former cooperate both in public and in private. The later cooperate in public, where many others are watching, but try to get away with defection in private situations. The hypocritical idea is that in private situations it does not pay-off to cooperate, because there is a good chance that nobody will notice it. We find simple and intuitive conditions for the evolution of honest strategies. PMID:26606239
Interatomic interactions in the effective medium theory
International Nuclear Information System (INIS)
Jacobsen, K.W.; Puska, M.J.
1986-08-01
An expression is derived for the total energy of a system of interacting atoms based on an ansatz for the total electron density of the system as a superposition of atom densities taken from calculations for the atoms embedded in a homogeneous electron gas. This leads to an expression for the interaction energy in terms of the embedding energy of the atoms in a homogeneous electron gas, and corrections accounting for instance for the d-d hybridization in the transition metals. The density of the homogeneous electron gas is chosen as the average of the density from the surrounding atoms. Due to the variational property of the total energy functional the errors in the interaction energy is second order in the deviation of the ansatz density from the true ground state values. The applicability of the approach is illustrated by calculations of the chohesive properties of some simple metals and all the 3d transition metals. The interaction energy can be expressed in a form simple enough to allow calculations for low symmetry systems and will be very well suited for simulations of time dependent and finite temperature problems. Preliminary results for the phonon dispersion relations and the surface energies and relaxations for Al are used to illustrate the versatility of the approach. The division of the total energy into a density dependent part, an electrostatic 'pair potential' part, and a hybridization part provides a very simple way of understanding a number of these phenomena. (orig.)
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of
Charge symmetry breaking nuclear forces and the properties of nuclear matter
International Nuclear Information System (INIS)
Haensel, P.
1977-01-01
The charge symmetry breaking (CSB) component of the nuclear forces yields the charge asymmetric term Esub(a)(N-Z)/A in the nuclear binding energy of nuclear matter. Calculation performed with several models of the CSB nuclear forces, and accounting for the strong short-range two-body correlations, gives Esub(a) approximately -0.2 MeV at the normal nuclear density. The charge asymmetry of the effective nucleon-nucleon interaction is determined primarily by the CSB nuclear forces at the neutron excess, observed in finite nuclei. The exclusion principle and dispersion (self-consistency) effects of the nuclear medium decrease this charge asymmetry. (author)
International Nuclear Information System (INIS)
Vlahovic, B.; Soldi, A.
1993-01-01
The differences between the n-d and the p-d analyzing powers lend themselves to investigate Coulomb and charge symmetry breaking effects in the nucleon-nucleon interaction. We examine these differences over a range of angles, bracketing the Λ y maximum around 120 degrees, for energies from 3 to 14 MeV. We conclude that a correction of the data to account for the slowing down of tile proton under the Coulomb affect does not account for these differences and this suggests that charge symmetry breaking effect are possibly responsible
Medium modifications of nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Horikawa, T. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp
2005-11-28
We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.
Manifestation of short-range correlations in deep inelastic scattering in deuterons and nuclei
International Nuclear Information System (INIS)
Strikman, M.I.; Frankfurt, L.L.
1981-01-01
It is shown that deep inelastic processes of the type l+A→l'+X and l+A→l'+p+X are an effective tool to study phenomena associated with the nucleon-nucleon interaction core, in particular the problem of cumulative particles. We have calculated the effects of scaling violation in the e+D→e+X process in accordance with the data of Schutz et al. It is shown that recent data on the reaction ν (nu-bar)+A→μ+p+X agree with the predictions of the few-nucleon correlation model
International Nuclear Information System (INIS)
Safronov, A.N.
1983-01-01
A system of nonsingular integral equations is formulated for calculation of the partial-wave amplitudes of hadron-hadron scattering in the region of low and intermediate energies with allowance for the meson and quark-gluon degrees of freedom. The quark-gluon degrees of freedom are taken into account in the framework of the model of composite quark bags, and the meson degrees of freedom by the methods of relativistic quantum field theory. It is shown that inclusion of the quark-gluon degrees of freedom leads to suppression of meson exchange effects, for the most part exchanges of heavy mesons (rho,ω). The method is applied to the calculation of the 3 S 1 , 1 S 0 , 3 P 0 , 3 P 1 , and 1 P 1 phase shifts of nucleon-nucleon scattering in the range of incident-nucleon energies T = 0--1050 MeV, as well as the S-wave scattering lengths and effective ranges
Effects of interactions between humans and domesticated animals
Bokkers, E.A.M.
2006-01-01
Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace, health-care and residential context has been reviewed to develop ideas about the effects farm animals can have on humans. Although there are quite a few studies, the variety of methods, the complexity of t...
Effects of instanton induced interactions on pentaquarks
International Nuclear Information System (INIS)
Shinozaki, Tetsuya; Oka, Makoto; Takeuchi, Sachiko
2005-01-01
Roles of instanton induced interactions (III) in the masses of pentaquark baryons, Θ + (J=1/2 and 3/2) and Ξ -- , and a dibaryon, H, are discussed using the MIT bag model. It is shown that the two-body terms in III give a strong attraction mainly due to the increase of the number of flavor antisymmetric quark pairs in multiquark systems. In contrast, the three-body u-d-s interaction is repulsive. It is found that III lowers the mass of negative-parity Θ + as much as 100 MeV from the mass predicted by the bag model without III. We also consider possible quark model configurations for positive-parity Θ + under III
Spin effects in the weak interaction
International Nuclear Information System (INIS)
Freedman, S.J.; Chicago Univ., IL; Chicago Univ., IL
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon
Effect of coulomb interaction on Anderson localization
International Nuclear Information System (INIS)
Waintal, X.
1999-01-01
We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part, one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)
40 CFR 610.23 - Operator interaction effects.
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Operator interaction effects. 610.23 Section 610.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Analysis § 610.23 Operator interaction effects. The device will also be evaluated with respect to: (a) The...
Explaining Interaction Effects within and across Levels of Analysis
DEFF Research Database (Denmark)
Andersson, Ulf; Cuervo-Cazurra, Alvaro; Nielsen, Bo Bernhard
2014-01-01
Many manuscripts submitted to the Journal of International Business Studies propose an interaction effect in their models in an effort to explain the complexity and contingency of relationships across borders. In this article, we provide guidance on how best to explain the interaction effects...
Walther, Joseph B.
1994-01-01
Assesses the related effects of anticipated future interaction and different communication media (computer-mediated versus face-to-face communication) on the communication of relational intimacy and composure. Shows that the assignment of long-term versus short-term partnerships has a larger impact on anticipated future interaction reported by…
Evidence for multiple stressor interactions and effects on coral reefs.
Ban, Stephen S; Graham, Nicholas A J; Connolly, Sean R
2014-03-01
Concern is growing about the potential effects of interacting multiple stressors, especially as the global climate changes. We provide a comprehensive review of multiple stressor interactions in coral reef ecosystems, which are widely considered to be one of the most sensitive ecosystems to global change. First, we synthesized coral reef studies that examined interactions of two or more stressors, highlighting stressor interactions (where one stressor directly influences another) and potentially synergistic effects on response variables (where two stressors interact to produce an effect that is greater than purely additive). For stressor-stressor interactions, we found 176 studies that examined at least 2 of the 13 stressors of interest. Applying network analysis to analyze relationships between stressors, we found that pathogens were exacerbated by more costressors than any other stressor, with ca. 78% of studies reporting an enhancing effect by another stressor. Sedimentation, storms, and water temperature directly affected the largest number of other stressors. Pathogens, nutrients, and crown-of-thorns starfish were the most-influenced stressors. We found 187 studies that examined the effects of two or more stressors on a third dependent variable. The interaction of irradiance and temperature on corals has been the subject of more research (62 studies, 33% of the total) than any other combination of stressors, with many studies reporting a synergistic effect on coral symbiont photosynthetic performance (n = 19). Second, we performed a quantitative meta-analysis of existing literature on this most-studied interaction (irradiance and temperature). We found that the mean effect size of combined treatments was statistically indistinguishable from a purely additive interaction, although it should be noted that the sample size was relatively small (n = 26). Overall, although in aggregate a large body of literature examines stressor effects on coral reefs and coral
Screening for interaction effects in gene expression data.
Directory of Open Access Journals (Sweden)
Peter J Castaldi
Full Text Available Expression quantitative trait (eQTL studies are a powerful tool for identifying genetic variants that affect levels of messenger RNA. Since gene expression is controlled by a complex network of gene-regulating factors, one way to identify these factors is to search for interaction effects between genetic variants and mRNA levels of transcription factors (TFs and their respective target genes. However, identification of interaction effects in gene expression data pose a variety of methodological challenges, and it has become clear that such analyses should be conducted and interpreted with caution. Investigating the validity and interpretability of several interaction tests when screening for eQTL SNPs whose effect on the target gene expression is modified by the expression level of a transcription factor, we characterized two important methodological issues. First, we stress the scale-dependency of interaction effects and highlight that commonly applied transformation of gene expression data can induce or remove interactions, making interpretation of results more challenging. We then demonstrate that, in the setting of moderate to strong interaction effects on the order of what may be reasonably expected for eQTL studies, standard interaction screening can be biased due to heteroscedasticity induced by true interactions. Using simulation and real data analysis, we outline a set of reasonable minimum conditions and sample size requirements for reliable detection of variant-by-environment and variant-by-TF interactions using the heteroscedasticity consistent covariance-based approach.
Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes
Guttormsen, M S; Reiter, P; Larsen, A; Korten, W; Clement, E; Siem, S; Renstrom, T; Buerger, A; Jenkins, D G
We propose to investigate nuclear shapes and shape coexistence in neutron-deficient rare earth nuclei below the N=82 shell closure at the ISOLDE facility by employing Coulomb excitation of Nd, Sm, Gd, and Dy beams from the REX accelerator and the Miniball experiment. Nuclear shapes are expected to change rapidly in this region of the nuclear chart. The measurement of electric quadrupole moments of excited states and the transition rates between them serves as a stringent test of theoretical models and effective nucleon-nucleon interactions.
Microscopic description of isobaric-analog-state transitions induced by 25-, 35-, and 45-MeV protons
International Nuclear Information System (INIS)
Doering, R.R.; Patterson, D.M.; Galonsky, A.
1975-01-01
Differential cross sections have been measured for (p, n) reactions to the isobaric analogs of the targets 48 Ca, 90 Zr, 120 Sn, and 208 Pb at proton bombarding energies of 25, 35, and 45 MeV. The isospin-flip strength of a phenomenological nucleon-nucleon force has been determined with microscopic distorted-wave calculations including the ''knockon'' exchange amplitude. A realistic G-matrix effective interaction also provides a reasonable account of the observed cross sections, particularly at the higher proton energies
Taking into account for the Pauli principle in particle-vibrator model
International Nuclear Information System (INIS)
Knyaz'kov, O.M.
1985-01-01
To construct Hamiltonian of the particle interaction and phonons a semimicroscopic approach developed by the author earlier is used. At that the Pauli principle is taken account of in local formalism of density matrix. Analytical expressions permitting in a closed form to solve a task of taking account of the Pauli principle in the particle-vibrator model have been derived. Unlike a phenomenological approach form factors of inelastic transitions are determined with parameters of effective nucleon-nucleon forces, central and transition densities and contain no free parameters
Symmetric and asymmetric nuclear matter in the Thomas-Fermi model at finite temperatures
International Nuclear Information System (INIS)
Strobel, K.; Weber, F.; Weigel, M.K.
1999-01-01
The properties of warm symmetric and asymmetric nuclear matter are investigated in the frame of the Thomas-Fermi approximation using a recent modern parameterization of the effective nucleon-nucleon interaction of Myers and Swiatecki. Special attention is paid to the liquid-gas phase transition, which is of special interest in modern nuclear physics. We have determined the critical temperature, critical density and the so-called flash temperature. Furthermore, the equation of state for cold neutron star matter is calculated. (orig.)
A separable approximation of the NN-Paris-potential in the framework of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Schwarz, K.; Haidenbauer, J.; Froehlich, J.
1985-09-01
The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-nucleon partial wave states. We employ the Ernst Shakin-Thaler method in the framework of minimal relativity (Blankenbeckler-Sugar equation) to generate a separable representation of the meson-theoretical Paris potential. These separable interactions, which closely approximate the on-shell- and half-off-shell behaviour of the Paris potential, are then cast into a covariant form for application in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-shell and off-shell properties of the NN-system. (Author)
Short-range correlations with pseudopotentials
International Nuclear Information System (INIS)
Osman, A.
1976-01-01
Short-range correlations in nuclei are considered on an unitary-model operator approach. Short-range pseudopotentials have been added to achieve healing in the correlated wave functions. With the introduction of the pseudopotentials, correlated basis wave functions are constructed. The matrix element for effective interaction in nuclei is developed. The required pseudopotentials have been calculated for the Hamda-Johnston, Yale and Reid potentials and for the nuclear nucleon-nucleon potential A calculated by us according to meson exchange between nucleons. (Osman, A.)
Realistic shell-model calculations for Sn isotopes
International Nuclear Information System (INIS)
Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.
1997-01-01
We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)
Crustal fraction of moment of inertia in pulsars
International Nuclear Information System (INIS)
Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.
2015-01-01
In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar
Model dependence of energy-weighted sum rules
International Nuclear Information System (INIS)
Kirson, M.W.
1977-01-01
The contribution of the nucleon-nucleon interaction to energy-weighted sum rules for electromagnetic multipole transitions is investigated. It is found that only isoscalar electric transitions might have model-independent energy-weighted sum rules. For these transitions, explicit momentum and angular momentum dependence of the nuclear force give rise to corrections to the sum rule which are found to be negligibly small, thus confirming the model independence of these specific sum rules. These conclusions are unaffected by correlation effects. (author)
Origin of the anomalous long lifetime of ¹⁴C.
Maris, P; Vary, J P; Navrátil, P; Ormand, W E; Nam, H; Dean, D J
2011-05-20
We report the microscopic origins of the anomalously suppressed beta decay of ¹⁴C to ¹⁴N using the ab initio no-core shell model with the Hamiltonian from the chiral effective field theory including three-nucleon force terms. The three-nucleon force induces unexpectedly large cancellations within the p shell between contributions to beta decay, which reduce the traditionally large contributions from the nucleon-nucleon interactions by an order of magnitude, leading to the long lifetime of ¹⁴C.
Effective Coulomb interaction in multiorbital system
International Nuclear Information System (INIS)
Hase, Izumi; Yanagisawa, Takashi
2013-01-01
Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.
Interactive Intranet Portal for effective Management in Tertiary Institution
Idogho O. Philipa; Akpado Kenneth; James Agajo
2011-01-01
Interactive Intranet Portal for effective management in Tertiary Institution is an enhanced and interactive method of managing and processing key issues in Tertiary Institution, Problems of result processing, tuition fee payment, library resources management are analyzed in this work. An interface was generated to handle this problem; the software is an interactive one. Several modules are involved in the paper, like: LIBRARY CONSOLE, ADMIN, STAFF, COURSE REGISTRATION, CHECKING OF RESULTS and...
Stress Effects on Multiple Memory System Interactions
Ness, Deborah; Calabrese, Pasquale
2016-01-01
Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory syst...
Dynamic interaction effects in cooling tower groups
International Nuclear Information System (INIS)
Riera, J.D.
1984-01-01
A theoretical and experimental determination of the dynamic response of reinforced concrete cooling towers, taking into consideration group effects, are described. The results for an individual tower are thoroughly examined. A complete analysis is then performed for the critical wind orientations, for each tower in a six towers group. It's shown that ignoring group effects in the analysis may lead to a significant underestimation of the structural response. (E.G.) [pt
Edge-effect interactions in fragmented and patchy landscapes.
Porensky, Lauren M; Young, Truman P
2013-06-01
Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.
Effects of CO2 and temperature on tritrophic interactions.
Directory of Open Access Journals (Sweden)
Lee A Dyer
Full Text Available There has been a significant increase in studies of how global change parameters affect interacting species or entire communities, yet the combined or interactive effects of increased atmospheric CO2 and associated increases in global mean temperatures on chemically mediated trophic interactions are mostly unknown. Thus, predictions of climate-induced changes on plant-insect interactions are still based primarily on studies of individual species, individual global change parameters, pairwise interactions, or parameters that summarize communities. A clear understanding of community response to global change will only emerge from studies that examine effects of multiple variables on biotic interactions. We examined the effects of increased CO2 and temperature on simple laboratory communities of interacting alfalfa, chemical defense, armyworm caterpillars, and parasitoid wasps. Higher temperatures and CO2 caused decreased plant quality, decreased caterpillar development times, developmental asynchrony between caterpillars and wasps, and complete wasp mortality. The effects measured here, along with other effects of global change on natural enemies suggest that biological control and other top-down effects of insect predators will decline over the coming decades.
Holographic interaction effects on transport in Dirac semimetals
Jacobs, V.P.J.; Vandoren, S.; Stoof, H.T.C.
2014-01-01
Strongly interacting Dirac semimetals are investigated using a holographic model especially geared to compute the single-particle correlation function for this case, including both interaction effects and non-zero temperature. We calculate the (homogeneous) optical conductivity at zero chemical
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C.; Ferrari, A.F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [Universidade Federal de Itajuba, IFQ, Itajuba, MG (Brazil)
2016-11-15
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in the presence of Lorentz symmetry breaking. We focus on a higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Indeed, we show that the Lorentz violating background considered by us leads to several phenomena that have no counterpart in Maxwell theory, such as nontrivial torques on isolated electric dipoles, as well as nontrivial forces and torques between line currents and point like charges, as well as among Dirac strings and other electromagnetic sources. (orig.)
NN interaction from bag-model quark interchange
Energy Technology Data Exchange (ETDEWEB)
Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.
1982-03-01
A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV.
NN interaction from bag-model quark interchange
International Nuclear Information System (INIS)
Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.
1982-01-01
A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV
Density and starting-energy dependent effective interaction
International Nuclear Information System (INIS)
Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo
1979-01-01
A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)
Effects of dipole—dipole interaction on entanglement transfer
International Nuclear Information System (INIS)
Guo Hong; Xiong Hengna
2008-01-01
A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered. The effects of dipole—dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled
Non-perturbative effective interactions in the standard model
Energy Technology Data Exchange (ETDEWEB)
Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2014-07-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.
Comparing interactive videodisc training effectiveness to traditional training methods
International Nuclear Information System (INIS)
Kenworthy, N.W.
1987-01-01
Videodisc skills training programs developed by Industrial Training Corporation are being used and evaluated by major industrial facilities. In one such study, interactive videodisc training programs were compared to videotape and instructor-based training to determine the effectiveness of videodisc in terms of performance, training time and trainee attitudes. Results showed that when initial training was done using the interactive videodisc system, trainee performance was superior to the performance of trainees using videotape, and approximately equal to the performance of those trained by an instructor. When each method was used in follow-up training, interactive videodisc was definitely the most effective. Results also indicate that training time can be reduced using interactive videodisc. Attitudes of both trainees and instructors toward the interactive videodisc training were positive
Effects of Website Interactivity on Online Retail Shopping Behavior
Islam, Hafizul
Motivations to engage in retail online shopping can include both utilitarian and hedonic shopping dimensions. To cater to these consumers, online retailers can create a cognitively and esthetically rich shopping environment, through sophisticated levels of interactive web utilities and features, offering not only utilitarian benefits and attributes but also providing hedonic benefits of enjoyment. Since the effect of interactive websites has proven to stimulate online consumer’s perceptions, this study presumes that websites with multimedia rich interactive utilities and features can influence online consumers’ shopping motivations and entice them to modify or even transform their original shopping predispositions by providing them with attractive and enhanced interactive features and controls, thus generating a positive attitude towards products and services offered by the retailer. This study seeks to explore the effects of Web interactivity on online consumer behavior through an attitudinal model of technology acceptance.
Effect of Interband Interaction on Isotope Effect Coefficient of Mg B2 Superconductors
International Nuclear Information System (INIS)
Udomsamuthirun, P.; Kumvongsa, C.; Burakorn, A.; Changkanarth, P.; Maneeratanakul, S.
2005-10-01
In this research, the exact formula of Tc s equation and the isotope effect coefficient of two-band s-wave superconductors in weak-coupling limit are derived by considering the influence of interband interaction .In each band ,our model consist of two paring interactions : the electron-phonon interaction and non-electron-phonon interaction . According to the numerical calculation, we find that the isotope effect coefficient of MgB 2 , α=3 . 0 with T c 40 K can be found in the weak coupling regime and interband interaction of electron-phonon show more effect on isotope effect coefficient than interband interaction of non-phonon-electron
Aspects of statistical spectroscopy relevant to effective-interaction theory
International Nuclear Information System (INIS)
French, J.B.
1975-01-01
The three aspects of statistical spectroscopy discussed in this paper are the information content of complex spectra: procedures for spectroscopy in huge model spaces, useful in effective-interaction theory; and practical ways of identifying and calculating measurable parameters of the effective Hamiltonian and other operators, and of comparing different effective Hamiltonians. (4 figures) (U.S.)
International Nuclear Information System (INIS)
Northcliffe, L.C.
1977-01-01
Studies of the differential cross section for charge-exchange scattering, meson production in nucleon--nucleon collisions, and the momentum spectra and angular distributions of charged particles produced in bombardment of various targets by neutrons are summarized. A list of publications is given
Disorder and Interaction Effects in Quantum Wires
International Nuclear Information System (INIS)
Smith, L W; Ritchie, D A; Farrer, I; Griffiths, J P; Jones, G A C; Thomas, K J; Pepper, M
2012-01-01
We present conductance measurements of quasi-one-dimensional quantum wires affected by random disorder in a GaAs/AlGaAs heterostructure. In addition to quantised conductance plateaux, we observe structure superimposed on the conductance characteristics when the channel is wide and the density is low. Magnetic field and temperature are varied to characterize the conductance features which depend on the lateral position of the 1D channel formed in a split-gate device. Our results suggest that there is enhanced backscattering in the wide channel limit, which gives rise to quantum interference effects. When the wires are free of disorder and wide, the confinement is weak so that the mutual repulsion of the electrons forces a single row to split into two. The relationship of this topological change to the disorder in the system will be discussed.
Pion inelastic scattering and the pion-nucleus effective interaction
International Nuclear Information System (INIS)
Carr, J.A.
1983-01-01
This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion
Hadronic interactions from effective chiral Lagrangians of quarks and gluons
International Nuclear Information System (INIS)
Krein, G.
1996-06-01
We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs
Interaction mechanisms and biological effects of static magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.
Biological interactions and human health effects of static magnetic fields
International Nuclear Information System (INIS)
Tenforde, T.S.
1994-09-01
Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided
Hull-Propeller Interaction and Its Effect on Propeller Cavitation
DEFF Research Database (Denmark)
Regener, Pelle Bo
In order to predict the required propulsion power for a ship reliably and accurately, it is not sufﬁcient to only evaluate the resistance of the hull and the propeller performance in open water alone. Interaction effects between hull and propeller can even be a decisive factor in ship powering...... prediction and design optimization. The hull-propeller interaction coefﬁcients of effective wake fraction, thrust deduction factor, and relative rotative efﬁciency are traditionally determined by model tests. Self-propulsion model tests consistently show an increase in effective wake fractions when using...... velocities. This offers an opportunity for additional insight into hull-propeller interaction and the propeller’s actual operating condition behind the ship, as the actual (effective) inﬂow is computed. Self-propulsion simulations at model and full scale were carried out for a bulk carrier, once...
Nuclear Effects in Neutrino Interactions at Low Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Miltenberger, Ethan Ryan [Univ. of Minnesota, Minneapolis, MN (United States)
2015-05-01
This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.
New results on strong-interaction effects in antiprotonic hydrogen
Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M
1999-01-01
Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).
New results on strong-interaction effects in antiprotonic hydrogen
International Nuclear Information System (INIS)
Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.
1999-01-01
Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction
Effective interactions for self-energy. I. Theory
International Nuclear Information System (INIS)
Ng, T.K.; Singwi, K.S.
1986-01-01
A systematic way of deriving effective interactions for self-energy calculations in Fermi-liquid systems is presented. The self-energy expression contains effects of density and spin fluctuations and also multiple scattering between particles. Results for arbitrarily polarized one-component Fermi-liquid systems and unpolarized two-component systems are explicitly given
Side Effects and Interactions of the Xanthine Oxidase Inhibitor Febuxostat.
Jordan, Andreas; Gresser, Ursula
2018-05-25
The paper addresses the safety of febuxostat and summarizes reports on side effects and interactions of febuxostat published by the cut-off date (last day of literature search) of 20 March 2018. Publications on side effects and the interactions of febuxostat were considered. Information concerning the occurrence of side effects and interactions in association with the treatment with febuxostat was collected and summarized in the review. The incidence of severe side effects was much less frequent than mild side effects (1.2⁻3.8% to 20.1⁻38.7%). The rate and range of febuxostat side effects are low at doses of up to 120 mg and only increase with a daily dose of over 120 mg. The publications reveal no age-dependent increase in side effects for febuxostat. In patients with impaired renal function, no increase in adverse events is described with a dose of up to 120 mg of febuxostat per day. Patients with impaired liver function had no elevated risk for severe side effects. A known allopurinol intolerance increases the risk of skin reactions during treatment with febuxostat by a factor of 3.6. No correlation between treatment with febuxostat and agranulocytosis has been confirmed. Possible interactions with very few medications (principally azathioprine) are known for febuxostat. Febuxostat is well tolerated and a modern and safe alternative to allopurinol therapy.
Exotic light nuclei and nuclei in the lead region
International Nuclear Information System (INIS)
Poppelier, N.A.F.M.
1989-01-01
Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11 Li is discussed. Results of shell-model calculations of 20i Pb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208 Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes
Microscopic study of the α-16O interaction on the basis of the realistic effective interaction
International Nuclear Information System (INIS)
Yamaguchi, Shinichiro; Horiuchi, Hisashi; Yabana, Kazuhiro.
1989-01-01
We calculate the α- 16 O complex potential by the totally microscopic method where we use the many-body theory taking into account the Pauli principle explicitly and the realistic effective interactions. The comparison of the theoretical inter-nucleus potential with the phenomenological 'unique' optical potential is performed. (author)
Evaluation of the three-nucleon analyzing power puzzle
International Nuclear Information System (INIS)
Tornow, W.; Witala, H.
1998-01-01
The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the 3 P j nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the 3 P j nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the 3 P j nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the 3 P j nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.)
Evaluation of the three-nucleon analyzing power puzzle
Energy Technology Data Exchange (ETDEWEB)
Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics]|[Triangle Univ. Nuclear Lab., Durham, NC (United States); Witala, H. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki
1998-07-20
The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the {sup 3}P{sub j} nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the {sup 3}P{sub j} nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the {sup 3}P{sub j} nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the {sup 3}P{sub j} nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.) 18 refs.
Climate-chemical interactions and greenhouse effects of trace gases
Shi, Guang-Yu; Fan, Xiao-Biao
1994-01-01
A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.
Effective field theory of interactions on the lattice
DEFF Research Database (Denmark)
Valiente, Manuel; Zinner, Nikolaj T.
2015-01-01
We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...
Effective field theory of thermal Casimir interactions between anisotropic particles.
Haussman, Robert C; Deserno, Markus
2014-06-01
We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.
Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Guenther, Anneke
2011-02-02
The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to
Progress report and renewal proposal
International Nuclear Information System (INIS)
Signell, P.
1982-01-01
We have been working mainly on five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction with the new dramatically altered ππ s-wave interaction and using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N→ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly, and determining which phrases are given by theory at which energies; (4) the introduction of our K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated and verified permanent nucleon-nucleon data bank in the 0-1200 range that can be used by all nucleon-nucleon researchers (or anyone else) via Telenet dial-in and by means of a published compendium. Progress is reported
Pade approximants and the calculation of effective interactions
International Nuclear Information System (INIS)
Schucan, T.H.
1975-01-01
It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures
Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles
DEFF Research Database (Denmark)
Malekkhaiat Häffner, S; Nyström, L; Nordström, R
2017-01-01
Membrane interactions are critical for the successful use of inorganic nanoparticles as antimicrobial agents and as carriers of, or co-actives with, antimicrobial peptides (AMPs). In order to contribute to an increased understanding of these, we here investigate effects of particle size (42-208 nm...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...
Effect of modes interaction on the resistive wall mode stability
International Nuclear Information System (INIS)
Chen Longxi; Wu Bin
2013-01-01
Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)
Effect of orbital symmetry on the anisotropic superexchange interaction
International Nuclear Information System (INIS)
Kim, Beom Hyun; Min, B I
2011-01-01
Employing the microscopic superexchange model incorporating the effect of spin-orbit interaction, we have investigated the Dzyaloshinsky-Moriya (DM) interaction in perovskite transition-metal (TM) oxides and explored the interplay between the DM interaction and the TM-3d orbital symmetry. For d 3 and d 5 systems with isotropic orbital symmetry, the DM vectors are well described by a simple symmetry analysis considering only the bond geometry. In contrast, the DM interaction for d 4 systems with anisotropic orbital symmetry shows slightly different behavior, which does not obey simple symmetry analysis. The direction as well as the strength of the DM vector varies depending on the occupied orbital shape. We have understood this behavior based on the orbital symmetry induced by local crystal field variation.
Effects of non-standard interactions in the MINOS experiment
International Nuclear Information System (INIS)
Blennow, Mattias; Ohlsson, Tommy; Skrotzki, Julian
2008-01-01
We investigate the effects of non-standard interactions on the determination of the neutrino oscillation parameters Δm 31 2 , θ 23 , and θ 13 in the MINOS experiment. We show that adding non-standard interactions to the analysis lead to an extension of the allowed parameter space to larger values of Δm 31 2 and smaller θ 23 , and basically removes all predictability for θ 13 . In addition, we discuss the sensitivities to the non-standard interaction parameters of the MINOS experiment alone. In particular, we examine the degeneracy between θ 13 and the non-standard interaction parameter ε eτ . We find that this degeneracy is responsible for the removal of the θ 13 predictability and that the possible bound on |ε eτ | is competitive with direct bounds only if a more stringent external bound on θ 13 is applied
Blayney, Paul; Kalyuga, Slava; Sweller, John
2010-01-01
This study investigated interactions between the isolated-interactive elements effect and levels of learner expertise with first year undergraduate university accounting students. The isolated-interactive elements effect occurs when learning is facilitated by initially presenting elements of information sequentially in an isolated form rather than…
Interaction Induced Quantum Valley Hall Effect in Graphene
Directory of Open Access Journals (Sweden)
E. C. Marino
2015-03-01
Full Text Available We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T→0 conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall effect below an activation temperature of the order of 2 K. The transverse (Hall valley conductivity is evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in association with the quantum valley Hall effect.
Effects of an electric field on interaction of aromatic systems.
Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S
2016-04-30
The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.
Effects of Interactivity between Audience and Urban Advertisement
Directory of Open Access Journals (Sweden)
Mitra Manavirad
2017-10-01
Full Text Available Nowadays, advertisement plays an important and impressive role in our lives and we are witnessing different works in this field. The emergence of new technologies in this field has led to the arrival of a new style of advertising with different interactivity and administrative functions. Interactive advertising is considered as one of the most up to date urban advertising. With regard to the arrival of this new style of advertising and using them in different countries, this research investigates the effectiveness of an advertisement’s interaction with the audiences in urban advertising through a descriptive/analytical approach as well as field study with regard to the type of advertising usage including commercial, promotional, educational, social etc. It is assumed that an interactive advertising confronts the audience with many challenges and makes him from a static and watching audience to an actor and explorer audience. In such advertisements, the audience enters a path with interactivity where the advertisement guides him and audience responses positively to this action; after a simple activity and in some cases, he interacts and communicates with the advertisement just by passing by it. In interactivity advertisements in urban spaces, the artist pays much attention to audience participation for challenges or performing specific activity that will lead to a result. The use of interactive advertising in various forms such as billboards, stands, and advertisements at bus stops and so on has increased in recent years, developed countries, and countries that are more familiar to technologies. These works are considered a new step in the field of urban advertising. This research selects samples of using such creative advertisements, especially in commercial areas in different countries as well as Iran. It considers the producing method, ideation, and effectiveness of each in a specific period as well as their installation and commissioning
Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34
International Nuclear Information System (INIS)
Seidlitz, Michael
2012-01-01
-state configuration. Excited states in 56 Cr have been populated after 48 Ca( 11 B,p2n) reactions at a beam energy of 32 MeV, provided by the Cologne FN tandem accelerator. The Cologne coincidence plunger device surrounded by a γ-ray detector array of one EUROBALL cluster detector and five Ge detectors was employed to determine lifetimes with the recoil distance Doppler-shift method. γγ-coincidence data were analyzed using the differential decay curve method and precise lifetimes for the first 2 + and 4 + states were extracted. The corresponding B(E2,2 + →0 + ) value quantifies with a high accuracy the puzzling discrepancy between experimental B(E2) values in N=32 isotones and theoretical results from large-scale shell-model calculations employing modern effective nucleon-nucleon interactions.
Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.
Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S
2015-10-14
The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.
The Effects of Galaxy Interactions on Star Formation
Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.
2018-01-01
Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Effect of interband interaction on isotope effect exponent of MgB2 ...
Indian Academy of Sciences (India)
The interband interaction of the electron–phonon interaction shows more effect on the isotope exponent than on the non-phonon interaction. Acknowledgement. The authors would like to thank Thailand Research Fund for financial support and the University of the Thai Chamber of Commerce for partial financial support and.
The Interactive Effect of Outdoor Activities and School Location on ...
African Journals Online (AJOL)
The Interactive Effect of Outdoor Activities and School Location on Senior Secondary Students' Environmental Problem Solving Skills in Biology. ... Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.
Final state interaction effect on correlations in narrow particles pairs
International Nuclear Information System (INIS)
Lednicky, R.; Lyuboshitz, V.L.
1990-01-01
In this paper the dependence of the two-particle correlation function on the space-time dimensions of the particle production region is discussed. The basic formulae, taking into account he effects of quantum statistics and final state interaction, and the conditions of their applicability are given
Main and interaction effects of extrusion temperature and usage ...
African Journals Online (AJOL)
The extruded full fat soybean (EFFSB) may be used in diet to satisfy the energy and protein requirements of fast growing broiler chickens. The main and interaction effects of three extrusion temperatures and two dietary levels of FFSB were studied on the performance, physiological enzymes and blood metabolites of broiler ...
Effect of electrostatic interactions on the formation of proton transfer ...
Indian Academy of Sciences (India)
WINTEC
We report here a theoretical study on the effect of electrostatic interactions on the formation .... has also been noted in the case of the mutant Lys- ... we outline the theoretical method used. ... The starting point of our analysis is a high-reso-.
Interactive Distance Learning Effectively Provides Winning Sports Nutrition Workshops.
Ricketts, Jennifer; Hoelscher-Day, Sharon; Begeman, Gale; Houtkooper, Linda
2001-01-01
Interactive distance-education (n=226) and face-to-face (n=129) continuing education workshops for health care and education professionals on sports nutrition were evaluated immediately and after 6 months. The well-designed distance-education format was as effective and acceptable as face to face and increased sports nutrition knowledge. (SK)
Main and interaction effects of extrusion temperature and usage ...
African Journals Online (AJOL)
ali
2012-10-30
Oct 30, 2012 ... The main and interaction effects of three extrusion ... oil extraction and allow the use of a homegrown protein supplement in the .... Statistical analysis. The main and .... acceptable level of antitrypsin factor is 4 mg/g; this level.
Effects of interacting variables on the release properties of ...
African Journals Online (AJOL)
Purpose: The individual and interaction effects of formulation variables on the release of suppositories were investigated using a 23 factorial experimental design. The variables studied were nature of base (B), type of drug (D), and presence of surfactant (S). Method: Suppositories were formulated with theobroma oil and ...
Effective interaction: From nuclear reactions to neutron stars
Indian Academy of Sciences (India)
pact stars. The nuclear EoS for β-equilibrated neutron star (NS) matter obtained using density-dependent effective nucleon–nucleon interaction satisfies the constraints from the observed flow data from heavy-ion collisions. The energy density of quark matter is lower than that of the nuclear EoS at higher densities implying ...
Independent and interactive effects of HIV infection, clinical stage ...
African Journals Online (AJOL)
Background. There is still limited to no evidence on the independent and interactive effects of HIV infection, disease stage, baseline disease severity and other important comorbidities on mortality risk among young children treated for severe acute malnutrition (SAM) in South Africa (SA, using the World Health Organization ...
Effective buyer-supplier interaction patterns in ongoing service exchange
Valk, van der W.; Wynstra, J.Y.F.; Axelsson, B.
2009-01-01
Purpose – The purpose of this paper is to develop theory on effective buyer-seller interaction for different types of business services. A classification of business services which identifies four service types based on how they are used by the buying company is used. Design/methodology/approach –
Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...
African Journals Online (AJOL)
Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...
Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.
Patsahan, O
2013-08-01
The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.
Interaction effects in liquids with low electron densities
International Nuclear Information System (INIS)
Warren, W.W. Jr.
1987-01-01
The author discusses two complementary classes of systems in which strong electron-electron or electron-ion interactions appear at low electron densities. The first are the expanded liquid alkali metals (cesium) in which electron correlation effects have a profound effect on the magnetic properties on the metallic side of the metal-nonmetal transition. The second group are molten alkali halides containing low densities of localized electrons introduced, say, by dissolution of small amounts of excess metal. (Auth.)
Depth of Field Effects for Interactive Direct Volume Rendering
Schott, Mathias; Pascal Grosset, A.V.; Martin, Tobias; Pegoraro, Vincent; Smith, Sean T.; Hansen, Charles D.
2011-01-01
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).
Depth of Field Effects for Interactive Direct Volume Rendering
Schott, Mathias
2011-06-01
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).
Model-Mapped RPA for Determining the Effective Coulomb Interaction
Sakakibara, Hirofumi; Jang, Seung Woo; Kino, Hiori; Han, Myung Joon; Kuroki, Kazuhiko; Kotani, Takao
2017-04-01
We present a new method to obtain a model Hamiltonian from first-principles calculations. The effective interaction contained in the model is determined on the basis of random phase approximation (RPA). In contrast to previous methods such as projected RPA and constrained RPA (cRPA), the new method named "model-mapped RPA" takes into account the long-range part of the polarization effect to determine the effective interaction in the model. After discussing the problems of cRPA, we present the formulation of the model-mapped RPA, together with a numerical test for the single-band Hubbard model of HgBa2CuO4.
Effective pion--nucleon interaction in nuclear matter
International Nuclear Information System (INIS)
Celenza, L.S.; Liu, L.C.; Nutt, W.; Shakin, C.M.
1976-01-01
We discuss the modification of the interaction between a pion and a nucleon in the presence of an infinite medium of nucleons (nuclear matter). The theory presented here is covariant and is relevant to the calculation of the pion--nucleus optical potential. The specific effects considered are the modifications of the nucleon propagator due to the Pauli principle and the modification of the pion and nucleon propagators due to collisions with nucleons of the medium. We also discuss in detail the pion self-energy in the medium, paying close attention to off-shell effects. These latter effects are particularly important because of the rapid variation with energy of the fundamental pion--nucleon interaction. Numerical results are presented, the main feature being the appearance of a significant damping width for the (3, 3) resonance
Effect of electron-photon interaction on the knight shift
International Nuclear Information System (INIS)
Tripathi, G.S.; Misra, C.M.; Tripathi, P.; Misra, P.K.
1990-01-01
The effect of electron-phonon interaction is considered on the spin (K s ), orbital (K o ) and spin-orbit (K so ) contributions to the Knight shift. In case of K s , it is found that the modifications caused due to the magnetic field dependence of electron self-energy in the presence of electron-phonon interaction is cancelled by the electron-phonon mass enhancement. However, in the presence of both electron-electron and electron-phonon interactions, the exchange enhancement parameter α is modified to α(1+γ) -1 where γ is the electron-phonon mass enhancement parameter. The orbital and spin-orbital contributions are mainly modified through the changes in the one-electron energies and wave functions. (orig.)
Effects of electrostatic interactions on electron transfer reactions
International Nuclear Information System (INIS)
Hickel, B.
1987-01-01
The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Translationally invariant and non-translationally invariant empirical effective interactions
International Nuclear Information System (INIS)
Golin, M.; Zamick, L.
1975-01-01
In this work empirical deficiencies of the core-renormalized realistic effective interactions are examined and simple corrective potentials are sought. The inability of the current realistic interactions to account for the energies of isobaric analog states is noted, likewise they are unable to reproduce the changes in the single-particle energies, as one goes from one closed shell to another. It is noted that the Schiffer interaction gives better results for these gross properties and this is attributed to a combination of several facts. First, to the inclusion of long range terms in the Schiffer potential, then to the presence of relative p-state terms (l=1), in addition to the usual relative s-state terms (l=0). The strange shape of the above interaction is further attributed to the fact that it is translationally invariant whereas the theory of core-polarization yields non-translationally invariant potentials. Consequently, as a correction to the monopole deficiencies of the realistic interactions the term Vsub(mon)=ar 2 (1)r 2 (2)+r 2 (1)+β[r 4 (1)r 2 (2)r 4 (2) ] is proposed. (Auth.)
Interaction effects and quantum phase transitions in topological insulators
International Nuclear Information System (INIS)
Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos
2010-01-01
We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.
International Nuclear Information System (INIS)
Trache, L.; Mukhamedzhanov, A.M.; Tribble, R.E.; Carstoiu, F.
2002-06-01
We have used existing data on the one-proton-removal cross section of 9 C at 285 MeV/u and Glauber model calculations to extract the asymptotic normalization coefficient for the wave function of the last proton in the ground state of 9 C. The calculations are done first using folded potentials starting from two different effective nucleon-nucleon interactions and second in the optical limit using three nucleon-nucleon interactions, and the results are found to be consistent, with no new parameters adjusted. We find C 2 (p 3/2 ) + C 2 (p 1/2 ) = 1.22±0.13 fm -1 . From this result we obtain the astrophysical factor for the proton radiative capture reaction 8 B(p,γ) 9 C as S 18 (0) = 46 ± 6 eV.b. The calculated energy dependence of the astrophysical S-factor for the energy region E cm = 0 - 0.8 MeV and the reaction rates for T 9 = 0 - 1 are included. (authors)
International Nuclear Information System (INIS)
Tornow, W.; Braun, R.T.; Witala, H.
1996-01-01
We review published analyses of the final-state-interaction enhancement observed in proton energy distributions obtained from kinematically incomplete neutron-deuteron breakup experiments. We compare the results derived from these analyses for the neutron-neutron scattering length, a nn with our results based on a rigorous treatment of the three-nucleon Faddeev equations in conjunction with the use of realistic nucleon-nucleon potentials. Our values for a nn deviate outside the quoted uncertainties from the ones obtained in the previous analyses where simplified nucleon-nucleon interaction models were employed. In contrast to the previous determinations, the present results for a nn are in clear disagreement with the values for a nn based on π - -deuteron capture experiments. Unless inconsistencies in the experimental neutron-deuteron breakup data at low energies can be resolved and the influence of possible three-nucleon-force effects can be reliably determined, we recommend that one not resort to the kinematically incomplete neutron-deuteron breakup reaction as a tool for determining a quantity as important for nuclear and particle physics as is the neutron-neutron scattering length a nn . (author)
Energy Technology Data Exchange (ETDEWEB)
Khan, E
2005-12-15
The author presents successively the theoretical aspect, the experimental aspect and the applied aspect of excitations in nuclear structures. The quasi-particle random phase approximation (QRPA) tool is first described. Recent approaches on QRPA are based on the theory of the density function where the ground state and excited states are described from the same nucleon-nucleon interaction. 2 methods for measuring the collective excitations are then presented: the proton scattering that has the potentiality to investigate the evolution of magicity, the second method is in fact a new method for measuring the giant mono-polar resonance (GMP) in exotic nuclei. Nuclear reactions are considered as a compulsory step on the way from observables like cross-sections to nuclear structure. The author highlights the assets of the convolution model that can generate the optical potential from the effective nucleon-nucleon interaction and from proton and neutron densities of the nuclei involved. R-processes in nucleosynthesis and neutron stars are reviewed as applications of collective excitations in the field of nuclear astrophysics. (A.C.)