WorldWideScience

Sample records for nucleation theory based

  1. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  2. A dynamical theory of nucleation

    Science.gov (United States)

    Lutsko, James F.

    2013-05-01

    A dynamical theory of nucleation based on fluctuating hydrodynamics is described. It is developed in detail for the case of diffusion-limited nucleation appropriate to colloids and macro-molecules in solution. By incorporating fluctuations, realistic fluid-transport and realistic free energy models the theory is able to give a unified treatment of both the pre-critical development of fluctuations leading to a critical cluster as well as of post-critical growth. Standard results from classical nucleation theory are shown to follow in the weak noise limit while the generality of the theory allows for many extensions including the description of very high supersaturations (small clusters), multiple order parameters and strong-noise effects to name a few. The theory is applied to homogeneous and heterogeneous nucleation of a model globular protein in a confined volume and it is found that nucleation depends critically on the existence of long-wavelength, small-amplitude density fluctuations.

  3. Recent developments in the kinetic theory of nucleation.

    Science.gov (United States)

    Ruckenstein, E; Djikaev, Y S

    2005-12-30

    A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation

  4. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  5. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    Science.gov (United States)

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density

  6. Classical nucleation theory in the phase-field crystal model.

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  7. Classical nucleation theory in the phase-field crystal model

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  8. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  9. Systematic coarse-graining in nucleation theory

    Science.gov (United States)

    Schweizer, M.; Sagis, L. M. C.

    2015-08-01

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  10. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Fradera, J.; Cuesta-López, S.

    2013-01-01

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM ® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  11. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  12. High performance computations using dynamical nucleation theory

    International Nuclear Information System (INIS)

    Windus, T L; Crosby, L D; Kathmann, S M

    2008-01-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described

  13. Nucleation theory in Langevin's approach and lifetime of a Brownian particle in potential wells.

    Science.gov (United States)

    Alekseechkin, N V

    2008-07-14

    The multivariable theory of nucleation suggested by Alekseechkin [J. Chem. Phys. 124, 124512 (2006)] is further developed in the context of Langevin's approach. The use of this approach essentially enhances the capability of the nucleation theory, because it makes possible to consider the cases of small friction which are not taken into account by the classical Zel'dovich-Frenkel theory and its multivariable extensions. The procedure for the phenomenological determination of the nucleation parameters is described. Using the similarity of the Kramers model with that of nucleation, the lifetime of a Brownian particle in potential wells in various dimensionalities is calculated with the help of the expression for the steady state nucleation rate.

  14. A two-parameter extension of classical nucleation theory

    Science.gov (United States)

    Lutsko, James F.; Durán-Olivencia, Miguel A.

    2015-06-01

    A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier.

  15. A two-parameter extension of classical nucleation theory

    International Nuclear Information System (INIS)

    Lutsko, James F; Durán-Olivencia, Miguel A

    2015-01-01

    A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier. (paper)

  16. The emergence of modern nucleation theory

    International Nuclear Information System (INIS)

    Cahn, J.W.

    1987-01-01

    A series of important papers by David Turnbull and his collaborators in the late 1940's and early 1950's laid the experimental and theoretical foundation of modern nucleation theory. The elegance, versatility, and generality of the phenomenological approach, coupled with brilliant and insightful experimental confirmation, sparked widespread application which continues today. Much of David Turnbull's subsequent work in other subjects grew directly or indirectly from this work

  17. A classical density functional investigation of nucleation

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Ghosh, Swapan K.

    2009-01-01

    Study of nucleation and growth phenomena in condensation is of prime importance in various applications such as crystal growth, nanoparticle synthesis, pattern formation etc. The knowledge of nucleation barrier in condensation is necessary to control the nucleation kinetics, size of the nanoparticles etc. Classical nucleation theory (CNT) assumes the density of the drop as bulk density irrespective of the size of the drop and overestimates the nucleation barrier. Here we are interested in solving the problem analytically using density functional theory (DFT) with square gradient approximation along the lines of Cahn and Hilliard. Nucleation barrier and density profile obtained in this work are consistent with other works based on nonclassical theory. (author)

  18. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.

    Science.gov (United States)

    Kashchiev, Dimo

    2015-11-17

    The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. A theory-based parameterization for heterogeneous ice nucleation and implications for the simulation of ice processes in atmospheric models

    Science.gov (United States)

    Savre, J.; Ekman, A. M. L.

    2015-05-01

    A new parameterization for heterogeneous ice nucleation constrained by laboratory data and based on classical nucleation theory is introduced. Key features of the parameterization include the following: a consistent and modular modeling framework for treating condensation/immersion and deposition freezing, the possibility to consider various potential ice nucleating particle types (e.g., dust, black carbon, and bacteria), and the possibility to account for an aerosol size distribution. The ice nucleating ability of each aerosol type is described using a contact angle (θ) probability density function (PDF). A new modeling strategy is described to allow the θ PDF to evolve in time so that the most efficient ice nuclei (associated with the lowest θ values) are progressively removed as they nucleate ice. A computationally efficient quasi Monte Carlo method is used to integrate the computed ice nucleation rates over both size and contact angle distributions. The parameterization is employed in a parcel model, forced by an ensemble of Lagrangian trajectories extracted from a three-dimensional simulation of a springtime low-level Arctic mixed-phase cloud, in order to evaluate the accuracy and convergence of the method using different settings. The same model setup is then employed to examine the importance of various parameters for the simulated ice production. Modeling the time evolution of the θ PDF is found to be particularly crucial; assuming a time-independent θ PDF significantly overestimates the ice nucleation rates. It is stressed that the capacity of black carbon (BC) to form ice in the condensation/immersion freezing mode is highly uncertain, in particular at temperatures warmer than -20°C. In its current version, the parameterization most likely overestimates ice initiation by BC.

  20. Principles of nucleation theory

    International Nuclear Information System (INIS)

    Clement, C.F.; Wood, M.H.

    1980-01-01

    The nucleation of small stable species is described in the problem of void growth by discrete rate equations. When gas is being produced the problem reduces to one of calculating the incubation dose for the gas bubble to void transition. A general expression for the steady state nucleation rate is derived for the case when voids are formed by vacancy fluctuations which enable an effective nucleation barrier to be crossed. (author)

  1. Nucleation in the atmosphere

    International Nuclear Information System (INIS)

    Hegg, D A; Baker, M B

    2009-01-01

    Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous

  2. A nucleation theory of cell surface capping

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Wester, M.J.; Perelson, A.S.

    1997-01-01

    We propose a new theory of cell surface capping based on the principles of nucleation. When antibody interacts with cell surface molecules, the molecules initially form small aggregates called patches that later coalesce into a large aggregate called a cap. While a cap can form by patches being pulled together by action of the cell''s cytoskeleton, in the case of some molecules, disruption of the cytoskeleton does not prevent cap formation. Diffusion of large aggregates on a cell surface is slow, and thus we propose that a cap can form solely through the diffusion of small aggregates containing just one or a few cell surface molecules. Here we consider the extreme case in which single molecules are mobile, but aggregates of all larger sizes are immobile. We show that a set of patches in equilibrium with a open-quotes seaclose quotes of free cell surface molecules can undergo a nucleation-type phase transition in which the largest patch will bind free cell surface molecules, deplete the concentration of such molecules in the open-quotes seaclose quotes and thus cause the other patches to shrink in size. We therefore show that a cap can form without patches having to move, collide with each other, and aggregate

  3. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  4. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    Science.gov (United States)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  5. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    Science.gov (United States)

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  6. The Lack of Chemical Equilibrium does not Preclude the Use of the Classical Nucleation Theory in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Nuth, Joseph A., III

    2011-01-01

    Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.

  7. Nucleation phenomena at Suzuki phases

    International Nuclear Information System (INIS)

    Acosta-Najarro, D.; Jose Y, M.

    1982-01-01

    Crystal of NaCl doped with Mn present regions with an increase in nucleation densities when observed by surface gold decoration; this increase is related to the nucleation of the Suzuki phases which are induced by cooling of the crystal matrix. Calculations based on atomistic nucleation theory are developed to explain the increased nucleation density. Experiments were made to compare with the theoretical results. In particular the density of nuclei was measured as a function of the rate or arrival of atoms to the surface. Therefore, the changes in the nucleation densities are explained in terms of change in migration energies between the Suzuki phase and the NaCl matrix excluding the possibility of nucleation induced by point defects. (author)

  8. Theory and Simulation of Nucleation

    NARCIS (Netherlands)

    Kuipers, J.|info:eu-repo/dai/nl/304832049

    2009-01-01

    Nucleation is the process where a stable nucleus spontaneously emerges in a metastable environment. Examples of nucleation abound, for instance the formation of droplets in undercooled gasses and of crystals in undercooled liquids. The process is thermally activated and is key to understanding

  9. Non stationary nucleation: the model with minimal environment

    OpenAIRE

    Kurasov, Victor

    2013-01-01

    A new model to calculate the rate of nucleation is formulated. This model is based on the classical nucleation theory but considers also vapor depletion around the formed embryo. As the result the free energy has to be recalculated which brings a new expression for the nucleation rate.

  10. Theoretical Studies Of Nucleation Kinetics And Nanodroplet Microstructure

    International Nuclear Information System (INIS)

    Wilemski, Gerald

    2009-01-01

    The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.

  11. Role of stacking disorder in ice nucleation.

    Science.gov (United States)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  12. Theories of nucleation and growth of bubbles and voids

    International Nuclear Information System (INIS)

    Speight, M.V.

    1977-01-01

    The application of classical nucleation theory to the formation of voids from a supersaturated concentration of vacancies is reviewed. The effect of a dissolved concentration of barley soluble gas on the nucleation rate of voids is emphasized. Exposure to a damaging flux of irradiation is the most effective way of introducing a vacancy supersaturation, but interstitials are produced at an equal rate. The concentration of interstitials inhibits the nucleation of voids which can occur only in the presence of dislocations since they preferentially absorb interstitials. It is well known that a definite value of internal gas pressure is necessary to stabilize a bubble so that it shows no tendencies to either shrink or grow. The arguments are reviewed which conclude that this pressure is determined by the specific surface free energy of the solid rather than the surface tension. While the former property refers to the energy necessary to create new surface, the latter is a measure of the work done in elastically stretching a a given surface. The presence of an equilibrium gas bubble leaves the stresses in the surrounding solid unperturbed only when surface energy and surface tension are numerically equal. A bubble with internal pressure greater than the restraint offered by surface energy tends to grow to relieve the excess pressure. The mechanism of growth can involve the migration of vacancies from remote sources to the bubble surface or the plastic straining of the solid surrounding the bubble. The kinetics of both mechanisms are developed and compared. The theory of growth of grain-boundary voids by vacancy condensation under an applied stress is also considered. (author)

  13. Structuring effects in binary nucleation : Molecular dynamics simulatons and coarse-grained nucleation theory

    NARCIS (Netherlands)

    Braun, S.; Kraska, T.; Kalikmanov, V.I.

    2013-01-01

    Binary clusters formed by vapor-liquid nucleation are frequently nonhomogeneous objects in which components are not well mixed. The structure of a cluster plays an important role in nucleation and cluster growth. We demonstrate structuring effects by studying high-pressure nucleation and cluster

  14. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory

    Science.gov (United States)

    Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.

    2018-03-01

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  15. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.

    Science.gov (United States)

    Langenbach, K; Heilig, M; Horsch, M; Hasse, H

    2018-03-28

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  16. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  17. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  18. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  19. Homogeneous nucleation, growth and recrystallization of discharge products on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.

    1983-11-01

    The early stage of discharge of electrodes with an electrodissolution/precipitation mechanism is investigated. A theory is proposed for quasi-classical homogeneous nucleation and the subsequent growth. Based on this theory the radii distribution function was calculated for the diffusion-controlled growth of crystallites. Recrystallization was included. The nucleation overpotential was calculated as a function of time for discharges under various conditions.

  20. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  1. Effects of shear flow on phase nucleation and crystallization.

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  2. New trends in the nucleation research

    Science.gov (United States)

    Anisimov, M. P.; Hopke, P. K.

    2017-09-01

    During the last half of century the most of efforts have been directed towards small molecule system modeling using intermolecular potentials. Summarizing the nucleation theory, it can be concluded that the nowadays theory is far from complete. The vapor-gas nucleation theory can produce values that deviate from the experimental results by several orders of magnitude currently. Experiments on the vapor-gas nucleation rate measurements using different devices show significant inconsistencies in the measured rates as well. Theoretical results generally are quite reasonable for sufficiently low vapor nucleation rates where the capillary approximation is applicable. In the present research the advantages and current problems of the vapor-gas nucleation experiments are discussed briefly and a view of the future studies is presented. Using the brake points of the first derivative for the nucleation rate surface as markers of the critical embryos phase change is fresh idea to show the gas-pressure effect for the nucleating vapor-gas systems. To test the accuracy of experimental techniques, it is important to have a standard system that can be measured over a range of nucleation conditions. Several results illustrate that high-pressure techniques are needed to study multi-channel nucleation. In practical applications, parametric theories can be used for the systems of interest. However, experimental measurements are still the best source of information on nucleation rates. Experiments are labor intensive and costly, and thus, it is useful to extend the value of limited experimental measurements to a broader range of nucleation conditions. Only limited experimental data one needs for use in normalizing the slopes of the linearized nucleation rate surfaces. The nucleation rate surface is described in terms of steady-state nucleation rates. It is supposed that several new measuring systems, such as High Pressure Flow Diffusion Chamber for pressure limit up to 150 bar will be

  3. Magnetization reversal in nucleation controlled magnets. I. Theory

    International Nuclear Information System (INIS)

    Ramesh, R.; Srikrishna, K.

    1988-01-01

    A statistical model, based upon earlier models of Brown [J. Appl. Phys. 33, 3022 (1962)] and McIntyre [J. Phys. D 3, 1430 (1970)] has been developed to examine the magnetization reversal of domain-wall nucleation controlled permanent magnets such as sintered Fe-Nd-B and SmCo 5 . Using a Poisson distribution of the defects on the surface of the grains, a ''weakest link statistics'' type model has been developed. The model has been used to calculate hysteresis loops for sintered Fe-Nd-B-type polycrystalline magnets. It is shown that the intrinsic coercivity measured for a bulk magnet should vary inversely as the logarithm of the surface area of the grain. The effect of demagnetizing field has been incorporated by a mean-field-type approximation, to calculate the overall nucleation field from the intrinsic coercivity. The hysteresis loops theoretically calculated are in excellent agreement with the overall form of those experimentally determined for similar nucleation controlled magnets. The model also predicts that for an inhomogeneous grain size distribution, such as a bimodal distribution, kinks will be observed in the second quadrant of the hysteresis loops

  4. Droplet and bubble nucleation modeled by density gradient theory – cubic equation of state versus saft model

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2012-04-01

    Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.

  5. Nonclassical nucleation pathways in protein crystallization.

    Science.gov (United States)

    Zhang, Fajun

    2017-11-08

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  6. Nonclassical nucleation pathways in protein crystallization

    Science.gov (United States)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  7. Nucleation behavior of glutathione polymorphs in water

    International Nuclear Information System (INIS)

    Chen, Zhi; Dang, Leping; Li, Shuai; Wei, Hongyuan

    2013-01-01

    Nucleation behavior of glutathione (GSH) polymorphs in water was investigated by experimental method combined with classical nucleation theory. The solubility of α and β forms GSH in water at different temperatures, and the nucleation induction period at various supersaturations and temperatures were determined experimentally. The results show that, in a certain range of supersaturation, the nucleation of β form predominates at relatively higher temperature, while α form will be obtained at lower temperature. The nucleation kinetics parameters of α and β form were then calculated. To understand the crucial role of temperature on crystal forms, “hypothetic” nucleation parameters of β form at 283.15 K were deduced based on extrapolation method. The results show that the interfacial tension, critical free energy, critical nucleus radius and nucleus number of α form are smaller than that of β form in the same condition at 283.15 K, which implies that α form nucleates easier than β form at low temperature. This work may be useful for the control and optimization of GSH crystallization process in industry

  8. Acoustic Effects in Classical Nucleation Theory

    Science.gov (United States)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  9. A variational approach to nucleation simulation.

    Science.gov (United States)

    Piaggi, Pablo M; Valsson, Omar; Parrinello, Michele

    2016-12-22

    We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.

  10. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  11. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  12. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  13. Phase nucleation and evolution mechanisms in heterogeneous solids

    Science.gov (United States)

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  14. On the usage of classical nucleation theory in predicting the impact of bacteria on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Woetmann Nielsen, Niels; Havskov Sørensen, Jens; Finster, Kai; Bay Gosewinkel Karlson, Ulrich; Šantl-Temkiv, Tina; Smith Korsholm, Ulrik

    2014-05-01

    Bacteria, e.g. Pseudomonas syringae, have previously been found efficient in nucleating ice heterogeneously at temperatures close to -2°C in laboratory tests. Therefore, ice nucleation active (INA) bacteria may be involved in the formation of precipitation in mixed phase clouds, and could potentially influence weather and climate. Investigations into the impact of INA bacteria on climate have shown that emissions were too low to significantly impact the climate (Hoose et al., 2010). The goal of this study is to clarify the reason for finding the marginal impact on climate when INA bacteria were considered, by investigating the usability of ice nucleation rate parameterization based on classical nucleation theory (CNT). For this purpose, two parameterizations of heterogeneous ice nucleation were compared. Both parameterizations were implemented and tested in a 1-d version of the operational weather model (HIRLAM) (Lynch et al., 2000; Unden et al., 2002) in two different meteorological cases. The first parameterization is based on CNT and denoted CH08 (Chen et al., 2008). This parameterization is a function of temperature and the size of the IN. The second parameterization, denoted HAR13, was derived from nucleation measurements of SnomaxTM (Hartmann et al., 2013). It is a function of temperature and the number of protein complexes on the outer membranes of the cell. The fraction of cloud droplets containing each type of IN as percentage in the cloud droplets population were used and the sensitivity of cloud ice production in each parameterization was compared. In this study, HAR13 produces more cloud ice and precipitation than CH08 when the bacteria fraction increases. In CH08, the increase of the bacteria fraction leads to decreasing the cloud ice mixing ratio. The ice production using HAR13 was found to be more sensitive to the change of the bacterial fraction than CH08 which did not show a similar sensitivity. As a result, this may explain the marginal impact of

  15. Experimental investigation of the role of ions in aerosol nucleation

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    The role of ions in producing aerosols in Earth’s atmosphere is an area of very active research. Atmospheric and experimental observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been...... put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation and Ternary Nucleation. Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far removed from those relevant for the lower part of the atmosphere. Recent experimental...... were grown using photochemically produced sulphuric acid and ionization levels were controlled with a Cs-137 gamma-source. An increase in nucleation was observed when the chamber was exposed to the radioactive source. The results were analyzed using a model based on the General Dynamic Equation...

  16. Texture control and seeded nucleation of nanosize structures of ferroelectric thin films

    Science.gov (United States)

    Muralt, Paul

    2006-09-01

    An overview is given on nucleation phenomena of Pb(Zr ,Ti)O3 (PZT) thin films on Pt(111)-based substrates. Emphasis is given on in situ growth methods, particularly in situ reactive sputtering from three metallic targets. Growth of PZT thin films is discussed from the point of view of the PbOx-TiO2 phase diagram, PbO vapor pressure, and classical nucleation theory. The role of thin TiO2 affinity layers and spots is explained in the frame of this theory. Activation energies for desorption and chemisorption are adapted to comply with the fact that nucleation rates on TiO2 are much larger than the ones on bare Pt(111). The model reproduces well the PbO surface flux from bare Pt(111) to the affinity spots in the case of PbTiO3 nucleation and the reversed tendency in the case of PZT 40/60 nucleation, explaining experimental observations. The critical size of nuclei was calculated to contain 8-10unit cells for PbTiO3/Pt nucleation and 14-17 for PZT/Pt nucleation.

  17. A Theory of Immersion Freezing

    Science.gov (United States)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  18. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  19. Molecular-dynamics simulations of urea nucleation from aqueous solution

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-01

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  20. Molecular-dynamics simulations of urea nucleation from aqueous solution.

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-06

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.

  1. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  2. The laminar flow tube reactor as a quantitative tool for nucleation studies: Experimental results and theoretical analysis of homogeneous nucleation of dibutylphthalate

    International Nuclear Information System (INIS)

    Mikheev, Vladimir B.; Laulainen, Nels S.; Barlow, Stephan E.; Knott, Michael; Ford, Ian J.

    2000-01-01

    A laminar flow tube reactor was designed and constructed to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 to +19.1 degree sign C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) is given. Both isothermal and the isobaric nucleation rates were measured. The experimental data obtained were compared with the measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis, based on the first and the second nucleation theorems, is also presented. The critical cluster size and the excess of internal energy of the critical cluster are obtained. (c) 2000 American Institute of Physics

  3. Ice nucleation rates near ˜225 K

    Science.gov (United States)

    Amaya, Andrew J.; Wyslouzil, Barbara E.

    2018-02-01

    We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.

  4. Simulations of a non-Markovian description of nucleation

    NARCIS (Netherlands)

    Kuipers, J.; Barkema, G.T.

    2010-01-01

    In most nucleation theories, the state of a nucleating system is described by a distribution of droplet masses and this distribution evolves as a memoryless stochastic process. This is incorrect for a large class of nucleating systems. In a recent paper [ J. Kuipers and G. T. Barkema, Phys. Rev. E

  5. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  6. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  7. Small random perturbations of infinite dimensional dynamical systems and nucleation theory

    International Nuclear Information System (INIS)

    Cassandro, M.; Olivieri, E.; Picco, P.

    1985-06-01

    We consider a stochastic differential equation with a standard space-time white noise and a double well non symmetric potential. The equation without the white noise term exhibits several equilibria two of which are stable. We study, in the double limit zero noise and thermodynamic limit the large fluctuations and compute the transition probability between the two stable equilibria (tunnelling). The unique stationary measure associated to the stochastic process described by our equation is strictly related to the Gibbs measure for a ferromagnetic spin system subject to a Kac interaction. Our double limit corresponds to the one considered by Lobowitz and Penrose in their rigorous version of the mean field theory of the first order phase transitions. The tunnelling between the two (non equivalent) equilibrium configurations is interpreted as the decay from the metastable to the stable state. Our results are in qualitative agreement with the usual nucleation theory

  8. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  9. Arsenic flux dependence of island nucleation on InAs(001)

    International Nuclear Information System (INIS)

    Grosse, Frank; Barvosa-Carter, William; Zinck, Jenna; Wheeler, Matthew; Gyure, Mark F.

    2002-01-01

    The initial stages of InAs(001) homoepitaxial growth are investigated using a combination of kinetic Monte Carlo simulations based on ab initio density functional theory and scanning tunneling microscopy. In the two dimensional island nucleation mode investigated, the island number density is found to decrease with increasing As. This behavior is explained by a suppression of the effective In-adatom density leading to a reduction in island nucleation. The relevant microscopic processes responsible for this reduction are identified

  10. Mechanisms of nucleation in flashing flows

    International Nuclear Information System (INIS)

    Yan, F.; Giot, M.

    1989-01-01

    The mechanisms of nucleation have been analysed. Starting from the assumption that the activation of micro-cavities in the wall surfaces is the most probable nucleation mechanism in practical flashing system, the authors study in detail the nucleation in a micro-cavity. A three step nucleation criterion is proposed, namely: trapping cavity, activable cavity and active cavity. Then, a new nucleation model is presented. The output of the model is the prediction of the bubble departure frequency versus the thermodynamic state of the liquid and the geometry of the cavity. The model can also predict the nucleation site density if the nature of the wall and the surface roughness are know. The prediction have been successfully compared with some preliminary experimental results. By combining the present model with Jones'theory, the flashing inception is correctly predicted. The use of this nucleation model for the complete modelling of a flashing non-equilibrium flow is in progress

  11. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation.

    Science.gov (United States)

    Halonen, Roope; Zapadinsky, Evgeni; Vehkamäki, Hanna

    2018-04-28

    We present a comparison between Monte Carlo (MC) results for homogeneous vapour-liquid nucleation of Lennard-Jones clusters and previously published values from molecular dynamics (MD) simulations. Both the MC and MD methods sample real cluster configuration distributions. In the MD simulations, the extent of the temperature fluctuation is usually controlled with an artificial thermostat rather than with more realistic carrier gas. In this study, not only a primarily velocity scaling thermostat is considered, but also Nosé-Hoover, Berendsen, and stochastic Langevin thermostat methods are covered. The nucleation rates based on a kinetic scheme and the canonical MC calculation serve as a point of reference since they by definition describe an equilibrated system. The studied temperature range is from T = 0.3 to 0.65 ϵ/k. The kinetic scheme reproduces well the isothermal nucleation rates obtained by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)] using MD simulations with carrier gas. The nucleation rates obtained by artificially thermostatted MD simulations are consistently lower than the reference nucleation rates based on MC calculations. The discrepancy increases up to several orders of magnitude when the density of the nucleating vapour decreases. At low temperatures, the difference to the MC-based reference nucleation rates in some cases exceeds the maximal nonisothermal effect predicted by classical theory of Feder et al. [Adv. Phys. 15, 111 (1966)].

  12. Current state of aerosol nucleation parameterizations for air-quality and climate modeling

    Science.gov (United States)

    Semeniuk, Kirill; Dastoor, Ashu

    2018-04-01

    Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.

  13. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  14. Investigating heterogeneous nucleation in peritectic materials via the phase-field method

    International Nuclear Information System (INIS)

    Emmerich, Heike; Siquieri, Ricardo

    2006-01-01

    Here we propose a phase-field approach to investigate the influence of convection on peritectic growth as well as the heterogeneous nucleation kinetics of peritectic systems. For this purpose we derive a phase-field model for peritectic growth taking into account fluid flow in the melt, which is convergent to the underlying sharp interface problem in the thin interface limit (Karma and Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-field model to study the heterogeneous nucleation kinetics of peritectic material systems. Our approach is based on a similar approach towards homogeneous nucleation in Granasy et al (2003 Interface and Transport Dynamics (Springer Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich et al (Berlin: Springer) p 190). We applied our model successfully to extend the nucleation rate predicted by classical nucleation theory for an additional morphological term relevant for peritectic growth. Further applications to understand the mechanisms and consequences of heterogeneous nucleation kinetics in more detail are discussed

  15. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    Science.gov (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  16. Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation.

    Science.gov (United States)

    Zahn, Dirk

    2015-07-20

    Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  17. Nucleation of voids. Final report, October 1, 1971--January 31, 1977

    International Nuclear Information System (INIS)

    Katz, J.L.

    1977-10-01

    The successful prediction of the conditions under which nucleation occurs in metals, as a result of the high concentrations of vacancies and interstitial atoms (and gas atoms) present in reactor environments, has been accomplished by (1) generalizing homogeneous nucleation theory to account for nucleation of matter (i.e., vacancies) in the presence of its antimatter (i.e., interstitials), (2) further generalizing the theory to account for the effects of both trapped and soluble gas, and (3) modifying the theory to describe interstitial loop formation and including the effects of external stress

  18. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  19. Interaction of the nucleation phenomena at adjacent sites in nucleate boiling

    International Nuclear Information System (INIS)

    Sultan, M.; Judd, R.L.

    1983-01-01

    The present investigation is an original study in nucleate pool boiling heat transfer combining theory and experiment in which water boiling at atmospheric pressure on a single copper surface at two different levels of heat and different levels of subcooling was studied. Cross spectral analysis of the signals generated by the emission of bubbles at adjacent nucleation sites was used to determine the relationship of the time elapsed between the start of bubble growth at the two neighbouring active sites with the distance separating them. The experimental results obtained indicated that for the lower level of heat flux at three different levels of subcooling, the elapsed time and distance were directly related. Theoretical predictions of a temperature disturbance propagating through the heating surface in the radial direction gave good agreement with the experimental findings, suggesting that this is the mechanism responsible for the activation of the surrounding nucleation sites

  20. Droplet Nucleation: Physically-Based Parameterizations and Comparative Evaluation

    Directory of Open Access Journals (Sweden)

    Steve Ghan

    2011-10-01

    Full Text Available One of the greatest sources of uncertainty in simulations of climate and climate change is the influence of aerosols on the optical properties of clouds. The root of this influence is the droplet nucleation process, which involves the spontaneous growth of aerosol into cloud droplets at cloud edges, during the early stages of cloud formation, and in some cases within the interior of mature clouds. Numerical models of droplet nucleation represent much of the complexity of the process, but at a computational cost that limits their application to simulations of hours or days. Physically-based parameterizations of droplet nucleation are designed to quickly estimate the number nucleated as a function of the primary controlling parameters: the aerosol number size distribution, hygroscopicity and cooling rate. Here we compare and contrast the key assumptions used in developing each of the most popular parameterizations and compare their performances under a variety of conditions. We find that the more complex parameterizations perform well under a wider variety of nucleation conditions, but all parameterizations perform well under the most common conditions. We then discuss the various applications of the parameterizations to cloud-resolving, regional and global models to study aerosol effects on clouds at a wide range of spatial and temporal scales. We compare estimates of anthropogenic aerosol indirect effects using two different parameterizations applied to the same global climate model, and find that the estimates of indirect effects differ by only 10%. We conclude with a summary of the outstanding challenges remaining for further development and application.

  1. Nucleation in an ultra low ionization environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar...... activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms...... for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground...

  2. Nucleation and creep of vortices in superfluids and clean superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1995-01-01

    The paper is devoted to vortex nucleation in uniform and nonuniform superflows in superfluids, and to creep of vortices trapped by twin boundaries and columnar defects in isotropic and anisotropic superconductors. The shape of a nuclated loop which yields the maximal nucleation rate is defined from the balance of the Lorentz and the line-tension forces. If the trapping energy is small, the contact angle at which the vortex line meets the plane of the twin-boundary or the axis of the columnar defect is also small. This may strongly enhance the rate of thermal nucleation and especially of quantum nucleation. In the analysis of quantum tunnelling it was assumed that the vortex has no mass and its motion is governed by the Magnus force, as expected for superfluids and very pure superconductors. Quantum nucleation rate from the traditional quasiclassical theory of macroscopic tunnelling is compared with the nucleation rate derived from the Gross-Pitaevskii theory of a weakly nonideal Bose-gas. (orig.)

  3. Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.

    Science.gov (United States)

    Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi

    2017-10-10

    The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.

  4. Inhomogenous Dislocation Nucleation Based on Atom Potential in Hexagonal Noncentrosymmetric Crystal Sheet

    International Nuclear Information System (INIS)

    Xue-Chuan, Zhao; Xiao-Ming, Liu; Zhuo, Zhuang; Zhan-Li, Liu; Yuan, Gao

    2010-01-01

    By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated with the instability criterion. The results show a strong relationship between yield stress and crystal sheet chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way to explain the dislocation nucleation phenomenon. (condensed matter: structure, mechanical and thermal properties)

  5. Theory on the Mechanism of DNA Renaturation: Stochastic Nucleation and Zipping.

    Directory of Open Access Journals (Sweden)

    Gnanapragasam Niranjani

    Full Text Available Renaturation of the complementary single strands of DNA is one of the important processes that requires better understanding in the view of molecular biology and biological physics. Here we develop a stochastic dynamical model on the DNA renaturation. According to our model there are at least three steps in the renaturation process viz. nonspecific-contact formation, correct-contact formation and nucleation, and zipping. Most of the earlier two-state models combined nucleation with nonspecific-contact formation step. In our model we suggest that it is considerably meaningful when we combine the nucleation with the zipping since nucleation is the initial step of zipping and nucleated and zipping molecules are indistinguishable. Nonspecific contact formation step is a pure three-dimensional diffusion controlled collision process. Whereas nucleation involves several rounds of one-dimensional slithering and internal displacement dynamics of one single strand of DNA on the other complementary strand in the process of searching for the correct-contact and then initiate nucleation. Upon nucleation, the stochastic zipping follows to generate a fully renatured double stranded DNA. It seems that the square-root dependency of the overall renaturation rate constant on the length of reacting single strands originates mainly from the geometric constraints in the diffusion controlled nonspecific-contact formation step. Further the inverse scaling of the renaturation rate on the viscosity of reaction medium also originates from nonspecific contact formation step. On the other hand the inverse scaling of the renaturation rate with the sequence complexity originates from the stochastic zipping which involves several rounds of crossing over the free-energy barrier at microscopic levels. When the sequence of renaturing single strands of DNA is repetitive with less complexity then the cooperative effects will not be noticeable since the parallel zipping will be a

  6. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.

    Science.gov (United States)

    Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M

    2010-08-12

    This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.

  7. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  8. Modelling the effect of acoustic waves on nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Haqshenas, S. R., E-mail: seyyed.haqshenas.12@ucl.ac.uk; Saffari, N., E-mail: n.saffari@ucl.ac.uk [Department of Mechanical Engineering, University College London, Gower Street, London WC1E 7JE (United Kingdom); Ford, I. J., E-mail: i.ford@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-07-14

    A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.

  9. Kinetics of heterogeneous nucleation on intrinsic nucleants in pure fcc transition metals

    International Nuclear Information System (INIS)

    Wilde, G; Bokeloh, J; Santhaweesuk, C; Perepezko, J H; Sebright, J L

    2009-01-01

    Nucleation during solidification is heterogeneous in nature in an overwhelmingly large fraction of all solidification events. Yet, most often the identity of the heterogeneous nucleants that initiate nucleation remains a matter of speculation. In fact, a series of dedicated experiments needs to be designed in order to verify if nucleation of the material under study is based on one type of heterogeneous nucleant and if the potency of that nucleant is constant, e.g. for a population of individual droplets, or stays constant over time, e.g. throughout repeated melting/solidification cycles. In this work it is demonstrated that one way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single-droplet experiments. The application of proper statistics analyses based upon a non-homogeneous Poisson process is shown to yield nucleation rates that are independent of a specific nucleation model. Based upon this approach nucleation undercooling measurements on pure Au, Cu and Ni as model materials have confirmed that the experimental strategy and analysis method are valid. The results are comparable to those obtained by classical nucleation theory applied to experimental data that has been verified to comply with the assertions that are necessary for applying this model framework. However, the results reveal also other complex nucleant-sample interactions such as an initial transient undercooling behavior and impurity removal during repeated cycling treatments. The transient undercooling behavior has been analyzed by a nucleant refining model to provide new insight on the operation of melt fluxing treatments.

  10. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  11. Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization

    Science.gov (United States)

    Behúlová, M.; Grgač, P.; Čička, R.

    2017-11-01

    Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.

  12. Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways.

    Science.gov (United States)

    Lifanov, Yuri; Vorselaars, Bart; Quigley, David

    2016-12-07

    We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature-fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO 3 ). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular "seeding" method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the "seeding" method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δμ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.

  13. Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2010-02-01

    Full Text Available In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.

  14. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  15. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-01

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  16. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  17. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  18. Two-Dimensional Nucleation on the Terrace of Colloidal Crystals with Added Polymers.

    Science.gov (United States)

    Nozawa, Jun; Uda, Satoshi; Guo, Suxia; Hu, Sumeng; Toyotama, Akiko; Yamanaka, Junpei; Okada, Junpei; Koizumi, Haruhiko

    2017-04-04

    Understanding nucleation dynamics is important both fundamentally and technologically in materials science and other scientific fields. Two-dimensional (2D) nucleation is the predominant growth mechanism in colloidal crystallization, in which the particle interaction is attractive, and has recently been regarded as a promising method to fabricate varieties of complex nanostructures possessing innovative functionality. Here, polymers are added to a colloidal suspension to generate a depletion attractive force, and the detailed 2D nucleation process on the terrace of the colloidal crystals is investigated. In the system, we first measured the nucleation rate at various area fractions of particles on the terrace, ϕ area . In situ observations at single-particle resolution revealed that nucleation behavior follows the framework of classical nucleation theory (CNT), such as single-step nucleation pathway and existence of critical size. Characteristic nucleation behavior is observed in that the nucleation and growth stage are clearly differentiated. When many nuclei form in a small area of the terrace, a high density of kink sites of once formed islands makes growth more likely to occur than further nucleation because nucleation has a higher energy barrier than growth. The steady-state homogeneous 2D nucleation rate, J, and the critical size of nuclei, r*, are measured by in situ observations based on the CNT, which enable us to obtain the step free energy, γ, which is an important parameter for characterizing the nucleation process. The γ value is found to change according to the strength of attraction, which is tuned by the concentration of the polymer as a depletant.

  19. A review of phosphate mineral nucleation in biology and geobiology.

    Science.gov (United States)

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.

  20. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    International Nuclear Information System (INIS)

    Kwolek, Emma J.; Lii-Rosales, Ann; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W.; Wallingford, Mark; Zhou, Yinghui; Thiel, Patricia A.

    2016-01-01

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  1. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Kwolek, Emma J.; Lii-Rosales, Ann [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W. [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Wallingford, Mark; Zhou, Yinghui [The Ames Laboratory, Ames, Iowa 50011 (United States); Thiel, Patricia A., E-mail: pthiel@iastate.edu [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-12-07

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  2. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin

    2014-01-01

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  3. A Model of Silicate Grain Nucleation and Growth in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Ferguson, Frank T.; Nuth, Joseph A., III

    2011-01-01

    Based on its abundance, high bond energy, and recent measurements of its vapor pressure SiO is a natural candidate for dust nucleation in circumstellar outflows around asymptotic giant branch stars. In this paper, we describe a model of the nucleation and growth of silicate dust in such outflows. The sensitivity of the model to varying choices of poorly constrained chemical parameters is explored, and the merits of using scaled rather than classical nucleation theory are briefly considered, An elaboration of the model that includes magnesium and iron as growth species is then presented and discussed. The composition of the bulk of the grains derived from the model is consistent with olivines and pyroxenes, but somewhat metal-rich grains and very small, nearly pure SiO grains are also produced,

  4. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  5. The Nucleation Potency of In Situ-Formed Oxides in Liquid Iron

    Science.gov (United States)

    Xu, Mingqin; Wang, Lu; Lu, Wenquan; Zeng, Long; Nadendla, Hari-Babu; Wang, Yun; Li, Jun; Hu, Qiaodan; Xia, Mingxu; Li, Jianguo

    2018-03-01

    The nucleation potency of iron oxides was verified experimentally through nucleation undercooling of liquid iron using aerodynamic levitation technology for minimized container contaminations. Steady undercooling values were subsequently obtained from multiple melting and freezing thermal cycles, with the average undercooling values of 223 K ± 3 K and 75 K ± 6 K (223 °C ± 3 °C and 75 °C ± 6 °C) for FeO-contained liquid and Fe3O4-contained liquid, respectively. The statistical results showed a negligible difference in the sizes and numbers of particles between FeO and Fe3O4 particles, indicating that the nucleation potency difference is attributed to the nature of nucleants rather than particle size or numbers. Furthermore, high-resolution transmission electron microscopy analysis showed that the potential nucleation interfaces can be assumed as { 1 1 0}_{{δ {{-Fe}}}} //( 0 0\\bar{2})_{FeO} and { 1 1 2}_{{δ {{-Fe}}}} //(\\bar{2} 0 2 )_{{{Fe}3 {O}4 }} , based on the detected exposed crystal planes of the oxide particles. Both the interfaces have relatively large values of lattice misfit, consistent with the experimentally measured undercooling based on Turnbull's lattice matching theory.

  6. How important is biological ice nucleation in clouds on a global scale?

    International Nuclear Information System (INIS)

    Hoose, C; Kristjansson, J E; Burrows, S M

    2010-01-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10 -5 %, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  7. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  8. Assessment of the theoretical basis of the Rule of Additivity for the nucleation incubation time during continuous cooling

    International Nuclear Information System (INIS)

    Zhu, Y.T.; Lowe, T.C.; Asaro, R.J.

    1997-01-01

    The rule of additivity was first proposed by Scheil and Steinberg for predicting the incubation time for nucleation of solid phases during continuous-cooling phase transformations, and has since been widely used for both the nucleation incubation and the entire process of phase transformation. While having been successfully used to calculate the transformed volume fraction during continuous cooling in many steel alloy systems, there is experimental evidence that shows rule of additivity to be invalid for describing the incubation time for nucleation. Attempts to prove the validity of the rule of additivity for the incubation time have not met with much success, and much confusion still exists about its applicability to the incubation time. This article investigates the additivity of the consumption of the incubation time for nucleation during continuous cooling through an analysis based upon classical nucleation theory. It is rigorously demonstrated that the rule of additivity is invalid for the incubation time for nucleation. However, in practice, the relative error caused by using the rule of additivity could be very small in many cases due to the resolution limit of current experimental techniques. The present theory provides an explanation for the failure of the rule of additivity in predicting the incubation time for nucleation during continuous cooling. copyright 1997 American Institute of Physics

  9. Modelling the role of compositional fluctuations in nucleation kinetics

    International Nuclear Information System (INIS)

    Ženíšek, J.; Kozeschnik, E.; Svoboda, J.; Fischer, F.D.

    2015-01-01

    The classical nucleation theory of precipitate nucleation in interstitial/substitutional alloys is applied to account for the influence of spatial A–B composition fluctuations in an A–B–C matrix on the kinetics of nucleation of (A,B) 3 C precipitates. A and B are substitutional elements in the matrix and C is an interstitial component, assumed to preferentially bind to B atoms. All lattice sites are considered as potential nucleation sites. The fluctuations of chemical composition result in a local variation of the nucleation probability. The nucleation sites are eliminated from the system if they are located in a C-depleted diffusion zone belonging to an already nucleated and growing precipitate. The chemistry is that of an Fe–Cr–C system, and the specific interface energy is treated as a free parameter. Random, regular and homogeneous A–B distributions in the matrix are simulated and compared for various values of the interface energy. An increasing enhancement of the role of compositional fluctuations on nucleation kinetics with increasing interface energy and decreasing chemical driving force is observed

  10. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    Science.gov (United States)

    Alekseechkin, Nikolay V

    2015-08-07

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  11. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  12. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  13. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  14. Numeric implementation of a nucleation, growth and transport model for helium bubbles in lead-lithium HCLL breeding blanket channels: Theory and code development

    Energy Technology Data Exchange (ETDEWEB)

    Batet, L., E-mail: lluis.batet@upc.edu [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Valls, E. Mas de les [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Heat Engines (DMMT), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, Fusion Technology Division, Av. Complutense 22, 28040 Madrid (Spain)

    2011-06-15

    Large helium (He) production rates in liquid metal breeding blankets of a DT fusion reactor might have a significant influence in the system design. Low He solubility together with high local concentrations may create the conditions for He cavitation, which would have an impact in the components performance. The paper states that such a possibility is not remote in a helium cooled lithium-lead breeding blanket design. A model based on the Classical Nucleation Theory (CNT) has been developed and implemented in order to have a specific tool able to simulate HCLL systems and identify the key parameters and sensitivities. The nucleation and growth model has been implemented in the open source CFD code OpenFOAM so that transport of dissolved atomic He and nucleated He bubbles can be simulated. At the current level of development it is assumed that void fraction is small enough not to affect either the hydrodynamics or the properties of the liquid metal; thus, bubbles can be represented by means of a passive scalar. He growth and transport has been implemented using the mean radius approach in order to save computational time. Limitations and capabilities of the model are shown by means of zero-dimensional simulation and sensitivity analysis under HCLL breeding unit conditions.

  15. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  16. Effect of strain on surface diffusion and nucleation

    DEFF Research Database (Denmark)

    Brune, Harald; Bromann, Karsten; Röder, Holger

    1995-01-01

    The influence of strain on diffusion and nucleation has been studied by means of scanning tunneling microscopy and effective-medium theory for Ag self-diffusion on strained and unstrained (111) surfaces. Experimentally, the diffusion barrier is observed to be substantially lower on a pseudomorphic...... effect on surface diffusion and nucleation in heteroepitaxy and are thus of significance for the film morphology in the kinetic growth regime....

  17. Using rheometry for determining nucleation density in colored system containing a nucleation agent

    NARCIS (Netherlands)

    Ma, Z.; Steenbakkers, R.J.A.; Giboz, J.; Peters, G.W.M.

    2011-01-01

    A new suspension-based rheological method was applied to study experimentally the crystallization of a nucleating agent (NA) filled isotactic polypropylene. This method allows for determination of point-nucleation densities where other methods fail. For example, optical microscopy can fail because

  18. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    Science.gov (United States)

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  19. Ultrasound assisted nucleation and growth characteristics of glycine polymorphs--a combined experimental and analytical approach.

    Science.gov (United States)

    Renuka Devi, K; Raja, A; Srinivasan, K

    2015-05-01

    For the first time, the effect of ultrasound in the diagnostic frequency range of 1-10 MHz on the nucleation and growth characteristics of glycine has been explored. The investigation employing the ultrasonic interferometer was carried out at a constant insonation time over a wide range of relative supersaturation from σ=-0.09 to 0.76 in the solution. Ultrasound promotes only α nucleation and completely inhibits both the β and γ nucleation in the system. The propagation of ultrasound assisted mass transport facilitates nucleation even at very low supersaturation levels in the solution. The presence of ultrasound exhibits a profound effect on nucleation and growth characteristics in terms of decrease in induction period, increase in nucleation rate and decrease in crystal size than its absence in the solution. With an increase in the frequency of ultrasound, a further decrease in induction period, increase in nucleation rate and decrease in the size of the crystal is noticed even at the same relative supersaturation levels. The increase in the nucleation rate explains the combined dominating effects of both the ultrasound frequency and the supersaturation in the solution. Analytically, the nucleation parameters of the nucleated polymorph have been deduced at different ultrasonic frequencies based on the classical nucleation theory and correlations with the experimental results have been obtained. Structural affirmation of the nucleated polymorph has been ascertained by powder X-ray diffraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2010-01-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.

  1. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  2. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.

    Science.gov (United States)

    Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi

    2016-02-23

    Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.

  3. Homogeneous nucleation in liquid nitrogen at negative pressures

    Energy Technology Data Exchange (ETDEWEB)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A. [Russian Academy of Sciences, Institute of Thermal Physics, Ural Branch (Russian Federation)

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9 MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.

  4. The void nucleation mechanism within lead phase during spallation of leaded brass

    Science.gov (United States)

    Yang, Yang; Wang, Can; Chen, Xingzhi; Chen, Kaiguo; Hu, Haibo; Fu, Yanan

    2018-07-01

    The incipient spall behaviours of Cu-34%Zn-3%Pb leaded brass samples with annealed and cryogenic-treated conditions were loaded using one-stage light gas gun experiments. The effect of Pb-phase on dynamic damage nucleation in leaded brass specimens was investigated by means of optical microscopy, scanning electron microscopy and x-ray computer tomography. It was found that the voids of incipient spall were mainly nucleated in the interior of the lead (no tensile stress would be produced within lead according to the impact theory) instead of nucleated at the phase interface as expected by quasi-static damage fracture theory. A nucleation model is proposed in the present work that is the asymmetry high compression zones in the centre of the lead-phase were formed by the rarefaction wave convergence effects of matrix/quasi-spherical lead interface, which caused adiabatic temperature rise that exceeded melting point of lead due to severe plastic deformation, finally led to local melting and void nucleation. In addition, the spall strength and damage rate increased with the increase in the Pb-phase number.

  5. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.

    Science.gov (United States)

    Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit

    2015-11-28

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  6. Vapor nucleation paths in lyophobic nanopores.

    Science.gov (United States)

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo

    2018-04-19

    liquids in mesoporous materials of characteristic size of ca. 4nm, the nanoscale effects reported for smaller pores have a minor role. The atomistic estimates for the nucleation free-energy barrier are in qualitative accord with those that can be obtained using a macroscopic, capillary-based nucleation theory.

  7. Modelling heterogeneous ice nucleation on mineral dust and soot with parameterizations based on laboratory experiments

    Science.gov (United States)

    Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.

    2016-12-01

    Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.

  8. Nucleation of strange matter in dense stellar cores

    International Nuclear Information System (INIS)

    Horvath, J.E.; Benvenuto, O.G.; Vucetich, H.

    1992-01-01

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature T for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios

  9. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  10. Heterogeneous ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A. [Helsinki Univ. (Finland). Dept. of Physics

    1994-12-31

    The classical theory of heterogenous ice nucleation is reviewed in detail. The modelling of ice nucleation in the adsorbed water films on natural particles by analogous ice nucleation in adsorbed water films on the walls of porous media is discussed. Ice nucleation in adsorbed films of purewater and the HNO{sub 3}/H{sub 2}0 binary system on the surface of porous aerosol (SiO{sub 2}) was investigated using the method of NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The character of the ice phase formation tends to approach that of bulk liquid with increasing adsorbed film thickness. Under the given conditions the thickness of the adsorbed films decreases with an increasing amount of adsorbed nitric acid molecules The molar concentration of nitric acid in the adsorbed films is very small (of the order of 10{sup -}3 10{sup -}2 (M/l)). Nitric acid molecules tend to adsorb on the surface of aerosol to a greater extent than in subsequent layers. The concentration is greatest in layers situated close to the surface and sharply decreases with the distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the median freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. (orig.)

  11. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    Science.gov (United States)

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.

  12. A Comparative Study of Nucleation Parameterizations: 2. Three-Dimensional Model Application and Evaluation

    Science.gov (United States)

    Following the examination and evaluation of 12 nucleation parameterizations presented in part 1, 11 of them representing binary, ternary, kinetic, and cluster‐activated nucleation theories are evaluated in the U.S. Environmental Protection Agency Community Multiscale Air Quality ...

  13. Dislocation reduction in nitride-based Schottky diodes by using multiple MgxNy/GaN nucleation layers

    International Nuclear Information System (INIS)

    Lee, K.H.; Chang, P.C.; Chang, S.J.; Su, Y.K.; Wang, Y.C.; Yu, C.L.; Kuo, C.H.

    2010-01-01

    We present the characteristics of nitride-based Schottky diodes with a single low-temperature (LT) GaN nucleation layer and multiple Mg x N y /GaN nucleation layers. With multiple Mg x N y /GaN nucleation layers, it was found that reverse leakage current became smaller by six orders of magnitude than that with a conventional LT GaN nucleation layer. This result might be attributed to the significant reduction of threading dislocations (TDs) and TD-related surface states. From the double crystal X-ray diffraction and photoluminescence analyses, it was found that the introduction of multiple Mg x N y /GaN nucleation layers could be able to effectively reduce the edge-type TDs. Furthermore, it was also found that effective Schottky barrier height (Φ B ) increased from 1.07 to 1.15 eV with the insertion of the multiple Mg x N y /GaN nucleation layers.

  14. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  15. Nucleation of dislocation loops during irradiation in binary FCC alloys with different alloy compositions

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    Dislocation loop nucleation is analyzed using a rate theory based model for face-centered cubic (fcc) binary alloys containing A- and B-atoms. In order to calculate the nucleation process in concentrated alloys, the model considers three types of interstitial dumbbells composed of A- and B-atoms, AA-, BB-, and AB-type dumbbells. Conversions between these interstitial dumbbells are newly introduced in the formulation in consideration of dumbbell configurations and movements. The model also includes reactions, such as point defect production by irradiation, mutual recombination of an interstitial and a vacancy, and dislocation loop nucleation and growth. Parameter values are chosen based on the atom size of the alloy component elements, and dislocation loop nucleation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus type. The migration energy difference of AA- and BB-type interstitial dumbbells is important in the determination of the dominant loop nucleus type. The present model predicts that the dislocation loop concentration decrease with increasing under sized atoms content, but defect production rate and temperature dependences of loop concentration are insensitive to alloy compositions. (author)

  16. Towards establishing a combined rate law of nucleation and crystal growth - The case study of gypsum precipitation

    Science.gov (United States)

    Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar

    2018-03-01

    The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

  17. Nucleation of Recrystallization studied by EBSP and 3DXRD

    DEFF Research Database (Denmark)

    West, Stine

    2009-01-01

    When a deformed crystalline material is annealed, recrystallization will typically take place. In this process new perfect crystals nucleate and grow, consuming the deformation structure. Traditionally, nucleation theories state that the crystal orientations of these new grains were already present...... in the deformed state, but several experiments have shown the emergence of what appears to be new orientations. The purpose of the present project was to observe nucleation of recrystallization both on surfaces and in the bulk. Special focus was on the possible formation of nuclei with orientations not present...... in the deformed matrix before annealing. To facilitate the nucleation studies, a well-annealed starting material was prepared from high-purity aluminum with a large average grain size and almost straight grain boundaries mostly forming triple junctions with angles close to 120°. The large grain size was necessary...

  18. Homogeneous nucleation of water in argon. Nucleation rate computation from molecular simulations of TIP4P and TIP4P/2005 water model.

    Science.gov (United States)

    Dumitrescu, Lucia R; Smeulders, David M J; Dam, Jacques A M; Gaastra-Nedea, Silvia V

    2017-02-28

    Molecular dynamics (MD) simulations were conducted to study nucleation of water at 350 K in argon using TIP4P and TIP4P/2005 water models. We found that the stability of any cluster, even if large, strongly depends on the energetic interactions with its vicinity, while the stable clusters change their composition almost entirely during nucleation. Using the threshold method, direct nucleation rates are obtained. Our nucleation rates are found to be 1.08×10 27 cm -3 s -1 for TIP4P and 2.30×10 27 cm -3 s -1 for TIP4P/2005. The latter model prescribes a faster dynamics than the former, with a nucleation rate two times larger due to its higher electrostatic charges. The non-equilibrium water densities derived from simulations and state-of-art equilibrium parameters from Vega and de Miguel [J. Chem. Phys. 126, 154707 (2007)] are used for the classical nucleation theory (CNT) prediction. The CNT overestimates our results for both water models, where TIP4P/2005 shows largest discrepancy. Our results complement earlier data at high nucleation rates and supersaturations in the Hale plot [Phys. Rev. A 33, 4156 (1986)], and are consistent with MD data on the SPC/E and the TIP4P/2005 model.

  19. The nucleation of vorticity by ions in superfluid 4He

    International Nuclear Information System (INIS)

    Muirhead, C.M.; Vinen, W.F.; Donnelly, R.J.

    1985-01-01

    The theory developed in Part I is extended to include a discussion of nucleation by negative ions in the presence of dissolved 3 He at a concentration such that at a low temperature the negative ion bubble is likely to have adsorbed on its surface either one or two 3 He atoms. It is argued that the adsorbed 3 He atom can change the nucleation rate for two reasons: the atom can modify the perturbation applied to the helium at the surface of the ions; and it can act as a source of energy. The second of these effects is explored in some detail. It is shown that the 3 He atom is probably less strongly bound to the ion than it would be to the core of a vortex line; furthermore the atom adsorbed onto the surface of the ion can exist in a number of excited states (Shikin states), which are thermally populated even at quite low temperatures. Therefore, when nucleation of a vortex takes place, the 3 He atom might move from the ion surface to the core of the vortex or simply from one Shikin state to another of lower energy; in either case there is a release of energy. The existence of this energy release means, first, that nucleation becomes energetically possible at a reduced ionic velocity and secondly, that the energy barrier opposing nucleation is reduced in size. Therefore the critical velocity for vortex nucleation is reduced, and, for a given supercritical velocity, the rate of nucleation is increased. Addition of a second 3 He atom would have a similar effect. Further experiments are required to check the detailed predictions of the theory. (author)

  20. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.

    Science.gov (United States)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2015-08-14

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 10(6) molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 10(19) cm(-3) s(-1), helping close the gap between experimentally measured rates ∼ 10(17) cm(-3) s(-1). We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  1. Homogeneous nucleation: a problem in nonequilibrium quantum statistical mechanics

    International Nuclear Information System (INIS)

    1978-08-01

    The master equation for cluster growth and evaporation is derived for many-body quantum mechanics and from a modified version of quantum damping theory used in laser physics. For application to nucleation theory, the quantum damping theory is generalized to include system and reservoir states that are not separate entities. Formulas for rate constants are obtained. Solutions of the master equation yield equations of state and system-averaged quantities recognized as thermodynamic variables. Formulas for Helmholtz free energies of clusters in a Debye approximation are derived. Coexistence-line equations for pressure, volume, and number of clusters are obtained from equations-of-state analysis. Coexistence-line and surface-tension data are used to obtain values of parameters for the Debye approximation. These data are employed in calculating both the nucleation current in diffusion cloud chamber experiments and the onset of condensation in expansion nozzle experiments. Theoretical and experimental results are similar for both cloud chamber and nozzle experiments, which measure water. Comparison with other theories reveals that classical theory only accidently agrees with experiment and that the Helmholtz free-energy formula used in the Lothe--Pound theory is incomplete. 27 figures, 3 tables, 149 references

  2. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    Science.gov (United States)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  3. Relative Role of Gas Generation and Displacement Rates in Cavity Nucleation and Growth

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J E.

    1984-01-01

    Problems of helium diffusion and clustering during irradiation are analysed. Using the “homogeneous” nucleation theory , the effect of damage rate on cavity density is calculated for different gas generation to damage rate ratios. The influence of gas mobility on cavity nucleation has been...

  4. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  5. Evolution of a magnetic bubble after quantum nucleation

    Science.gov (United States)

    Defranzo, A.; Gunther, L.

    1989-06-01

    Chudnovsky and Gunther recently presented a theory of quantum nucleation in a ferromagnet [Phys. Rev. B 37, 9455 (1989)]. As a sequel, this paper is concerned with the evolution of the magnetic bubble after its materialization.

  6. Probabilistic approach to lysozyme crystal nucleation kinetics.

    Science.gov (United States)

    Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P

    2015-09-01

    Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

  7. Attainment of unstable β nucleation of glycine in presence of L-tyrosine and its analytical interpretation-A combined approach

    Science.gov (United States)

    Renuka Devi, K.; Srinivasan, K.

    2015-05-01

    The ability of L-tyrosine molecules to act as a template and to facilitate the nucleation of unstable β polymorph in the solution has been revealed through in-situ nucleation study. This nucleation of β occurs along with the existing α nucleation at the critical concentration of additive in the solution. The presence of L-tyrosine molecules lowers the inherent barrier that exists for β nucleation in the solution. No nucleation of γ was observed over the entire range of concentrations studied. The molecular recognition capability and stereo selective inhibitory action of the added L-tyrosine molecules towards glycine molecule have been successfully revealed in terms of habit modification observed in the nucleated polymorphs. In the case of α polymorph, L-tyrosine induces a change in the morphology along the enantiopolar -b direction while in the case of β polymorph, habit modification from needle to plate like structure is observed. With the increase in time span, solution mediated phase transformation from β to α polymorph has been observed in the solution. Analytically the nucleation parameters of α and β polymorphs were estimated based on Classical Nucleation Theory. Form of crystallization of the nucleated polymorphs of glycine was confirmed by a powder x-ray diffraction analysis.

  8. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  9. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  10. Clustering of amines and hydrazines in atmospheric nucleation

    Science.gov (United States)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  11. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  12. Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases

    Directory of Open Access Journals (Sweden)

    J. H. Zollner

    2012-05-01

    Full Text Available Nucleation of particles composed of sulfuric acid, water, and nitrogen base molecules was studied using a continuous flow reactor. The particles formed from these vapors were detected with an ultrafine condensation particle counter, while vapors of sulfuric acid and nitrogen bases were detected by chemical ionization mass spectrometry. Variation of particle numbers with sulfuric acid concentration yielded a power dependency on sulfuric acid of 5 ± 1 for relative humidities of 14–68% at 296 K; similar experiments with varying water content yielded power dependencies on H2O of ~7. The critical cluster contains about 5 H2SO4 molecules and a new treatment of the power dependency for H2O suggests about 12 H2O molecules for these conditions. Addition of 2-to-45 pptv of ammonia or methyl amine resulted in up to millions of times more particles than in the absence of these compounds. Particle detection capabilities, sulfuric acid and nitrogen base detection, wall losses, and the extent of particle growth are discussed. Results are compared to previous laboratory nucleation studies and they are also discussed in terms of atmospheric nucleation scenarios.

  13. The scales of brane nucleation processes

    International Nuclear Information System (INIS)

    Alwis, S.P. de

    2007-01-01

    The scales associated with Brown-Teitelboim-Bousso-Polchinski processes of brane nucleation, which result in changes of the flux parameters and the number of D-branes, are discussed in the context of type IIB models with all moduli stabilized. It is argued that such processes are unlikely to be described by effective field theory

  14. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  15. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    Directory of Open Access Journals (Sweden)

    Shuo-Wei Chen

    2016-04-01

    Full Text Available The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs with ex-situ sputtered physical vapor deposition (PVD aluminum nitride (AlN nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study shows the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.

  16. Application of nonequilibrium quantum statistical mechanics to homogeneous nucleation

    International Nuclear Information System (INIS)

    Larson, A.R.; Cantrell, C.D.

    1978-01-01

    The master equation for cluster growth and evaporation is derived from many-body quantum mechanics and from a modified version of quantum damping theory used in laser physics. For application to nucleation theory, the quantum damping theory has been generalized to include system and reservoir states that are not separate entities. Formulae for rate constants are obtained. Solutions of the master equation yield equations of state and system-averaged quantities recognized as thermodynamic variables. Formulae for Helmholtz free energies of clusters in a Debye approximation are derived. Coexistence-line equations for pressure volume, and number of clusters are obtained from equations-of-state analysis. Coexistence-line and surface-tension data are used to obtain values of parameters for the Debye approximation. These data are employed in calculating both the nucleation current in diffusion cloud chamber experiments and the onset of condensation in expansion nozzle experiments. Theoretical and experimental results are similar for both cloud-chamber and nozzle experiments, which measure water

  17. Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics

    Science.gov (United States)

    Chason, Eric; Vasquez, Justin; Pei, Fei; Jain, Nupur; Hitt, Andrew

    2018-01-01

    Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

  18. A note on the nucleation with multiple steps: Parallel and series nucleation

    OpenAIRE

    Iwamatsu, Masao

    2012-01-01

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized and the extension to the more complex nucleation process is su...

  19. Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics

    Science.gov (United States)

    Pineda, Eloi; Crespo, Daniel

    1999-08-01

    A statistical model with the ability to evaluate the microstructure developed in nucleation and growth kinetics is built in the framework of the Kolmogorov, Johnson-Mehl, and Avrami theory. A populational approach is used to compute the observed grain-size distribution. The impingement process which delays grain growth is analyzed, and the effective growth rate of each population is estimated considering the previous grain history. The proposed model is integrated for a wide range of nucleation and growth protocols, including constant nucleation, pre-existing nuclei, and intermittent nucleation with interface or diffusion-controlled grain growth. The results are compared with Monte Carlo simulations, giving quantitative agreement even in cases where previous models fail.

  20. Charged and Neutral Binary Nucleation of Sulfuric Acid in Free Troposphere Conditions

    OpenAIRE

    Duplissy, Jonathan; Merikanto, Joonas; Sellegri, Karine; Rose, Clemence; Asmi, Eija; Freney, Evelyn; Juninen, Heikki; Sipilä, Mikko; Vehkamaki, Hanna; Kulmala, Markku

    2013-01-01

    We present a data set of binary nucleation of sulfuric acid and water, measured in the CLOUD chamber at CERN during the CLOUD3 and CLOUD5 campaigns. Four parameters have been varied to cover neutral and ion-induced binary nucleation processes: Sulfuric acid concentration (1e5 to 1e8 molecules per cm^(−3)), relative humidity (10% to 80%), temperature (208-293K) and ion concentration (0-4000 ions per cm^(−3)). In addition, classical nucleation theory implemented with hydrates and ion induced nu...

  1. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    Czech Academy of Sciences Publication Activity Database

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-01-01

    Roč. 147, č. 16 (2017), č. článku 164702. ISSN 0021-9606 R&D Projects: GA MŠk(CZ) 7F14466; GA ČR(CZ) GJ15-07129Y Institutional support: RVO:61388998 Keywords : nucleation * classical nucleation theory * density gradient theory Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.965, year: 2016

  2. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    International Nuclear Information System (INIS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-01-01

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  3. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakasuji, Toshiki, E-mail: t-nakasuji@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Morishita, Kazunori [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ruan, Xiaoyong [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2017-02-15

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  4. Revision of nucleated boiling mechanisms

    International Nuclear Information System (INIS)

    Converti, J.; Balino, J.L.

    1987-01-01

    The boiling occurrence plays an important role in the power reactors energy transfer. But still, there is not a final theory on the boiling mechanisms. This paper presents a critical analysis of the most important nucleated boiling models that appear in literature. The conflicting points are identified and experiments are proposed to clear them up. Some of these experiments have been performed at the Thermohydraulics laboratory (Bariloche Atomic Center). (Author)

  5. A note on the nucleation with multiple steps: parallel and series nucleation.

    Science.gov (United States)

    Iwamatsu, Masao

    2012-01-28

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested. © 2012 American Institute of Physics

  6. Laws of alloyed cementite particles nucleation during heat-resistant steels carburizing

    Directory of Open Access Journals (Sweden)

    M. Yu. Semenov

    2014-01-01

    Full Text Available The article considers a problem analyzing a nucleation of cementite type carbides in carburized heat-resistant steels for the turbofan engines gear wheels.The verification of previously hypothesized mechanism of dislocation nucleation particles chromium-alloyed cementite during process of carburizing was accepted as an objective of the work.As a methodological basis of this paper were accepted the numerical experiments based on the kinetic theory of nucleation, as well as on the known results of experimental studies.According to the kinetic theory of nucleation, a new phase in the solid solutions take place in the defects of the crystal structure of the metal such as inter-grain boundaries and dislocations clusters. A principle feature of the inter-grain boundary mechanism of nucleation is formation of carbide lattice. It is of great practical interest because the cementite lattice drops mechanical properties of hardened parts.According to the experimental studies, the average chromium concentration in the alloyed cementite twice exceeds its Cr content in the heat-resistant steels. Furthermore, the areas of abnormally high (more than ten times in comparison with the average content chromium concentration in cementite have been experimentally revealed.Numerical experiments have revealed that the nucleation of cementite particles alloyed with chromium (chromium concentration of 3% or more occurs, mainly, by the dislocation mechanism on the concentration fluctuations of the alloying element. According to calculations, an obligatory prerequisite to start an active nucleation process of new phase in the solid solution is a local increase of the chromium concentration up to 40%.Despite the lack of physical prerequisites for the formation of chromium precipitates, this phenomenon is explained by a strong chemical affinity of chromium and carbon, causing diffusion of chromium atoms in the region of the carbon atoms clusters. The formation of carbon

  7. Experimental Investigation of the Role of Ions in Aerosol Nucleation

    Science.gov (United States)

    Pedersen, J. P.; Enghoff, M. B.; Bondo, T.; Johnson, M. S.; Paling, S.; Svensmark, H.

    2008-12-01

    The role of ions in producing aerosols in Earth's atmosphere is an area of very active research. Atmospheric (Clarke et al. 1998) and experimental (Berndt et al. 2005) observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation and Ternary Nucleation. Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far removed from those relevant for the lower part of the atmosphere (Bricard et al. 1968). Recent experimental work (Svensmark et al. 2007) demonstrated that ions, produced by cosmic rays in the atmosphere, are likely to play an important role in the production of new aerosol particles. The mechanism whereby energetic cosmic rays can promote the production of cloud condensation nuclei at low altitudes constitutes a link between cosmic rays and Earth's climate and there is thus a need to corroborate the results in a different experiment. The present results are obtained in the same laboratory, but using a new setup The experiments were conducted in a 50 L cylindrical reaction chamber made of electropolished stainless steel. Aerosols were grown using photochemically produced sulphuric acid and ionization levels were controlled with a Cs-137 gamma-source. An increase in nucleation was observed when the chamber was exposed to the radioactive source. The results were analyzed using a model based on the General Dynamic Equation and the analysis revealed that Ion Induced Nucleation is the most likely mechanism for the observed nucleation increases and thus confirm the previous results. Berndt, T, Böge, O., Stratmann, F., Heintzenberg, J. & Kulmala, M. (2005), Science, 307, 698--700 Bricard, J., Billard, F. & Madelaine, G. (1968), J. Geophys. Res. 73, 4487--4496 Clarke, A.D., Davis, D., Kapustin, V. N. Eisele, F. Chen, G. Paluch

  8. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Bagchi, Biman

    2014-01-01

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments

  9. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  10. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    Energy Technology Data Exchange (ETDEWEB)

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  11. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    International Nuclear Information System (INIS)

    Binder, Kurt; Virnau, Peter

    2016-01-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  12. Steady-state molecular dynamics simulation of vapor to liquid nucleation with Mc Donald's demon

    International Nuclear Information System (INIS)

    Horsch, M.; Miroshnichenko, S.; Vrabec, J.

    2009-01-01

    Grand canonical MD with McDonald's demon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapor. The idea behind the new approach is to simulate the production of clusters up to a given size for a specified supersaturation. The classical nucleation theory is found to overestimate the free energy of cluster formation and deviate by two orders of magnitude from the nucleation rate below the triple point at high supersaturations.

  13. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  14. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic.

    Science.gov (United States)

    Gladinez, Kristof; Rosseel, Kris; Lim, Jun; Marino, Alessandro; Heynderickx, Geraldine; Aerts, Alexander

    2017-10-18

    Liquid lead-bismuth eutectic (LBE) is an important candidate to become the primary coolant of future, generation IV, nuclear fast reactors and Accelerator Driven System (ADS) concepts. One of the main challenges with the use of LBE as a coolant is to avoid its oxidation which results in solid lead oxide (PbO) precipitation. The chemical equilibria governing PbO formation are well understood. However, insufficient kinetic information is currently available for the development of LBE-based nuclear technology. Here, we report the results of experiments in which the nucleation, growth and dissolution of PbO in LBE during temperature cycling are measured by monitoring dissolved oxygen using potentiometric oxygen sensors. The metastable region, above which PbO nucleation can occur, has been determined under conditions relevant for the operation of LBE cooled nuclear systems and was found to be independent of setup geometry and thus thought to be widely applicable. A kinetic model to describe formation and dissolution of PbO particles in LBE is proposed, based on Classical Nucleation Theory (CNT) combined with mass transfer limited growth and dissolution. This model can accurately predict the experimentally observed changes in oxygen concentration due to nucleation, growth and dissolution of PbO, using the effective interfacial energy of a PbO nucleus in LBE as a fitting parameter. The results are invaluable to evaluate the consequences of oxygen ingress in LBE cooled nuclear systems under normal operating and accidental conditions and form the basis for the development of cold trap technology to avoid PbO formation in the primary reactor circuit.

  15. Convective boiling in a parallel microchannel heat sink with a diverging cross-section design and artificial nucleation sites

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan, Chin

    2009-01-01

    To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)

  16. Parametrization of the homogeneous ice nucleation rate for the numerical simulation of multiphase flow

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Eisenschmidt, K.; Rauschenberger, P.; Weigand, B.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 533-534 ISSN 1617-7061 R&D Projects: GA ČR GAP101/10/1819 Institutional research plan: CEZ:AV0Z20760514 Keywords : ice nucleation * ice-water surface energy * classical nucleation theory Subject RIV: BJ - Thermodynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210255/abstract

  17. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  18. From glass to crystal - Nucleation, growth and de-mixing, from research to applications

    International Nuclear Information System (INIS)

    Neuville, Daniel R.; Cormier, Laurent; Caurant, Daniel; Montagne, Lionel; Charpentier, Thibault; Chevalier, Jerome; Comte, Monique; Dargaud, Olivier; Ligny, Dominique de; Deniard, Philippe; Dussardier, Bernard; Dussauze, Marc; Fargin, Evelyne; Gremillard, Laurent; Gredin, Patrick; Jousseaume, Cecile; Lafait, Jacques; Lancry, Mathieu; Lefebvre, Leila; Levelut, Claire; Magallanes-Pedromo, Marlin; Massiot, Dominique; Mear, Francois O.; Meille, Sylvain; Meng, Nicolas; Mortier, Michel; Papin, Sophie; Papon, Gautier; Pastouret, Main; Petit, Yannick; Poumellec, Bertrand; Pradel, Annie; Reillon, Vincent; Rodriguez, Vincent; Rogez, Jacques; Roussel, Pascal; Royon, Arnaud; Schuller, Sophie; Tricot, Gregory; Vigouroux, Helene

    2013-01-01

    This book first presents the conventional nucleation theory: vitrification, homogeneous and heterogeneous nucleation, induction time, crystal growth, Oswald law. The second part addresses the evolutions beyond this theory: cluster dynamics, validity of the Stokes-Einstein relationship, non conventional germ system, Gibbs generalized approach, two-stage model. The third part addresses the thermodynamic stability and the global kinetics of transformation: thermodynamic stability and instability of a vitreous system, phenomenological approach to transformation kinetics. The fourth part addresses the de-mixing process on glasses: thermodynamic description of phase separation, de-mixing kinetics, influence of glass structure on de-mixing trend, de-mixing characterisation. The next parts describe the crystal-chemical approach to the main crystalline phases noticed in glass-ceramics (silicate phases and phosphates), the elaboration and control of glass-ceramic microstructure (controllable parameters, elaboration processes, characterization methods, microstructure types, design of glass-ceramics with desired properties by control of crystallisation mechanisms), X ray diffraction in the case of glass-ceramics, calorimetry and differential thermal analysis for the study of glass ceramics, the application of electronic microscopy to the study of nucleation and crystallisation in glasses, small-angle scattering of X rays and neutrons, the use of nuclear magnetic resonance to understand the disorder and crystallisation in vitreous materials, the use of Raman spectrometry to study mechanisms of nucleation and crystal growth, large instruments aimed at an in situ approaches to crystallisation, commercial applications of glass-ceramics, applications of biomaterials in glass and glass-ceramics, the coloration of metal nanoparticles, transparent glass-ceramics, the formation and applications of nanoparticles in silica-based optic fibres, the both-way relationship between non linear

  19. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  20. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  1. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  2. Reversible island nucleation and growth with anomalous diffusion

    Science.gov (United States)

    Sabbar, Ehsan H.; Amar, Jacques G.

    2017-10-01

    Motivated by recent experiments on submonolayer organic film growth with anomalous diffusion, a general rate-equation (RE) theory of submonolayer island nucleation and growth was developed (Amar and Semaan, 2016) [23], which takes into account the critical island-size i, island fractal dimension df, substrate dimension d, and diffusion exponent μ, and good agreement with simulations was found for the case of irreversible growth corresponding to a critical island-size i = 1 with d = 2 . However, since many experiments correspond to a critical island-size larger than 1, it is of interest to determine if the RE predictions also hold in the case of reversible island nucleation with anomalous diffusion. Here we present the results of simulations of submonolayer growth with i = 2 (d = 2) which were carried out for both the case of superdiffusion (μ > 1) and subdiffusion (μ deposited monomers, excellent agreement is obtained with the predictions of the generalized RE theory for the exponents χ(μ) and χ1(μ) which describe the dependence of the island and monomer densities at fixed coverage on deposition rate F. In addition, the exponents do not depend on whether or not monomers remain superdiffusive or are thermalized (e.g. undergo regular diffusion) after detaching from a dimer. However, we also find that, as was previously found in the case of irreversible growth, the exponent χ only approaches its asymptotic value logarithmically with increasing 1/F. This result has important implications for the interpretation of experiments. Good agreement with the RE theory is also found in the case of subdiffusion for point-islands. However, in the case of ramified islands with subdiffusion and i = 2 , the exponents are significantly higher than predicted due to the fact that monomer capture dominates in the nucleation regime. A modified RE theory which takes this into account is presented, and excellent agreement is found with our simulations.

  3. FOREWORD: Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach

    Science.gov (United States)

    Emmerich, H.

    2009-11-01

    systems are investigated jointly by experimental scientists working with different experimental techniques together with theoreticians, whose expertise is likewise diverse, ranging from density functional theory (DFT), over molecular simulations (MC/MD) to the phase-field method and who at the same time aim at a rigorous connection of these methods. This sketch illustrates the different 'dimensions' of the interdisciplinary research setting of the Priority Program and thus underlying the articles in this issue. Still the comparison of these new approaches with experimental results leads to controversial conclusions [12, 16]. Hence the study and development of theoretical models for the understanding and in particular for the quantitative description of the heterogeneous nucleus- and microstructure-formation processes remains an open but successively more and more quantitatively approachable issue. The development of physically relevant models for nucleus- and initial microstructure-formation is based on reliable knowledge of key parameters as the interfacial energy between crystal nucleus and melt. The latter is still experimentally difficult to access in metallic systems due to limitations arising e.g. from non-transmittance of optical light. To accelerate the development of more quantitative models capable of addressing the open issues of heterogenous nucleation and microstructure formation further, it is therefore essential to find complementary experimental systems which are less limited in accessing the above key parameters than metals. For this reason, within the Priority Program 1296 'Heterogenous Nucleation and Microstructure Formation—a Scale- and System-Bridging Approach' [8], the emphasis is to investigate the energetics and kinetics of heterogeneous nucleation and microstructure-formation processes experimentally jointly with metals as well as colloids as mesoscopic model systems for these processes. Thereby the most comprehensive experimental picture shall

  4. Nucleation reactions during deformation and crystallization of metallic glass

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Imhoff, S.D.; Chen, M.W.; Gonzalez, S.; Inoue, A.

    2012-01-01

    Highlights: ► New approach to the examination and analysis of shear band nucleation. ► Discovery of multiple shear band nucleation sites. ► Identification of a method of using transient kinetic behavior to provide a more realistic evaluation of the diffusivity that is relevant to nucleation. - Abstract: Nucleation reactions play a central role in the synthesis of both bulk metallic glasses and nanostructured materials. For nanostructured materials it is necessary to promote a high nucleation density without significant growth or coarsening. Beyond crystallization reactions nucleation of shear bands is critical for promoting a homogeneous flow and useful ductility for structural applications of bulk metallic glass. The study and analysis of nucleation reactions for these different situations requires a consideration of the stochastic nature of nucleation, the influence of heterogeneous sites, and the controlling transport properties. For shear band nucleation, the stochastic nature can be effectively probed by instrumented nanoindentation tests. The analysis of a statistically significant number of measurements of the first pop-in shear band nucleation events reveals at least two main nucleation sites. In nanostructured composites, the initial nucleation stage is influenced by transient effects as reflected in the delay time prior to steady state nucleation and by heterogeneous nucleation sites that are related to medium range order regions in Al-base amorphous alloys. Moreover, the early growth characteristics are linked to the maximum achievable particle density. The new developments and insight on the fundamental understanding of nanostructure reaction mechanisms offer valuable guidance for control of nanoscale microstructures and for promoting ductile deformation behavior.

  5. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.

    Science.gov (United States)

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-03-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Binary Homogeneous Nucleation in Selected Aqueous

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Němec, Tomáš; Hrubý, Jan; Demo, Pavel; Kožíšek, Zdeněk; Petr, V.; Kolovratník, M.

    2008-01-01

    Roč. 37, č. 12 (2008), s. 1671-1708 ISSN 0095-9782 R&D Projects: GA ČR(CZ) GA101/05/2524; GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA AV ČR IBS2076003 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : nucleation * steam * theory Subject RIV: BJ - Thermodynamics Impact factor: 1.241, year: 2008 http://www.springerlink.com/content/104381/

  7. Nucleation and dissociation of nano-particles in gas phase; Nucleation et evaporation de nanoparticules en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, P

    2007-09-15

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na{sub n} and heterogeneous Na{sub n}X particles (X = (NaOH){sub 2} or (Na{sub 2}O){sub 2}). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na{sup +}(NaOH){sub p} et Na{sup +}(NaF){sub p} particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na{sup +} Na{sup +} (NaOH){sub p} clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  8. Nucleation in Synoptically Forced Cirrostratus

    Science.gov (United States)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  9. Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites

    International Nuclear Information System (INIS)

    Molina, S I; Ben, T; Sales, D L; Pizarro, J; Galindo, P L; Varela, M; Pennycook, S J; Fuster, D; Gonzalez, Y; Gonzalez, L

    2006-01-01

    The compositional distribution in a self-assembled InAs(P) quantum wire grown by molecular beam epitaxy on an InP(001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects

  10. Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Ben, T [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Sales, D L [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Varela, M [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Fuster, D [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, Y [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, L [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2006-11-28

    The compositional distribution in a self-assembled InAs(P) quantum wire grown by molecular beam epitaxy on an InP(001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects.

  11. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  12. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    Science.gov (United States)

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  13. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.

    Science.gov (United States)

    Onischuk, A A; Purtov, P A; Baklanov, A M; Karasev, V V; Vosel, S V

    2006-01-07

    Zinc and silver vapor homogeneous nucleations are studied experimentally at the temperature from 600 to 725 and 870 K, respectively, in a laminar flow diffusion chamber with Ar as a carrier gas at atmospheric pressure. The size, shape, and concentration of aerosol particles outcoming the diffusion chamber are analyzed by a transmission electron microscope and an automatic diffusion battery. The wall deposit is studied by a scanning electron microscope (SEM). Using SEM data the nucleation rate for both Zn and Ag is estimated as 10(10) cm(-3) s(-1). The dependence of critical supersaturation on temperature for Zn and Ag measured in this paper as well as Li, Na, Cs, Ag, Mg, and Hg measured elsewhere is analyzed. To this aim the classical nucleation theory is extended by the dependence of surface tension on the nucleus radius. The preexponent in the formula for the vapor nucleation rate is derived using the formula for the work of formation of noncritical embryo [obtained by Nishioka and Kusaka [J. Chem. Phys. 96, 5370 (1992)] and later by Debenedetti and Reiss [J. Chem. Phys. 108, 5498 (1998)

  14. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  15. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  16. Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S

    2018-03-21

    Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.

  17. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  18. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    Science.gov (United States)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  19. Planar nucleation and crystallization in the annealing process of ion implanted silicon

    International Nuclear Information System (INIS)

    Luo Yimin; Chen Zhenhua; Chen Ding

    2010-01-01

    According to thermodynamic and kinetic theory, considering the variation of bulk free energy and superficial energy after nucleation as well as the migration of atoms, we study systematically the planar nucleation and crystallization that relate to two possible transition mechanisms in the annealing process of ion implanted Si: (1) liquid/solid transition: the critical nucleation work is equal to half the increased superficial energy and inversely proportional to the supercooling ΔT. Compared with bulk nucleation, the radius of the critical nucleus decreases by half, and the nucleation rate attains its maximum at T = T m /2. (2) amorphous/crystalline transition: the atoms contained in the critical nucleus and situated on its surface, as well as critical nucleation work, are all directly proportional to the height of the nucleus, and the nucleation barrier is equal to half the superficial energy too. In addition, we take SiGe semiconductor as a specific example for calculation; a value of 0.03 eV/atom is obtained for the elastic strain energy, and a more reasonable result can be gotten after taking into account its effect on transition Finally, we reach the following conclusion as a result of the calculation: for the annealing of ion implanted Si, no matter what the transition method is-liquid or solid planar nucleation-the recrystallization process is actually carried out layer by layer on the crystal substrate, and the probability of forming a 'rod-like' nucleus is much larger than that of a 'plate-like' nucleus. (semiconductor materials)

  20. Crosslinked Aspartic Acids as Helix-Nucleating Templates.

    Science.gov (United States)

    Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang

    2016-09-19

    Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.

    Science.gov (United States)

    Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele

    2017-09-14

    In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.

  2. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.

    Science.gov (United States)

    Nudelman, Fabio

    2015-10-01

    The wide diversity of biogenic minerals that is found in nature, each with its own morphology, mechanical properties and composition, is remarkable. In order to produce minerals that are optimally adapted for their function, biomineralisation usually occurs under strict cellular control. This control is exerted by specialised proteins and polysaccharides that assemble into a 3-dimensional organic matrix framework, forming a microenvironment where mineral deposition takes place. Molluscs are unique in that they use a striking variety of structural motifs to build their shells, each made of crystals with different morphologies and different calcium carbonate polymorphs. Much of want is known about mollusc shell formation comes from studies on the nacreous layer, or mother-of-pearl. In this review, we discuss two existing models on the nucleation of aragonite crystals during nacre formation: heteroepitaxial nucleation and mineral bridges. The heteroepitaxial nucleation model is based on the identification of chemical functional groups and aragonite-nucleating proteins at the centre of crystal imprints. It proposes that during nacre formation, each aragonite tablet nucleates independently on a nucleation site that is formed by acidic proteins and/or glycoproteins adsorbed on the chitin scaffold. The mineral bridges model is based on the identification of physical connections between the crystals in a stack, which results in a large number of crystals across several layers sharing the same crystallographic orientation. These observations suggest that there is one nucleation event per stack of tablets. Once the first crystal nucleates and reaches the top interlamellar matrix, it continues growing through pores, giving rise to the next layer of nacre, subsequently propagating into a stack. We compare both models and propose that they work in concert to control crystal nucleation in nacre. De novo crystal nucleation has to occur at least once per stack of aligned crystals

  3. Parameterization of ion-induced nucleation rates based on ambient observations

    Directory of Open Access Journals (Sweden)

    T. Nieminen

    2011-04-01

    Full Text Available Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long atmospheric cluster and particle measurements in the size range ~1–42 nm within the EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions project. Data from 12 field sites across Europe measured with different types of air ion and cluster mobility spectrometers were used in our analysis, with more in-depth analysis made using data from four stations with concomitant sulphuric acid measurements. The parameterization is given in two slightly different forms: a more accurate one that requires information on sulfuric acid and nucleating organic vapor concentrations, and a simpler one in which this information is replaced with the global radiation intensity. These new parameterizations are applicable to all large-scale atmospheric models containing size-resolved aerosol microphysics, and a scheme to calculate concentrations of sulphuric acid, condensing organic vapours and cluster ions.

  4. Stochastic simulation of nucleation in binary alloys

    Science.gov (United States)

    L’vov, P. E.; Svetukhin, V. V.

    2018-06-01

    In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.

  5. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  6. Hydration Effects on the Stability of Calcium Carbonate Pre-Nucleation Species

    Directory of Open Access Journals (Sweden)

    Alejandro Burgos-Cara

    2017-07-01

    Full Text Available Recent experimental evidence and computer modeling have shown that the crystallization of a range of minerals does not necessarily follow classical models and theories. In several systems, liquid precursors, stable pre-nucleation clusters and amorphous phases precede the nucleation and growth of stable mineral phases. However, little is known on the effect of background ionic species on the formation and stability of pre-nucleation species formed in aqueous solutions. Here, we present a systematic study on the effect of a range of background ions on the crystallization of solid phases in the CaCO3-H2O system, which has been thoroughly studied due to its technical and mineralogical importance, and is known to undergo non-classical crystallization pathways. The induction time for the onset of calcium carbonate nucleation and effective critical supersaturation are systematically higher in the presence of background ions with decreasing ionic radii. We propose that the stabilization of water molecules in the pre-nucleation clusters by background ions can explain these results. The stabilization of solvation water hinders cluster dehydration, which is an essential step for precipitation. This hypothesis is corroborated by the observed correlation between parameters such as the macroscopic equilibrium constant for the formation of calcium/carbonate ion associates, the induction time, and the ionic radius of the background ions in the solution. Overall, these results provide new evidence supporting the hypothesis that pre-nucleation cluster dehydration is the rate-controlling step for calcium carbonate precipitation.

  7. Simulation and theory of island growth on stepped substrates

    International Nuclear Information System (INIS)

    Pownall, C.D.

    1999-10-01

    The nucleation, growth and coalescence of islands on stepped substrates is investigated by Monte Carlo simulations and analytical theories. Substrate steps provide a preferential site for the nucleation of islands, making many of the important processes one-dimensional in nature, and are of potentially major importance in the development of low-dimensional structures as a means of growing highly ordered chains of 'quantum dots' or continuous 'quantum wires'. A model is developed in which island nucleation is entirely restricted to the step edge, islands grow in compact morphologies by monomer capture, and eventually coalesce with one another until a single continuous cluster of islands covers the entire step. A series of analytical theories is developed to describe the dynamics of the whole evolution. The initial nucleation and aggregation regimes are modeled using the traditional approach of rate equations, rooted in mean field theory, but incorporating corrections to account for correlations in the nucleation and capture processes. This approach is found to break down close to the point at which the island density saturates and a new approach is developed based upon geometric and probabilistic arguments to describe the saturation behaviour, including the characteristic dynamic scaling which is found to persist through the coalescence regime as well. A further new theory, incorporating arguments based on the geometry of Capture Zones, is presented which reproduces the dynamics of the coalescence regime. The, latter part of the. thesis considers the spatial properties of the system, in particular the spacing of the islands along the step. An expression is derived which describes the distribution of gap sizes, and this is solved using a recently-developed relaxation method. An important result is the discovery that larger critical island sizes tend to yield more evenly spaced arrays of islands. The extent of this effect is analysed by solving for critical island

  8. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2016-02-01

    Full Text Available Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs all have the same INP surface area (ISA; however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T. This model is applied to address if (i a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and

  9. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  10. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    Science.gov (United States)

    Cai, Y; Wu, H A; Luo, S N

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  11. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    International Nuclear Information System (INIS)

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-01-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m −2 ) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10 33−34 s −1  m −3 ) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence

  12. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  13. Electrocrystallisation of zinc from acidic sulphate baths; A nucleation and crystal growth process

    International Nuclear Information System (INIS)

    Vasilakopoulos, D.; Bouroushian, M.; Spyrellis, N.

    2009-01-01

    The electrochemical nucleation and growth of zinc on low-carbon steel from acidic (pH 2.0-4.5) baths containing ZnSO 4 , NaCl, and H 3 BO 3 , was studied by means of chronoamperometry at various cathodic potentials under a charge-transfer controlled regime. It is shown that at overpotentials in the range 0.30-0.55 V (negative to the Zn 2+ /Zn redox value) the electrodeposition proceeds by instantaneous three-dimensional nucleation, which turns to progressive at higher overpotentials and/or very acidic baths. At low cathodic overpotentials (<0.30 V), a two-dimensional contribution limited by the incorporation of Zn ad-atoms in the developing lattice becomes significant at the early stages of deposition, and is more progressive in type the more acidic is the bath pH. Nucleation rate constants were calculated and correlated analytically with the respective potentials, using the classical theory of heterogeneous nucleation, which though fails to lead to reasonable values for the critical nucleus size

  14. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface

    Science.gov (United States)

    Schiffbauer, Jarrod; Luo, Tengfei

    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.

  15. Bulk liquid undercooling and nucleation in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Bokeloh, Joachim; Moros, Anna; Wilde, Gerhard [Institut fuer Materialphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2010-07-01

    While classical nucleation theory is widely accepted textbook knowledge, it is somewhat lacking with regard to the atomistic details of the nucleation and growth mechanisms. Right now, there are many efforts in exploring these details with computational methods. However, only few experimental methods that can corroborate these results are available. The best known of these experimental methods are containerless processing in levitation melting and the investigation of fine droplet dispersions. We present here data on the liquid undercooling behaviour of Ni obtained by repeated melting and crystallization in a DTA. This method allows to acquire a statistically meaningful data set under clean and reproducible conditions, while still allowing reasonable sample sizes, thus combining several advantages of the two methods mentioned above. Ni was chosen as a model system because it shows good levels of undercooling and because it is well suited for computer simulations due to its relatively low number of electrons.

  16. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  17. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry

    Science.gov (United States)

    Sharma, Abhishek K.; Escobedo, Fernando A.

    2018-05-01

    Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem. Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers. Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a preselected size to iteratively drive the system toward the conditions where the seed becomes a critical nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella sampling calculations.

  18. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  19. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y. [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Wu, H. A., E-mail: wuha@ustc.edu.cn [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China)

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  20. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš

    2016-01-01

    Roč. 467, March (2016), s. 26-37 ISSN 0301-0104 R&D Projects: GA ČR GAP101/10/1819; GA ČR GA13-23550S Institutional support: RVO:61388998 Keywords : bubble nucleation * binary nucleation theory * dissolved gas Subject RIV: BJ - Thermodynamics Impact factor: 1.767, year: 2016 http://ac.els-cdn.com/S0301010416000124/1-s2.0-S0301010416000124-main.pdf?_tid=7797c8a0-fb13-11e5-ba55-00000aab0f6c&acdnat=1459849853_b9a5413fefc3e9199e844a9ccc97f514

  1. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Ice nucleation triggered by negative pressure.

    Science.gov (United States)

    Marcolli, Claudia

    2017-11-30

    Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.

  3. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.

    Science.gov (United States)

    Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J

    2017-11-21

    Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

  4. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  5. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  6. Multiple daytime nucleation events in semi-clean savannah and industrial environments in South Africa: analysis based on observations

    Directory of Open Access Journals (Sweden)

    A. Hirsikko

    2013-06-01

    Full Text Available Recent studies have shown very high frequencies of atmospheric new particle formation in different environments in South Africa. Our aim here was to investigate the causes for two or three consecutive daytime nucleation events, followed by subsequent particle growth during the same day. We analysed 108 and 31 such days observed in a polluted industrial and moderately polluted rural environments, respectively, in South Africa. The analysis was based on two years of measurements at each site. After rejecting the days having notable changes in the air mass origin or local wind direction, i.e. two major reasons for observed multiple nucleation events, we were able to investigate other factors causing this phenomenon. Clouds were present during, or in between most of the analysed multiple particle formation events. Therefore, some of these events may have been single events, interrupted somehow by the presence of clouds. From further analysis, we propose that the first nucleation and growth event of the day was often associated with the mixing of a residual air layer rich in SO2 (oxidized to sulphuric acid into the shallow surface-coupled layer. The second nucleation and growth event of the day usually started before midday and was sometimes associated with renewed SO2 emissions from industrial origin. However, it was also evident that vapours other than sulphuric acid were required for the particle growth during both events. This was especially the case when two simultaneously growing particle modes were observed. Based on our analysis, we conclude that the relative contributions of estimated H2SO4 and other vapours on the first and second nucleation and growth events of the day varied from day to day, depending on anthropogenic and natural emissions, as well as atmospheric conditions.

  7. Nucleation and dissociation of nano-particles in gas phase

    International Nuclear Information System (INIS)

    Feiden, P.

    2007-09-01

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na n and heterogeneous Na n X particles (X = (NaOH) 2 or (Na 2 O) 2 ). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na + (NaOH) p et Na + (NaF) p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na + Na + (NaOH) p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  8. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    Science.gov (United States)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the

  9. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  10. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  11. Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland

    OpenAIRE

    S. Gagné; T. Nieminen; T. Kurtén; H. E. Manninen; T. Petäjä; L. Laakso; V.-M. Kerminen; M. Boy; M. Kulmala

    2010-01-01

    We present the longest series of measurements so far (2 years and 7 months) made with an Ion-DMPS at the SMEAR II measurement station in Hyytiälä, Southern Finland. We show that the classification into overcharged (implying some participation of ion-induced nucleation) and undercharged (implying no or very little participation of ion-induced nucleation) days, based on Ion-DMPS measurements, agrees with the fraction of ion-induced nucleation based on NAIS measurements. Those classes are based ...

  12. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    Science.gov (United States)

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H 2 or CH 4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H 2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H 2 /CH 4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  13. Physics of aerosols - Second part: nucleation-condensation-ions-electrification-optical properties

    International Nuclear Information System (INIS)

    Bricard, Jean

    1977-01-01

    This report is made of two volumes. Volume 1 includes the general properties of aerosols, the fundamentals of the theory of gases and mechanics are related to particle suspensions, ant the theories of diffusion and coagulation with their applications to atmospheric aerosols. Volume 2 begins with a chapter on nucleation (gas-particle conversion) in the case of one vapor, then two vapors, followed by the theory of aerosol evaporation. The following two chapters are devoted to the study of ions and their attachment to aerosol particles. Finally their optical properties are stated in the last chapter

  14. Determining the nucleation rate from the dimer growth probability

    NARCIS (Netherlands)

    Ter Horst, J.H.; Kashchiev, D.

    2005-01-01

    A new method is proposed for the determination of the stationary one-component nucleation rate J with the help of data for the growth probability P2 of a dimer which is the smallest cluster of the nucleating phase. The method is based on an exact formula relating J and P2, and is readily applicable

  15. Morphology-dependent crossover effects in heterogeneous nucleation of peritectic materials studied via the phase-field method for Al-Ni

    International Nuclear Information System (INIS)

    Siquieri, R; Emmerich, H

    2009-01-01

    The application of phase-field modeling to nucleation as a phenomenon at the nanoscale is justified, if one takes into account the great success of continuum approaches in nanofluidics as proven by the many comparisons to experiments. Employed in this manner it provides an approach allowing us to account for effects of the physical diffuseness of a nucleus' interface and thereby go beyond classical nucleation theory (Granasy and James 2000 J. Chem. Phys. 113 9810; Emmerich and Siquieri 2006 J. Phys.: Condens. Matter 18 11121). Here we extend the focus of previous work in this field and address the question of how far the phase-field method can also be applied to gain further insight into nucleation statistics, in particular the nucleation prefactor appearing in the nucleation rate. In this context we describe in detail a morphology-dependent crossover effect noticeable for the nucleation rate at small driving forces.

  16. Preparation and nucleation of spherical metallic droplet

    Directory of Open Access Journals (Sweden)

    Bing-ge Zhao

    2015-03-01

    Full Text Available The preparation and solidification of metallic droplets attract more and more attention for their significance in both engineering and scientific fields. In this paper, the preparation and characterization of Sn-based alloy droplets using different methods such as atomization and consumable electrode direct current arc (CDCA technique are reviewed. The morphology and structure of these droplets were determined by optical microscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The solidification behavior of single droplet was systematically studied by means of scanning calorimetry (DSC, and the nucleation kinetics was also calculated. In particular, the development of fast scanning calorimetry (FSC made it possible to investigate the evolution of undercooling under ultrafast but controllable heating and cooling conditions. The combination of CDCA technique and FSC measurements opens up a new door for quantitative studies on droplet solidification, which is accessible to demonstrate some theories by experiments.

  17. Amines in the Earth’s Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters

    Directory of Open Access Journals (Sweden)

    Jason Herb

    2011-02-01

    Full Text Available The impact of organic species which are present in the Earth’s atmosphere on the burst of new particles is critically important for the understanding of the molecular nature of atmospheric nucleation phenomena. Amines have recently been proposed as possible stabilizers of binary pre-nucleation clusters. In order to advance the understanding of atmospheric nucleation phenomena, a quantum-chemical study of hydrogen-bonded complexes of binary sulfuric acid-water clusters with methyl-, dimethyl- and trimethylamines representing common atmospheric organic species, vegetation products and laboratory impurities has been carried out. The thermochemical stability of the sulfuric acid-amines-water complexes was found to be higher than that of the sulfuric acid-ammonia-water complexes, in qualitative agreement with the previous studies. However, the enhancement in stability due to amines appears to not be large enough to overcome the difference in typical atmospheric concentrations of ammonia and amines. Further research is needed in order to address the existing uncertainties and to reach a final conclusion about the importance of amines for the atmospheric nucleation.

  18. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  19. Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-06-18

    Using molecular dynamics simulation, we study the impact of the degree of supercooling on the crystal nucleation of ultra-soft particles, modeled with the Gaussian core potential. Focusing on systems with a high number density, our simulations reveal dramatically different behaviors as the degree of supercooling is varied. In the moderate supercooling regime, crystal nucleation proceeds as expected from classical nucleation theory, with a decrease in the free energy of nucleation, as well as in the size of the critical nucleus, as supercooling is increased. On the other hand, in the large supercooling regime, we observe an unusual reversal of behavior with an increase in the free energy of nucleation and in the critical size, as supercooling is increased. This unexpected result is analyzed in terms of the interplay between the glass transition and the crystal nucleation process. Specifically, medium range order crystal-like domains, with structural features different from that of the crystal nucleus, are found to form throughout the system when the supercooling is very large. These, in turn, play a pivotal role in the increase in the free energy of nucleation, as well as in the critical size, as the temperature gets closer to the glass transition.

  20. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  1. Role of nucleation in nanodiamond film growth

    International Nuclear Information System (INIS)

    Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.

    2006-01-01

    Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C 2 dimer growth (CH 4 and H 2 in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH 4 in H 2 ) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C 2 dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite

  2. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  3. Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques

    International Nuclear Information System (INIS)

    Xiao, Kechao; Vlassak, Joost J.

    2015-01-01

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10 1 to 10 4 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials

  4. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-08-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size. Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.

  5. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  6. Polymer-based nucleation for chemical vapour deposition of diamond

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Kromka, Alexander; Varga, Marián

    2016-01-01

    Roč. 133, č. 29 (2016), 1-7, č. článku 43688. ISSN 0021-8995 R&D Projects: GA ČR GC15-22102J Institutional support: RVO:68378271 Keywords : copolymers * composites * diamond * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.860, year: 2016

  7. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-05-14

    The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  8. Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model

    Science.gov (United States)

    Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang

    2018-02-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.

  9. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  10. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Science.gov (United States)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  11. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Directory of Open Access Journals (Sweden)

    S. Garimella

    2017-09-01

    Full Text Available This study investigates the measurement of ice nucleating particle (INP concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs. CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN, and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC. Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  12. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  13. Thermodynamic and Dynamic Aspects of Ice Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  14. Nucleation in Polymers and Soft Matter

    Science.gov (United States)

    Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang

    2014-04-01

    Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.

  15. Nucleation and dynamics of vortices in type-II superconductors

    International Nuclear Information System (INIS)

    Balley, R.E.

    1977-03-01

    The one- and two-dimensional Ginzburg-Landau equations are numerically integrated in a slab geometry, which is appropriate for comparison to experimental work done on films. When two-dimensional variations become energetically favorable, a vortex is found to nucleate and move to the center of the film with the Gibbs free energy decreasing during the process. An important process by which the energy is lowered during this nucleation procedure is found to be the savings in condensation energy arising from the shrinking size of the vortex core as it moves to the center of the film. The solutions of the Ginzburg-Landau equations are used to explain anomalies observed experimentally in the tunneling characteristics of thin films of PbIn. Excellent agreement between theory and experiment is found with the Ginzburg-Landau equations correctly predicting the field at which flux would first enter the films. We then use the Clem model of an isolated vortex to model vortex nucleation and dynamics under the influence of a transport current. The entry fields predicted by the model are found to be off by almost a factor of two but have the advantage of requiring simple computer programs for their solution, while the Ginzburg-Landau solutions require substantially more numerical work

  16. SPA-LEED Study of the Morphology and Nucleation of a Novel Growth Mode and the ''devil's staircase'' on Pb/Si(111)

    International Nuclear Information System (INIS)

    Wang-Chi Vincent Yeh

    2003-01-01

    This thesis was developed to address the following questions for the Pb/Si(111) system: (1) Is it possible to control the nano-structure growth by changing the initial substrate; (2) is the nucleation theory applicable to the case of the 7-step growth mode; and (3) what phase or phases could be formed between coverage 6/5 ML and 4/3 ML? The first question was answered in chapter 2, different growth results were observed for different initial substrate, suggesting the possibility of controlling nano-structure growth by selecting the initial substrate. The applicability of nucleation theory was determined to be unclear in chapter 3, from the results that the saturation island density does not depend on deposition rate, in contrary to the prediction of nucleation theory. Chapter 4 revealed a novel ''devil's staircase'' in Pb/Si(111) within the coverage range 6/5 ML and 4/3 ML. Low temperature deposition experiments showed high order of self-organization in such a system. Theoretical studies are needed to understand such a low temperature behavior. In general, this thesis provides possibilities of controlling nano-structure growth, which can be possibly an indication for future application. It also raises interesting questions in fundamental researches: a modified theory of nucleation is needed, and a detailed study of low temperature behavior is required. Details of the conclusions in each of the chapters are collected in the following sections

  17. Computer simulation of chemical nucleation

    International Nuclear Information System (INIS)

    Turner, J.S.

    1979-01-01

    The problem of nucleation at chemical instabilities is investigated by means of microscopic computer simulation. The first-order transition of interest involves a new kind of nucleation arising from chemical transformations rather than physical forces. Here it is the chemical state of matter, and not matter itself, which is spatially localized to form the nucleus for transition between different chemical states. First, the concepts of chemical instability, nonequilibrium phase transition, and dissipative structure are reviewed briefly. Then recently developed methods of reactive molecular dynamics are used to study chemical nucleation in a simple model chemical reactions. Finally, the connection of these studies to nucleation and condensation processes involving physical and chemical interactions is explored. (orig.)

  18. A classical view on nonclassical nucleation

    NARCIS (Netherlands)

    Smeets, P.J.M.; Finney, A.R.; Habraken, W.J.E.M.; Nudelman, F.; Friedrich, H.; Laven, J.; De Yoreo, J.J.; Rodger, P.M.; Sommerdijk, N.A.J.M.

    2017-01-01

    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO3) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO3 nucleation is still a

  19. Chemically assisted crack nucleation in zircaloy

    International Nuclear Information System (INIS)

    Williford, R.E.

    1985-01-01

    Stress corrosion cracking models (proposed to explain fuel rod failures) generally address crack propagation and cladding rupture, but frequently neglect the necessary nucleation stage for microcracks small enough to violate fracture mechanics continuum requirements. Intergranular microcrack nucleation was modeled with diffusion-controlled grain-boundary cavitation concepts, including the effects of metal embrittlement by iodine species. Computed microcrack nucleation times and strains agree with experimental observation, but the predicted grain-boundary cavities are so small that detection may be difficult. Without a protective oxide film intergranular microcracks can nucleate within 30 s at even low stresses when the embrittler concentration exceeds a threshold value. Indications were found that intergranular microcrack nucleation may be caused by combined corrosive and embrittlement phenomena. (orig.)

  20. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels

    International Nuclear Information System (INIS)

    Ravi, Ashwath M.; Sietsma, Jilt; Santofimia, Maria J.

    2016-01-01

    Bainite formation in steels begins with nucleation of bainitic ferrite at austenite grain boundaries (γ/γ interfaces). This leads to creation of bainitic ferrite/austenite interfaces (α/γ interfaces). Bainite formation continues through autocatalysis with nucleation of bainitic ferrite at these newly created α/γ interfaces. The displacive theory of bainite formation suggests that the formation of bainitic ferrite is accompanied by carbon enrichment of surrounding austenite. This carbon enrichment generally leads to carbide precipitation unless such a reaction is thermodynamically or kinetically unfavourable. Each bainitic ferrite nucleation event is governed by an activation energy. Depending upon the interface at which nucleation occurs, a specific activation energy would be related to a specific nucleation mechanism. On the basis of this concept, a model has been developed to understand the kinetics of bainite formation during isothermal treatments. This model is derived under the assumptions of displacive mechanism of bainite formation. The fitting parameters used in this model are physical entities related to nucleation and microstructural dimensions. The model is designed in such a way that the carbon redistribution during bainite formation is accounted for, leading to prediction of transformation kinetics both with and without of carbide precipitation during bainite formation. Furthermore, the model is validated using two different sets of kinetic data published in the literature.

  1. Understanding Cirrus Ice Crystal Number Variability for Different Heterogeneous Ice Nucleation Spectra

    Science.gov (United States)

    Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios

    2016-01-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  2. Freezing nucleation apparatus puts new slant on study of biological ice nucleators in precipitation

    Science.gov (United States)

    Stopelli, E.; Conen, F.; Zimmermann, L.; Alewell, C.; Morris, C. E.

    2014-01-01

    For decades, drop-freezing instruments have contributed to a better understanding of biological ice nucleation and its likely implications for cloud and precipitation development. Yet, current instruments have limitations. Drops analysed on a cold stage are subject to evaporation and potential contamination. The use of closed tubes provides a partial solution to these problems, but freezing events are still difficult to be clearly detected. Here, we present a new apparatus where freezing in closed tubes is detected automatically by a change in light transmission upon ice development, caused by the formation of air bubbles and crystal facets that scatter light. Risks of contamination and introduction of biases linked to detecting the freezing temperature of a sample are then minimized. To illustrate the performance of the new apparatus we show initial results of two assays with snow samples. In one, we repeatedly analysed the sample (208 tubes) over the course of a month with storage at +4 °C, during which evidence for biological ice nucleation activity emerged through an increase in the number of ice nucleators active around -4 °C. In the second assay, we indicate the possibility of increasingly isolating a single ice nucleator from a precipitation sample, potentially determining the nature of a particle responsible for a nucleation activity measured directly in the sample. These two seminal approaches highlight the relevance of this handy apparatus for providing new points of view in biological ice nucleation research.

  3. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  4. Molecular dynamics studies of crystalline nucleation in one-component Yukawa plasmas

    International Nuclear Information System (INIS)

    Ravelo, R.; Hammerberg, J.E.; Holian, B.L.

    1992-01-01

    We report on molecular dynamics studies of one-component Yukawa plasmas undergoing rapid quenches from a fluid state with a Coulomb parameter Γ = 40 to solid states in the range 350 < Γ < 800. The detailed dynamical structure of ordering appears more complicated than results from classical theories of nucleation, with planar formation being observed before fully 3-dimensional ordering appears

  5. Temperature effect on the nucleation and growth of TiO2 colloidal nanoparticles

    Directory of Open Access Journals (Sweden)

    Morteza Sasani Ghamsari

    2017-01-01

    Full Text Available The nucleation and growth of sol-gel derived TiO2 colloidal nanoparticles have been studied using  experiment and theory as well. In this study, the temperature effect on the formation of TiO2 nanoparticles was discussed and some effective parameters such as the supply rate of solute (Q0, the mean volumic growth rate of stable nuclei during the nucleation period (u, the diffusion coefficient of [Ti]+4 ions and the nucleus size were determined. The formation of TiO2 nanoparticles in three different temperatures (60, 70 and 80°C was studied. The obtained results showed that the process temperature has a considerable impact on the nucleation and growth of TiO2 nanoparticles. It can be concluded that  increasing the temperature leads to a decrease of the supersaturation and an increase of the nucleus size, supply rate of monomer, nanoparticles density and growth rate as evident from LaMer diagram.

  6. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation

    CERN Document Server

    Ehrhart, Sebastian; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208–292 K, sulphuric acid concentrations from 1·106 to 1·109 cm−3, and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphu...

  7. Structural motifs of pre-nucleation clusters.

    Science.gov (United States)

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  8. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation

    Directory of Open Access Journals (Sweden)

    Ziqian DENG

    2018-04-01

    Full Text Available Plasma spray-physical vapor deposition (PS-PVD as a novel coating process based on low-pressure plasma spray (LPPS has been significantly used for thermal barrier coatings (TBCs. A coating can be deposited from liquid splats, nano-sized clusters, and the vapor phase forming different structured coatings, which shows obvious advantages in contrast to conventional technologies like atmospheric plasma spray (APS and electron beam-physical vapor deposition (EB-PVD. In addition, it can be used to produce thin, dense, and porous ceramic coatings for special applications because of its special characteristics, such as high power, very low pressure, etc. These provide new opportunities to obtain different advanced microstructures, thus to meet the growing requirements of modern functional coatings. In this work, focusing on exploiting the potential of gas-phase deposition from PS-PVD, a series of 7YSZ coating experiments with various process conditions was performed in order to better understand the deposition process in PS-PVD, where coatings were deposited on different substrates including graphite and zirconia. Meanwhile, various substrate temperatures were investigated for the same substrate. As a result, a deposition mechanism of heterogeneous nucleation has been presented showing that surface energy is an important influencing factor for coating structures. Besides, undercooling of the interface between substrate and vapor phase plays an important role in coating structures. Keywords: 7YSZ, Deposition mechanism, Heterogeneous nucleation, PS-PVD, TBC

  9. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.

    Science.gov (United States)

    Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian

    2016-09-29

    In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.

  10. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  11. Nucleation of super-critical carbon dioxide in a venturi nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Jarrahbashi, D., E-mail: dorrin.jarrahbashi@me.gatech.edu; Pidaparti, S.R.; Ranjan, D.

    2016-12-15

    Highlights: • Nucleation of S-CO{sub 2} in a nozzle near critical point has been computationally studied. • The nucleation behavior is very sensitive to the inlet pressure and temperature. • After nucleation, high liquid-content two-phase mixture near wall travels downstream. - Abstract: Pressure reduction at the entrance of the compressor in supercritical CO{sub 2} Brayton cycles may cause nucleation and create a mixture of vapor and liquid droplets due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and degrade the materials used in the design. The nucleation behavior of supercritical carbon-dioxide inside a venturi nozzle near the critical point is computationally studied. A transient compressible 3D Navier–Stokes solver, coupled with continuity, and energy equations have been implemented. In order to expedite the simulations, Fluid property Interpolation Tables (FIT) based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO{sub 2} properties. The mass fraction of vapor created in the venturi nozzle has been calculated using homogeneous equilibrium model (HEM). Nucleation behavior has been shown to be very sensitive to the inlet pressure, inlet temperature, and flow rate. The flow conditions that led to nucleation were identified. Nucleation was observed in the throat area and divergent section of the nozzle for mass flow rates from 0.050 kg/s to 0.065 kg/s, inlet pressure from 7.8 to 7.4 MPa for fixed exit pressure equal to 7.28 MPa. The inception of high-vapor-content nucleation was first observed in the throat area away from the side walls that remained confined to the throat region in later times. However, near the walls, a high liquid-content two-phase region was detected, first in the divergent section. At later times, the two-phase region was convected downstream toward the nozzle exit

  12. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  13. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.

    Science.gov (United States)

    Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans

    2008-04-28

    Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.

  14. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    Science.gov (United States)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  15. Truncated Dual-Cap Nucleation Site Development

    Science.gov (United States)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  16. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  17. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    Science.gov (United States)

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  18. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  19. Correlation of Solubility with the Metastable Limit of Nucleation Using Gauge-Cell Monte Carlo Simulations.

    Science.gov (United States)

    Clark, Michael D; Morris, Kenneth R; Tomassone, Maria Silvina

    2017-09-12

    We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.

  20. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  1. Large stability and high catalytic activities of sub-nm metal (0) clusters: implications into the nucleation and growth theory.

    Science.gov (United States)

    Piñeiro, Yolanda; Buceta, David; Calvo, Javier; Huseyinova, Shahana; Cuerva, Miguel; Pérez, Ángel; Domínguez, Blanca; López-Quintela, M Arturo

    2015-07-01

    Clusters are stable catalytic species, which are produced during the synthesis of nanoparticles (NPs). Their existence contradicts the thermodynamic principles used to explain the formation of NPs by the classical nucleation and growth theories (NGTs). Using chemical and electrochemical methods we will show that depending on the experimental conditions one can produce either Ag clusters or Ag NPs. Moreover, using already prepared Ag clusters one can observe the disappearance of the usual induction period observed for the kinetics of NP formation, indicating that clusters catalyze the formation of NPs. Taking these data together with some previous examples of cluster-catalyzed anisotropic growth, we derived a qualitative approach to include the catalytic activities of clusters into the formation of NPs, which is incorporated into the NGT. Some qualitative conclusions about the main experimental parameters, which affect the formation of clusters versus NPs, as well as the catalytic mechanism versus the non-catalytic one, are also described. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nucleation and growth of new particles in Po Valley, Italy

    Directory of Open Access Journals (Sweden)

    A. Hamed

    2007-01-01

    Full Text Available Aerosol number distribution measurements are reported at San Pietro Capofiume (SPC station (44°39' N, 11°37' E for the time period 2002–2005. The station is located in Po Valley, the largest industrial, trading and agricultural area in Italy with a high population density. New particle formation was studied based on observations of the particle size distribution, meteorological and gas phase parameters. The nucleation events were classified according to the event clarity based on the particle number concentrations, and the particle formation and growth rates. Out of a total of 769 operational days from 2002 to 2005 clear events were detected on 36% of the days whilst 33% are clearly non-event days. The event frequency was high during spring and summer months with maximum values in May and July, whereas lower frequency was observed in winter and autumn months. The average particle formation and growth rates were estimated as ~6 cm−3 s−1 and ~7 nm h−1, respectively. Such high growth and formation rates are typical for polluted areas. Temperature, wind speed, solar radiation, SO2 and O3 concentrations were on average higher on nucleation days than on non-event days, whereas relative and absolute humidity and NO2 concentration were lower; however, seasonal differences were observed. Backtrajectory analysis suggests that during majority of nucleation event days, the air masses originate from northern to eastern directions. We also study previously developed nucleation event correlations with environmental variables and show that they predict Po Valley nucleation events with variable success.

  3. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    International Nuclear Information System (INIS)

    Li, J H; Schumacher, P; Albu, M; Hofer, F; Ludwig, T H; Arnberg, L

    2016-01-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting. (paper)

  4. Responses of Mixed-Phase Cloud Condensates and Cloud Radiative Effects to Ice Nucleating Particle Concentrations in NCAR CAM5 and DOE ACME Climate Models

    Science.gov (United States)

    Liu, X.; Shi, Y.; Wu, M.; Zhang, K.

    2017-12-01

    Mixed-phase clouds frequently observed in the Arctic and mid-latitude storm tracks have the substantial impacts on the surface energy budget, precipitation and climate. In this study, we first implement the two empirical parameterizations (Niemand et al. 2012 and DeMott et al. 2015) of heterogeneous ice nucleation for mixed-phase clouds in the NCAR Community Atmosphere Model Version 5 (CAM5) and DOE Accelerated Climate Model for Energy Version 1 (ACME1). Model simulated ice nucleating particle (INP) concentrations based on Niemand et al. and DeMott et al. are compared with those from the default ice nucleation parameterization based on the classical nucleation theory (CNT) in CAM5 and ACME, and with in situ observations. Significantly higher INP concentrations (by up to a factor of 5) are simulated from Niemand et al. than DeMott et al. and CNT especially over the dust source regions in both CAM5 and ACME. Interestingly the ACME model simulates higher INP concentrations than CAM5, especially in the Polar regions. This is also the case when we nudge the two models' winds and temperature towards the same reanalysis, indicating more efficient transport of aerosols (dust) to the Polar regions in ACME. Next, we examine the responses of model simulated cloud liquid water and ice water contents to different INP concentrations from three ice nucleation parameterizations (Niemand et al., DeMott et al., and CNT) in CAM5 and ACME. Changes in liquid water path (LWP) reach as much as 20% in the Arctic regions in ACME between the three parameterizations while the LWP changes are smaller and limited in the Northern Hemispheric mid-latitudes in CAM5. Finally, the impacts on cloud radiative forcing and dust indirect effects on mixed-phase clouds are quantified with the three ice nucleation parameterizations in CAM5 and ACME.

  5. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    Science.gov (United States)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially

  6. Supersaturation-nucleation behavior of poorly soluble drugs and its impact on the oral absorption of drugs in thermodynamically high-energy forms.

    Science.gov (United States)

    Ozaki, Shunsuke; Minamisono, Takuma; Yamashita, Taro; Kato, Takashi; Kushida, Ikuo

    2012-01-01

    In order to better understand the oral absorption behavior of poorly water-soluble drugs, their supersaturation-nucleation behavior was characterized in fasted state simulated intestinal fluid. The induction time (t(ind)) for nucleation was measured for four model drugs: itraconazole, erlotinib, troglitazone, and PLX4032. Supersaturated solutions were prepared by solvent shift method, and nucleation initiation was monitored by ultraviolet detection. The relationship between t(ind) and degree of supersaturation was analyzed in terms of classical nucleation theory. The defined supersaturation stability proved to be compound specific. Clinical data on oral absorption were investigated for drugs in thermodynamically high-energy forms such as amorphous forms and salts and was compared with in vitro supersaturation-nucleation characteristics. Solubility-limited maximum absorbable dose was proportionate to intestinal effective drug concentrations, which are related to supersaturation stability and thermodynamic solubility. Supersaturation stability was shown to be an important factor in determining the effect of high-energy forms. The characterization of supersaturation-nucleation behavior by the presented method is, therefore, valuable for assessing the potential absorbability of poorly water-soluble drugs. Copyright © 2011 Wiley-Liss, Inc.

  7. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    Science.gov (United States)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  8. How capping protein enhances actin filament growth and nucleation on biomimetic beads.

    Science.gov (United States)

    Wang, Ruizhe; Carlsson, Anders E

    2015-11-25

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  9. Metadynamics studies of crystal nucleation

    Science.gov (United States)

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  10. Metadynamics studies of crystal nucleation

    Directory of Open Access Journals (Sweden)

    Federico Giberti

    2015-03-01

    Full Text Available Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation.

  11. Review: The nucleation of disorder

    International Nuclear Information System (INIS)

    Cahn, R.W.; Johnson, W.L.

    1986-01-01

    Four types of phase transformation that involve the conversion of crystalline phases into more disordered forms are reviewed: melting, disordering of superlattices, amorphization by diffusion between crystalline phases, and irradation amorphization. In the review emphasis is placed on evidence for the heterogeneous nucleation of the product phases; in this connection, the role of surfaces, antiphase domain boundaries, dislocations, vacancies, and grain boundaries is specifically discussed. All of these features have been either observed, or hypothesized, to play a role as heterogeneous nucleation sites in one or more of the four transformations. An attempt is made to draw parallels between nucleation mechanisms in the various processes

  12. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  13. Liquid-liquid structure transition and nucleation in undercooled Co-B eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yixuan [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France); Li, Jinshan; Wang, Jun; Kou, Hongchao [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Beagunon, Eric [Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France)

    2017-06-15

    Cyclic superheating and cooling were carried out for the undercooled hypereutectic Co{sub 80}B{sub 20}, eutectic Co{sub 81.5}B{sub 18.5,} and hypoeutectic Co{sub 83}B{sub 17} alloys. For each alloy, there is a critical overheating temperature T{sub c}° at which there is a sharp increase of the mean undercooling, i.e., below (above) T{sub c}°, and the mean undercooling is about 80 °C (200 °C). DSC measurements show that there is a thermal absorption peak in the heating process, the peak temperature of which is nearly equal to the critical overheating temperature, indicating that the temperature-induced liquid-liquid structure transition does occur and should relate highly to nucleation in the undercooled Co-B eutectic melts. The effect of the liquid-liquid structure transition on nucleation was interpreted by the recent nucleation theory that considers the structures of overheated melts, and the composition-dependent overheating temperature was ascribed to the change of local favored structures. The present work provides further evidences for the liquid-liquid structure transition and is helpful for understanding solidification in undercooled melts. (orig.)

  14. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte

    2009-01-01

    Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...... the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd...

  15. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  16. Structural match of heterogeneously nucleated Mn(OH)_2(s) nanoparticles on quartz under various pH conditions

    International Nuclear Information System (INIS)

    Jung, Haesung; Lee, Byeongdu; Jun, Young-Shin

    2016-01-01

    The early nucleation stage of Mn (hydr)oxide on mineral surfaces is crucial to understand its occurrence and the cycling of nutrients in environmental systems. However, there are only limited studies on the heterogeneous nucleation of Mn(OH)_2(s) as the initial stage of Mn (hydr)oxide precipitation. Here, we investigated the effect of pH on the initial nucleation of Mn(OH)_2(s) on quartz. Under various pH conditions of 9.8, 9.9, and 10.1, we analyzed the structural matches between quartz and heterogeneously nucleated Mn(OH)_2(s). The structural matches were calculated by measuring lateral and vertical dimensions using grazing incidence small angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), respectively. We found that a poorer structural match occurred at a higher pH than at a lower pH. The faster nucleation at a higher pH condition accounted for the observed poorer structural match. By fitting the structural match using classical nucleation theory, we also calculated the interfacial energy between Mn(OH)_2(s) and water (γ_n_f = 71 ± 7 mJ/m"2). The calculated m values and γ_n_f provided the variance of interfacial energy between quartz and Mn(OH)_2(s): γ_s_n = 262–272 mJ/m"2. As a result, this study provides new qualitative and quantitative information about heterogeneous nucleation on environmentally an abundant mineral surface, quartz, and it offers important underpinnings for understanding the fate and transport of trace ions in environmental systems.

  17. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    Science.gov (United States)

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate.

  18. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  19. Sensitivity of ice-nucleating bacteria to ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Hitoshi; Tanahashi, Shinji; Kawahara, Hidehisa (Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering)

    1992-01-01

    The effect of ultraviolet (UV) irradiation on the ice-nucleating activity of the ice-nucleating bacteria was examined. Bacterial suspension was irradiated with UV (254 nm, 6Wx2) for 5 min at a distance of 20 cm from UV source. Although no viable cells were detected, the ice-nucreating activity of the cells was not affected. Furthermore, after UV irradiation for 3 hr, the ice-nucleating activity of Pseudomonas fluorescens and P. syringae was only slightly decreased, although that of P. viridiflava and Erwinia herbicola was significantly lowered. We succeeded in killing the ice-nucleating bacteria, while retaining their ice-nucleating activity with UV irradiation. (author).

  20. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  1. A classical view on nonclassical nucleation.

    Science.gov (United States)

    Smeets, Paul J M; Finney, Aaron R; Habraken, Wouter J E M; Nudelman, Fabio; Friedrich, Heiner; Laven, Jozua; De Yoreo, James J; Rodger, P Mark; Sommerdijk, Nico A J M

    2017-09-19

    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO 3 ) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO 3 nucleation is still a topic of intense discussion, with new pathways for its growth from ions in solution proposed in recent years. These new pathways include the so-called nonclassical nucleation mechanism via the assembly of thermodynamically stable prenucleation clusters, as well as the formation of a dense liquid precursor phase via liquid-liquid phase separation. Here, we present results from a combined experimental and computational investigation on the precipitation of CaCO 3 in dilute aqueous solutions. We propose that a dense liquid phase (containing 4-7 H 2 O per CaCO 3 unit) forms in supersaturated solutions through the association of ions and ion pairs without significant participation of larger ion clusters. This liquid acts as the precursor for the formation of solid CaCO 3 in the form of vaterite, which grows via a net transfer of ions from solution according to z Ca 2+ + z CO 3 2- → z CaCO 3 The results show that all steps in this process can be explained according to classical concepts of crystal nucleation and growth, and that long-standing physical concepts of nucleation can describe multistep, multiphase growth mechanisms.

  2. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  3. Nucleation versus instability race in strained films

    Science.gov (United States)

    Liu, Kailang; Berbezier, Isabelle; David, Thomas; Favre, Luc; Ronda, Antoine; Abbarchi, Marco; Voorhees, Peter; Aqua, Jean-Noël

    2017-10-01

    Under the generic term "Stranski-Krastanov" are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with exp(1 /x4) for nucleation, while it only behaves as 1 /x8 for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

  4. HOUSEHOLD NUCLEATION, DEPENDENCY AND CHILD HEALTH OUTCOMES IN GHANA.

    Science.gov (United States)

    Annim, Samuel Kobina; Awusabo-Asare, Kofi; Amo-Adjei, Joshua

    2015-09-01

    This study uses three key anthropometric measures of nutritional status among children (stunting, wasting and underweight) to explore the dual effects of household composition and dependency on nutritional outcomes of under-five children in Ghana. The objective is to examine changes in household living arrangements of under-five children to explore the interaction of dependency and nucleation on child health outcomes. The concept of nucleation refers to the changing structure and composition of household living arrangements, from highly extended with its associated socioeconomic system of production and reproduction, social behaviour and values, towards single-family households - especially the nuclear family, containing a husband and wife and their children alone. A negative relationship between levels of dependency, as measured by the number of children in the household, and child health outcomes is premised on the grounds that high dependency depletes resources, both tangible and intangible, to the disadvantage of young children. Data were drawn from the last four rounds of the Ghana Demographic and Health Surveys (GDHSs), from 1993 to 2008, for the first objective - to explore changes in household composition. For the second objective, the study used data from the 2008 GDHS. The results show that, over time, households in Ghana have been changing towards nucleation. The main finding is that in households with the same number of dependent children, in nucleated households children under age 5 have better health outcomes compared with children under age 5 in non-nucleated households. The results also indicate that the effect of dependency on child health outcomes is mediated by household nucleation and wealth status and that, as such, high levels of dependency do not necessarily translate into negative health outcomes for children under age 5, based on anthropometric measures.

  5. The relevance of nanoscale biological fragments for ice nucleation in clouds

    Science.gov (United States)

    O‧Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.

    2015-01-01

    Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.

  6. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  7. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    Science.gov (United States)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice

  8. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  9. Theory-Based Stakeholder Evaluation

    Science.gov (United States)

    Hansen, Morten Balle; Vedung, Evert

    2010-01-01

    This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…

  10. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  11. Nucleation theory with delayed interactions: an application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles.

    Science.gov (United States)

    Raudino, Antonio; Pannuzzo, Martina

    2010-01-28

    A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate

  12. Janus effect of antifreeze proteins on ice nucleation.

    Science.gov (United States)

    Liu, Kai; Wang, Chunlei; Ma, Ji; Shi, Guosheng; Yao, Xi; Fang, Haiping; Song, Yanlin; Wang, Jianjun

    2016-12-20

    The mechanism of ice nucleation at the molecular level remains largely unknown. Nature endows antifreeze proteins (AFPs) with the unique capability of controlling ice formation. However, the effect of AFPs on ice nucleation has been under debate. Here we report the observation of both depression and promotion effects of AFPs on ice nucleation via selectively binding the ice-binding face (IBF) and the non-ice-binding face (NIBF) of AFPs to solid substrates. Freezing temperature and delay time assays show that ice nucleation is depressed with the NIBF exposed to liquid water, whereas ice nucleation is facilitated with the IBF exposed to liquid water. The generality of this Janus effect is verified by investigating three representative AFPs. Molecular dynamics simulation analysis shows that the Janus effect can be established by the distinct structures of the hydration layer around IBF and NIBF. Our work greatly enhances the understanding of the mechanism of AFPs at the molecular level and brings insights to the fundamentals of heterogeneous ice nucleation.

  13. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  14. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2012-12-01

    Full Text Available This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i the factors controlling atmospheric CCN production and (ii the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.

  15. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  16. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1985-01-01

    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  17. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  18. A nucleator arms race: cellular control of actin assembly.

    Science.gov (United States)

    Campellone, Kenneth G; Welch, Matthew D

    2010-04-01

    For over a decade, the actin-related protein 2/3 (ARP2/3) complex, a handful of nucleation-promoting factors and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have seen a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASP and SCAR homologue (WASH), WASP homologue associated with actin, membranes and microtubules (WHAMM), and junction-mediating regulatory protein (JMY), stimulate ARP2/3 activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, cordon-bleu and leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization.

  19. Molecular dynamics studies of the transient nucleation regime in the freezing of (RbCl)108 clusters

    International Nuclear Information System (INIS)

    Huang, Jinfan; Bartell, L.S.Lawrence S.

    2004-01-01

    The freezing of supercooled liquids in the transient period before a steady state of nucleation is attained has been the subject of a number of theoretical treatments. To our knowledge, no published experimental studies or computer simulations have been carried out in sufficient detail to test definitively the behavior predicted by the various theories. The present molecular dynamics (MD) simulation of 375 nucleation events in small, liquid RbCl clusters, however, yields a reasonably accurate account of the transient region. Despite published criticisms of a 1969 treatment by Kashchiev, it turns out that the behavior observed in the present study agrees with that predicted by Kashchiev. The study also obtains a much more accurate nucleation rate and time lag than reported for MD studies of RbCl previously published in this journal. In addition, it provides estimates of the solid-liquid interfacial free energy and the Granasy thickness of the diffuse solid-liquid interface

  20. Impact of surface nanostructure on ice nucleation.

    Science.gov (United States)

    Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

    2014-09-28

    Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

  1. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    Science.gov (United States)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  2. Thermal interaction effect on nucleation site distribution in subcooled boiling

    International Nuclear Information System (INIS)

    Zou, Ling; Jones, Barclay

    2012-01-01

    An experimental work on subcooled boiling of refrigerant, R134a, to examine nucleation site distributions on both copper and stainless steel heating surfaces was performed. In order to obtain high fidelity active nucleation site density and distribution data, a high-speed digital camera was utilized to record bubble emission images from a view normal to heating surfaces. Statistical analyses on nucleation site data were done and their statistical distributions were obtained. Those experimentally observed nucleation site distributions were compared to the random spatial Poisson distribution. The comparisons showed that, rather than purely random, active nucleation site distributions on boiling surfaces are relatively more uniform. Experimental results also showed that on the copper heating surface, nucleation site distributions are slightly more uniform than on the stainless steel surface. This was concluded as the results of thermal interactions between nucleation sites with different solid thermal conductivities. A two dimensional thermal interaction model was then developed to quantitatively examine the thermal interactions between nucleation sites. The results give a reasonable explanation to the experimental observation on nucleation site distributions.

  3. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    Science.gov (United States)

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  4. A theoretical analysis of flow through the nucleating stage in a low pressure steam turbine

    International Nuclear Information System (INIS)

    Skillings, S.A.; Walters, P.T.; Jackson, R.

    1989-01-01

    In order to improve steam turbine efficiency and reliability, the phenomena associated with the formation and growth of water droplets must be understood. This report describes a theoretical investigation into flow behaviour in the nucleating stage, where the predictions of a one-dimensional theory are compared with measured turbine data. Results indicate that droplet sizes predicted by homogeneous condensation theory cannot be reconciled with measurements unless fluctuating shock waves arise. Heterogeneous effects and flow turbulence are also discussed along with their implications for the condensation process. (author)

  5. Nucleation and growth kinetics for intercalated islands during deposition on layered materials with isolated pointlike surface defects

    International Nuclear Information System (INIS)

    Han, Yong; Lii-Rosales, A.; Zhou, Y.; Wang, C.-J.

    2017-01-01

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modeling produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.

  6. Design and properties of a novel nucleating agent for isotactic polypropylene

    International Nuclear Information System (INIS)

    Lv, Zhiping; Yang, Yunfei; Wu, Ran; Tong, Yuchao

    2012-01-01

    Highlights: ► Three new nucleating agents which is structurally similar to Al-PTBBA were prepared. ► These three nucleating agents were very effective in increasing T c and X c of iPP. ► Great improvement of mechanical properties of nucleated iPP was also obtained. ► Nucleating agent TSD was the most effective nucleating agent for iPP. -- Abstract: Three new nucleating agents TB, TD and TSD (titanate of benzoate or 4-tert-Butylbenzoate) were prepared. Isotactic polypropylene (iPP) nucleated were studied by using thermogravimetry analysis (TGA), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The mechanical properties and Vicat softening temperature (VST) of iPP were also tested. The results indicated that these three nucleating agents were very effective in increasing the crystallization temperature (T c ) and crystallinity (X c ) of iPP. Mechanical properties of nucleated iPP were improved remarkably, especially nucleating agent TSD.

  7. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  8. To the theory of the first-type phase transformations for many variables

    International Nuclear Information System (INIS)

    Fateev, M.P.

    2002-01-01

    The multidimensional theory on the first-type phase transitions near the one-dimensional saddle point is considered. The transformations of the variables, describing the new phase nucleation, making it possible to achieve their complex separation in the Fokker-Planck equation, and thus to reduce the problem to the one-dimensional one, are proposed. The distribution function and nucleation velocity are determined both for the stationary and nonstationary nucleation stages. The problem on volatile liquid boiling is considered as an example for the case when there are two parameters, characterizing the new phase nucleation [ru

  9. Investigation of bubble flow regimes in nucleate boiling of highly-wetting liquids

    International Nuclear Information System (INIS)

    Tong, W.; Bar-Cohen, A.; Simon, T.W.

    1991-01-01

    This paper describes an investigation of the bubble flow regimes in nucleate boiling of FC-72, a highly-wetting liquid. Theoretically analysis of vapor bubble generation and departure from the heated surface reveals that the heat fluxes required for the merging of consecutive bubbles, for highly-wetting liquids, lie in the upper range of the nucleate boiling heat flux. A visual and photographic study of nucleate boiling from sputtered platinum surfaces has supported the theoretical results and shown that the isolated bubble behavior extends to at least 50-80% of the critical heat flux, considerably higher than observed by others with water. Lateral coalescence of adjacent bubbles has been found to be a more likely cause of the termination of the isolated bubble regime. These findings suggest that thermal transport models which are based on isolated bubble behavior may be applicable to nearly the entire range of nucleate boiling of electronic cooling fluids

  10. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  11. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case

    Science.gov (United States)

    Trobo, Marta L.; Albano, Ezequiel V.; Binder, Kurt

    2018-03-01

    Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hbbaseline length of the circle-cut sphere droplet would exceed b. For Hbc r i tbaseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θeff in the regime θc energy barrier for the "depinning" of the droplet (i.e., growth of θeff to π - θc) vanishes when θeff approaches π/2, in practice only angles θeff up to about θef f m a x≃70 ° were observed. For larger fields (Hb>Hb*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τG∝Hb-1, the nucleation time τN scales as ln τN∝Hb-1. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θc is used.

  12. The nucleation model of strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, Ikuo.

    1990-07-01

    In this paper we discuss a model of interacting strings at finite densities based on nucleation theory, the study of formation of droplets in a supersaturated gas, the analogy being between drops of various sizes and strings with various excitation number. The interaction of the strings is considered to be the usual merging and splitting. We do not assume equilibrium a priori but find equilibrium configurations of strings as a result of their dynamics. We study these configurations as we change the energy density, and find the presence of two phases. A low density 'gas' phase, in which the energy is in strings in the fundamental or the first few excited levels, and a high density 'liquid' phase in which the number of strings is low, all the energy being carried by few very excited strings. For the gas phase we also discuss the thermodynamics of the system. (author). 21 refs, 20 figs, 1 tab

  13. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  14. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  15. Damage nucleation in Si during ion irradiation

    International Nuclear Information System (INIS)

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed

  16. Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory

    CERN Document Server

    Duplissy, J.; Franchin, A.; Tsagkogeorgas, G.; Kangasluoma, J.; Wimmer, D.; Vuollekoski, H.; Schobesberger, S.; Lehtipalo, K.; Flagan, R. C.; Brus, D.; Donahue, N. M.; Vehkamäki, H.; Almeida, J.; Amorim, A.; Barmet, P.; Bianchi, F.; Breitenlechner, M.; Dunne, E. M.; Guida, R.; Henschel, H.; Junninen, H.; Kirkby, J.; Kürten, A.; Kupc, A.; Määttänen, A.; Makhmutov, V.; Mathot, S.; Nieminen, T.; Onnela, A.; Praplan, A. P.; Riccobono, F.; Rondo, L.; Steiner, G.; Tome, A.; Walther, H.; Baltensperger, U.; Carslaw, K. S.; Dommen, J.; Hansel, A.; Petäjä, T.; Sipilä, M.; Stratmann, F.; Vrtala, A.; Wagner, P. E.; Worsnop, D. R.; Curtius, J.; Kulmala, M.

    2015-09-04

    We report comprehensive, demonstrably contaminant‐free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion‐induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface‐time of flight‐mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (105 to 109 mol cm−3), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm−3). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC‐normalized CNT), which is described in a companion pape...

  17. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers......, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol . H2O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol...... bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed....

  18. A parameterization of cloud droplet nucleation

    International Nuclear Information System (INIS)

    Ghan, S.J.; Chuang, C.; Penner, J.E.

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization

  19. Modelling the stochastic behaviour of primary nucleation.

    Science.gov (United States)

    Maggioni, Giovanni Maria; Mazzotti, Marco

    2015-01-01

    We study the stochastic nature of primary nucleation and how it manifests itself in a crystallisation process at different scales and under different operating conditions. Such characteristics of nucleation are evident in many experiments where detection times of crystals are not identical, despite identical experimental conditions, but instead are distributed around an average value. While abundant experimental evidence has been reported in the literature, a clear theoretical understanding and an appropriate modelling of this feature is still missing. In this contribution, we present two models describing a batch cooling crystallisation, where the interplay between stochastic nucleation and deterministic crystal growth is described differently in each. The nucleation and growth rates of the two models are estimated by a comprehensive set of measurements of paracetamol crystallisation from aqueous solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012, 72, 10-19]. Both models are applied to the cooling crystallisation process above under different operating conditions, i.e. different volumes, initial concentrations, cooling rates. The advantages and disadvantages of the two approaches are illustrated and discussed, with particular reference to their use across scales of nucleation rate measured in very small crystallisers.

  20. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation.

    Science.gov (United States)

    Ehrhart, Sebastian; Ickes, Luisa; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E; Curtius, Joachim

    2016-10-27

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208-292 K, sulphuric acid concentrations from 1·10 6 to 1·10 9  cm -3 , and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphuric acid clusters, detected by an Atmospheric Pressure Interface Time of Flight (APi-TOF) mass spectrometer. APi-TOF measurements of the sulphuric acid ion cluster distributions ( (H2SO4)i·HSO4- with i = 0, 1, ..., 10) show qualitative agreement with the SAWNUC ion cluster distributions. Remaining differences between the measured and modeled distributions are most likely due to fragmentation in the APi-TOF. The CLOUD results are in good agreement with previously measured cluster binding energies and show the SAWNUC model to be a good representation of ion-induced and neutral binary nucleation of sulphuric acid-water clusters in the middle and upper troposphere.

  1. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  2. Nucleation Mechanisms of Aromatic Polyesters, PET, PBT, and PEN, on Single-Wall Carbon Nanotubes: Early Nucleation Stages

    Directory of Open Access Journals (Sweden)

    Adriana Espinoza-Martínez

    2012-01-01

    Full Text Available Nucleation mechanisms of poly(ethylene terephthalate (PET, poly(butylene terephthalate (PBT, and poly(ethylene naphthalate (PEN on single-wall carbon nanotubes (SWNTs are proposed, based on experimental evidence, theoretical epitaxy analysis, and semiempirical quantum chemical calculations. In order to elucidate early nucleation stages polyester-coated nanotubes were obtained from highly diluted solutions. High-resolution transmission electron microscopy (HRTEM revealed helical morphologies for PET/SWNTs and PEN/SWNTs and the formation of lobules with different orientations for PBT/SWNTs. To explain the morphological behavior one model was proposed based on crystallographic interactions, that is, epitaxy. Theoretical epitaxy calculations indicated that epitaxy is not possible from the strict epitaxy point of view. Instead, aromatic self-assembly mechanism was proposed based on π-π interactions and the chirality of the nanotube. It was proposed that the mechanism implies two steps to produce helical or lobular morphologies with different orientations. In the first step polymer chains were approached, aligned parallel to the nanotube axis and adsorbed due to electrostatic interactions and the flexibility of the molecule. However, due to π-π interactions between the aromatic rings of the polymer and the nanotube, in the second step chains reoriented on the nanotube surface depending on the chirality of the nanotube. The mechanism was supported by semi-empirical calculations.

  3. Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments

    Directory of Open Access Journals (Sweden)

    Guan Heng Yeoh

    2016-12-01

    Full Text Available The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the

  4. Nucleation and Growth Kinetics from LaMer Burst Data.

    Science.gov (United States)

    Chu, Daniel B K; Owen, Jonathan S; Peters, Baron

    2017-10-12

    In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.

  5. Nucleation in As2Se3 glass studied by DSC

    International Nuclear Information System (INIS)

    Svoboda, Roman; Málek, Jiří

    2014-01-01

    Highlights: • Nucleation behavior of As 2 Se 3 glass was studied by DSC in dependence on particle size. • Correlation between the enthalpies of fusion and crystallization were confirmed. • Apart from classical heterogeneous nucleation a second nucleation mechanism was found. • Rapid formation of crystallization centers from a damaged glassy structure occurs. • Mechanical defects seem to partially suppress the CNT nucleation process. - Abstract: Differential scanning calorimetry was used to study nucleation behavior in As 2 Se 3 glass, dependent on particle size. The nucleation process was examined for a series of different coarse powders; the nucleation rate was estimated from the proportion of the crystalline material fraction. The enthalpy of fusion was utilized in this respect, and a correlation between ΔH m and ΔH c was confirmed. Two mechanisms of nucleus formation were found: classical heterogeneous nucleation (following CNT) and so-called “activation” of mechanically-induced defects. The latter appears to represent rapid formation of crystallization centers from a damaged glassy structure, where complete saturation occurs for fine powders in the range of 195–235 °C. A high amount of mechanical defects, on the other hand, was found to partially suppress the CNT nucleation process

  6. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  7. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  8. Nucleation, Melting Behaviour and Mechanical Properties of Poly(L ...

    African Journals Online (AJOL)

    Anew category of nucleating agent for poly(L-lactic acid) (PLLA) was developed. An organic nucleating agent; N,N'-bis(benzoyl) suberic acid dihydrazide (NA) was synthesized from benzoyl hydrazine and suberoyl chloride which was deprived from suberic acid via acylation. The nucleation, melting behaviour and ...

  9. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    Science.gov (United States)

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  10. Millisecond-Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Droplet-Based Microfluidics.

    Science.gov (United States)

    Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J

    2015-08-26

    The early-time kinetics (conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nucleation mechanism for the direct graphite-to-diamond phase transition

    Science.gov (United States)

    Khaliullin, Rustam Z.; Eshet, Hagai; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2011-09-01

    Graphite and diamond have comparable free energies, yet forming diamond from graphite in the absence of a catalyst requires pressures that are significantly higher than those at equilibrium coexistence. At lower temperatures, the formation of the metastable hexagonal polymorph of diamond is favoured instead of the more stable cubic diamond. These phenomena cannot be explained by the concerted mechanism suggested in previous theoretical studies. Using an ab initio quality neural-network potential, we carried out a large-scale study of the graphite-to-diamond transition assuming that it occurs through nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrate that the large lattice distortions that accompany the formation of diamond nuclei inhibit the phase transition at low pressure, and direct it towards the hexagonal diamond phase at higher pressure. The proposed nucleation mechanism should improve our understanding of structural transformations in a wide range of carbon-based materials.

  12. Delays due to gas diffusion in flash boiling nucleation

    International Nuclear Information System (INIS)

    Hanbury, W.T.; McCartney, W.S.

    1976-01-01

    A theoretical model to account for the time delay between decompression and nucleation in flash boiling is presented and analyzed. It shows that gas diffusion can be responsible for delayed nucleation when the critical radius for nucleation and the suspended particle size are of the same order of magnitude

  13. Homogeneous nucleation in 4He: A corresponding-states analysis

    International Nuclear Information System (INIS)

    Sinha, D.N.; Semura, J.S.; Brodie, L.C.

    1982-01-01

    We report homogeneous-nucleation-temperature measurements in liquid 4 He over a bath-temperature range 2.31 4 He, in a region far from the critical point. A simple empirical form is presented for estimating the homogeneous nucleation temperatures for any liquid with a spherically symmetric interatomic potential. The 4 He data are compared with nucleation data for Ar, Kr, Xe, and H; theoretical predictions for 3 He are given in terms of reduced quantities. It is shown that the nucleation data for both quantum and classical liquids obey a quantum law of corresponding states (QCS). On the basis of this QCS analysis, predictions of homogeneous nucleation temperatures are made for hydrogen isotopes such as HD, DT, HT, and T 2

  14. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  15. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Science.gov (United States)

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  16. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2006-01-01

    Full Text Available Newly-formed nanometer-sized particles have been observed at coastal and marine environments world wide. Organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the ultrafine organic tandem differential mobility analyzer method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm at the Mace Head research station. Furthermore, effects of those nucleation events on potential cloud condensation nuclei were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and enhanced biological activity in spring 2002. Additionally, a pulse height analyzer ultrafine condensation particle counter technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity in October 2002. The overall results of the ultrafine organic tandem differential mobility analyzer and the pulse height analyzer ultrafine condensation particle counter measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine coast and open ocean biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation driven by iodine radicals, hydroxyl radicals, acid catalysis, and ozone during efficient solar radiation. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the ultrafine organic tandem differential mobility analyzer

  17. The role of sodium bicarbonate in the nucleation of noctilucent clouds

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2000-07-01

    Full Text Available It is proposed that a component of meteoric smoke, sodium bicarbonate (NaHCO3, provides particularly effective condensation nuclei for noctilucent clouds. This assertion is based on three conditions being met. The first is that NaHCO3 is present at sufficient concentration (±104 cm-3 in the upper mesosphere between 80 and 90 km. It is demonstrated that there is strong evidence for this based on recent laboratory measurements coupled with atmospheric modelling. The second condition is that the thermodynamics of NaHCO3(H2On cluster formation allow spontaneous nucleation to occur under mesospheric conditions at temperatures below 140 K. The Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP theory and a large basis set with added polarization and diffuse functions. The results were then extrapolated to higher n using an established dependence of the free energy on cluster size and the free energy for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show that spontaneous nucleation to form ice particles (n >100 should occur between 84 and 89 km in the high-latitude summer mesosphere. The third condition is that other metallic components of meteoric smoke are less effective condensation nuclei, so that the total number of potential nuclei is small relative to the amount of available H2O. Quantum calculations indicate that this is probably the case for major constituents such as Fe(OH2, FeO3 and MgCO3.Key words: Atmospheric composition and structure (aerosols and particles; cloud physics and chemistry; middle atmosphere · composition and chemistry

  18. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    Ion-induced nucleation has been studied in a deep underground ultra-low background radiation environment where the role of ions can be distinguished from alternative neutral aerosol nucleation mechanisms. Our results demonstrate that ions have a significant effect on the production of small...... sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  19. Nucleation in an ultra low ionisation environment

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    in aerosol nucleation. By exposing a controlled volume of air to varying levels of ionising radiation, and with the minimum ionisation level vastly reduced compared to normal surface laboratory conditions, we have provided both a validation of earlier studies of ion-induced nucleation and extended...

  20. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  1. Controlled nucleation and crystallization of fluorozirconate glasses

    International Nuclear Information System (INIS)

    Frischat, G.H.

    1993-01-01

    Pt, Se, and Ag, respectively, were used as nucleating agents for a ZrF 4 -BaF 4 -YF 3 -AlF 3 glass. Nucleation and crystal growth rates were determined as a function of experimental conditions. In all cases the bulk crystals mainly consist of β-BaZrF6, leading to a relatively coarse-grained microstructure. However, in the case of Ag used as a nucleating agent, the microstructure is bimodal with an additional fine-grained crystal phase. In the cases of Se and Ag the relative crystal fraction could be developed in a controlled way between 0 and 100%

  2. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15......R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...

  3. Experimental study of ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    He, F.; Hopke, P.K.

    1993-01-01

    In the environment, the presence of ions from natural radioactivity may increase the rate of new particle formation through ion-induced nucleation. A thermal diffusion cloud chamber (TDCC) has been built to experimentally study ion-induced nucleation where the ions are produced by gaseous radioactive sources. The critical supersaturation values and nucleation rates for methanol, ethanol, 1-propanol, and 1-butanol vapors on ions produced within the volume of the chamber by alpha decay of 222 Rn have been measured quantitatively at various radioactivity concentrations and supersaturations. The presence of ion tracks and the effect of an external electric field were also investigated. The alpha tracks and ion-induced nucleation formed by 222 Rn decay become visible at the critical supersaturation that is below the value needed for homogeneous nucleation. At this supersaturation, the nucleation rates increase substantially with increasing 222 Rn at low activity concentrations, but attain limiting values at higher concentrations. The experimental results indicate that the ionization by radon decay will promote ion-cluster formation and lower the free energy barriers. The formation of visible droplets is strongly dependent on the supersaturation. This study also confirms that the external electric field has a significant effect on the observed rates of nucleation

  4. Ion irradiation enhanced crystal nucleation in amorphous Si thin films

    International Nuclear Information System (INIS)

    Im, J.S.; Atwater, H.A.

    1990-01-01

    The nucleation kinetics of the amorphous-to-crystal transition of Si films under 1.5 MeV Xe + irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T=500--580 degree C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting that homogeneous nucleation occurred. Compared to thermal crystallization, a significant enhancement in the nucleation rate during high-energy ion irradiation (five to seven orders of magnitude) was observed with an apparent activation energy of 3.9±0.75 eV

  5. Overview of TANGENT (Tandem Aerosol Nucleation and Growth ENvironment Tube) 2017 IOP Study

    Science.gov (United States)

    Tiszenkel, L.

    2017-12-01

    New particle formation consists of two steps: nucleation and growth of nucleated particles. However, most laboratory studies have been conducted under conditions where these two processes are convoluted together, thereby hampering the detailed understanding of the effect of chemical species and atmospheric conditions on two processes. The objective of the Tandem Aerosol Nucleation and Growth ENvironment Tube (TANGENT) laboratory study is to investigate aerosol nucleation and growth properties independently by separating these two processes in two different flow tubes. This research is a collaboration between the University of Alabama in Huntsville and the University of Delaware. In this poster we will present the experimental setup of TANGENT and summarize the key results from the first IOP (intense observation period) experiments undertaken during Summer 2017. Nucleation takes place in a temperature- and RH-controlled fast flow reactor (FT-1) where sulfuric acid forms from OH radicals and sulfur dioxide. Sulfuric acid and impurity base compounds are detected with chemical ionization mass spectrometers (CIMS). Particle sizes and number concentrations of newly nucleated particles are measured with a scanning mobility particle sizer (SMPS) and particle size magnifier (PSM), providing concentrations of particles between 1-100 nm. The nucleation particles are transferred directly to the growth tube (FT-2) where oxidants and biogenic organic precursors are added to grow nucleated nanoparticles. Sizes of particles after growth are analyzed with an additional SMPS and elemental chemical composition of 50 nm and above particles detected with a nano-aerosol mass spectrometer (NAMS). TANGENT provides the unique ability to conduct experiments that can monitor and control reactant concentrations, aerosol size and aerosol chemical composition during nucleation and growth. Experiments during this first IOP study have elucidated the effects of sulfur dioxide, particle size

  6. Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations

    NARCIS (Netherlands)

    Kooi, BJ

    An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is

  7. Binary nucleation kinetics. III. Transient behavior and time lags

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.

    1996-01-01

    Transient binary nucleation is more complex than unary because of the bidimensionality of the cluster formation kinetics. To investigate this problem qualitatively and quantitatively, we numerically solved the birth-death equations for vapor-to-liquid phase transitions. Our previous work showed that the customary saddle point and growth path approximations are almost always valid in steady state gas phase nucleation and only fail if the nucleated solution phase is significantly nonideal. Now, we demonstrate that in its early transient stages, binary nucleation rarely, if ever, occurs via the saddle point. This affects not only the number of particles forming but their composition and may be important for nucleation in glasses and other condensed mixtures for which time scales are very long. Before reaching the state of saddle point nucleation, most binary systems pass through a temporary stage in which the region of maximum flux extends over a ridge on the free energy surface. When ridge crossing nucleation is the steady state solution, it thus arises quite naturally as an arrested intermediate state that normally occurs in the development of saddle point nucleation. While the time dependent and steady state distributions of the fluxes and concentrations for each binary system are strongly influenced by the gas composition and species impingement rates, the ratio of nonequilibrium to equilibrium concentrations has a quasiuniversal behavior that is determined primarily by the thermodynamic properties of the liquid mixture. To test our quantitive results of the transient behavior, we directly calculated the time lag for the saddle point flux and compared it with the available analytical predictions. Although the analytical results overestimate the time lag by factors of 1.2-5, they should be adequate for purposes of planning experiments. We also found that the behavior of the saddle point time lag can indicate when steady state ridge crossing nucleation will occur

  8. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  9. Two types of amorphous protein particles facilitate crystal nucleation.

    Science.gov (United States)

    Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G; Furukawa, Erika; Shirai, Manabu; Matsumoto, Hiroaki; Van Driessche, Alexander E S; Tsukamoto, Katsuo

    2017-02-28

    Nucleation, the primary step in crystallization, dictates the number of crystals, the distribution of their sizes, the polymorph selection, and other crucial properties of the crystal population. We used time-resolved liquid-cell transmission electron microscopy (TEM) to perform an in situ examination of the nucleation of lysozyme crystals. Our TEM images revealed that mesoscopic clusters, which are similar to those previously assumed to consist of a dense liquid and serve as nucleation precursors, are actually amorphous solid particles (ASPs) and act only as heterogeneous nucleation sites. Crystalline phases never form inside them. We demonstrate that a crystal appears within a noncrystalline particle assembling lysozyme on an ASP or a container wall, highlighting the role of heterogeneous nucleation. These findings represent a significant departure from the existing formulation of the two-step nucleation mechanism while reaffirming the role of noncrystalline particles. The insights gained may have significant implications in areas that rely on the production of protein crystals, such as structural biology, pharmacy, and biophysics, and for the fundamental understanding of crystallization mechanisms.

  10. Adherent nanoparticles-mediated micro- and nanobubble nucleation

    Science.gov (United States)

    Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter

    2014-11-01

    Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.

  11. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  12. Nucleation and cavitation in parahydrogen

    International Nuclear Information System (INIS)

    Pi, Martí; Barranco, Manuel; Navarro, Jesús; Ancilotto, Francesco

    2012-01-01

    Highlights: ► We have constructed a density functional (DF) for parahydrogen between 14 and 32 K. ► The experimental equation of state and the surface tension are well reproduced. ► We have investigated nucleation and cavitations processes in the metastable phase. ► We have obtained the electron bubble explosion within the capillary model. - Abstract: We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model.

  13. Molecular dynamics simulation of bubble nucleation in explosive boiling

    International Nuclear Information System (INIS)

    Zou Yu; Chinese Academy of Sciences, Beijing; Huai Xiulan; Liang Shiqiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range. (authors)

  14. Basic Study for Active Nucleation Site Density Evaluation in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Chu, In Cheol; Song, Chul Hwa

    2008-01-01

    Numerous studies have been performed on a active nucleation site density (ANSD) due to its governing influence on a heat transfer. However, most of the studies were focused on pool boiling conditions. Kocamustafaogullari and Ishii developed an ANSD correlation from a parametric study of the existing pool boiling data. Also, they extended the correlation to a convective flow boiling condition by adopting the nucleation suppression factor of Chen's heat transfer correlation. However, the appropriateness of applying the Chen's suppression factor to an ANSD correlation was not fully validated because there was not enough experimental data on ANSD in the forced convective flow boiling. Basu et al. performed forced convective boiling experiments and proposed a correlation of ANSD which is the only correlation based on experimental data for a forced convective boiling. They concluded that the ANSD is only dependent on the static contact angle and the wall superheat, and is independent of the flow rate and the subcooling, which contradict the general acceptance of the nucleation suppression in the forced convective boiling. It seems that no reliable ANSD correlation or model is available for a forced convective boiling. In the present study, the effect of the flow velocity on the suppression of the nucleation site was examined, and the effectiveness of a Brewster reflection technique for the identification of the nucleation site was also examined

  15. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  16. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  17. The mechanisms of transitions from natural convection and nucleate boiling to nucleate boiling or film boiling caused by rapid depressurization in highly subcooled water

    International Nuclear Information System (INIS)

    Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya

    1999-01-01

    The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)

  18. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  19. Helium bubble nucleation and growth in α-Fe: insights from first–principles simulations

    International Nuclear Information System (INIS)

    Xiao, W; Zhang, X; Lu, G; Geng, W T

    2014-01-01

    We have carried out a first-principles study on the nucleation and early-stage growth of He bubbles in Fe. The energetics, atomic and electronic structure of He-vacancy complexes, involving both a monovacancy and a nine-vacancy cluster, are examined. Based on the energetics, we then perform thermodynamics analysis to gain deeper insights into He bubble nucleation and growth. We have determined the energy cost for the nucleation of He bubbles and found that up to eight He atoms can be trapped at a single vacancy. In order to capture more He atoms, the vacancy has to emit Frenkel pairs to release the substantial stress building on the surrounding Fe lattice. Compared to the monovacancy, the nine-vacancy cluster has a lower energy cost for He bubble nucleation and growth. He atoms at the vacancy repel the surrounding electronic charge and redistribute it on the neighboring Fe atoms. The thermodynamic analysis reveals that He chemical potential provides a driving force for He bubble nucleation and growth. There are two critical He chemical potentials that are of particular importance: one of them marks the transition from single He occupation to multiple He occupation at a monovacancy while the other sets off He-induced superabundant vacancy formation. (paper)

  20. Fatigue crack nucleation of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Kim, Woo Gon; Hong, Jun Hwa; Ryu, Woo Seog

    2000-01-01

    Low Cycle Fatigue (LCF) life decreases drastically with increasing temperature but increases with the addition of nitrogen at room and high temperatures. The effect of nitrogen on LCF life may be related to crack nucleation at high temperatures in austenitic stainless steel because the fraction of crack nucleation in LCF life is about 40%. The influence of nitrogen on the crack nucleation of LCF in type 316LN stainless steel is investigated by observations of crack population and crack depth after testing at 40% of fatigue life. Nitrogen increases the number of cycles to nucleate microcracks of 100 μm but decreases the crack population

  1. Laboratory, Computational and Theoretical Investigations of Ice Nucleation and its Implications for Mixed Phase Clouds

    Science.gov (United States)

    Yang, Fan

    Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields

  2. Study on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2002-01-01

    The onset of nucleate boiling (ONB) and the point of net vapor generation on subcooled flow boiling, focusing on liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film (35μm) and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa. The liquid subcoolings were 20, 30 and 40K, respectively. Temperatures at the onset of nucleate boiling obtained in the experiments increased with the liquid subcoolings and the liquid velocities. The increases in the temperature of ONB were represented with the classical stability theory of preexisting nuclei. The measured results of the net vapor generation agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. (J.P.N.)

  3. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  4. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  5. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  6. Molecular nucleation mechanisms and control strategies for crystal polymorph selection

    Science.gov (United States)

    van Driessche, Alexander E. S.; van Gerven, Nani; Bomans, Paul H. H.; Joosten, Rick R. M.; Friedrich, Heiner; Gil-Carton, David; Sommerdijk, Nico A. J. M.; Sleutel, Mike

    2018-04-01

    The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer’s disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures (‘polymorphs’) of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based

  7. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.

    Science.gov (United States)

    Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J

    2018-05-07

    Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where

  8. Neonatal nucleated red blood cells in infants of overweight and obese mothers.

    Science.gov (United States)

    Sheffer-Mimouni, Galit; Mimouni, Francis B; Dollberg, Shaul; Mandel, Dror; Deutsch, Varda; Littner, Yoav

    2007-06-01

    The perinatal outcome of the infant of obese mother is adversely affected and in theory, may involve fetal hypoxia. We hypothesized that an index of fetal hypoxia, the neonatal nucleated red blood cell (NRBC) count, is elevated in infants of overweight and obese mothers. Absolute NRBC counts taken during the first 12 hours of life in 41 infants of overweight and obese mothers were compared to 28 controls. Maternal body mass index and infant birthweight were significantly higher in the overweight and obese group (P cell and lymphocyte counts did not differ between groups. The absolute NRBC count was higher (P = 0.01), and the platelet count lower (P = 0.05) in infants of overweight and obese mothers than in controls. In stepwise regression analysis, the absolute NRBC count in infants of overweight and obese mothers remained significantly higher even after taking into account birthweight or gestational age and Apgar scores (P mothers have increased nucleated red blood cells at birth compared with controls. We speculate that even apparently healthy fetuses of overweight and obese mothers are exposed to a subtle hypoxemic environment.

  9. Thermally activated vapor bubble nucleation: The Landau-Lifshitz-Van der Waals approach

    Science.gov (United States)

    Gallo, Mirko; Magaletti, Francesco; Casciola, Carlo Massimo

    2018-05-01

    Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at an atomistic level of detail. In this work a powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid embedded with thermal fluctuations (fluctuating hydrodynamics), is exploited to study the nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and following the long-term dynamics of the metastable system, up to the bubble coalescence and expansion stages. In comparison with more classical approaches, this methodology allows us on the one hand to deal with much larger systems observed for a much longer time than possible with even the most advanced atomistic models. On the other, it extends continuum formulations to thermally activated processes, impossible to deal with in a purely determinist setting.

  10. Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    Directory of Open Access Journals (Sweden)

    C. D. O'Dowd

    2007-01-01

    Full Text Available A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs (50% cut from 3–5.4–9.6 nm and a nano-Scanning Mobility Particle Sizer (nSMPS and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

  11. Ice nucleation efficiency of AgI: review and new insights

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2016-07-01

    Full Text Available AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI–AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  12. Fracture and healing of elastomers: A phase-transition theory and numerical implementation

    Science.gov (United States)

    Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar

    2018-03-01

    A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.

  13. Controlling the crystal polymorph by exploiting the time dependence of nucleation rates.

    Science.gov (United States)

    Little, Laurie J; King, Alice A K; Sear, Richard P; Keddie, Joseph L

    2017-10-14

    Most substances can crystallise into two or more different crystal lattices called polymorphs. Despite this, there are no systems in which we can quantitatively predict the probability of one competing polymorph forming instead of the other. We address this problem using large scale (hundreds of events) studies of the competing nucleation of the alpha and gamma polymorphs of glycine. In situ Raman spectroscopy is used to identify the polymorph of each crystal. We find that the nucleation kinetics of the two polymorphs is very different. Nucleation of the alpha polymorph starts off slowly but accelerates, while nucleation of the gamma polymorph starts off fast but then slows. We exploit this difference to increase the purity with which we obtain the gamma polymorph by a factor of ten. The statistics of the nucleation of crystals is analogous to that of human mortality, and using a result from medical statistics, we show that conventional nucleation data can say nothing about what, if any, are the correlations between competing nucleation processes. Thus we can show that with data of our form it is impossible to disentangle the competing nucleation processes. We also find that the growth rate and the shape of a crystal depend on it when nucleated. This is new evidence that nucleation and growth are linked.

  14. A study on Z-phase nucleation in martensitic chromium steels

    DEFF Research Database (Denmark)

    Golpayegani, Ardeshir; Andrén, Hans-Olof; Danielsen, Hilmar Kjartansson

    2008-01-01

    , initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small....... Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase....

  15. Concurrent nucleation, formation and growth of two intermetallic compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering

    International Nuclear Information System (INIS)

    Park, M.S.; Arróyave, R.

    2012-01-01

    This study investigates the concurrent nucleation, formation and growth of two intermetallic compounds (IMCs), Cu 6 Sn 5 (η) and Cu 3 Sn (ε), during the early stages of soldering in the Cu–Sn system. The nucleation, formation and growth of the IMC layers is simulated through a multiphase-field model in which the concurrent nucleation of both IMC phases is considered to be a stochastic Poisson process with nucleation rates calculated from classical nucleation theory. CALPHAD thermodynamic models are used to calculate the local contributions to the free energy of the system and the driving forces for precipitation of the IMC phases. The nucleation parameters of the η phase are estimated from experimental results and those of the ε phase are assumed to be similar. A parametric investigation of the effects of model parameters (e.g. grain boundary (GB) diffusion rates, interfacial and GB energies) on morphological evolution and IMC layer growth rate is presented and compared with previous works in which nucleation was ignored . In addition, the resulting growth rates are compared with the available literature and it is found that, for a certain range in the model parameters, the agreement is quite satisfactory. This work provides valuable insight into the dominant mechanisms for mass transport as well as morphological evolution and growth of IMC layers during early stages of Pb-free soldering.

  16. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    Science.gov (United States)

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  17. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.

    1980-01-01

    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  18. Numerical investigation of nucleate pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Stojanović Andrijana D.

    2016-01-01

    Full Text Available Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018 i br. OI-174014

  19. Heterogeneous nucleation of ice in the atmosphere

    International Nuclear Information System (INIS)

    Nicosia, A; Piazza, M; Santachiara, G; Belosi, F

    2017-01-01

    The occurrence of ice-nucleating aerosols in the atmosphere has a profound impact on the properties of clouds, and in turn, influences our understanding on weather and climate. Research on this topic has grown constantly over the last decades, driven by advances in online and offline instruments capable of measuring the characteristics of these cloud-modifying aerosol particles. This article presents different aspects to the understanding of how aerosol particles can trigger the nucleation of ice in clouds. In addition, we present some experimental results obtained with the Dynamic Filter Processing Chamber, an off-line instrument that has been applied extensively in the last years and that circumvents some of the problems related to the measurement of Ice Nucleating Particles properties. (paper)

  20. Kinetics of heterogeneous nucleation of gas-atomized Sn-5 mass%Pb droplets

    International Nuclear Information System (INIS)

    Li Shu; Wu Ping; Zhou Wei; Ando, Teiichi

    2008-01-01

    A method for predicting the nucleation kinetics of gas-atomized droplets has been developed by combining models predicting the nucleation temperature of cooling droplets with a model simulating the droplet motion and cooling in gas atomization. Application to a Sn-5 mass%Pb alloy has yielded continuous-cooling transformation (CCT) diagrams for the heterogeneous droplet nucleation in helium gas atomization. Both internal nucleation caused by a catalyst present in the melt and surface nucleation caused by oxidation are considered. Droplets atomized at a high atomizing gas velocity get around surface oxidation and nucleate internally at high supercoolings. Low atomization gas velocities promote oxidation-catalyzed nucleation which leads to lower supercoolings. The developed method enables improved screening of atomized powders for critical applications where stringent control of powder microstructure is required

  1. Nucleation at hardness indentations in cold rolled Al

    DEFF Research Database (Denmark)

    Xu, C.L.; Zhang, Yubin; Wu, G.L.

    2015-01-01

    Nucleation of recrystallization near hardness indentations has been investigated in slightly cold rolled high purity aluminium. Samples were cold rolled to 12% and 20% reductions in thickness and indentations were done with two different loads (500 g and 2000 g). The samples were annealed at 300 °C...... for 1 h and nuclei were identified. It is found that the indentations are preferential nucleation sites. With EBSD maps around indentation tips, the orientation relationship between nuclei and matrix is analyzed. Finally, effects of rolling reduction and indentation load on local misorientations...... and stored energy distributions and thus on nucleation are discussed....

  2. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  3. Structural analysis of the role of TPX2 in branching microtubule nucleation

    Science.gov (United States)

    Thawani, Akanksha

    2017-01-01

    The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation. PMID:28264915

  4. Nucleation and adhesion of diamond films on Co cemented tungsten carbide

    Energy Technology Data Exchange (ETDEWEB)

    Polini, R.; Santarelli, M.; Traversa, E.

    1999-12-01

    Diamond deposits were grown using hot filament chemical vapor deposition (CVD) on pretreated Co cemented tungsten carbide (WC-Co) substrates with an average grain size of 6 {micro}m. Depositions were performed with 0.5 or 1.0% methane concentration and with substrate temperatures ranging from 750 to 1,000 C. Diamond nucleation densities were measured by scanning electron microscopy. Scratched and bias-enhanced nucleation pretreated substrates showed the larger nucleation densities. Etching of the WC performed by Murakami's reagent, followed by surface-Co dissolution (MP pretreatment), led to a roughened but scarcely nucleating surface. The performance of a scratching prior to the MP pretreatment allowed one to increase the nucleation density, due scratching-induced defects, confined in the outermost layer of WC grains, which act as nucleation sites. Smaller nucleation densities were observed with increasing the substrate temperature and reducing the methane concentration, confirming that diamond nucleates via a heterogeneous process. The adhesion of continuous films was evaluated by the reciprocal of the slope of crack radius-indentation load functions. The substrate pretreatments mainly affected the film adhesion, while the influence of CVD process conditions was minor. The two main factors that improve the diamond film adhesion are the coating-substrate contact area and the surface-Co removal.

  5. ON THE PRECISION OF THE NUCLEATOR

    Directory of Open Access Journals (Sweden)

    Javier González-Villa

    2017-06-01

    Full Text Available The nucleator is a design unbiased method of local stereology for estimating the volume of a bounded object. The only information required lies in the intersection of the object with an isotropic random ray emanating from a fixed point (called the pivotal point associated with the object. For instance, the volume of a neuron can be estimated from a random ray emanating from its nucleolus. The nucleator is extensively used in biosciences because it is efficient and easy to apply. The estimator variance can be reduced by increasing the number of rays. In an earlier paper a systematic sampling design was proposed, and theoretical variance predictors were derived, for the corresponding volume estimator. Being the only variance predictors hitherto available for the nucleator, our basic goal was to check their statistical performance by means of Monte Carlo resampling on computer reconstructions of real objects. As a plus, the empirical distribution of the volume estimator revealed statistical properties of practical relevance.

  6. Observational attachment theory-based parenting measures predict children's attachment narratives independently from social learning theory-based measures.

    Science.gov (United States)

    Matias, Carla; O'Connor, Thomas G; Futh, Annabel; Scott, Stephen

    2014-01-01

    Conceptually and methodologically distinct models exist for assessing quality of parent-child relationships, but few studies contrast competing models or assess their overlap in predicting developmental outcomes. Using observational methodology, the current study examined the distinctiveness of attachment theory-based and social learning theory-based measures of parenting in predicting two key measures of child adjustment: security of attachment narratives and social acceptance in peer nominations. A total of 113 5-6-year-old children from ethnically diverse families participated. Parent-child relationships were rated using standard paradigms. Measures derived from attachment theory included sensitive responding and mutuality; measures derived from social learning theory included positive attending, directives, and criticism. Child outcomes were independently-rated attachment narrative representations and peer nominations. Results indicated that Attachment theory-based and Social Learning theory-based measures were modestly correlated; nonetheless, parent-child mutuality predicted secure child attachment narratives independently of social learning theory-based measures; in contrast, criticism predicted peer-nominated fighting independently of attachment theory-based measures. In young children, there is some evidence that attachment theory-based measures may be particularly predictive of attachment narratives; however, no single model of measuring parent-child relationships is likely to best predict multiple developmental outcomes. Assessment in research and applied settings may benefit from integration of different theoretical and methodological paradigms.

  7. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Directory of Open Access Journals (Sweden)

    A. J. Patton

    2015-01-01

    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  8. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  9. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  10. Water nucleation : wave tube experiments and theoretical considerations

    NARCIS (Netherlands)

    Holten, V.

    2009-01-01

    This work is an experimental and theoretical study of the condensation of water. Condensation consists of nucleation – the formation of droplets – and the subsequent growth of those droplets. In our expansion tube setup, these processes are separated in time with the nucleation pulse principle, in

  11. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  12. Evaluation of onset of nucleate boiling models

    International Nuclear Information System (INIS)

    Huang, LiDong

    2009-01-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  13. Duplex Heterogeneous Nucleation Behavior of Precipitates in C-Mn Steel Containing Sn

    Science.gov (United States)

    Sun, Guilin; Tao, Sufen

    2018-04-01

    The two successive heterogeneous nucleation behaviors of FeSn2-MnS-Al2O3 complex precipitates in ultrahigh Sn-bearing steel were investigated. First, Al2O3 was the nucleation site of the MnS at the end of solidification. Then, FeSn2 nucleated heterogeneously on the MnS particles that nucleated on the Al2O3 particles. The formation sequence of the precipitated phase caused the duplex heterogeneous nucleation to occur consecutively at most twice.

  14. Cumulative distribution functions associated with bubble-nucleation processes in cavitation

    KAUST Repository

    Watanabe, Hiroshi

    2010-11-15

    Bubble-nucleation processes of a Lennard-Jones liquid are studied by molecular dynamics simulations. Waiting time, which is the lifetime of a superheated liquid, is determined for several system sizes, and the apparent finite-size effect of the nucleation rate is observed. From the cumulative distribution function of the nucleation events, the bubble-nucleation process is found to be not a simple Poisson process but a Poisson process with an additional relaxation time. The parameters of the exponential distribution associated with the process are determined by taking the relaxation time into account, and the apparent finite-size effect is removed. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows to the critical size leads to an incorrect estimation of the nucleation rate. © 2010 The American Physical Society.

  15. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay

    2016-01-01

    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes...... and amorphous carbon. These defects would serve as a pathway for the diffusion of 02 during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has...... a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance...

  16. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651

    Science.gov (United States)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.

    2010-01-01

    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  17. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation

    Science.gov (United States)

    Narayanan, Sankar; McDowell, David L.; Zhu, Ting

    2014-04-01

    The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1/2 screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting double superkinks. This unique process leads to a single-humped minimum energy path that governs the one-step activation of a screw dislocation to move into the adjacent {110} Peierls valley, which contrasts with the double-humped energy path and the two-step transition predicted by other interatomic potentials. Based on transition state theory, we use the atomistically computed, stress-dependent kinkpair activation parameters to inform a coarse-grained crystal plasticity flow rule. Our atomistically-informed crystal plasticity model quantitatively predicts the orientation dependent stress-strain behavior of BCC iron single crystals in a manner that is consistent with experimental results. The predicted temperature and strain-rate dependencies of the yield stress agree with experimental results in the 200-350 K temperature regime, and are rationalized by the small activation volumes associated with the kinkpair-mediated motion of screw dislocations.

  18. A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper

    KAUST Repository

    Kurra, Narendra; Park, Jihoon; Alshareef, Husam N.

    2014-01-01

    In this study, a thin nucleation layer is used to tune the morphology of conducting polymer electrodes and to optimize the performance of paper based solid-state supercapacitors. It is found that using an acid-treated poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) nucleation layer, prior to poly(3,4-ethylenedioxythiophene), PEDOT, electrochemical deposition, gives 5-6 times higher areal capacitance compared to a gold metal nucleation layer. Specifically, PEDOT supercapacitors with a high volumetric capacitance of 327 F cm-3, higher than any other PEDOT based supercapacitors reported in the literature, is achieved on the PEDOT:PSS nucleation layer; for the same devices, an areal capacitance of 242 mF cm-2 and an energy density of 14.5 mW h cm-3 at a power density of 350 mW cm-3 are obtained. Furthermore, these optimized PEDOT/PEDOT:PSS/paper electrodes are employed to fabricate solid-state supercapacitors using aqueous and ion gel electrolytes, with 32 and 11 mF cm-2 cell capacitance, respectively. The solid-state PEDOT device showed an energy density of 1.5 mW h cm-3 (normalised to the volume of the whole cell, including both the electrodes and the electrolyte), which is higher than the best reported ppy/paper (E = 1 mW h cm-3) and PAni/pencil/paper (E = 0.32 mW h cm-3) solid-state devices. The cycling performance showed that capacitance retention up to 80% is achieved after 10000 cycles. This journal is

  19. A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper

    KAUST Repository

    Kurra, Narendra

    2014-08-19

    In this study, a thin nucleation layer is used to tune the morphology of conducting polymer electrodes and to optimize the performance of paper based solid-state supercapacitors. It is found that using an acid-treated poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) nucleation layer, prior to poly(3,4-ethylenedioxythiophene), PEDOT, electrochemical deposition, gives 5-6 times higher areal capacitance compared to a gold metal nucleation layer. Specifically, PEDOT supercapacitors with a high volumetric capacitance of 327 F cm-3, higher than any other PEDOT based supercapacitors reported in the literature, is achieved on the PEDOT:PSS nucleation layer; for the same devices, an areal capacitance of 242 mF cm-2 and an energy density of 14.5 mW h cm-3 at a power density of 350 mW cm-3 are obtained. Furthermore, these optimized PEDOT/PEDOT:PSS/paper electrodes are employed to fabricate solid-state supercapacitors using aqueous and ion gel electrolytes, with 32 and 11 mF cm-2 cell capacitance, respectively. The solid-state PEDOT device showed an energy density of 1.5 mW h cm-3 (normalised to the volume of the whole cell, including both the electrodes and the electrolyte), which is higher than the best reported ppy/paper (E = 1 mW h cm-3) and PAni/pencil/paper (E = 0.32 mW h cm-3) solid-state devices. The cycling performance showed that capacitance retention up to 80% is achieved after 10000 cycles. This journal is

  20. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast.

    Science.gov (United States)

    Flor-Parra, Ignacio; Iglesias-Romero, Ana Belén; Chang, Fred

    2018-06-04

    The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents.

    Directory of Open Access Journals (Sweden)

    Anil S Thakur

    2007-10-01

    Full Text Available Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed.We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other.Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens.

  2. Cavitation nucleation in gelatin: Experiment and mechanism.

    Science.gov (United States)

    Kang, Wonmo; Adnan, Ashfaq; O'Shaughnessy, Thomas; Bagchi, Amit

    2018-02-01

    Dynamic cavitation in soft materials is becoming increasingly relevant due to emerging medical implications such as the potential of cavitation-induced brain injury or cavitation created by therapeutic medical devices. However, the current understanding of dynamic cavitation in soft materials is still very limited, mainly due to lack of robust experimental techniques. To experimentally characterize cavitation nucleation under dynamic loading, we utilize a recently developed experimental instrument, the integrated drop tower system. This technique allows quantitative measurements of the critical acceleration (a cr ) that corresponds to cavitation nucleation while concurrently visualizing time evolution of cavitation. Our experimental results reveal that a cr increases with increasing concentration of gelatin in pure water. Interestingly, we have observed the distinctive transition from a sharp increase (pure water to 1% gelatin) to a much slower rate of increase (∼10× slower) between 1% and 7.5% gelatin. Theoretical cavitation criterion predicts the general trend of increasing a cr , but fails to explain the transition rates. As a likely mechanism, we consider concentration-dependent material properties and non-spherical cavitation nucleation sites, represented by pre-existing bubbles in gels, due to possible interplay between gelatin molecules and nucleation sites. This analysis shows that cavitation nucleation is very sensitive to the initial configuration of a bubble, i.e., a non-spherical bubble can significantly increase a cr . This conclusion matches well with the experimentally observed liquid-to-gel transition in the critical acceleration for cavitation nucleation. From a medical standpoint, understanding dynamic cavitation within soft materials, i.e., tissues, is important as there are both potential injury implications (blast-induced cavitation within the brain) as well as treatments utilizing the phenomena (lithotripsy). In this regard, the main

  3. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    Science.gov (United States)

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  4. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  5. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  6. Comparative study of ice nucleating efficiency of K-feldspar in immersion and deposition freezing modes

    Science.gov (United States)

    Hiron, T.; Hoffmann, N.; Peckhaus, A.; Kiselev, A. A.; Leisner, T.; Flossmann, A. I.

    2016-12-01

    One of the main challenges in understanding the evolution of Earth's climate resides in the understanding the role of ice nucleation on the development of tropospheric clouds as well as its initiation. K-feldspar is known to be a very active ice nucleating particle and this study focuses on the characterization of its activity in two heterogeneous nucleation modes, immersion and deposition freezing.We use a newly built humidity-controlled cold stage allowing the simultaneous observation of up to 2000 identical 0.6-nanoliter droplets containing suspension of mineral dust particles. The droplets are first cooled down to observe immersion freezing, the obtained ice crystals are then evaporated and finally, the residual particles are exposed to the water vapor supersaturated with respect to ice.The ice nucleation abilities for the individual residual particles are then compared for the different freezing modes and correlation between immersion ice nuclei and deposition ice nuclei is investigated.Based on the electron microscopy analysis of the residual particles, we discuss the possible relationship between the ice nucleation properties of feldspar and its microstructure. Finally, we discuss the atmospheric implications of our experimental results, using DESCAM, a 1.5D bin-resolved microphysics model.

  7. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  8. Influence of an oscillator bath on the nucleation rate

    International Nuclear Information System (INIS)

    Amritkar, R.E.

    1984-09-01

    The nucleation rate of a system in a metastable state coupled to an oscillator bath is considered. It is shown that for a weak coupling and small oscillator frequencies the nucleation rate increases. (author)

  9. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  10. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  11. Chlorine-containing salts as water ice nucleating particles on Mars

    Science.gov (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  12. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  13. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  14. Nonreassuring fetal heart rate patterns and nucleated red blood cells in term neonates.

    Science.gov (United States)

    Kovalak, E Ebru; Dede, F Suat; Gelisen, Orhan; Dede, Hulya; Haberal, Ali

    2011-05-01

    The aim of this study was to evaluate the association between nonreassuring fetal heart rate patterns during labor and umbilical cord nucleated red blood cell counts. Nucleated red blood cell data was collected prospectively from 41 singleton term neonates presented with nonreassuring fetal heart rate patterns and/or meconium stained amniotic fluid during labor (study group) and from 45 term neonates without any evidence of nonreassuring fetal status (controls). Umbilical artery pH, blood gases and base excess were also determined to investigate the correlation between independent variables. The median nucleated red blood cells per 100 white blood cells were 13 (range 0-37) in the study group and 8 (range 0-21) in the control group. Stepwise regression analysis have identified meconium stained amniotic fluid (R(2) = 0.15, p patterns. Nucleated red blood cells in the cord blood of newborns were found to be elevated in patients with nonreassuring FHR patterns during labor. However, the wide range and the poor correlation of NRBC count with umbilical artery pH and blood gas values limit its clinical utility as a marker for fetal hypoxia.

  15. The role of sodium bicarbonate in the nucleation of noctilucent clouds

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    Full Text Available It is proposed that a component of meteoric smoke, sodium bicarbonate (NaHCO3, provides particularly effective condensation nuclei for noctilucent clouds. This assertion is based on three conditions being met. The first is that NaHCO3 is present at sufficient concentration (±104 cm-3 in the upper mesosphere between 80 and 90 km. It is demonstrated that there is strong evidence for this based on recent laboratory measurements coupled with atmospheric modelling. The second condition is that the thermodynamics of NaHCO3(H2On cluster formation allow spontaneous nucleation to occur under mesospheric conditions at temperatures below 140 K. The Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP theory and a large basis set with added polarization and diffuse functions. The results were then extrapolated to higher n using an established dependence of the free energy on cluster size and the free energy for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show that spontaneous nucleation to form ice particles (n >100 should occur between 84 and 89 km in the high-latitude summer mesosphere. The third condition is that other metallic components of meteoric smoke are less effective condensation nuclei, so that the total number of potential nuclei is small relative to the amount of available H2O. Quantum calculations indicate that this is probably the case for major constituents such as Fe(OH2, FeO3 and MgCO3.

    Key words: Atmospheric composition and structure (aerosols and particles; cloud physics and chemistry; middle atmosphere · composition and chemistry

  16. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    Science.gov (United States)

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  17. Nucleation mechanisms in high energy ion beam induced dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Michael; Garmatter, Daniel; Ferhati, Redi; Amirthapandian, Sankarakumar; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany)

    2011-07-01

    Solid coatings, when heated above their melting points, often break up by forming small round holes, which then grow, coalesce and finally turn the initially contiguous film into a pattern of isolated droplets. Such dewetting has been intensively studied using thin polymer films on Si. Three different hole nucleation mechanisms were discovered: homogeneous (spontaneous) nucleation, heterogeneous nucleation at defects, and spinodal dewetting by self-amplifying capillary waves. We have recently found that swift heavy ion (SHI) irradiation of thin oxide films on Si results in similar dewetting patterns, even though the films were kept far below their melting points. Using our new in-situ SEM at the UNILAC accelerator of GSI, we were now able to identify the mechanisms behind this SHI induced dewetting phenomenon. By varying the film thickness and introducing defects at the interface, we can directly address the hole nucleation processes. Besides homogeneous and heterogeneous nucleation, we also found a process, which very much resembles the spinodal mechanism found for liquid polymers, although in the present case the instable wavy surface is not generated by capillary waves, but by ion beam induced stresses.

  18. On the Role of Ammonia in Arctic Aerosol Nucleation and Cloud Formation

    Science.gov (United States)

    Browse, J.; Dall'Osto, M.; Geels, C.; Skov, H.; Massling, A.; Boertmann, D.; Beddows, D.; Gordon, H.; Pringle, K.

    2017-12-01

    This study investigates the importance of ammonia in Arctic aerosol nucleation and the formation of cloud condensation nuclei (CCN) at high-latitudes. The importance of atmospheric nucleation processes to summertime Arctic aerosol concentration has been frequently noted at ground-stations, during campaigns and within models (which typically predict that the majority of aerosol in the Arctic summertime boundary layer derives from nucleation). However, as nucleation mechanisms in global models have increased in complexity (improving model skill globally) our skill in the Arctic has generally decreased. This decrease in model skill is likely due to a lack of organic compounds (monterpenes etc.) in the modelled high Arctic which have been identified as a key component in atmospheric nucleation in the mid-latitudes and thus incorporated into many global nucleation parametrisations. Recently it has been suggested that ammonia (also identified as a potentially important component in atmospheric nucleation) may control nucleation processes in the Arctic. However, the source (or sources) of Arctic ammonia remain unclear. Here, we use modelling, long-term aerosol in-situ observations, high resolution sea-ice satellite observations and new emission inventories to investigate the link between ammonia sources (including bird colonies, sea-ice melt and open ocean in the marginal ice zones) and nucleation events in the mid-to-high Arctic, and thus quantify the importance of individual ammonia sources to Arctic-wide CCN and cloud droplet populations.

  19. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    Science.gov (United States)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  20. Visualization of nucleate pool boiling of freon 113

    International Nuclear Information System (INIS)

    Afify, M.A.; Fruman, D.H.

    1987-01-01

    The purpose of this investigation is to give a fine description of the behaviour of vapour bubbles in nucleate pool boiling at sites of known sizes using high speed photography. The shapes and growth history of isolated bubbles were determined for a variety of experimental conditions. Coalescence effects between two adjacent or consecutive bubbles were also visualized and the occurrence of vapour patches and continuous vapour columns was demonstrated. Quantitative analysis of the films allows to determine the history and nucleation characteristics of bubbles as a function of various parameters such as heat flux, liquid subcooling and size and nature of nucleation sites. These results are in good agreement with those found in the literature

  1. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    Science.gov (United States)

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi

  2. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils.

    Science.gov (United States)

    Buell, Alexander K

    2017-01-01

    The condensation and aggregation of individual protein molecules into dense insoluble phases is of relevance in such diverse fields as materials science, medicine, structural biology and pharmacology. A common feature of these condensation phenomena is that they usually are nucleated processes, i.e. the first piece of the condensed phase is energetically costly to create and hence forms slowly compared to its subsequent growth. Here we give a compact overview of the differences and similarities of various protein nucleation phenomena, their theoretical description in the framework of colloid and polymer science and their experimental study. Particular emphasis is put on the nucleation of a specific type of filamentous protein aggregates, amyloid fibrils. The current experimentally derived knowledge on amyloid fibril nucleation is critically assessed, and we argue that it is less advanced than is generally believed. This is due to (I) the lack of emphasis that has been put on the distinction between homogeneous and heterogeneous nucleation in experimental studies (II) the use of oversimplifying and/or inappropriate theoretical frameworks for the analysis of kinetic data of amyloid fibril nucleation. A strategy is outlined and advocated of how our understanding of this important class of processes can be improved in the future. © 2017 Elsevier Inc. All rights reserved.

  3. The barrier to ice nucleation in monatomic water

    Science.gov (United States)

    Prestipino, Santi

    2018-03-01

    Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.

  4. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  5. Effect of Air Injection on Nucleation Rates

    DEFF Research Database (Denmark)

    Capellades Mendez, Gerard; Kiil, Søren; Dam-Johansen, Kim

    2017-01-01

    From disruption of the supersaturated solution to improved mass transfer in the crystallizing suspension, the introduction of a moving gas phase in a crystallizer could lead to improved rates of nucleation and crystal growth. In this work, saturated air has been injected to batch crystallizers...... to study the effects on formation of the first crystal and subsequent turbidity buildup. To account for the typically large sample-to-sample variation, nucleation rates were evaluated for a large number of replicates using probability distributions of induction times. The slope and the intercept...... was reduced from 69 to 13 min, and the mean induction time decreased from 128 to 36 min. The effect on aqueous solutions of l-arginine was less apparent, with a detection delay reduction from 15 to 3 min, and no significant changes on the rate of primary nucleation. These results demonstrate the potential...

  6. Ion-induced nucleation of pure biogenic particles

    CERN Document Server

    Kirkby, Jasper; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-01-01

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of $\\alpha$-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported...

  7. Nucleation and growth of vapor bubbles in the liquid bulk and at a solid surface

    International Nuclear Information System (INIS)

    Yagov, V.V.

    1977-01-01

    The main achievements in the study of the vapor phase origin in liquid and the subsequent growth of the vapor bubbles are presented briefly, and a number of issues on which there is no single opinion as yet are also outlined. The theory of homogeneous nucleation and a great number of experiments make it possible not only to explain qualitatively the causes of spontaneous formation of vapor nucleation centers in the metastable liquid but provides a simple computational relation for the estimating the intensity of this process. None of the existing hypotheses, however, can give a complete answer to the question of the mechanism of the vapor phase nucleation on a solid surface under ''pure conditions'', although this is a more pressing problem. At the same time, the role of cavities of reservoir type (with a narrow orifice) on the surface under heating as reliable stabilizers of the vapor formation (especially in liquid metals) is clarified from the practical point of view. Thus, the identification of technology for production of such cavities would make it possible to increase substantially the efficiency of heat transferring surfaces. Any computational relations for the growth of bubbles on the heating surface also are (and, according to the author, necessarily will be) approximate ones, although considerable success has been achieved in this field

  8. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    Science.gov (United States)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth

  9. Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles

    Science.gov (United States)

    Yu, Huan; Dai, Liang; Zhao, Yi; Kanawade, Vijay P.; Tripathi, Sachchida N.; Ge, Xinlei; Chen, Mindong; Lee, Shan-Hu

    2017-02-01

    Temperature and relative humidity (RH) are the most important thermodynamic parameters in aerosol formation, yet laboratory studies of nucleation and growth dependencies on temperature and RH are lacking. Here we report the experimentally observed temperature and RH dependences of sulfuric acid aerosol nucleation and growth. Experiments were performed in a flow tube in the temperature range from 248 to 313 K, RH from 0.8% to 79%, and relative acidity (RA) of sulfuric acid from 6 × 10-5 to 0.38 (2 × 107-109 cm-3). The impurity levels of base compounds were determined to be NH3 nucleation at fixed sulfuric acid concentration but impede nucleation when RA is fixed. It is also shown that binary nucleation of sulfuric acid and water is negligible in planetary boundary layer temperature and sulfuric acid ranges. An empirical algorithm was derived to correlate the nucleation rate with RA, RH, and temperature together. Collision-limited condensation of free-sulfuric acid molecules fails to predict the observed growth rate in the sub-3 nm size range, as well as its dependence on temperature and RH. This suggests that evaporation, sulfuric acid hydration, and possible involvement of other ternary molecules should be considered for the sub-3 nm particle growth.

  10. Nucleation of recrystallization at selected sites in deformed fcc metals

    DEFF Research Database (Denmark)

    Xu, Chaoling

    The objective of this thesis is to explore nucleation of recrystallization at selected sites in selected face-centered-cubic (FCC) metals, namely cold rolled columnar-grained nickel and high purity aluminum further deformed by indenting. Various techniques, including, optical microscopy, electron...... backscattered diffraction (EBSD), electron channeling contrast (ECC) and synchrotron X-ray technique, differential-aperture X-ray microscopy (DAXM), were used to characterize the microstructures, to explore nucleation sites, orientation relationships between nuclei and deformed microstructures, and nucleation...... mechanisms. In the cold rolled nickel samples, the preference of triple junctions (TJs) and grain boundaries (GBs) as nucleation sites is observed. The majorities of the nuclei have the same orientations as the surrounding matrix or are twin-related to a surrounding deformed grain. Only a few nuclei...

  11. Evaporation rate of nucleating clusters.

    Science.gov (United States)

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  12. Snow-borne nanosized particles: Abundance, distribution, composition, and significance in ice nucleation processes

    Science.gov (United States)

    Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.

    2015-11-01

    Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.

  13. Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010

    Directory of Open Access Journals (Sweden)

    I. Steinke

    2011-12-01

    Full Text Available During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. It was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RHice =126%. About 0.1% of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1% was observed at around 233 K and RHice =116%. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (ns,imm ~ 109 m−2 at 247 K compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities ns,dep were found to be 1011 m−2 at 224 K and RHice =116%. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for

  14. A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study

    Science.gov (United States)

    Mondal, Sukanta; Goswami, Tamal; Jana, Gourhari; Misra, Anirban; Chattaraj, Pratim Kumar

    2018-01-01

    In this letter, a possible reason behind selective host-guest organization in the initial stage of sI methane hydrate nucleation is provided, through density functional theory based calculations. In doing so, we have connected earlier experimental and theoretical observations on the structure and energetics of sI methane hydrate to our findings. Geometry and relative stability of small (H2O)5 and (H2O)6 clusters, presence of CH4 guest, integrity and cavity radius of (H2O)20 and (H2O)24, as well as the weak van der Waals type of forces, particularly dispersion interaction, are major factors responsible for initial formation of methane encapsulated dodecahedron cavity over tetrakaidecahedron.

  15. Intermediate Nucleation State of GaN Growth

    Science.gov (United States)

    Zheng, L. X.; Xie, M. H.; Tong, S. Y.

    2001-03-01

    Homoexpitaxial nucleation of GaN during molecular-beam epitaxy is followed by scanning tunneling microcopy (STM). We observe a metastable nucleation state, which manifests as “ghost” islands in STM images. These “ghost” islands can be irreversibly driven into normal islands by continuous STM imaging. It is further established that the “ghost” island formation is related to the presence of excess Ga atoms on the surface: Normal islands are only seen under the N-rich or stoichiometric flux condition, whereas “ghost” islands are observed under Ga-rich conditions. For intermediate excess-Ga coverages, both normal and “ghost” islands are present, however, they show distinctly different sizes, suggesting different nucleation states for the two. A growth model is proposed to account for the formation of metastable, “ghost” islands. Kinetic Monte Carlo simulation is carried out and main features of the surface are reproduced. We acknowledge financial support from HK RGC under grant Nos. 7396/00P, 7142/99P, and 7121/00P.

  16. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  17. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  18. Ice nucleating particles in the Saharan Air Layer

    Directory of Open Access Journals (Sweden)

    Y. Boose

    2016-07-01

    in INPs compared to the ambient aerosol. Overall, this suggests that atmospheric aging processes in the SAL can lead to an increase in ice nucleation ability of mineral dust from the Sahara. INP concentrations predicted with two common parameterization schemes, which were derived mostly from atmospheric measurements far away from the Sahara but influenced by Asian and Saharan dust, were found to be higher based on the aerosol load than we observed in the SAL, further suggesting aging effects of INPs in the SAL.

  19. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method

    International Nuclear Information System (INIS)

    Gonzalez, Miguel A.; Abascal, José L. F.; Valeriani, Chantal; Bresme, Fernando

    2015-01-01

    In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain the free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids

  20. Plasmon mediated non-photochemical nucleation of nanoparticles by circularly polarized light

    OpenAIRE

    Karpov, Victor G.; Grigorchuk, Nicholas I.

    2014-01-01

    We predict nucleation of pancake shaped metallic nanoparticles having plasmonic frequencies in resonance with a non-absorbed circularly polarized electromagnetic field. We show that the same field can induce nucleation of randomly oriented needle shaped particles. The probabilities of these shapes are estimated vs. field frequency and strength, material parameters, and temperature. This constitutes a quantitative model of non-photochemical laser induced nucleation (NPLIN) consistent with the ...

  1. Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography

    International Nuclear Information System (INIS)

    Palmans, J; Faraz, T; Verheijen, M A; Kessels, W M M; Creatore, M

    2016-01-01

    The nucleation of microcrystalline silicon thin-films has been investigated for various substrate natures and topographies. An earlier nucleation onset on aluminium-doped zinc oxide compared to glass substrates has been revealed, associated with a microstructure enhancement and reduced surface energy. Both aspects resulted in a larger crystallite density, following classical nucleation theory. Additionally, the nucleation onset was (plasma deposition) condition-dependent. Therefore, surface chemistry and its interplay with the plasma have been proposed as key factors affecting nucleation and growth. As such, preliminary proof of the substrate nature’s role in microcrystalline silicon growth has been provided. Subsequently, the impact of nano-imprint lithography prepared surfaces on the initial microcrystalline silicon growth has been explored. Strong topographies, with a 5-fold surface area enhancement, led to a reduction in crystalline volume fraction of ∼20%. However, no correlation between topography and microstructure has been found. Instead, the suppressed crystallization has been partially ascribed to a reduced growth flux, limited surface diffusion and increased incubation layer thickness, originating from the surface area enhancement when transiting from flat to nanostructured surfaces. Furthermore, fundamental plasma parameters have been reviewed in relation with surface topography. Strong topographies are not expected to affect the ion-to-growth flux ratio. However, the reduced ion flux (due to increasing surface area) further limited the already weak ion energy transfer to surface processes. Additionally, the atomic hydrogen flux, i.e. the driving force for microcrystalline growth, has been found to decrease by a factor of 10 when transiting from flat to nanostructured topography. This resulted in an almost 6-fold reduction of the hydrogen-to-growth flux ratio, a much stronger effect than the ion-to-growth flux ratio. Since previous studies regarding

  2. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    Science.gov (United States)

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  3. Gravitationally compact objects as nucleation sites for first-order vacuum phase transitions

    International Nuclear Information System (INIS)

    Samuel, D.A.; Hiscock, W.A.

    1992-01-01

    A characteristic of first-order phase transitions is their ability to be initiated by nucleation sites. In this paper we consider the role that gravitationally compact objects may play as nucleation sites for first-order phase transitions within quantum fields. As the presence of nucleation sites may prevent the onset of supercooling, the existence of nucleation sites for phase transitions within quantum fields may play an important role in some inflationary models of the Universe, in which the Universe is required to exist in a supercooled state for a period of time. In this paper we calculate the Euclidean action for an O(3) bubble nucleating about a gravitationally compact object, taken to be a boson star for simplicity. The gravitational field of the boson star is taken to be a small perturbation on flat space, and the O(3) action is calculated to linear order as a perturbation on the O(4) action. The Euclidean bubble profile is found by solving the (Higgs) scalar field equation numerically; the thin-wall approximation is not used. The gravitationally compact objects are found to have the effect of reducing the Euclidean action of the nucleating bubble, as compared to the Euclidean action for the bubble in flat spacetime. The effect is strongest when the size of the gravitationally compact object is comparable to the size of the nucleating bubble. Further, the size of the decrease in action increases as the nucleating ''star'' is made more gravitationally compact. Thus, gravitationally compact objects may play the role of nucleation sites. However, their importance to the process of false-vacuum decay is strongly dependent upon their number density within the Universe

  4. A simulation study of homogeneous ice nucleation in supercooled salty water

    Science.gov (United States)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  5. Assessment of Nucleation Site Density Models for CFD Simulations of Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Hoang, N. H.; Chu, I. C.; Euh, D. J.; Song, C. H.

    2015-01-01

    The framework of a CFD simulation of subcooled flow boiling basically includes a block of wall boiling models communicating with governing equations of a two-phase flow via parameters like temperature, rate of phasic change, etc. In the block of wall boiling models, a heat flux partitioning model, which describes how the heat is taken away from a heated surface, is combined with models quantifying boiling parameters, i.e. nucleation site density, and bubble departure diameter and frequency. It is realized that the nucleation site density is an important parameter for predicting the subcooled flow boiling. The number of nucleation sites per unit area decides the influence region of each heat transfer mechanism. The variation of the nucleation site density will mutually change the dynamics of vapor bubbles formed at these sites. In addition, the nucleation site density is needed as one initial and boundary condition to solve the interfacial area transport equation. A lot of effort has been devoted to mathematically formulate the nucleation site density. As a consequence, numerous correlations of the nucleation site density are available in the literature. These correlations are commonly quite different in their mathematical form as well as application range. Some correlations of the nucleation site density have been applied successfully to CFD simulations of several specific subcooled boiling flows, but in combination with different correlations of the bubble departure diameter and frequency. In addition, the values of the nucleation site density, and bubble departure diameter and frequency obtained from simulations for a same problem are relatively different, depending on which models are used, even when global characteristics, e.g., void fraction and mean bubble diameter, agree well with experimental values. It is realized that having a good CFD simulations of the subcooled flow boiling requires a detailed validations of all the models used. Owing to the importance

  6. Modelling of a DNB mechanism by dry-out of a nucleation site

    International Nuclear Information System (INIS)

    Bricard, P.

    1995-10-01

    This study deals with the modelling of a nucleation site dry-out DNB mechanism which unifies those of Kirby et al. (1967) and Fiori and Bergles (1970). A first model based on a simplified heat balance in the wall at the location of the dry spot is developed and a set of closure relations is proposed. The model is then quantitatively and qualitatively compared to CHF data. In order to support the likelihood of the mechanism, we develop a more elaborated model which couples the unsteady thermal behavior of the wall and the thermal-hydraulics of the fluid described by the different phases of the nucleation cycle. The conditions which enable the boiling crisis to be reached are given

  7. Control over phase separation and nucleation using a laser-tweezing potential

    Science.gov (United States)

    Walton, Finlay; Wynne, Klaas

    2018-05-01

    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid-liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter.

  8. Using Ice Nucleating Particles to Enable Desublimation on Chilled Substrates

    Science.gov (United States)

    O'Brien, Julia; Failor, Kevin; Bisbano, Caitlin; Mulroe, Megan; Nath, Saurabh; Vinatzer, Boris; Boreyko, Jonathan

    2017-11-01

    On a subfreezing surface, nucleating embryos usually form as supercooled condensate that later freeze into ice, as opposed to desublimation. Ice nucleating particles (INPs) have been widely used to freeze existing water; however, nobody has studied how they might affect the initial mode of nucleation. Here, we show that INPs deposited on a substrate can switch the mode of embryo nucleation to desublimation, rather than supercooled condensation. Deposition was achieved by evaporating a water droplet containing INPs on a hydrophobic silicon wafer. A Peltier stage was used to cool the wafer down inside of a controlled humidity chamber, such that the desired set point temperature correlated with the dew point and onset of nucleation. Beneath a critical surface temperature, microscopy indicated that desublimation occurred on the circular patch of deposited INPs, compared to supercooled condensation outside the circle. The hydrophobic surface was then patterned with hydrophilic stripe arrays, which facilitated the deposition of stripes of INPs via the same evaporation method. The resulting array of desublimating ice stripes created dry zones free of condensation or frost in the intermediate areas, as the hygroscopic ice stripes served as overlapping humidity sinks.

  9. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  10. Nucleation from a cluster of inclusions, leading to void coalescense

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2017-01-01

    A cell model analysis is used to study the nucleation and subsequent growth of voids from a non-uniform distribution of inclusions in a ductile material. Nucleation is modeled as either stress controlled or strain controlled. The special clusters considered consist of a number of uniformly spaced...... inclusions located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the inclusions are parallel cylinders perpendicular to the plane. Clusters with different numbers of inclusions are compared with the nucleation and growth from a single...... inclusion, such that the total initial volume of the inclusions is the same for the clusters and the single inclusion. After nucleation, local void coalescence inside the clusters is accounted for, since this makes it possible to compare the rate of growth of the single larger void that results from...

  11. Availability analysis for heterogeneous nucleation in a uniform electric field

    CERN Document Server

    Saidi, M H

    2003-01-01

    Industrial demands for more compact heat exchangers are a motivation to find new technology features. Electrohydrodynamics (EHD) is introduced as a promising phenomenon for heat transfer enhancement mechanisms. Similar to any new technology, EHD has not been understood completely yet and require more fundamental studies. In boiling phase change phenomena, nucleation is the dominant mechanism in heat transfer. Because of higher performance in heat transfer, nucleate boiling is considered as the main regime in thermal components. Hence, bubble dynamic investigation is a means to evaluate heat transfer. This study investigate bubble formation, including homogeneous and heterogeneous nucleation, from a thermodynamic point of view. Change in availability due to bubble embryo nucleation is discussed. Stability criteria for these systems are theoretically studied and results are discussed considering experimental data. In addition, a conceptual discussion on entropy generation in a thermodynamic system under electri...

  12. Theory-Based Evaluation Meets Ambiguity

    DEFF Research Database (Denmark)

    Dahler-Larsen, Peter

    2017-01-01

    As theory-based evaluation (TBE) engages in situations where multiple stakeholders help develop complex program theory about dynamic phenomena in politically contested settings, it becomes difficult to develop and use program theory without ambiguity. The purpose of this article is to explore...... ambiguity as a fruitful perspective that helps TBE face current challenges. Literatures in organization theory and political theory are consulted in order to cultivate the concept of ambiguity. Janus variables (which work in two ways) and other ambiguous aspects of program theories are classified...... and exemplified. Stances towards ambiguity are considered, as are concrete steps that TBE evaluators can take to identify and deal with ambiguity in TBE....

  13. System Dynamics as Model-Based Theory Building

    OpenAIRE

    Schwaninger, Markus; Grösser, Stefan N.

    2008-01-01

    This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi...

  14. International Workshop on Comparing Ice Nucleation Measuring Systems 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cziczo, Daniel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-04-30

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impact climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].

  15. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates.

    Science.gov (United States)

    Pant, Atul; Parsons, Matthew T; Bertram, Allan K

    2006-07-20

    Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is

  16. The Stress-Dependent Activation Parameters for Dislocation Nucleation in Molybdenum Nanoparticles.

    Science.gov (United States)

    Chachamovitz, Doron; Mordehai, Dan

    2018-03-02

    Many specimens at the nanoscale are pristine of dislocations, line defects which are the main carriers of plasticity. As a result, they exhibit extremely high strengths which are dislocation-nucleation controlled. Since nucleation is a thermally activated process, it is essential to quantify the stress-dependent activation parameters for dislocation nucleation in order to study the strength of specimens at the nanoscale and its distribution. In this work, we calculate the strength of Mo nanoparticles in molecular dynamics simulations and we propose a method to extract the activation free-energy barrier for dislocation nucleation from the distribution of the results. We show that by deforming the nanoparticles at a constant strain rate, their strength distribution can be approximated by a normal distribution, from which the activation volumes at different stresses and temperatures are calculated directly. We found that the activation energy dependency on the stress near spontaneous nucleation conditions obeys a power-law with a critical exponent of approximately 3/2, which is in accordance with critical exponents found in other thermally activated processes but never for dislocation nucleation. Additionally, significant activation entropies were calculated. Finally, we generalize the approach to calculate the activation parameters for other driving-force dependent thermally activated processes.

  17. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  18. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    Science.gov (United States)

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  19. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  20. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  1. Buckyball Nucleation of HiPco Tubes

    Science.gov (United States)

    Smalley, Richard E.

    2012-01-01

    The purpose of this innovation is to enhance nucleation of single-wall nanotubes (SWNTs) in the HiPco process, selectively producing 10,10 tubes, something which until now has not been thought possible. This is accomplished by injecting C60, or a derivative of C60, solubilized in supercritical CO2 together with a transition metal carboneal cocatalyst into the HiPco reactor. This is a variant on the supercritical disclosure. C60 has never been used to nucleate carbon nanotubes in the gas phase. C60 itself may not have adequate solubility in supercritical CO2. However, fluorinated C60, e.g., C60F36, is easy to make cheaply and should have much enhanced solubility.

  2. Gas–liquid nucleation at large metastability: unusual features and a new formalism

    International Nuclear Information System (INIS)

    Santra, Mantu; Singh, Rakesh S; Bagchi, Biman

    2011-01-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  3. Gas-liquid nucleation at large metastability: unusual features and a new formalism

    Science.gov (United States)

    Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman

    2011-03-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  4. Nucleation of domains under the influence of temperature in ...

    Indian Academy of Sciences (India)

    Abstract. It is found that the nucleation of domains can take place in Ba5Ti2O7Cl4 under the influence of temperature unlike in many other ferroelectrics. The nucleated domain can also be removed from the structure under the randomizing effect of tem- perature. These observations have been explained on the basis of a ...

  5. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.

    Science.gov (United States)

    Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet

    2017-04-01

    The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nuclear fragmentation by nucleation approach

    International Nuclear Information System (INIS)

    Chung, K.C.

    1992-01-01

    The nucleation model is used to simulate nuclear fragmentation processes. The critical value of the effective interaction radius is shown to vary linearly with the expansion factor α. The calculated mass and charge distributions are compared with some experimental data. (author)

  7. A study on Z-phase nucleation in martensitic chromium steels

    International Nuclear Information System (INIS)

    Golpayegani, Ardeshir; Andren, Hans-Olof; Danielsen, Hilmar; Hald, John

    2008-01-01

    9-12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550-650 deg. C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work, initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small. Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase

  8. Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts

    NARCIS (Netherlands)

    O'Dowd, C.D.; Haemeri, K.; Maekelae, J.M.; Vaekeva, M.; Aalto, P.; Leeuw, G. de; Kunz, G.J.; Becker, E.; Hansson, H-C.; Allen, A.G.; Harrison, R.M.; Berresheim, H.; Kleefeld, C.; Geever, M.; Jennings, S.G.; Kulmala, M.

    2002-01-01

    Nucleation mode aerosol was characterized during coastal nucleation events at Mace Head during intensive New Particle Formation and Fate in the Coastal Environment (PARFORCE) field campaigns in September 1998 and June 1999. Nucleation events were observed almost on a daily basis during the

  9. Observation and Analysis of Particle Nucleation at a Forest Site in Southeastern US

    Directory of Open Access Journals (Sweden)

    Viney Aneja

    2013-04-01

    Full Text Available This study examines the characteristics of new particle formation at a forest site in southeastern US. Particle size distributions above a Loblolly pine plantation were measured between November 2005 and September 2007 and analyzed by event type and frequency, as well as in relation to meteorological and atmospheric chemical conditions. Nucleation events occurred on 69% of classifiable observation days. Nucleation frequency was highest in spring. The highest daily nucleation (class A and B events frequency (81% was observed in April. The average total particle number concentration on nucleation days was 8,684 cm−3 (10 < Dp < 250 nm and 3,991 cm−3 (10 < Dp < 25 nm with a mode diameter of 28 nm with corresponding values on non-nucleation days of 2,143 cm−3, 655 cm−3, and 44.5 nm, respectively. The annual average growth rate during nucleation events was 2.7 ± 0.3 nm·h−1. Higher growth rates were observed during summer months with highest rates observed in May (5.0 ± 3.6 nm·h−1. Winter months were associated with lower growth rates, the lowest occurring in February (1.2 ± 2.2 nm·h−1. Consistent with other studies, nucleation events were more likely to occur on days with higher radiative flux and lower relative humidity compared to non-nucleation days. The daily minimum in the condensation sink, which typically occurred 2 to 3 h after sunrise, was a good indicator of the timing of nucleation onset. The intensity of the event, indicated by the total particle number concentration, was well correlated with photo-synthetically active radiation, used here as a surrogate for total global radiation, and relative humidity. Even though the role of biogenic VOC in the initial nuclei formation is not understood from this study, the relationships with chemical precursors and secondary aerosol products associated with nucleation, coupled with diurnal boundary layer dynamics and seasonal meteorological patterns, suggest that H2SO4 and biogenic

  10. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.

    Science.gov (United States)

    Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W

    2016-09-20

    Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of

  11. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.

    Science.gov (United States)

    Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D

    2017-02-13

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  12. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity. Results Based on Koop et al. (2000), a general decreasing trend in ice nucleation efficiency of the mineral samples with increasing solute concentrations is expected. Interestingly, feldspars (microcline, sanidine, plagioclase) in very dilute solutions of ammonia and ammonium salts (water activity close to one) show an increase in ice nucleation efficiency of 4 to 6 K compared to that in pure water. Similar trends but less pronounced are observed for kaolinite while quartz shows barely any effect. Therefore, there seem to be specific interactions between the feldspar surface and ammonia and/or ammonium ions which result in an increase in freezing temperatures at low solute concentrations. The surface ion exchange seems to be secondary for this effect since it is also present in ammonia solution. We hypothesize that ammonia adsorbs on the aluminol/silanol groups present on feldspar (viz. aluminosilicate surface) surfaces (Nash and Marshall, 1957; Belchinskaya et al., 2013). Hence allowing one of the N-H bonds to stick outwards from the surface, facing towards the bulk water and providing a favorable template for ice to grow. The current study gives an insight into the ice nucleation behavior of aluminosilicate minerals when present in conjunction with chemical species, eg. ammonium/sulfates, which is of high atmospheric relevance. References Koop et al., (2000

  13. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    Science.gov (United States)

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra......Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  15. Progress Towards Identifying and Quantifying the Organic Ice Nucleating Particles in Soils and Aerosols

    Science.gov (United States)

    Hill, T. C. J.; DeMott, P. J.; Fröhlich-Nowoisky, J.; Tobo, Y.; Suski, K. J.; Levin, E. J.; Kreidenweis, S. M.; Franc, G. D.

    2014-12-01

    Soil and plant surfaces emit ice nucleating particles (INP) to the atmosphere, especially when disturbed by wind, harvesting, rain or fire. Organic (biogenic) INP are abundant in most soils and dominate the population that nucleate >-15°C. For example, the sandy topsoil of sagebrush shrubland, a widespread ecotype prone to wind erosion after fire, contains ~106 organic INP g-1 at -6°C. The relevance of organic INP may also extend to colder temperatures than previously thought: Particles of soil organic matter (SOM) have been shown to be more important than mineral particles for the ice nucleating ability of agricultural soil dusts to -34°C. While the abundance of ice nucleation active (INA) bacteria on plants has been established, the identity of the organic INP in and emitted by soils remains a 40-year-old mystery. The need to understand their production and release is highlighted by recent findings that INA bacteria (measured with qPCR) account for few, if any, of the warm-temperature organic INP that predominate in boundary layer aerosols and snow; organic INP lofted with soil dusts seem a likely source. The complexity of SOM hinders its investigation. It contains decomposing plant materials, a diverse microbial and microfaunal community, humus, and inert organic matter. All are biochemically complex and all may contain ice nucleating constituents, either by design or by chance. Indeed the smoothness of the INP temperature spectra of soils is indicative of numerous, overlapping distributions of INP. We report recent progress in identifying and quantifying the organic INP in soils and boundary layer aerosols representative of West Central U.S. ecosystems, and how their characteristics may affect their dispersal. Chemical, enzymatic and DNA-based tests were used to assess contributions of INP from plant tissues, INA bacteria, INA fungi, organic crystals, monolayers of aliphatic alcohols, carbohydrates, and humic substances, while heat- and peroxide-based tests

  16. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  17. Experimental study of H2SO4 aerosol nucleation at high ionization levels

    DEFF Research Database (Denmark)

    Tomicic, Maja; Bødker Enghoff, Martin; Svensmark, Henrik

    2018-01-01

    One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8 m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H2SO4) was studied as a function of ionization and H2SO4 concentration. Other species that could...... have participated in the nucleation, such as NH3 or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017). Our parameter space is thus [H2SO4]  = 4×106 − 3×107 cm−3, [NH3+ org]  =  2.2 ppb, T = 295 K, RH......  =  38 %, and ion concentrations of 1700–19 000 cm−3. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10) at a size close to critical cluster size...

  18. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.

    Science.gov (United States)

    Glatz, Brittany; Sarupria, Sapna

    2018-01-23

    Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.

  19. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)

    1999-11-01

    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  20. Crystal nucleation in simple and complex fluids.

    Science.gov (United States)

    Oxtoby, David W

    2003-03-15

    The application of density-functional methods from statistical mechanics to the nucleation of crystals from the melt is described. Simple fluids such as metals, with sizes comparable with the range of their attractive forces, are compared with complex fluids such as colloidal suspensions and proteins dissolved in solution. A different mechanism for crystal nucleation is proposed in the latter case, in which density (concentration) changes before periodic crystalline order appears. This leads to a theoretical foundation for empirical observations on the 'crystallization window' in protein crystallization. Comparisons are made with the results of computer simulation via molecular dynamics.