WorldWideScience

Sample records for nucleation theory based

  1. A dynamical theory of nucleation

    Science.gov (United States)

    Lutsko, James F.

    2013-05-01

    A dynamical theory of nucleation based on fluctuating hydrodynamics is described. It is developed in detail for the case of diffusion-limited nucleation appropriate to colloids and macro-molecules in solution. By incorporating fluctuations, realistic fluid-transport and realistic free energy models the theory is able to give a unified treatment of both the pre-critical development of fluctuations leading to a critical cluster as well as of post-critical growth. Standard results from classical nucleation theory are shown to follow in the weak noise limit while the generality of the theory allows for many extensions including the description of very high supersaturations (small clusters), multiple order parameters and strong-noise effects to name a few. The theory is applied to homogeneous and heterogeneous nucleation of a model globular protein in a confined volume and it is found that nucleation depends critically on the existence of long-wavelength, small-amplitude density fluctuations.

  2. Principles of nucleation theory

    International Nuclear Information System (INIS)

    Clement, C.F.; Wood, M.H.

    1980-01-01

    The nucleation of small stable species is described in the problem of void growth by discrete rate equations. When gas is being produced the problem reduces to one of calculating the incubation dose for the gas bubble to void transition. A general expression for the steady state nucleation rate is derived for the case when voids are formed by vacancy fluctuations which enable an effective nucleation barrier to be crossed. (author)

  3. A theory-based parameterization for heterogeneous ice nucleation and implications for the simulation of ice processes in atmospheric models

    Science.gov (United States)

    Savre, J.; Ekman, A. M. L.

    2015-05-01

    A new parameterization for heterogeneous ice nucleation constrained by laboratory data and based on classical nucleation theory is introduced. Key features of the parameterization include the following: a consistent and modular modeling framework for treating condensation/immersion and deposition freezing, the possibility to consider various potential ice nucleating particle types (e.g., dust, black carbon, and bacteria), and the possibility to account for an aerosol size distribution. The ice nucleating ability of each aerosol type is described using a contact angle (θ) probability density function (PDF). A new modeling strategy is described to allow the θ PDF to evolve in time so that the most efficient ice nuclei (associated with the lowest θ values) are progressively removed as they nucleate ice. A computationally efficient quasi Monte Carlo method is used to integrate the computed ice nucleation rates over both size and contact angle distributions. The parameterization is employed in a parcel model, forced by an ensemble of Lagrangian trajectories extracted from a three-dimensional simulation of a springtime low-level Arctic mixed-phase cloud, in order to evaluate the accuracy and convergence of the method using different settings. The same model setup is then employed to examine the importance of various parameters for the simulated ice production. Modeling the time evolution of the θ PDF is found to be particularly crucial; assuming a time-independent θ PDF significantly overestimates the ice nucleation rates. It is stressed that the capacity of black carbon (BC) to form ice in the condensation/immersion freezing mode is highly uncertain, in particular at temperatures warmer than -20°C. In its current version, the parameterization most likely overestimates ice initiation by BC.

  4. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  5. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  6. Theory and Simulation of Nucleation

    NARCIS (Netherlands)

    Kuipers, J.|info:eu-repo/dai/nl/304832049

    2009-01-01

    Nucleation is the process where a stable nucleus spontaneously emerges in a metastable environment. Examples of nucleation abound, for instance the formation of droplets in undercooled gasses and of crystals in undercooled liquids. The process is thermally activated and is key to understanding

  7. A nucleation theory of cell surface capping

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Wester, M.J.; Perelson, A.S.

    1997-01-01

    We propose a new theory of cell surface capping based on the principles of nucleation. When antibody interacts with cell surface molecules, the molecules initially form small aggregates called patches that later coalesce into a large aggregate called a cap. While a cap can form by patches being pulled together by action of the cell''s cytoskeleton, in the case of some molecules, disruption of the cytoskeleton does not prevent cap formation. Diffusion of large aggregates on a cell surface is slow, and thus we propose that a cap can form solely through the diffusion of small aggregates containing just one or a few cell surface molecules. Here we consider the extreme case in which single molecules are mobile, but aggregates of all larger sizes are immobile. We show that a set of patches in equilibrium with a open-quotes seaclose quotes of free cell surface molecules can undergo a nucleation-type phase transition in which the largest patch will bind free cell surface molecules, deplete the concentration of such molecules in the open-quotes seaclose quotes and thus cause the other patches to shrink in size. We therefore show that a cap can form without patches having to move, collide with each other, and aggregate

  8. High performance computations using dynamical nucleation theory

    International Nuclear Information System (INIS)

    Windus, T L; Crosby, L D; Kathmann, S M

    2008-01-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described

  9. Recent developments in the kinetic theory of nucleation.

    Science.gov (United States)

    Ruckenstein, E; Djikaev, Y S

    2005-12-30

    A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation

  10. The emergence of modern nucleation theory

    International Nuclear Information System (INIS)

    Cahn, J.W.

    1987-01-01

    A series of important papers by David Turnbull and his collaborators in the late 1940's and early 1950's laid the experimental and theoretical foundation of modern nucleation theory. The elegance, versatility, and generality of the phenomenological approach, coupled with brilliant and insightful experimental confirmation, sparked widespread application which continues today. Much of David Turnbull's subsequent work in other subjects grew directly or indirectly from this work

  11. Systematic coarse-graining in nucleation theory

    Science.gov (United States)

    Schweizer, M.; Sagis, L. M. C.

    2015-08-01

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  12. Classical nucleation theory in the phase-field crystal model.

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  13. Classical nucleation theory in the phase-field crystal model

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  14. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.

    Science.gov (United States)

    Kashchiev, Dimo

    2015-11-17

    The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Acoustic Effects in Classical Nucleation Theory

    Science.gov (United States)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  16. A two-parameter extension of classical nucleation theory

    Science.gov (United States)

    Lutsko, James F.; Durán-Olivencia, Miguel A.

    2015-06-01

    A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier.

  17. A two-parameter extension of classical nucleation theory

    International Nuclear Information System (INIS)

    Lutsko, James F; Durán-Olivencia, Miguel A

    2015-01-01

    A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier. (paper)

  18. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  19. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    Science.gov (United States)

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density

  20. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Fradera, J.; Cuesta-López, S.

    2013-01-01

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM ® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  1. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  2. Structuring effects in binary nucleation : Molecular dynamics simulatons and coarse-grained nucleation theory

    NARCIS (Netherlands)

    Braun, S.; Kraska, T.; Kalikmanov, V.I.

    2013-01-01

    Binary clusters formed by vapor-liquid nucleation are frequently nonhomogeneous objects in which components are not well mixed. The structure of a cluster plays an important role in nucleation and cluster growth. We demonstrate structuring effects by studying high-pressure nucleation and cluster

  3. Theories of nucleation and growth of bubbles and voids

    International Nuclear Information System (INIS)

    Speight, M.V.

    1977-01-01

    The application of classical nucleation theory to the formation of voids from a supersaturated concentration of vacancies is reviewed. The effect of a dissolved concentration of barley soluble gas on the nucleation rate of voids is emphasized. Exposure to a damaging flux of irradiation is the most effective way of introducing a vacancy supersaturation, but interstitials are produced at an equal rate. The concentration of interstitials inhibits the nucleation of voids which can occur only in the presence of dislocations since they preferentially absorb interstitials. It is well known that a definite value of internal gas pressure is necessary to stabilize a bubble so that it shows no tendencies to either shrink or grow. The arguments are reviewed which conclude that this pressure is determined by the specific surface free energy of the solid rather than the surface tension. While the former property refers to the energy necessary to create new surface, the latter is a measure of the work done in elastically stretching a a given surface. The presence of an equilibrium gas bubble leaves the stresses in the surrounding solid unperturbed only when surface energy and surface tension are numerically equal. A bubble with internal pressure greater than the restraint offered by surface energy tends to grow to relieve the excess pressure. The mechanism of growth can involve the migration of vacancies from remote sources to the bubble surface or the plastic straining of the solid surrounding the bubble. The kinetics of both mechanisms are developed and compared. The theory of growth of grain-boundary voids by vacancy condensation under an applied stress is also considered. (author)

  4. Magnetization reversal in nucleation controlled magnets. I. Theory

    International Nuclear Information System (INIS)

    Ramesh, R.; Srikrishna, K.

    1988-01-01

    A statistical model, based upon earlier models of Brown [J. Appl. Phys. 33, 3022 (1962)] and McIntyre [J. Phys. D 3, 1430 (1970)] has been developed to examine the magnetization reversal of domain-wall nucleation controlled permanent magnets such as sintered Fe-Nd-B and SmCo 5 . Using a Poisson distribution of the defects on the surface of the grains, a ''weakest link statistics'' type model has been developed. The model has been used to calculate hysteresis loops for sintered Fe-Nd-B-type polycrystalline magnets. It is shown that the intrinsic coercivity measured for a bulk magnet should vary inversely as the logarithm of the surface area of the grain. The effect of demagnetizing field has been incorporated by a mean-field-type approximation, to calculate the overall nucleation field from the intrinsic coercivity. The hysteresis loops theoretically calculated are in excellent agreement with the overall form of those experimentally determined for similar nucleation controlled magnets. The model also predicts that for an inhomogeneous grain size distribution, such as a bimodal distribution, kinks will be observed in the second quadrant of the hysteresis loops

  5. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  6. Nucleation theory in Langevin's approach and lifetime of a Brownian particle in potential wells.

    Science.gov (United States)

    Alekseechkin, N V

    2008-07-14

    The multivariable theory of nucleation suggested by Alekseechkin [J. Chem. Phys. 124, 124512 (2006)] is further developed in the context of Langevin's approach. The use of this approach essentially enhances the capability of the nucleation theory, because it makes possible to consider the cases of small friction which are not taken into account by the classical Zel'dovich-Frenkel theory and its multivariable extensions. The procedure for the phenomenological determination of the nucleation parameters is described. Using the similarity of the Kramers model with that of nucleation, the lifetime of a Brownian particle in potential wells in various dimensionalities is calculated with the help of the expression for the steady state nucleation rate.

  7. Nucleation in the atmosphere

    International Nuclear Information System (INIS)

    Hegg, D A; Baker, M B

    2009-01-01

    Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous

  8. The Lack of Chemical Equilibrium does not Preclude the Use of the Classical Nucleation Theory in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Nuth, Joseph A., III

    2011-01-01

    Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.

  9. A classical density functional investigation of nucleation

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Ghosh, Swapan K.

    2009-01-01

    Study of nucleation and growth phenomena in condensation is of prime importance in various applications such as crystal growth, nanoparticle synthesis, pattern formation etc. The knowledge of nucleation barrier in condensation is necessary to control the nucleation kinetics, size of the nanoparticles etc. Classical nucleation theory (CNT) assumes the density of the drop as bulk density irrespective of the size of the drop and overestimates the nucleation barrier. Here we are interested in solving the problem analytically using density functional theory (DFT) with square gradient approximation along the lines of Cahn and Hilliard. Nucleation barrier and density profile obtained in this work are consistent with other works based on nonclassical theory. (author)

  10. Droplet Nucleation: Physically-Based Parameterizations and Comparative Evaluation

    Directory of Open Access Journals (Sweden)

    Steve Ghan

    2011-10-01

    Full Text Available One of the greatest sources of uncertainty in simulations of climate and climate change is the influence of aerosols on the optical properties of clouds. The root of this influence is the droplet nucleation process, which involves the spontaneous growth of aerosol into cloud droplets at cloud edges, during the early stages of cloud formation, and in some cases within the interior of mature clouds. Numerical models of droplet nucleation represent much of the complexity of the process, but at a computational cost that limits their application to simulations of hours or days. Physically-based parameterizations of droplet nucleation are designed to quickly estimate the number nucleated as a function of the primary controlling parameters: the aerosol number size distribution, hygroscopicity and cooling rate. Here we compare and contrast the key assumptions used in developing each of the most popular parameterizations and compare their performances under a variety of conditions. We find that the more complex parameterizations perform well under a wider variety of nucleation conditions, but all parameterizations perform well under the most common conditions. We then discuss the various applications of the parameterizations to cloud-resolving, regional and global models to study aerosol effects on clouds at a wide range of spatial and temporal scales. We compare estimates of anthropogenic aerosol indirect effects using two different parameterizations applied to the same global climate model, and find that the estimates of indirect effects differ by only 10%. We conclude with a summary of the outstanding challenges remaining for further development and application.

  11. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    Science.gov (United States)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  12. On the usage of classical nucleation theory in predicting the impact of bacteria on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Woetmann Nielsen, Niels; Havskov Sørensen, Jens; Finster, Kai; Bay Gosewinkel Karlson, Ulrich; Šantl-Temkiv, Tina; Smith Korsholm, Ulrik

    2014-05-01

    Bacteria, e.g. Pseudomonas syringae, have previously been found efficient in nucleating ice heterogeneously at temperatures close to -2°C in laboratory tests. Therefore, ice nucleation active (INA) bacteria may be involved in the formation of precipitation in mixed phase clouds, and could potentially influence weather and climate. Investigations into the impact of INA bacteria on climate have shown that emissions were too low to significantly impact the climate (Hoose et al., 2010). The goal of this study is to clarify the reason for finding the marginal impact on climate when INA bacteria were considered, by investigating the usability of ice nucleation rate parameterization based on classical nucleation theory (CNT). For this purpose, two parameterizations of heterogeneous ice nucleation were compared. Both parameterizations were implemented and tested in a 1-d version of the operational weather model (HIRLAM) (Lynch et al., 2000; Unden et al., 2002) in two different meteorological cases. The first parameterization is based on CNT and denoted CH08 (Chen et al., 2008). This parameterization is a function of temperature and the size of the IN. The second parameterization, denoted HAR13, was derived from nucleation measurements of SnomaxTM (Hartmann et al., 2013). It is a function of temperature and the number of protein complexes on the outer membranes of the cell. The fraction of cloud droplets containing each type of IN as percentage in the cloud droplets population were used and the sensitivity of cloud ice production in each parameterization was compared. In this study, HAR13 produces more cloud ice and precipitation than CH08 when the bacteria fraction increases. In CH08, the increase of the bacteria fraction leads to decreasing the cloud ice mixing ratio. The ice production using HAR13 was found to be more sensitive to the change of the bacterial fraction than CH08 which did not show a similar sensitivity. As a result, this may explain the marginal impact of

  13. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  14. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  15. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  16. Droplet and bubble nucleation modeled by density gradient theory – cubic equation of state versus saft model

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2012-04-01

    Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.

  17. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  18. Nucleation phenomena at Suzuki phases

    International Nuclear Information System (INIS)

    Acosta-Najarro, D.; Jose Y, M.

    1982-01-01

    Crystal of NaCl doped with Mn present regions with an increase in nucleation densities when observed by surface gold decoration; this increase is related to the nucleation of the Suzuki phases which are induced by cooling of the crystal matrix. Calculations based on atomistic nucleation theory are developed to explain the increased nucleation density. Experiments were made to compare with the theoretical results. In particular the density of nuclei was measured as a function of the rate or arrival of atoms to the surface. Therefore, the changes in the nucleation densities are explained in terms of change in migration energies between the Suzuki phase and the NaCl matrix excluding the possibility of nucleation induced by point defects. (author)

  19. Small random perturbations of infinite dimensional dynamical systems and nucleation theory

    International Nuclear Information System (INIS)

    Cassandro, M.; Olivieri, E.; Picco, P.

    1985-06-01

    We consider a stochastic differential equation with a standard space-time white noise and a double well non symmetric potential. The equation without the white noise term exhibits several equilibria two of which are stable. We study, in the double limit zero noise and thermodynamic limit the large fluctuations and compute the transition probability between the two stable equilibria (tunnelling). The unique stationary measure associated to the stochastic process described by our equation is strictly related to the Gibbs measure for a ferromagnetic spin system subject to a Kac interaction. Our double limit corresponds to the one considered by Lobowitz and Penrose in their rigorous version of the mean field theory of the first order phase transitions. The tunnelling between the two (non equivalent) equilibrium configurations is interpreted as the decay from the metastable to the stable state. Our results are in qualitative agreement with the usual nucleation theory

  20. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  1. Inhomogenous Dislocation Nucleation Based on Atom Potential in Hexagonal Noncentrosymmetric Crystal Sheet

    International Nuclear Information System (INIS)

    Xue-Chuan, Zhao; Xiao-Ming, Liu; Zhuo, Zhuang; Zhan-Li, Liu; Yuan, Gao

    2010-01-01

    By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated with the instability criterion. The results show a strong relationship between yield stress and crystal sheet chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way to explain the dislocation nucleation phenomenon. (condensed matter: structure, mechanical and thermal properties)

  2. Polymer-based nucleation for chemical vapour deposition of diamond

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Kromka, Alexander; Varga, Marián

    2016-01-01

    Roč. 133, č. 29 (2016), 1-7, č. článku 43688. ISSN 0021-8995 R&D Projects: GA ČR GC15-22102J Institutional support: RVO:68378271 Keywords : copolymers * composites * diamond * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.860, year: 2016

  3. Non stationary nucleation: the model with minimal environment

    OpenAIRE

    Kurasov, Victor

    2013-01-01

    A new model to calculate the rate of nucleation is formulated. This model is based on the classical nucleation theory but considers also vapor depletion around the formed embryo. As the result the free energy has to be recalculated which brings a new expression for the nucleation rate.

  4. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  5. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  6. Modelling heterogeneous ice nucleation on mineral dust and soot with parameterizations based on laboratory experiments

    Science.gov (United States)

    Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.

    2016-12-01

    Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.

  7. Numeric implementation of a nucleation, growth and transport model for helium bubbles in lead-lithium HCLL breeding blanket channels: Theory and code development

    Energy Technology Data Exchange (ETDEWEB)

    Batet, L., E-mail: lluis.batet@upc.edu [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Valls, E. Mas de les [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Heat Engines (DMMT), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, Fusion Technology Division, Av. Complutense 22, 28040 Madrid (Spain)

    2011-06-15

    Large helium (He) production rates in liquid metal breeding blankets of a DT fusion reactor might have a significant influence in the system design. Low He solubility together with high local concentrations may create the conditions for He cavitation, which would have an impact in the components performance. The paper states that such a possibility is not remote in a helium cooled lithium-lead breeding blanket design. A model based on the Classical Nucleation Theory (CNT) has been developed and implemented in order to have a specific tool able to simulate HCLL systems and identify the key parameters and sensitivities. The nucleation and growth model has been implemented in the open source CFD code OpenFOAM so that transport of dissolved atomic He and nucleated He bubbles can be simulated. At the current level of development it is assumed that void fraction is small enough not to affect either the hydrodynamics or the properties of the liquid metal; thus, bubbles can be represented by means of a passive scalar. He growth and transport has been implemented using the mean radius approach in order to save computational time. Limitations and capabilities of the model are shown by means of zero-dimensional simulation and sensitivity analysis under HCLL breeding unit conditions.

  8. Theory on the Mechanism of DNA Renaturation: Stochastic Nucleation and Zipping.

    Directory of Open Access Journals (Sweden)

    Gnanapragasam Niranjani

    Full Text Available Renaturation of the complementary single strands of DNA is one of the important processes that requires better understanding in the view of molecular biology and biological physics. Here we develop a stochastic dynamical model on the DNA renaturation. According to our model there are at least three steps in the renaturation process viz. nonspecific-contact formation, correct-contact formation and nucleation, and zipping. Most of the earlier two-state models combined nucleation with nonspecific-contact formation step. In our model we suggest that it is considerably meaningful when we combine the nucleation with the zipping since nucleation is the initial step of zipping and nucleated and zipping molecules are indistinguishable. Nonspecific contact formation step is a pure three-dimensional diffusion controlled collision process. Whereas nucleation involves several rounds of one-dimensional slithering and internal displacement dynamics of one single strand of DNA on the other complementary strand in the process of searching for the correct-contact and then initiate nucleation. Upon nucleation, the stochastic zipping follows to generate a fully renatured double stranded DNA. It seems that the square-root dependency of the overall renaturation rate constant on the length of reacting single strands originates mainly from the geometric constraints in the diffusion controlled nonspecific-contact formation step. Further the inverse scaling of the renaturation rate on the viscosity of reaction medium also originates from nonspecific contact formation step. On the other hand the inverse scaling of the renaturation rate with the sequence complexity originates from the stochastic zipping which involves several rounds of crossing over the free-energy barrier at microscopic levels. When the sequence of renaturing single strands of DNA is repetitive with less complexity then the cooperative effects will not be noticeable since the parallel zipping will be a

  9. Role of stacking disorder in ice nucleation.

    Science.gov (United States)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  10. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.

    Science.gov (United States)

    Langenbach, K; Heilig, M; Horsch, M; Hasse, H

    2018-03-28

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  11. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory

    Science.gov (United States)

    Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.

    2018-03-01

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  12. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.

    Science.gov (United States)

    Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J

    2017-11-21

    Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

  13. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    Directory of Open Access Journals (Sweden)

    Shuo-Wei Chen

    2016-04-01

    Full Text Available The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs with ex-situ sputtered physical vapor deposition (PVD aluminum nitride (AlN nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study shows the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.

  14. Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases

    Directory of Open Access Journals (Sweden)

    J. H. Zollner

    2012-05-01

    Full Text Available Nucleation of particles composed of sulfuric acid, water, and nitrogen base molecules was studied using a continuous flow reactor. The particles formed from these vapors were detected with an ultrafine condensation particle counter, while vapors of sulfuric acid and nitrogen bases were detected by chemical ionization mass spectrometry. Variation of particle numbers with sulfuric acid concentration yielded a power dependency on sulfuric acid of 5 ± 1 for relative humidities of 14–68% at 296 K; similar experiments with varying water content yielded power dependencies on H2O of ~7. The critical cluster contains about 5 H2SO4 molecules and a new treatment of the power dependency for H2O suggests about 12 H2O molecules for these conditions. Addition of 2-to-45 pptv of ammonia or methyl amine resulted in up to millions of times more particles than in the absence of these compounds. Particle detection capabilities, sulfuric acid and nitrogen base detection, wall losses, and the extent of particle growth are discussed. Results are compared to previous laboratory nucleation studies and they are also discussed in terms of atmospheric nucleation scenarios.

  15. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  16. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  17. Nonequilibrium statistical theory of bubble nucleation and growth under neutron and proton irradiation

    International Nuclear Information System (INIS)

    Yu, J.; Sommer, W.F.; Bradbury, J.N.

    1986-01-01

    Microstructural evolution in metals under particle irradiation is described by a non-equilibrium statistics method. This method gives a set of equations for the evolution of bubbles and an approximate solution for a distribution function of bubble size as a function of fluence and temperature. The distribution function gives the number of bubbles of radius r at time t, N(r,t)dr, as a function of size, r/r 0 (r 0 is the radius of a bubble nucleus). It is found that N(r,t)dr increases with fluence. Also, the peak value of N(r,t)dt shifts to higher r/r 0 with increasing fluence. Nucleation depends mainly on helium concentration and defect cluster concentration while bubble growth is controlled mainly by the vacancy concentration and a fluctuation coefficient. If suitable material parameters are chosen, a reasonable distribution function for bubble size is obtained. The helium diffusion coefficient is found to be less than that for vacancies by five orders of magnitude. The fraction of helium remaining in matrix is less than 10 -2 ; the majority of the helium is associated with the bubbles

  18. Experimental investigation of the role of ions in aerosol nucleation

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    The role of ions in producing aerosols in Earth’s atmosphere is an area of very active research. Atmospheric and experimental observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been...... put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation and Ternary Nucleation. Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far removed from those relevant for the lower part of the atmosphere. Recent experimental...... were grown using photochemically produced sulphuric acid and ionization levels were controlled with a Cs-137 gamma-source. An increase in nucleation was observed when the chamber was exposed to the radioactive source. The results were analyzed using a model based on the General Dynamic Equation...

  19. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  20. Nucleation behavior of glutathione polymorphs in water

    International Nuclear Information System (INIS)

    Chen, Zhi; Dang, Leping; Li, Shuai; Wei, Hongyuan

    2013-01-01

    Nucleation behavior of glutathione (GSH) polymorphs in water was investigated by experimental method combined with classical nucleation theory. The solubility of α and β forms GSH in water at different temperatures, and the nucleation induction period at various supersaturations and temperatures were determined experimentally. The results show that, in a certain range of supersaturation, the nucleation of β form predominates at relatively higher temperature, while α form will be obtained at lower temperature. The nucleation kinetics parameters of α and β form were then calculated. To understand the crucial role of temperature on crystal forms, “hypothetic” nucleation parameters of β form at 283.15 K were deduced based on extrapolation method. The results show that the interfacial tension, critical free energy, critical nucleus radius and nucleus number of α form are smaller than that of β form in the same condition at 283.15 K, which implies that α form nucleates easier than β form at low temperature. This work may be useful for the control and optimization of GSH crystallization process in industry

  1. Theory-Based Stakeholder Evaluation

    Science.gov (United States)

    Hansen, Morten Balle; Vedung, Evert

    2010-01-01

    This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…

  2. Homogeneous nucleation, growth and recrystallization of discharge products on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.

    1983-11-01

    The early stage of discharge of electrodes with an electrodissolution/precipitation mechanism is investigated. A theory is proposed for quasi-classical homogeneous nucleation and the subsequent growth. Based on this theory the radii distribution function was calculated for the diffusion-controlled growth of crystallites. Recrystallization was included. The nucleation overpotential was calculated as a function of time for discharges under various conditions.

  3. Dislocation reduction in nitride-based Schottky diodes by using multiple MgxNy/GaN nucleation layers

    International Nuclear Information System (INIS)

    Lee, K.H.; Chang, P.C.; Chang, S.J.; Su, Y.K.; Wang, Y.C.; Yu, C.L.; Kuo, C.H.

    2010-01-01

    We present the characteristics of nitride-based Schottky diodes with a single low-temperature (LT) GaN nucleation layer and multiple Mg x N y /GaN nucleation layers. With multiple Mg x N y /GaN nucleation layers, it was found that reverse leakage current became smaller by six orders of magnitude than that with a conventional LT GaN nucleation layer. This result might be attributed to the significant reduction of threading dislocations (TDs) and TD-related surface states. From the double crystal X-ray diffraction and photoluminescence analyses, it was found that the introduction of multiple Mg x N y /GaN nucleation layers could be able to effectively reduce the edge-type TDs. Furthermore, it was also found that effective Schottky barrier height (Φ B ) increased from 1.07 to 1.15 eV with the insertion of the multiple Mg x N y /GaN nucleation layers.

  4. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  5. Parameterization of ion-induced nucleation rates based on ambient observations

    Directory of Open Access Journals (Sweden)

    T. Nieminen

    2011-04-01

    Full Text Available Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long atmospheric cluster and particle measurements in the size range ~1–42 nm within the EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions project. Data from 12 field sites across Europe measured with different types of air ion and cluster mobility spectrometers were used in our analysis, with more in-depth analysis made using data from four stations with concomitant sulphuric acid measurements. The parameterization is given in two slightly different forms: a more accurate one that requires information on sulfuric acid and nucleating organic vapor concentrations, and a simpler one in which this information is replaced with the global radiation intensity. These new parameterizations are applicable to all large-scale atmospheric models containing size-resolved aerosol microphysics, and a scheme to calculate concentrations of sulphuric acid, condensing organic vapours and cluster ions.

  6. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation

    Directory of Open Access Journals (Sweden)

    Ziqian DENG

    2018-04-01

    Full Text Available Plasma spray-physical vapor deposition (PS-PVD as a novel coating process based on low-pressure plasma spray (LPPS has been significantly used for thermal barrier coatings (TBCs. A coating can be deposited from liquid splats, nano-sized clusters, and the vapor phase forming different structured coatings, which shows obvious advantages in contrast to conventional technologies like atmospheric plasma spray (APS and electron beam-physical vapor deposition (EB-PVD. In addition, it can be used to produce thin, dense, and porous ceramic coatings for special applications because of its special characteristics, such as high power, very low pressure, etc. These provide new opportunities to obtain different advanced microstructures, thus to meet the growing requirements of modern functional coatings. In this work, focusing on exploiting the potential of gas-phase deposition from PS-PVD, a series of 7YSZ coating experiments with various process conditions was performed in order to better understand the deposition process in PS-PVD, where coatings were deposited on different substrates including graphite and zirconia. Meanwhile, various substrate temperatures were investigated for the same substrate. As a result, a deposition mechanism of heterogeneous nucleation has been presented showing that surface energy is an important influencing factor for coating structures. Besides, undercooling of the interface between substrate and vapor phase plays an important role in coating structures. Keywords: 7YSZ, Deposition mechanism, Heterogeneous nucleation, PS-PVD, TBC

  7. Large stability and high catalytic activities of sub-nm metal (0) clusters: implications into the nucleation and growth theory.

    Science.gov (United States)

    Piñeiro, Yolanda; Buceta, David; Calvo, Javier; Huseyinova, Shahana; Cuerva, Miguel; Pérez, Ángel; Domínguez, Blanca; López-Quintela, M Arturo

    2015-07-01

    Clusters are stable catalytic species, which are produced during the synthesis of nanoparticles (NPs). Their existence contradicts the thermodynamic principles used to explain the formation of NPs by the classical nucleation and growth theories (NGTs). Using chemical and electrochemical methods we will show that depending on the experimental conditions one can produce either Ag clusters or Ag NPs. Moreover, using already prepared Ag clusters one can observe the disappearance of the usual induction period observed for the kinetics of NP formation, indicating that clusters catalyze the formation of NPs. Taking these data together with some previous examples of cluster-catalyzed anisotropic growth, we derived a qualitative approach to include the catalytic activities of clusters into the formation of NPs, which is incorporated into the NGT. Some qualitative conclusions about the main experimental parameters, which affect the formation of clusters versus NPs, as well as the catalytic mechanism versus the non-catalytic one, are also described. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Theoretical Studies Of Nucleation Kinetics And Nanodroplet Microstructure

    International Nuclear Information System (INIS)

    Wilemski, Gerald

    2009-01-01

    The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.

  9. Combining Novel Simulation Methods and Nucleation Theory to Uncover the Secrets of Gas Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Thomas [Boston Univ., MA (United States). Dept. of Chemistry

    2016-04-14

    Conventional computer simulation methods fail for some of the most important problems. With the design and application of innovative algorithms, this project achieved a breakthrough for the case of systems undergoing first-order phase transitions. We gave a complete simulation protocol based upon a well optimized version of our "generalized replica exchange method". The transition of primary interest was gas hydrate formation, a process of significance for climate science and natural gas retrieval. Since hydrates consist of guest molecules in the cages of a water matrix, β ice, the freezing and melting of water was also studied. New information was uncovered about the transition pathways and thermodynamics. Some highlights are 1. the finding that in a very dilute solution without deep supercooling, representative of real-world conditions and very challenging to conventional algorithms, methane can act as a catalyst to drive the formation of large amounts of β ice with empty cages as metastable intermediates, which might be filled by additional methane in a mechanism for hydrate formation, and 2. illumination of the role of metastable cubic ice in water freezing, with determination of the surface tensions of the cubic, hexagonal, and β ices, and the free energy difference of cubic vs hexagonal ice. Work was begun on lipid systems, bilayers and nanoreactors promising for energy-related photoreductions, and targets for future research. Our methods yielded what is arguably the most complete description of the composite lipid/water phases and the transition pathways among them.

  10. Ultrasound assisted nucleation and growth characteristics of glycine polymorphs--a combined experimental and analytical approach.

    Science.gov (United States)

    Renuka Devi, K; Raja, A; Srinivasan, K

    2015-05-01

    For the first time, the effect of ultrasound in the diagnostic frequency range of 1-10 MHz on the nucleation and growth characteristics of glycine has been explored. The investigation employing the ultrasonic interferometer was carried out at a constant insonation time over a wide range of relative supersaturation from σ=-0.09 to 0.76 in the solution. Ultrasound promotes only α nucleation and completely inhibits both the β and γ nucleation in the system. The propagation of ultrasound assisted mass transport facilitates nucleation even at very low supersaturation levels in the solution. The presence of ultrasound exhibits a profound effect on nucleation and growth characteristics in terms of decrease in induction period, increase in nucleation rate and decrease in crystal size than its absence in the solution. With an increase in the frequency of ultrasound, a further decrease in induction period, increase in nucleation rate and decrease in the size of the crystal is noticed even at the same relative supersaturation levels. The increase in the nucleation rate explains the combined dominating effects of both the ultrasound frequency and the supersaturation in the solution. Analytically, the nucleation parameters of the nucleated polymorph have been deduced at different ultrasonic frequencies based on the classical nucleation theory and correlations with the experimental results have been obtained. Structural affirmation of the nucleated polymorph has been ascertained by powder X-ray diffraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    Science.gov (United States)

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  12. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  13. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  14. Amines in the Earth’s Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters

    Directory of Open Access Journals (Sweden)

    Jason Herb

    2011-02-01

    Full Text Available The impact of organic species which are present in the Earth’s atmosphere on the burst of new particles is critically important for the understanding of the molecular nature of atmospheric nucleation phenomena. Amines have recently been proposed as possible stabilizers of binary pre-nucleation clusters. In order to advance the understanding of atmospheric nucleation phenomena, a quantum-chemical study of hydrogen-bonded complexes of binary sulfuric acid-water clusters with methyl-, dimethyl- and trimethylamines representing common atmospheric organic species, vegetation products and laboratory impurities has been carried out. The thermochemical stability of the sulfuric acid-amines-water complexes was found to be higher than that of the sulfuric acid-ammonia-water complexes, in qualitative agreement with the previous studies. However, the enhancement in stability due to amines appears to not be large enough to overcome the difference in typical atmospheric concentrations of ammonia and amines. Further research is needed in order to address the existing uncertainties and to reach a final conclusion about the importance of amines for the atmospheric nucleation.

  15. Multiple daytime nucleation events in semi-clean savannah and industrial environments in South Africa: analysis based on observations

    Directory of Open Access Journals (Sweden)

    A. Hirsikko

    2013-06-01

    Full Text Available Recent studies have shown very high frequencies of atmospheric new particle formation in different environments in South Africa. Our aim here was to investigate the causes for two or three consecutive daytime nucleation events, followed by subsequent particle growth during the same day. We analysed 108 and 31 such days observed in a polluted industrial and moderately polluted rural environments, respectively, in South Africa. The analysis was based on two years of measurements at each site. After rejecting the days having notable changes in the air mass origin or local wind direction, i.e. two major reasons for observed multiple nucleation events, we were able to investigate other factors causing this phenomenon. Clouds were present during, or in between most of the analysed multiple particle formation events. Therefore, some of these events may have been single events, interrupted somehow by the presence of clouds. From further analysis, we propose that the first nucleation and growth event of the day was often associated with the mixing of a residual air layer rich in SO2 (oxidized to sulphuric acid into the shallow surface-coupled layer. The second nucleation and growth event of the day usually started before midday and was sometimes associated with renewed SO2 emissions from industrial origin. However, it was also evident that vapours other than sulphuric acid were required for the particle growth during both events. This was especially the case when two simultaneously growing particle modes were observed. Based on our analysis, we conclude that the relative contributions of estimated H2SO4 and other vapours on the first and second nucleation and growth events of the day varied from day to day, depending on anthropogenic and natural emissions, as well as atmospheric conditions.

  16. A variational approach to nucleation simulation.

    Science.gov (United States)

    Piaggi, Pablo M; Valsson, Omar; Parrinello, Michele

    2016-12-22

    We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.

  17. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  18. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys

    International Nuclear Information System (INIS)

    Mathur, Harshal N.; Panwisawas, Chinnapat; Jones, C. Neil; Reed, Roger C.; Rae, Catherine M.F.

    2017-01-01

    Recrystallisation in single crystal Ni-based superalloys during solution heat treatment results in a significant cost to the investment casting industry. In this paper two sources of surface nucleation have been identified in the alloy CMSX-4 ® . Firstly, Electron Backscattered Diffraction (EBSD) has revealed micro-grains of γ′, between 2 and 30 μm diameter in the layer of surface eutectic found in the upper part of the casting. These have high angle boundaries with respect to the bulk single crystal and a fraction coarsen during solution heat treatment. Secondly, in the lower regions where surface eutectic does not form, locally deformed regions, 5–20 μm deep, form where the metal adheres to the mould. The local strain causes misorientations up to ≈20° with respect the bulk single crystal, and after heat treatment these regions develop into small grains of similar low-angle misorientations. However, they also form twins to produce further grains which have mobile high-angle boundaries with respect to the bulk single crystal. Experiments have shown that micro-grains at the surface grow to cause full recrystallisation where there is sufficient strain in the bulk material, and by removing these surface defects, recrystallisation can be completely mitigated. Etching of the cast surface is demonstrated to be an effective method of achieving this.

  19. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  20. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  1. Homogeneous droplet nucleation modeled using the gradient theory combined with the PC-SAFT equation of state

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2013-04-01

    Full Text Available In this work, we used the density gradient theory (DGT combined with the cubic equation of state (EoS by Peng and Robinson (PR and the perturbed chain (PC modification of the SAFT EoS developed by Gross and Sadowski [1]. The PR EoS is based on very simplified physical foundations, it has significant limitations in the accuracy of the predicted thermodynamic properties. On the other hand, the PC-SAFT EoS combines different intermolecular forces, e.g., hydrogen bonding, covalent bonding, Coulombic forces which makes it more accurate in predicting of the physical variables. We continued in our previous works [2,3] by solving the boundary value problem which arose by mathematical solution of the DGT formulation and including the boundary conditions. Achieving the numerical solution was rather tricky; this study describes some of the crucial developments that helped us to overcome the partial problems. The most troublesome were computations for low temperatures where we achieved great improvements compared to [3]. We applied the GT for the n-alkanes: nheptane, n-octane, n-nonane, and n-decane because of the availability of the experimental data. Comparing them with our numerical results, we observed great differences between the theories; the best results gave the combination of the GT and the PC-SAFT. However, a certain temperature drift was observed that is not satisfactorily explained by the present theories.

  2. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  3. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  4. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.

    Science.gov (United States)

    Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf

    2013-02-07

    Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated.

  5. Two-Dimensional Nucleation on the Terrace of Colloidal Crystals with Added Polymers.

    Science.gov (United States)

    Nozawa, Jun; Uda, Satoshi; Guo, Suxia; Hu, Sumeng; Toyotama, Akiko; Yamanaka, Junpei; Okada, Junpei; Koizumi, Haruhiko

    2017-04-04

    Understanding nucleation dynamics is important both fundamentally and technologically in materials science and other scientific fields. Two-dimensional (2D) nucleation is the predominant growth mechanism in colloidal crystallization, in which the particle interaction is attractive, and has recently been regarded as a promising method to fabricate varieties of complex nanostructures possessing innovative functionality. Here, polymers are added to a colloidal suspension to generate a depletion attractive force, and the detailed 2D nucleation process on the terrace of the colloidal crystals is investigated. In the system, we first measured the nucleation rate at various area fractions of particles on the terrace, ϕ area . In situ observations at single-particle resolution revealed that nucleation behavior follows the framework of classical nucleation theory (CNT), such as single-step nucleation pathway and existence of critical size. Characteristic nucleation behavior is observed in that the nucleation and growth stage are clearly differentiated. When many nuclei form in a small area of the terrace, a high density of kink sites of once formed islands makes growth more likely to occur than further nucleation because nucleation has a higher energy barrier than growth. The steady-state homogeneous 2D nucleation rate, J, and the critical size of nuclei, r*, are measured by in situ observations based on the CNT, which enable us to obtain the step free energy, γ, which is an important parameter for characterizing the nucleation process. The γ value is found to change according to the strength of attraction, which is tuned by the concentration of the polymer as a depletant.

  6. Mechanisms of nucleation in flashing flows

    International Nuclear Information System (INIS)

    Yan, F.; Giot, M.

    1989-01-01

    The mechanisms of nucleation have been analysed. Starting from the assumption that the activation of micro-cavities in the wall surfaces is the most probable nucleation mechanism in practical flashing system, the authors study in detail the nucleation in a micro-cavity. A three step nucleation criterion is proposed, namely: trapping cavity, activable cavity and active cavity. Then, a new nucleation model is presented. The output of the model is the prediction of the bubble departure frequency versus the thermodynamic state of the liquid and the geometry of the cavity. The model can also predict the nucleation site density if the nature of the wall and the surface roughness are know. The prediction have been successfully compared with some preliminary experimental results. By combining the present model with Jones'theory, the flashing inception is correctly predicted. The use of this nucleation model for the complete modelling of a flashing non-equilibrium flow is in progress

  7. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  8. A Theory of Immersion Freezing

    Science.gov (United States)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  9. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  10. Determination of perpendicular magnetic anisotropy based on the magnetic droplet nucleation

    Science.gov (United States)

    Nishimura, Tomoe; Kim, Duck-Ho; Okuno, Takaya; Hirata, Yuushou; Futakawa, Yasuhiro; Yoshikawa, Hiroki; Kim, Sanghoon; Tsukamoto, Arata; Shiota, Yoichi; Moriyama, Takahiro; Ono, Teruo

    2018-05-01

    We propose an alternative method of determining the magnetic anisotropy field μ0 H K in ferro-/ferrimagnets. On the basis of the droplet nucleation model, there exists linearity between domain-wall (DW) energy density and in-plane magnetic field. We find that the slope is simply represented by μ0 H K and Dzyaloshinskii–Moriya interaction (DMI). By measuring the in-plane magnetic field dependence of the coercivity field, closely corresponding to the DW energy density, a robust value for μ0 H K can be quantified. This robust value can be used to determine μ0 H K over a wide range of values, overcoming the limitations caused by the small strength of the external magnetic field typically used in experiments.

  11. Heterogeneous ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A. [Helsinki Univ. (Finland). Dept. of Physics

    1994-12-31

    The classical theory of heterogenous ice nucleation is reviewed in detail. The modelling of ice nucleation in the adsorbed water films on natural particles by analogous ice nucleation in adsorbed water films on the walls of porous media is discussed. Ice nucleation in adsorbed films of purewater and the HNO{sub 3}/H{sub 2}0 binary system on the surface of porous aerosol (SiO{sub 2}) was investigated using the method of NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The character of the ice phase formation tends to approach that of bulk liquid with increasing adsorbed film thickness. Under the given conditions the thickness of the adsorbed films decreases with an increasing amount of adsorbed nitric acid molecules The molar concentration of nitric acid in the adsorbed films is very small (of the order of 10{sup -}3 10{sup -}2 (M/l)). Nitric acid molecules tend to adsorb on the surface of aerosol to a greater extent than in subsequent layers. The concentration is greatest in layers situated close to the surface and sharply decreases with the distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the median freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. (orig.)

  12. Nucleation theory with delayed interactions: an application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles.

    Science.gov (United States)

    Raudino, Antonio; Pannuzzo, Martina

    2010-01-28

    A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate

  13. Combined simulation of fatigue crack nucleation and propagation based on a damage indicator

    Directory of Open Access Journals (Sweden)

    M. Springer

    2016-10-01

    Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime

  14. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  15. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    Science.gov (United States)

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  16. Nucleation in an ultra low ionization environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar...... activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms...... for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground...

  17. Millisecond-Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Droplet-Based Microfluidics.

    Science.gov (United States)

    Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J

    2015-08-26

    The early-time kinetics (conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Arsenic flux dependence of island nucleation on InAs(001)

    International Nuclear Information System (INIS)

    Grosse, Frank; Barvosa-Carter, William; Zinck, Jenna; Wheeler, Matthew; Gyure, Mark F.

    2002-01-01

    The initial stages of InAs(001) homoepitaxial growth are investigated using a combination of kinetic Monte Carlo simulations based on ab initio density functional theory and scanning tunneling microscopy. In the two dimensional island nucleation mode investigated, the island number density is found to decrease with increasing As. This behavior is explained by a suppression of the effective In-adatom density leading to a reduction in island nucleation. The relevant microscopic processes responsible for this reduction are identified

  19. International Benchmark based on Pressurised Water Reactor Sub-channel and Bundle Tests. Volume III: Departure from Nucleate Boiling

    International Nuclear Information System (INIS)

    Rubin, Adam; Avramova, Maria; Velazquez-Lozada, Alexander

    2016-03-01

    This report summarised the second phase of the Nuclear Energy Agency (NEA) and the Nuclear Regulatory Commission (NRC) Benchmark Based on NUPEC PWR Sub-channel and Bundle Tests (PSBT), which was intended to provide data for the verification of Departure from Nucleate Boiling (DNB) prediction in existing thermal-hydraulics codes and provide direction in the development of future methods. This phase was composed of three exercises; Exercise 1: fluid temperature benchmark, Exercise 2: steady-state rod bundle benchmark and Exercise 3: transient rod bundle benchmark. The experimental data provided to the participants of this benchmark is from a series of void measurement tests using full-size mock-up tests for both BWRs and PWRs. These tests were performed from 1987 to 1995 by the Nuclear Power Engineering Corporation (NUPEC) in Japan and made available by the Japan Nuclear Energy Safety Organisation (JNES) for the purposes of this benchmark, which was organised by Pennsylvania State University. Nine institutions from seven countries participated in this benchmark. Nine different computer codes were used in Exercise 1, 2 and 3. Among the computer codes were porous media, sub-channel and systems thermal-hydraulic code. The improvement between FLICA-OVAP (sub-channel) and FLICA (sub-channel) was noticeable. The main difference between the two was that FLICA-OVAP implicitly assigned flow regime based on drift flux, while FLICA assumes single phase flows. In Exercises 2 and 3, the codes were generally able to predict the Departure from Nucleate Boiling (DNB) power as well as the axial location of the onset of DNB (for the steady-state cases) and the time of DNB (for the transient cases). It was noted that the codes that used the Electric-Power-Research- Institute (EPRI) Critical-Heat-Flux (CHF) correlation had the lowest mean error in Exercise 2 for the predicted DNB power

  20. Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory

    CERN Document Server

    Duplissy, J.; Franchin, A.; Tsagkogeorgas, G.; Kangasluoma, J.; Wimmer, D.; Vuollekoski, H.; Schobesberger, S.; Lehtipalo, K.; Flagan, R. C.; Brus, D.; Donahue, N. M.; Vehkamäki, H.; Almeida, J.; Amorim, A.; Barmet, P.; Bianchi, F.; Breitenlechner, M.; Dunne, E. M.; Guida, R.; Henschel, H.; Junninen, H.; Kirkby, J.; Kürten, A.; Kupc, A.; Määttänen, A.; Makhmutov, V.; Mathot, S.; Nieminen, T.; Onnela, A.; Praplan, A. P.; Riccobono, F.; Rondo, L.; Steiner, G.; Tome, A.; Walther, H.; Baltensperger, U.; Carslaw, K. S.; Dommen, J.; Hansel, A.; Petäjä, T.; Sipilä, M.; Stratmann, F.; Vrtala, A.; Wagner, P. E.; Worsnop, D. R.; Curtius, J.; Kulmala, M.

    2015-09-04

    We report comprehensive, demonstrably contaminant‐free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion‐induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface‐time of flight‐mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (105 to 109 mol cm−3), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm−3). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC‐normalized CNT), which is described in a companion pape...

  1. New trends in the nucleation research

    Science.gov (United States)

    Anisimov, M. P.; Hopke, P. K.

    2017-09-01

    During the last half of century the most of efforts have been directed towards small molecule system modeling using intermolecular potentials. Summarizing the nucleation theory, it can be concluded that the nowadays theory is far from complete. The vapor-gas nucleation theory can produce values that deviate from the experimental results by several orders of magnitude currently. Experiments on the vapor-gas nucleation rate measurements using different devices show significant inconsistencies in the measured rates as well. Theoretical results generally are quite reasonable for sufficiently low vapor nucleation rates where the capillary approximation is applicable. In the present research the advantages and current problems of the vapor-gas nucleation experiments are discussed briefly and a view of the future studies is presented. Using the brake points of the first derivative for the nucleation rate surface as markers of the critical embryos phase change is fresh idea to show the gas-pressure effect for the nucleating vapor-gas systems. To test the accuracy of experimental techniques, it is important to have a standard system that can be measured over a range of nucleation conditions. Several results illustrate that high-pressure techniques are needed to study multi-channel nucleation. In practical applications, parametric theories can be used for the systems of interest. However, experimental measurements are still the best source of information on nucleation rates. Experiments are labor intensive and costly, and thus, it is useful to extend the value of limited experimental measurements to a broader range of nucleation conditions. Only limited experimental data one needs for use in normalizing the slopes of the linearized nucleation rate surfaces. The nucleation rate surface is described in terms of steady-state nucleation rates. It is supposed that several new measuring systems, such as High Pressure Flow Diffusion Chamber for pressure limit up to 150 bar will be

  2. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  3. Toward a physics-based rate and state friction law for earthquake nucleation processes in fault zones with granular gouge

    Science.gov (United States)

    Ferdowsi, B.; Rubin, A. M.

    2017-12-01

    Numerical simulations of earthquake nucleation rely on constitutive rate and state evolution laws to model earthquake initiation and propagation processes. The response of different state evolution laws to large velocity increases is an important feature of these constitutive relations that can significantly change the style of earthquake nucleation in numerical models. However, currently there is not a rigorous understanding of the physical origins of the response of bare rock or gouge-filled fault zones to large velocity increases. This in turn hinders our ability to design physics-based friction laws that can appropriately describe those responses. We here argue that most fault zones form a granular gouge after an initial shearing phase and that it is the behavior of the gouge layer that controls the fault friction. We perform numerical experiments of a confined sheared granular gouge under a range of confining stresses and driving velocities relevant to fault zones and apply 1-3 order of magnitude velocity steps to explore dynamical behavior of the system from grain- to macro-scales. We compare our numerical observations with experimental data from biaxial double-direct-shear fault gouge experiments under equivalent loading and driving conditions. Our intention is to first investigate the degree to which these numerical experiments, with Hertzian normal and Coulomb friction laws at the grain-grain contact scale and without any time-dependent plasticity, can reproduce experimental fault gouge behavior. We next compare the behavior observed in numerical experiments with predictions of the Dieterich (Aging) and Ruina (Slip) friction laws. Finally, the numerical observations at the grain and meso-scales will be used for designing a rate and state evolution law that takes into account recent advances in rheology of granular systems, including local and non-local effects, for a wide range of shear rates and slow and fast deformation regimes of the fault gouge.

  4. Simulations of a non-Markovian description of nucleation

    NARCIS (Netherlands)

    Kuipers, J.; Barkema, G.T.

    2010-01-01

    In most nucleation theories, the state of a nucleating system is described by a distribution of droplet masses and this distribution evolves as a memoryless stochastic process. This is incorrect for a large class of nucleating systems. In a recent paper [ J. Kuipers and G. T. Barkema, Phys. Rev. E

  5. Texture control and seeded nucleation of nanosize structures of ferroelectric thin films

    Science.gov (United States)

    Muralt, Paul

    2006-09-01

    An overview is given on nucleation phenomena of Pb(Zr ,Ti)O3 (PZT) thin films on Pt(111)-based substrates. Emphasis is given on in situ growth methods, particularly in situ reactive sputtering from three metallic targets. Growth of PZT thin films is discussed from the point of view of the PbOx-TiO2 phase diagram, PbO vapor pressure, and classical nucleation theory. The role of thin TiO2 affinity layers and spots is explained in the frame of this theory. Activation energies for desorption and chemisorption are adapted to comply with the fact that nucleation rates on TiO2 are much larger than the ones on bare Pt(111). The model reproduces well the PbO surface flux from bare Pt(111) to the affinity spots in the case of PbTiO3 nucleation and the reversed tendency in the case of PZT 40/60 nucleation, explaining experimental observations. The critical size of nuclei was calculated to contain 8-10unit cells for PbTiO3/Pt nucleation and 14-17 for PZT/Pt nucleation.

  6. The nucleation of HCl and Cl{sub 2}-based HVPE GaN on mis-oriented sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bohnen, Tim; Dreumel, Gerbe W.G. van; Enckevort, Willem J.P. van; Ashraf, Hina; Jong, Aryan E.F. de; Hageman, Paul R.; Vlieg, Elias [IMM, Radboud University, Nijmegen (Netherlands); Weyher, Jan L. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2010-07-15

    The nucleation of both classic HCl-based and novel Cl{sub 2{sup -}} based HVPE GaN on mis-oriented sapphire substrates was investigated. The use of Cl{sub 2}in HVPE increases the growth rate by a factor of 4-5 and strongly reduces the parasitic deposition, allowing for the growth of much thicker wafers than HCl-based HVPE. Morphological SEM surface studies of the HCl-based HVPE sample surface show that at 600 C a nanocrystalline layer is deposited on the sapphire. During the subsequent annealing phase, the morphology changes to a {mu}m-sized island structure. During overgrowth at 1080 C, the islands coalesce. Small voids or pinholes are then formed in between the coalescing GaN islands. These pinholes lead to numerous pits on the surface of the GaN at thicknesses of 5 {mu}m. The pits disappear during continued overgrowth and can no longer be found on the surface, when the GaN film reaches a thickness of 45 {mu}m. This particular coalescence mechanism also applies to Cl{sub 2}-based HVPE GaN on sapphire (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Nonclassical nucleation pathways in protein crystallization.

    Science.gov (United States)

    Zhang, Fajun

    2017-11-08

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  8. Nonclassical nucleation pathways in protein crystallization

    Science.gov (United States)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  9. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  10. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    Science.gov (United States)

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-02

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.

  11. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation.

    Science.gov (United States)

    Halonen, Roope; Zapadinsky, Evgeni; Vehkamäki, Hanna

    2018-04-28

    We present a comparison between Monte Carlo (MC) results for homogeneous vapour-liquid nucleation of Lennard-Jones clusters and previously published values from molecular dynamics (MD) simulations. Both the MC and MD methods sample real cluster configuration distributions. In the MD simulations, the extent of the temperature fluctuation is usually controlled with an artificial thermostat rather than with more realistic carrier gas. In this study, not only a primarily velocity scaling thermostat is considered, but also Nosé-Hoover, Berendsen, and stochastic Langevin thermostat methods are covered. The nucleation rates based on a kinetic scheme and the canonical MC calculation serve as a point of reference since they by definition describe an equilibrated system. The studied temperature range is from T = 0.3 to 0.65 ϵ/k. The kinetic scheme reproduces well the isothermal nucleation rates obtained by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)] using MD simulations with carrier gas. The nucleation rates obtained by artificially thermostatted MD simulations are consistently lower than the reference nucleation rates based on MC calculations. The discrepancy increases up to several orders of magnitude when the density of the nucleating vapour decreases. At low temperatures, the difference to the MC-based reference nucleation rates in some cases exceeds the maximal nonisothermal effect predicted by classical theory of Feder et al. [Adv. Phys. 15, 111 (1966)].

  12. Vapor nucleation paths in lyophobic nanopores.

    Science.gov (United States)

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo

    2018-04-19

    liquids in mesoporous materials of characteristic size of ca. 4nm, the nanoscale effects reported for smaller pores have a minor role. The atomistic estimates for the nucleation free-energy barrier are in qualitative accord with those that can be obtained using a macroscopic, capillary-based nucleation theory.

  13. Theory-Based Evaluation Meets Ambiguity

    DEFF Research Database (Denmark)

    Dahler-Larsen, Peter

    2017-01-01

    As theory-based evaluation (TBE) engages in situations where multiple stakeholders help develop complex program theory about dynamic phenomena in politically contested settings, it becomes difficult to develop and use program theory without ambiguity. The purpose of this article is to explore...... ambiguity as a fruitful perspective that helps TBE face current challenges. Literatures in organization theory and political theory are consulted in order to cultivate the concept of ambiguity. Janus variables (which work in two ways) and other ambiguous aspects of program theories are classified...... and exemplified. Stances towards ambiguity are considered, as are concrete steps that TBE evaluators can take to identify and deal with ambiguity in TBE....

  14. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  15. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  16. A New Approach to Fatigue Life Prediction Based on Nucleation and Growth (Preprint)

    National Research Council Canada - National Science Library

    McClung, R. C; Francis, W. L; Hudak, S. J

    2006-01-01

    Prediction of total fatigue life in components is often performed by summing "initiation" and "propagation" life phases, where initiation life is based on stress-life or strain-life methods calibrated...

  17. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing

    2011-08-29

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only individually, limiting our understanding of the possibility of multiple conductive filaments nucleation and rupture and the correlation kinetics of their evolution. In this study, direct visualization of uncorrelated multiple conductive filaments in ultra-thin HfO2-based high-κ dielectricresistive random access memory (RRAM) device has been achieved by high-resolution transmission electron microscopy (HRTEM), along with electron energy loss spectroscopy(EELS), for nanoscale chemical analysis. The locations of these multiple filaments are found to be spatially uncorrelated. The evolution of these microstructural changes and chemical properties of these filaments will provide a fundamental understanding of the switching mechanism for RRAM in thin oxide films and pave way for the investigation into improving the stability and scalability of switching memory devices.

  18. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  19. Intragranular nucleation sites of massive gamma grains in a TiAl-based alloy

    DEFF Research Database (Denmark)

    Dey, Suhash Ranjan; Bouzy, E.; Hazotte, A.

    2007-01-01

    Massive gamma grains were generated in a TiAl-based alloy through ice-water quenching from the alpha domain. Apart from those located along alpha(2)/alpha(2) grain boundaries, a few massive gamma grains were detected inside the alpha(2) grains. Some of these intragranular grains were revealed...

  20. Molecular-dynamics simulations of urea nucleation from aqueous solution.

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-06

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.

  1. Molecular-dynamics simulations of urea nucleation from aqueous solution

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-01

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  2. Revision of nucleated boiling mechanisms

    International Nuclear Information System (INIS)

    Converti, J.; Balino, J.L.

    1987-01-01

    The boiling occurrence plays an important role in the power reactors energy transfer. But still, there is not a final theory on the boiling mechanisms. This paper presents a critical analysis of the most important nucleated boiling models that appear in literature. The conflicting points are identified and experiments are proposed to clear them up. Some of these experiments have been performed at the Thermohydraulics laboratory (Bariloche Atomic Center). (Author)

  3. Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.

    Science.gov (United States)

    Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi

    2017-10-10

    The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.

  4. Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation.

    Science.gov (United States)

    Zahn, Dirk

    2015-07-20

    Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  5. Attainment of unstable β nucleation of glycine in presence of L-tyrosine and its analytical interpretation-A combined approach

    Science.gov (United States)

    Renuka Devi, K.; Srinivasan, K.

    2015-05-01

    The ability of L-tyrosine molecules to act as a template and to facilitate the nucleation of unstable β polymorph in the solution has been revealed through in-situ nucleation study. This nucleation of β occurs along with the existing α nucleation at the critical concentration of additive in the solution. The presence of L-tyrosine molecules lowers the inherent barrier that exists for β nucleation in the solution. No nucleation of γ was observed over the entire range of concentrations studied. The molecular recognition capability and stereo selective inhibitory action of the added L-tyrosine molecules towards glycine molecule have been successfully revealed in terms of habit modification observed in the nucleated polymorphs. In the case of α polymorph, L-tyrosine induces a change in the morphology along the enantiopolar -b direction while in the case of β polymorph, habit modification from needle to plate like structure is observed. With the increase in time span, solution mediated phase transformation from β to α polymorph has been observed in the solution. Analytically the nucleation parameters of α and β polymorphs were estimated based on Classical Nucleation Theory. Form of crystallization of the nucleated polymorphs of glycine was confirmed by a powder x-ray diffraction analysis.

  6. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin

    2014-01-01

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  7. Vocation in theology-based nursing theories.

    Science.gov (United States)

    Lundmark, Mikael

    2007-11-01

    By using the concepts of intrinsicality/extrinsicality as analytic tools, the theology-based nursing theories of Ann Bradshaw and Katie Eriksson are analyzed regarding their explicit and/or implicit understanding of vocation as a motivational factor for nursing. The results show that both theories view intrinsic values as guarantees against reducing nursing practice to mechanistic applications of techniques and as being a way of reinforcing a high ethical standard. The theories explicitly (Bradshaw) or implicitly (Eriksson) advocate a vocational understanding of nursing as being essential for nursing theories. Eriksson's theory has a potential for conceptualizing an understanding of extrinsic and intrinsic motivational factors for nursing but one weakness in the theory could be the risk of slipping over to moral judgments where intrinsic factors are valued as being superior to extrinsic. Bradshaw's theory is more complex and explicit in understanding the concept of vocation and is theologically more plausible, although also more confessional.

  8. Probabilistic approach to lysozyme crystal nucleation kinetics.

    Science.gov (United States)

    Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P

    2015-09-01

    Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

  9. Effects of shear flow on phase nucleation and crystallization.

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  10. Power Load Prediction Based on Fractal Theory

    OpenAIRE

    Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song

    2015-01-01

    The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...

  11. The Scope of Usage-based Theory

    OpenAIRE

    Paul eIbbotson

    2013-01-01

    Usage-based approaches typically draw on a relatively small set of cognitive processes, such as categorization, analogy, and chunking to explain language structure and function. The goal of this paper is to first review the extent to which the “cognitive commitment” of usage-based theory has had success in explaining empirical findings across domains, including language acquisition, processing, and typology. We then look at the overall strengths and weaknesses of usage-based theory and highli...

  12. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2012-12-01

    Full Text Available This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i the factors controlling atmospheric CCN production and (ii the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.

  13. The laminar flow tube reactor as a quantitative tool for nucleation studies: Experimental results and theoretical analysis of homogeneous nucleation of dibutylphthalate

    International Nuclear Information System (INIS)

    Mikheev, Vladimir B.; Laulainen, Nels S.; Barlow, Stephan E.; Knott, Michael; Ford, Ian J.

    2000-01-01

    A laminar flow tube reactor was designed and constructed to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 to +19.1 degree sign C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) is given. Both isothermal and the isobaric nucleation rates were measured. The experimental data obtained were compared with the measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis, based on the first and the second nucleation theorems, is also presented. The critical cluster size and the excess of internal energy of the critical cluster are obtained. (c) 2000 American Institute of Physics

  14. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  15. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  16. Assessment of the theoretical basis of the Rule of Additivity for the nucleation incubation time during continuous cooling

    International Nuclear Information System (INIS)

    Zhu, Y.T.; Lowe, T.C.; Asaro, R.J.

    1997-01-01

    The rule of additivity was first proposed by Scheil and Steinberg for predicting the incubation time for nucleation of solid phases during continuous-cooling phase transformations, and has since been widely used for both the nucleation incubation and the entire process of phase transformation. While having been successfully used to calculate the transformed volume fraction during continuous cooling in many steel alloy systems, there is experimental evidence that shows rule of additivity to be invalid for describing the incubation time for nucleation. Attempts to prove the validity of the rule of additivity for the incubation time have not met with much success, and much confusion still exists about its applicability to the incubation time. This article investigates the additivity of the consumption of the incubation time for nucleation during continuous cooling through an analysis based upon classical nucleation theory. It is rigorously demonstrated that the rule of additivity is invalid for the incubation time for nucleation. However, in practice, the relative error caused by using the rule of additivity could be very small in many cases due to the resolution limit of current experimental techniques. The present theory provides an explanation for the failure of the rule of additivity in predicting the incubation time for nucleation during continuous cooling. copyright 1997 American Institute of Physics

  17. Accounting bases of theory: Why they matter

    Directory of Open Access Journals (Sweden)

    Zafeer Nagdee

    2016-11-01

    Full Text Available It is widely agreed that contemporary accounting practice is largely based on the application of professional accounting standards rather than on the application of sound, academic bases of theory. This has led to uncertainty within the field which has in turn inhibited the ability of accounting to develop into a more robust academic discipline. In conducting a thematic analysis of existing literature, this study will identify and expand on three key themes which will collectively establish the argument positing that a lacking basis of accounting theory has impaired the scholastic development of accounting practice worldwide. By introducing this argument to the academic community, this study will expose the economic risks associated with accounting’s absent bases of theory and will consequently add value by highlighting the need for additional research into the development, clarification and refinement of accounting theories that will result in more useful accounting practices worldwide

  18. Experimental Investigation of the Role of Ions in Aerosol Nucleation

    Science.gov (United States)

    Pedersen, J. P.; Enghoff, M. B.; Bondo, T.; Johnson, M. S.; Paling, S.; Svensmark, H.

    2008-12-01

    The role of ions in producing aerosols in Earth's atmosphere is an area of very active research. Atmospheric (Clarke et al. 1998) and experimental (Berndt et al. 2005) observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation and Ternary Nucleation. Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far removed from those relevant for the lower part of the atmosphere (Bricard et al. 1968). Recent experimental work (Svensmark et al. 2007) demonstrated that ions, produced by cosmic rays in the atmosphere, are likely to play an important role in the production of new aerosol particles. The mechanism whereby energetic cosmic rays can promote the production of cloud condensation nuclei at low altitudes constitutes a link between cosmic rays and Earth's climate and there is thus a need to corroborate the results in a different experiment. The present results are obtained in the same laboratory, but using a new setup The experiments were conducted in a 50 L cylindrical reaction chamber made of electropolished stainless steel. Aerosols were grown using photochemically produced sulphuric acid and ionization levels were controlled with a Cs-137 gamma-source. An increase in nucleation was observed when the chamber was exposed to the radioactive source. The results were analyzed using a model based on the General Dynamic Equation and the analysis revealed that Ion Induced Nucleation is the most likely mechanism for the observed nucleation increases and thus confirm the previous results. Berndt, T, Böge, O., Stratmann, F., Heintzenberg, J. & Kulmala, M. (2005), Science, 307, 698--700 Bricard, J., Billard, F. & Madelaine, G. (1968), J. Geophys. Res. 73, 4487--4496 Clarke, A.D., Davis, D., Kapustin, V. N. Eisele, F. Chen, G. Paluch

  19. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  20. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  1. Current state of aerosol nucleation parameterizations for air-quality and climate modeling

    Science.gov (United States)

    Semeniuk, Kirill; Dastoor, Ashu

    2018-04-01

    Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.

  2. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.

    Science.gov (United States)

    Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi

    2016-02-23

    Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.

  3. Kinetics of heterogeneous nucleation on intrinsic nucleants in pure fcc transition metals

    International Nuclear Information System (INIS)

    Wilde, G; Bokeloh, J; Santhaweesuk, C; Perepezko, J H; Sebright, J L

    2009-01-01

    Nucleation during solidification is heterogeneous in nature in an overwhelmingly large fraction of all solidification events. Yet, most often the identity of the heterogeneous nucleants that initiate nucleation remains a matter of speculation. In fact, a series of dedicated experiments needs to be designed in order to verify if nucleation of the material under study is based on one type of heterogeneous nucleant and if the potency of that nucleant is constant, e.g. for a population of individual droplets, or stays constant over time, e.g. throughout repeated melting/solidification cycles. In this work it is demonstrated that one way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single-droplet experiments. The application of proper statistics analyses based upon a non-homogeneous Poisson process is shown to yield nucleation rates that are independent of a specific nucleation model. Based upon this approach nucleation undercooling measurements on pure Au, Cu and Ni as model materials have confirmed that the experimental strategy and analysis method are valid. The results are comparable to those obtained by classical nucleation theory applied to experimental data that has been verified to comply with the assertions that are necessary for applying this model framework. However, the results reveal also other complex nucleant-sample interactions such as an initial transient undercooling behavior and impurity removal during repeated cycling treatments. The transient undercooling behavior has been analyzed by a nucleant refining model to provide new insight on the operation of melt fluxing treatments.

  4. Computer-based theory of strategies

    Energy Technology Data Exchange (ETDEWEB)

    Findler, N V

    1983-01-01

    Some of the objectives and working tools of a new area of study, tentatively called theory of strategies, are described. It is based on the methodology of artificial intelligence, decision theory, operations research and digital gaming. The latter refers to computing activity that incorporates model building, simulation and learning programs in conflict situations. Three long-term projects which aim at automatically analyzing and synthesizing strategies are discussed. 27 references.

  5. A review of phosphate mineral nucleation in biology and geobiology.

    Science.gov (United States)

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.

  6. A Comparative Study of Nucleation Parameterizations: 2. Three-Dimensional Model Application and Evaluation

    Science.gov (United States)

    Following the examination and evaluation of 12 nucleation parameterizations presented in part 1, 11 of them representing binary, ternary, kinetic, and cluster‐activated nucleation theories are evaluated in the U.S. Environmental Protection Agency Community Multiscale Air Quality ...

  7. Investigating heterogeneous nucleation in peritectic materials via the phase-field method

    International Nuclear Information System (INIS)

    Emmerich, Heike; Siquieri, Ricardo

    2006-01-01

    Here we propose a phase-field approach to investigate the influence of convection on peritectic growth as well as the heterogeneous nucleation kinetics of peritectic systems. For this purpose we derive a phase-field model for peritectic growth taking into account fluid flow in the melt, which is convergent to the underlying sharp interface problem in the thin interface limit (Karma and Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-field model to study the heterogeneous nucleation kinetics of peritectic material systems. Our approach is based on a similar approach towards homogeneous nucleation in Granasy et al (2003 Interface and Transport Dynamics (Springer Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich et al (Berlin: Springer) p 190). We applied our model successfully to extend the nucleation rate predicted by classical nucleation theory for an additional morphological term relevant for peritectic growth. Further applications to understand the mechanisms and consequences of heterogeneous nucleation kinetics in more detail are discussed

  8. Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization

    Science.gov (United States)

    Behúlová, M.; Grgač, P.; Čička, R.

    2017-11-01

    Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.

  9. Towards establishing a combined rate law of nucleation and crystal growth - The case study of gypsum precipitation

    Science.gov (United States)

    Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar

    2018-03-01

    The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

  10. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    Science.gov (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  11. Using rheometry for determining nucleation density in colored system containing a nucleation agent

    NARCIS (Netherlands)

    Ma, Z.; Steenbakkers, R.J.A.; Giboz, J.; Peters, G.W.M.

    2011-01-01

    A new suspension-based rheological method was applied to study experimentally the crystallization of a nucleating agent (NA) filled isotactic polypropylene. This method allows for determination of point-nucleation densities where other methods fail. For example, optical microscopy can fail because

  12. Preparation and nucleation of spherical metallic droplet

    Directory of Open Access Journals (Sweden)

    Bing-ge Zhao

    2015-03-01

    Full Text Available The preparation and solidification of metallic droplets attract more and more attention for their significance in both engineering and scientific fields. In this paper, the preparation and characterization of Sn-based alloy droplets using different methods such as atomization and consumable electrode direct current arc (CDCA technique are reviewed. The morphology and structure of these droplets were determined by optical microscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The solidification behavior of single droplet was systematically studied by means of scanning calorimetry (DSC, and the nucleation kinetics was also calculated. In particular, the development of fast scanning calorimetry (FSC made it possible to investigate the evolution of undercooling under ultrafast but controllable heating and cooling conditions. The combination of CDCA technique and FSC measurements opens up a new door for quantitative studies on droplet solidification, which is accessible to demonstrate some theories by experiments.

  13. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  14. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    Science.gov (United States)

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  15. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.

    Science.gov (United States)

    Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T

    2018-06-01

    The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Phase nucleation and evolution mechanisms in heterogeneous solids

    Science.gov (United States)

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  17. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  18. A Performance-Based Instructional Theory

    Science.gov (United States)

    Lawson, Tom E.

    1974-01-01

    The rationale for a performanced- based instructional theory has arisen from significant advances during the past several years in instructional psychology. Four major areas of concern are: analysis of subject-matter content in terms of performance competencies, diagnosis of pre-instructional behavior, formulation of an instructional…

  19. Jigsaw Cooperative Learning: Acid-Base Theories

    Science.gov (United States)

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  20. How important is biological ice nucleation in clouds on a global scale?

    International Nuclear Information System (INIS)

    Hoose, C; Kristjansson, J E; Burrows, S M

    2010-01-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10 -5 %, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  1. Ice nucleation rates near ˜225 K

    Science.gov (United States)

    Amaya, Andrew J.; Wyslouzil, Barbara E.

    2018-02-01

    We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.

  2. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  3. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  4. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  5. The scales of brane nucleation processes

    International Nuclear Information System (INIS)

    Alwis, S.P. de

    2007-01-01

    The scales associated with Brown-Teitelboim-Bousso-Polchinski processes of brane nucleation, which result in changes of the flux parameters and the number of D-branes, are discussed in the context of type IIB models with all moduli stabilized. It is argued that such processes are unlikely to be described by effective field theory

  6. A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging

    Energy Technology Data Exchange (ETDEWEB)

    Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.

    2017-07-01

    Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope of a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.

  7. Stochastic simulation of nucleation in binary alloys

    Science.gov (United States)

    L’vov, P. E.; Svetukhin, V. V.

    2018-06-01

    In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.

  8. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  9. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  10. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  11. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-01

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  12. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  13. A Model of Silicate Grain Nucleation and Growth in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Ferguson, Frank T.; Nuth, Joseph A., III

    2011-01-01

    Based on its abundance, high bond energy, and recent measurements of its vapor pressure SiO is a natural candidate for dust nucleation in circumstellar outflows around asymptotic giant branch stars. In this paper, we describe a model of the nucleation and growth of silicate dust in such outflows. The sensitivity of the model to varying choices of poorly constrained chemical parameters is explored, and the merits of using scaled rather than classical nucleation theory are briefly considered, An elaboration of the model that includes magnesium and iron as growth species is then presented and discussed. The composition of the bulk of the grains derived from the model is consistent with olivines and pyroxenes, but somewhat metal-rich grains and very small, nearly pure SiO grains are also produced,

  14. Evolution of a magnetic bubble after quantum nucleation

    Science.gov (United States)

    Defranzo, A.; Gunther, L.

    1989-06-01

    Chudnovsky and Gunther recently presented a theory of quantum nucleation in a ferromagnet [Phys. Rev. B 37, 9455 (1989)]. As a sequel, this paper is concerned with the evolution of the magnetic bubble after its materialization.

  15. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1985-01-01

    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  16. Nucleation reactions during deformation and crystallization of metallic glass

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Imhoff, S.D.; Chen, M.W.; Gonzalez, S.; Inoue, A.

    2012-01-01

    Highlights: ► New approach to the examination and analysis of shear band nucleation. ► Discovery of multiple shear band nucleation sites. ► Identification of a method of using transient kinetic behavior to provide a more realistic evaluation of the diffusivity that is relevant to nucleation. - Abstract: Nucleation reactions play a central role in the synthesis of both bulk metallic glasses and nanostructured materials. For nanostructured materials it is necessary to promote a high nucleation density without significant growth or coarsening. Beyond crystallization reactions nucleation of shear bands is critical for promoting a homogeneous flow and useful ductility for structural applications of bulk metallic glass. The study and analysis of nucleation reactions for these different situations requires a consideration of the stochastic nature of nucleation, the influence of heterogeneous sites, and the controlling transport properties. For shear band nucleation, the stochastic nature can be effectively probed by instrumented nanoindentation tests. The analysis of a statistically significant number of measurements of the first pop-in shear band nucleation events reveals at least two main nucleation sites. In nanostructured composites, the initial nucleation stage is influenced by transient effects as reflected in the delay time prior to steady state nucleation and by heterogeneous nucleation sites that are related to medium range order regions in Al-base amorphous alloys. Moreover, the early growth characteristics are linked to the maximum achievable particle density. The new developments and insight on the fundamental understanding of nanostructure reaction mechanisms offer valuable guidance for control of nanoscale microstructures and for promoting ductile deformation behavior.

  17. Theory-based explanation as intervention.

    Science.gov (United States)

    Weisman, Kara; Markman, Ellen M

    2017-10-01

    Cogent explanations are an indispensable means of providing new information and an essential component of effective education. Beyond this, we argue that there is tremendous untapped potential in using explanations to motivate behavior change. In this article we focus on health interventions. We review four case studies that used carefully tailored explanations to address gaps and misconceptions in people's intuitive theories, providing participants with a conceptual framework for understanding how and why some recommended behavior is an effective way of achieving a health goal. These case studies targeted a variety of health-promoting behaviors: (1) children washing their hands to prevent viral epidemics; (2) parents vaccinating their children to stem the resurgence of infectious diseases; (3) adults completing the full course of an antibiotic prescription to reduce antibiotic resistance; and (4) children eating a variety of healthy foods to improve unhealthy diets. Simply telling people to engage in these behaviors has been largely ineffective-if anything, concern about these issues is mounting. But in each case, teaching participants coherent explanatory frameworks for understanding health recommendations has shown great promise, with such theory-based explanations outperforming state-of-the-art interventions from national health authorities. We contrast theory-based explanations both with simply listing facts, information, and advice and with providing a full-blown educational curriculum, and argue for providing the minimum amount of information required to understand the causal link between a target behavior and a health outcome. We argue that such theory-based explanations lend people the motivation and confidence to act on their new understanding.

  18. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    Science.gov (United States)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq

  19. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  20. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  1. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  2. The Scope of Usage-based Theory

    Directory of Open Access Journals (Sweden)

    Paul eIbbotson

    2013-05-01

    Full Text Available Usage-based approaches typically draw on a relatively small set of cognitive processes, such as categorization, analogy and chunking to explain language structure and function. The goal of this paper is to first review the extent to which the ‘cognitive commitment’ of usage-based theory has had success in explaining empirical findings across domains, including language acquisition, processing and typology. We then look at the overall strengths and weaknesses of usage-based theory and highlight where there are significant debates. Finally, we draw special attention to a set of culturally generated structural patterns that seem to lie beyond the explanation of core usage-based cognitive processes. In this context we draw a distinction between cognition permitting language structure versus cognition entailing language structure. As well as addressing the need for greater clarity on the mechanisms of generalizations and the fundamental units of grammar, we suggest that integrating culturally generated structures within existing cognitive models of use will generate tighter predictions about how language works.

  3. Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways.

    Science.gov (United States)

    Lifanov, Yuri; Vorselaars, Bart; Quigley, David

    2016-12-07

    We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature-fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO 3 ). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular "seeding" method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the "seeding" method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δμ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.

  4. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    International Nuclear Information System (INIS)

    Kwolek, Emma J.; Lii-Rosales, Ann; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W.; Wallingford, Mark; Zhou, Yinghui; Thiel, Patricia A.

    2016-01-01

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  5. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Kwolek, Emma J.; Lii-Rosales, Ann [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W. [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Wallingford, Mark; Zhou, Yinghui [The Ames Laboratory, Ames, Iowa 50011 (United States); Thiel, Patricia A., E-mail: pthiel@iastate.edu [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-12-07

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  6. Information theory based approaches to cellular signaling.

    Science.gov (United States)

    Waltermann, Christian; Klipp, Edda

    2011-10-01

    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Theory-based interventions for contraception.

    Science.gov (United States)

    Lopez, Laureen M; Grey, Thomas W; Chen, Mario; Tolley, Elizabeth E; Stockton, Laurie L

    2016-11-23

    The explicit use of theory in research helps expand the knowledge base. Theories and models have been used extensively in HIV-prevention research and in interventions for preventing sexually transmitted infections (STIs). The health behavior field uses many theories or models of change. However, many educational interventions addressing contraception have no explicit theoretical base. To review randomized controlled trials (RCTs) that tested a theoretical approach to inform contraceptive choice and encourage or improve contraceptive use. To 1 November 2016, we searched for trials that tested a theory-based intervention for improving contraceptive use in PubMed, CENTRAL, POPLINE, Web of Science, ClinicalTrials.gov, and ICTRP. For the initial review, we wrote to investigators to find other trials. Included trials tested a theory-based intervention for improving contraceptive use. Interventions addressed the use of one or more methods for contraception. The reports provided evidence that the intervention was based on a specific theory or model. The primary outcomes were pregnancy and contraceptive choice or use. We assessed titles and abstracts identified during the searches. One author extracted and entered the data into Review Manager; a second author verified accuracy. We examined studies for methodological quality.For unadjusted dichotomous outcomes, we calculated the Mantel-Haenszel odds ratio (OR) with 95% confidence interval (CI). Cluster randomized trials used various methods of accounting for the clustering, such as multilevel modeling. Most reports did not provide information to calculate the effective sample size. Therefore, we presented the results as reported by the investigators. We did not conduct meta-analysis due to varied interventions and outcome measures. We included 10 new trials for a total of 25. Five were conducted outside the USA. Fifteen randomly assigned individuals and 10 randomized clusters. This section focuses on nine trials with high or

  8. Introduction to the theory of bases

    CERN Document Server

    Marti, Jürg T

    1969-01-01

    Since the publication of Banach's treatise on the theory of linear operators, the literature on the theory of bases in topological vector spaces has grown enormously. Much of this literature has for its origin a question raised in Banach's book, the question whether every sepa­ rable Banach space possesses a basis or not. The notion of a basis employed here is a generalization of that of a Hamel basis for a finite dimensional vector space. For a vector space X of infinite dimension, the concept of a basis is closely related to the convergence of the series which uniquely correspond to each point of X. Thus there are different types of bases for X, according to the topology imposed on X and the chosen type of convergence for the series. Although almost four decades have elapsed since Banach's query, the conjectured existence of a basis for every separable Banach space is not yet proved. On the other hand, no counter examples have been found to show the existence of a special Banach space having no basis. Howe...

  9. Platoon Dispersion Analysis Based on Diffusion Theory

    Directory of Open Access Journals (Sweden)

    Badhrudeen Mohamed

    2017-01-01

    Full Text Available Urbanization and gro wing demand for travel, causes the traffic system to work ineffectively in most urban areas leadin g to traffic congestion. Many approaches have been adopted to address this problem, one among them being the signal co-ordination. This can be achieved if the platoon of vehicles that gets discharged at one signal gets green at consecutive signals with minimal delay. However, platoons tend to get dispersed as they travel and this dispersion phenomenon should be taken into account for effective signal coordination. Reported studies in this area are from the homogeneous and lane disciplined traffic conditions. This paper analyse the platoon dispersion characteristics under heterogeneous and lane-less traffic conditions. Out of the various modeling techniques reported, the approach based on diffusion theory is used in this study. The diffusion theory based models so far assumed thedata to follow normal distribution. However, in the present study, the data was found to follow lognormal distribution and hence the implementation was carried out using lognormal distribution. The parameters of lognormal distribution were calibrated for the study condition. For comparison purpose, normal distribution was also calibrated and the results were evaluated. It was foun d that model with log normal distribution performed better in all cases than the o ne with normal distribution.

  10. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  11. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  12. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  13. Modelling the role of compositional fluctuations in nucleation kinetics

    International Nuclear Information System (INIS)

    Ženíšek, J.; Kozeschnik, E.; Svoboda, J.; Fischer, F.D.

    2015-01-01

    The classical nucleation theory of precipitate nucleation in interstitial/substitutional alloys is applied to account for the influence of spatial A–B composition fluctuations in an A–B–C matrix on the kinetics of nucleation of (A,B) 3 C precipitates. A and B are substitutional elements in the matrix and C is an interstitial component, assumed to preferentially bind to B atoms. All lattice sites are considered as potential nucleation sites. The fluctuations of chemical composition result in a local variation of the nucleation probability. The nucleation sites are eliminated from the system if they are located in a C-depleted diffusion zone belonging to an already nucleated and growing precipitate. The chemistry is that of an Fe–Cr–C system, and the specific interface energy is treated as a free parameter. Random, regular and homogeneous A–B distributions in the matrix are simulated and compared for various values of the interface energy. An increasing enhancement of the role of compositional fluctuations on nucleation kinetics with increasing interface energy and decreasing chemical driving force is observed

  14. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.

    Science.gov (United States)

    Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit

    2015-11-28

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  15. Nucleation in Synoptically Forced Cirrostratus

    Science.gov (United States)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  16. Advances in heuristically based generalized perturbation theory

    International Nuclear Information System (INIS)

    Gandini, A.

    1994-01-01

    A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs

  17. System Dynamics as Model-Based Theory Building

    OpenAIRE

    Schwaninger, Markus; Grösser, Stefan N.

    2008-01-01

    This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi...

  18. Physically based rendering from theory to implementation

    CERN Document Server

    Pharr, Matt

    2010-01-01

    "Physically Based Rendering, 2nd Edition" describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method - known as 'literate programming'- combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery. This book features new sections on subsurface scattering, Metropolis light transport, precomputed light transport, multispectral rendering, and much more. It includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux. Code and text are tightly woven together through a unique indexing feature that lists each function, variable, and method on the page that they are first described.

  19. Plasma balance equations based on orbit theory

    International Nuclear Information System (INIS)

    Lehnert, B.

    1982-01-01

    A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)

  20. Modelling the effect of acoustic waves on nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Haqshenas, S. R., E-mail: seyyed.haqshenas.12@ucl.ac.uk; Saffari, N., E-mail: n.saffari@ucl.ac.uk [Department of Mechanical Engineering, University College London, Gower Street, London WC1E 7JE (United Kingdom); Ford, I. J., E-mail: i.ford@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-07-14

    A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.

  1. Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2010-02-01

    Full Text Available In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.

  2. Interaction of the nucleation phenomena at adjacent sites in nucleate boiling

    International Nuclear Information System (INIS)

    Sultan, M.; Judd, R.L.

    1983-01-01

    The present investigation is an original study in nucleate pool boiling heat transfer combining theory and experiment in which water boiling at atmospheric pressure on a single copper surface at two different levels of heat and different levels of subcooling was studied. Cross spectral analysis of the signals generated by the emission of bubbles at adjacent nucleation sites was used to determine the relationship of the time elapsed between the start of bubble growth at the two neighbouring active sites with the distance separating them. The experimental results obtained indicated that for the lower level of heat flux at three different levels of subcooling, the elapsed time and distance were directly related. Theoretical predictions of a temperature disturbance propagating through the heating surface in the radial direction gave good agreement with the experimental findings, suggesting that this is the mechanism responsible for the activation of the surrounding nucleation sites

  3. Effect of strain on surface diffusion and nucleation

    DEFF Research Database (Denmark)

    Brune, Harald; Bromann, Karsten; Röder, Holger

    1995-01-01

    The influence of strain on diffusion and nucleation has been studied by means of scanning tunneling microscopy and effective-medium theory for Ag self-diffusion on strained and unstrained (111) surfaces. Experimentally, the diffusion barrier is observed to be substantially lower on a pseudomorphic...... effect on surface diffusion and nucleation in heteroepitaxy and are thus of significance for the film morphology in the kinetic growth regime....

  4. Nucleation of strange matter in dense stellar cores

    International Nuclear Information System (INIS)

    Horvath, J.E.; Benvenuto, O.G.; Vucetich, H.

    1992-01-01

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature T for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios

  5. Determining the nucleation rate from the dimer growth probability

    NARCIS (Netherlands)

    Ter Horst, J.H.; Kashchiev, D.

    2005-01-01

    A new method is proposed for the determination of the stationary one-component nucleation rate J with the help of data for the growth probability P2 of a dimer which is the smallest cluster of the nucleating phase. The method is based on an exact formula relating J and P2, and is readily applicable

  6. Nucleation of dislocation loops during irradiation in binary FCC alloys with different alloy compositions

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    Dislocation loop nucleation is analyzed using a rate theory based model for face-centered cubic (fcc) binary alloys containing A- and B-atoms. In order to calculate the nucleation process in concentrated alloys, the model considers three types of interstitial dumbbells composed of A- and B-atoms, AA-, BB-, and AB-type dumbbells. Conversions between these interstitial dumbbells are newly introduced in the formulation in consideration of dumbbell configurations and movements. The model also includes reactions, such as point defect production by irradiation, mutual recombination of an interstitial and a vacancy, and dislocation loop nucleation and growth. Parameter values are chosen based on the atom size of the alloy component elements, and dislocation loop nucleation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus type. The migration energy difference of AA- and BB-type interstitial dumbbells is important in the determination of the dominant loop nucleus type. The present model predicts that the dislocation loop concentration decrease with increasing under sized atoms content, but defect production rate and temperature dependences of loop concentration are insensitive to alloy compositions. (author)

  7. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    Science.gov (United States)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  8. The Nucleation Potency of In Situ-Formed Oxides in Liquid Iron

    Science.gov (United States)

    Xu, Mingqin; Wang, Lu; Lu, Wenquan; Zeng, Long; Nadendla, Hari-Babu; Wang, Yun; Li, Jun; Hu, Qiaodan; Xia, Mingxu; Li, Jianguo

    2018-03-01

    The nucleation potency of iron oxides was verified experimentally through nucleation undercooling of liquid iron using aerodynamic levitation technology for minimized container contaminations. Steady undercooling values were subsequently obtained from multiple melting and freezing thermal cycles, with the average undercooling values of 223 K ± 3 K and 75 K ± 6 K (223 °C ± 3 °C and 75 °C ± 6 °C) for FeO-contained liquid and Fe3O4-contained liquid, respectively. The statistical results showed a negligible difference in the sizes and numbers of particles between FeO and Fe3O4 particles, indicating that the nucleation potency difference is attributed to the nature of nucleants rather than particle size or numbers. Furthermore, high-resolution transmission electron microscopy analysis showed that the potential nucleation interfaces can be assumed as { 1 1 0}_{{δ {{-Fe}}}} //( 0 0\\bar{2})_{FeO} and { 1 1 2}_{{δ {{-Fe}}}} //(\\bar{2} 0 2 )_{{{Fe}3 {O}4 }} , based on the detected exposed crystal planes of the oxide particles. Both the interfaces have relatively large values of lattice misfit, consistent with the experimentally measured undercooling based on Turnbull's lattice matching theory.

  9. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  10. Nucleate boiling heat transfer

    International Nuclear Information System (INIS)

    Saiz Jabardo, J.M.

    2009-01-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)

  11. Bulk liquid undercooling and nucleation in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Bokeloh, Joachim; Moros, Anna; Wilde, Gerhard [Institut fuer Materialphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2010-07-01

    While classical nucleation theory is widely accepted textbook knowledge, it is somewhat lacking with regard to the atomistic details of the nucleation and growth mechanisms. Right now, there are many efforts in exploring these details with computational methods. However, only few experimental methods that can corroborate these results are available. The best known of these experimental methods are containerless processing in levitation melting and the investigation of fine droplet dispersions. We present here data on the liquid undercooling behaviour of Ni obtained by repeated melting and crystallization in a DTA. This method allows to acquire a statistically meaningful data set under clean and reproducible conditions, while still allowing reasonable sample sizes, thus combining several advantages of the two methods mentioned above. Ni was chosen as a model system because it shows good levels of undercooling and because it is well suited for computer simulations due to its relatively low number of electrons.

  12. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.

    Science.gov (United States)

    Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele

    2017-09-14

    In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.

  13. Nucleation and creep of vortices in superfluids and clean superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1995-01-01

    The paper is devoted to vortex nucleation in uniform and nonuniform superflows in superfluids, and to creep of vortices trapped by twin boundaries and columnar defects in isotropic and anisotropic superconductors. The shape of a nuclated loop which yields the maximal nucleation rate is defined from the balance of the Lorentz and the line-tension forces. If the trapping energy is small, the contact angle at which the vortex line meets the plane of the twin-boundary or the axis of the columnar defect is also small. This may strongly enhance the rate of thermal nucleation and especially of quantum nucleation. In the analysis of quantum tunnelling it was assumed that the vortex has no mass and its motion is governed by the Magnus force, as expected for superfluids and very pure superconductors. Quantum nucleation rate from the traditional quasiclassical theory of macroscopic tunnelling is compared with the nucleation rate derived from the Gross-Pitaevskii theory of a weakly nonideal Bose-gas. (orig.)

  14. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  15. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  16. Nucleation of Recrystallization studied by EBSP and 3DXRD

    DEFF Research Database (Denmark)

    West, Stine

    2009-01-01

    When a deformed crystalline material is annealed, recrystallization will typically take place. In this process new perfect crystals nucleate and grow, consuming the deformation structure. Traditionally, nucleation theories state that the crystal orientations of these new grains were already present...... in the deformed state, but several experiments have shown the emergence of what appears to be new orientations. The purpose of the present project was to observe nucleation of recrystallization both on surfaces and in the bulk. Special focus was on the possible formation of nuclei with orientations not present...... in the deformed matrix before annealing. To facilitate the nucleation studies, a well-annealed starting material was prepared from high-purity aluminum with a large average grain size and almost straight grain boundaries mostly forming triple junctions with angles close to 120°. The large grain size was necessary...

  17. Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics

    Science.gov (United States)

    Chason, Eric; Vasquez, Justin; Pei, Fei; Jain, Nupur; Hitt, Andrew

    2018-01-01

    Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

  18. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  19. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2016-02-01

    Full Text Available Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs all have the same INP surface area (ISA; however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T. This model is applied to address if (i a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and

  20. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    Science.gov (United States)

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-03-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10-25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm.

  1. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  2. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  3. Damage instability and Earthquake nucleation

    Science.gov (United States)

    Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.

    2017-12-01

    Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.

  4. An approach to higher dimensional theories based on lattice gauge theory

    International Nuclear Information System (INIS)

    Murata, M.; So, H.

    2004-01-01

    A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram

  5. Continuing Bonds in Bereavement: An Attachment Theory Based Perspective

    Science.gov (United States)

    Field, Nigel P.; Gao, Beryl; Paderna, Lisa

    2005-01-01

    An attachment theory based perspective on the continuing bond to the deceased (CB) is proposed. The value of attachment theory in specifying the normative course of CB expression and in identifying adaptive versus maladaptive variants of CB expression based on their deviation from this normative course is outlined. The role of individual…

  6. Recursive renormalization group theory based subgrid modeling

    Science.gov (United States)

    Zhou, YE

    1991-01-01

    Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.

  7. Observational attachment theory-based parenting measures predict children's attachment narratives independently from social learning theory-based measures.

    Science.gov (United States)

    Matias, Carla; O'Connor, Thomas G; Futh, Annabel; Scott, Stephen

    2014-01-01

    Conceptually and methodologically distinct models exist for assessing quality of parent-child relationships, but few studies contrast competing models or assess their overlap in predicting developmental outcomes. Using observational methodology, the current study examined the distinctiveness of attachment theory-based and social learning theory-based measures of parenting in predicting two key measures of child adjustment: security of attachment narratives and social acceptance in peer nominations. A total of 113 5-6-year-old children from ethnically diverse families participated. Parent-child relationships were rated using standard paradigms. Measures derived from attachment theory included sensitive responding and mutuality; measures derived from social learning theory included positive attending, directives, and criticism. Child outcomes were independently-rated attachment narrative representations and peer nominations. Results indicated that Attachment theory-based and Social Learning theory-based measures were modestly correlated; nonetheless, parent-child mutuality predicted secure child attachment narratives independently of social learning theory-based measures; in contrast, criticism predicted peer-nominated fighting independently of attachment theory-based measures. In young children, there is some evidence that attachment theory-based measures may be particularly predictive of attachment narratives; however, no single model of measuring parent-child relationships is likely to best predict multiple developmental outcomes. Assessment in research and applied settings may benefit from integration of different theoretical and methodological paradigms.

  8. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  9. The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory

    Science.gov (United States)

    Anil, Duygu

    2008-01-01

    In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…

  10. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    Science.gov (United States)

    Alekseechkin, Nikolay V

    2015-08-07

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  11. Metadynamics studies of crystal nucleation

    Science.gov (United States)

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  12. Metadynamics studies of crystal nucleation

    Directory of Open Access Journals (Sweden)

    Federico Giberti

    2015-03-01

    Full Text Available Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation.

  13. Review: The nucleation of disorder

    International Nuclear Information System (INIS)

    Cahn, R.W.; Johnson, W.L.

    1986-01-01

    Four types of phase transformation that involve the conversion of crystalline phases into more disordered forms are reviewed: melting, disordering of superlattices, amorphization by diffusion between crystalline phases, and irradation amorphization. In the review emphasis is placed on evidence for the heterogeneous nucleation of the product phases; in this connection, the role of surfaces, antiphase domain boundaries, dislocations, vacancies, and grain boundaries is specifically discussed. All of these features have been either observed, or hypothesized, to play a role as heterogeneous nucleation sites in one or more of the four transformations. An attempt is made to draw parallels between nucleation mechanisms in the various processes

  14. Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2015-02-20

    With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical "signature" of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM-1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD=3.6-12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without

  15. SMD-based numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)

    2017-05-15

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)

  16. SMD-based numerical stochastic perturbation theory

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Luescher, Martin

    2017-01-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)

  17. SMD-based numerical stochastic perturbation theory

    Science.gov (United States)

    Dalla Brida, Mattia; Lüscher, Martin

    2017-05-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.

  18. FDI theories. A location-based approach

    Directory of Open Access Journals (Sweden)

    Popovici, Oana Cristina

    2014-09-01

    Full Text Available Given the importance of FDI for the economic growth of both home and host countries, the aim of this paper is to assess the importance granted to location advantages during the development of FDI theory. We start with the earliest theoretical directions as regards FDI location issues and extend our study to describing less debated theories, but of a particular importance for this theme. In this way, we have the opportunity to emphasize the changes in FDI location determinants. We find that a direction of the FDI theories’ expansion is due to the incorporation of new variables on location, although the location advantages are barely mentioned in the first explanations regarding the international activity of the firms.

  19. The empirical bases of the scientific theory

    International Nuclear Information System (INIS)

    Cook, A.

    1996-01-01

    This paper was written according to a speech given by the author at the French Academy of Sciences in Paris on November 14, 1994. In this educational paper, the author tries to explain the origins and limitations of the scientific theories. The aim of science is to allow the edification of a rational framework which situates the observations we can make about the world in which we live. These observations are determined by the human capacities and by the physical world itself. Thus, the structure of our theories is, up to a certain limit, imposed by the observation constraints: for example, the relationship between the time evolution equation in quantum mechanics and the definition of the atomic time standard, or between the restricted relativity and the observation of far away events using the electromagnetic radiation. A corollary is that several physical systems can be assimilated to the representation of abstract groups, and this is a possible explanation of mathematics power in scientific theories. However, the group representation is not suitable for all natural systems, such as those referring to a chaotic dynamics. In this case, and in others in physics and biology, questions exist which cannot be answered by the simple study of the natural world

  20. The nucleation model of strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, Ikuo.

    1990-07-01

    In this paper we discuss a model of interacting strings at finite densities based on nucleation theory, the study of formation of droplets in a supersaturated gas, the analogy being between drops of various sizes and strings with various excitation number. The interaction of the strings is considered to be the usual merging and splitting. We do not assume equilibrium a priori but find equilibrium configurations of strings as a result of their dynamics. We study these configurations as we change the energy density, and find the presence of two phases. A low density 'gas' phase, in which the energy is in strings in the fundamental or the first few excited levels, and a high density 'liquid' phase in which the number of strings is low, all the energy being carried by few very excited strings. For the gas phase we also discuss the thermodynamics of the system. (author). 21 refs, 20 figs, 1 tab

  1. Binary Homogeneous Nucleation in Selected Aqueous

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Němec, Tomáš; Hrubý, Jan; Demo, Pavel; Kožíšek, Zdeněk; Petr, V.; Kolovratník, M.

    2008-01-01

    Roč. 37, č. 12 (2008), s. 1671-1708 ISSN 0095-9782 R&D Projects: GA ČR(CZ) GA101/05/2524; GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA AV ČR IBS2076003 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : nucleation * steam * theory Subject RIV: BJ - Thermodynamics Impact factor: 1.241, year: 2008 http://www.springerlink.com/content/104381/

  2. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  3. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  4. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    International Nuclear Information System (INIS)

    Binder, Kurt; Virnau, Peter

    2016-01-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  5. Computer simulation of chemical nucleation

    International Nuclear Information System (INIS)

    Turner, J.S.

    1979-01-01

    The problem of nucleation at chemical instabilities is investigated by means of microscopic computer simulation. The first-order transition of interest involves a new kind of nucleation arising from chemical transformations rather than physical forces. Here it is the chemical state of matter, and not matter itself, which is spatially localized to form the nucleus for transition between different chemical states. First, the concepts of chemical instability, nonequilibrium phase transition, and dissipative structure are reviewed briefly. Then recently developed methods of reactive molecular dynamics are used to study chemical nucleation in a simple model chemical reactions. Finally, the connection of these studies to nucleation and condensation processes involving physical and chemical interactions is explored. (orig.)

  6. MOTIVATING ENGLISH TEACHERS BASED ON THE BASIC NEEDS THEORY AND AN EXPECTANCY THEORY

    Directory of Open Access Journals (Sweden)

    Hidayatus Sholihah

    2017-08-01

    Full Text Available There are two main motivation theories. a hierarchy of basic needs theory,  and an expectancy theory. In a Hyrarchy of basic needs theory, Maslow has stated that the basic needs as a main behaviour direction are structured into a hierarchy. There are five basic human needs.  The first: Physiological needs such as: salary, bonus or working condition. The second: the safety needs, such as: safe job environment, job security or health cover. The third, social needs, such as  union and team work. The next is self esteem, such as getting an award, medal, certificate or any other recognisition. Then the last is self actualization, for example is by providing an opportunity to share knowledge, skills and eprerience. The evaluation of this theory are: there is no spiritual needs as human basic needs is a main weakness of this theory. Then it is possible that different level of  needs  have to be satisfied in the same time, or not in hierarchy level or, not always have to be fulfilled in order. The next motivation theory is an Expectancy Theory. This theory is based on three main factors. The first factor is: English teachers will be motivated to work harder if they have a good perception to their own competences in accordance with their job. The second, individual motivation depends on the rewards given when they finish a  particular job. Finally, it also depends on their regards to the rewards given from the job that they do. Expectancy theory is a good theory, however, it is not easy to be implemented because the principals should provide various types of reward to satisfy the expectation of their English teachers. Considering the strengths and weaknesses of these two theories, it is better to combine both of them in the practice to get more effective results.

  7. Parametrization of the homogeneous ice nucleation rate for the numerical simulation of multiphase flow

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Eisenschmidt, K.; Rauschenberger, P.; Weigand, B.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 533-534 ISSN 1617-7061 R&D Projects: GA ČR GAP101/10/1819 Institutional research plan: CEZ:AV0Z20760514 Keywords : ice nucleation * ice-water surface energy * classical nucleation theory Subject RIV: BJ - Thermodynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210255/abstract

  8. Relative Role of Gas Generation and Displacement Rates in Cavity Nucleation and Growth

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J E.

    1984-01-01

    Problems of helium diffusion and clustering during irradiation are analysed. Using the “homogeneous” nucleation theory , the effect of damage rate on cavity density is calculated for different gas generation to damage rate ratios. The influence of gas mobility on cavity nucleation has been...

  9. Task-Based Language Teaching and Expansive Learning Theory

    Science.gov (United States)

    Robertson, Margaret

    2014-01-01

    Task-Based Language Teaching (TBLT) has become increasingly recognized as an effective pedagogy, but its location in generalized sociocultural theories of learning has led to misunderstandings and criticism. The purpose of this article is to explain the congruence between TBLT and Expansive Learning Theory and the benefits of doing so. The merit…

  10. A density functional theory-based chemical potential equalisation

    Indian Academy of Sciences (India)

    A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few ...

  11. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  12. Nucleation of voids. Final report, October 1, 1971--January 31, 1977

    International Nuclear Information System (INIS)

    Katz, J.L.

    1977-10-01

    The successful prediction of the conditions under which nucleation occurs in metals, as a result of the high concentrations of vacancies and interstitial atoms (and gas atoms) present in reactor environments, has been accomplished by (1) generalizing homogeneous nucleation theory to account for nucleation of matter (i.e., vacancies) in the presence of its antimatter (i.e., interstitials), (2) further generalizing the theory to account for the effects of both trapped and soluble gas, and (3) modifying the theory to describe interstitial loop formation and including the effects of external stress

  13. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  14. FOREWORD: Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach

    Science.gov (United States)

    Emmerich, H.

    2009-11-01

    systems are investigated jointly by experimental scientists working with different experimental techniques together with theoreticians, whose expertise is likewise diverse, ranging from density functional theory (DFT), over molecular simulations (MC/MD) to the phase-field method and who at the same time aim at a rigorous connection of these methods. This sketch illustrates the different 'dimensions' of the interdisciplinary research setting of the Priority Program and thus underlying the articles in this issue. Still the comparison of these new approaches with experimental results leads to controversial conclusions [12, 16]. Hence the study and development of theoretical models for the understanding and in particular for the quantitative description of the heterogeneous nucleus- and microstructure-formation processes remains an open but successively more and more quantitatively approachable issue. The development of physically relevant models for nucleus- and initial microstructure-formation is based on reliable knowledge of key parameters as the interfacial energy between crystal nucleus and melt. The latter is still experimentally difficult to access in metallic systems due to limitations arising e.g. from non-transmittance of optical light. To accelerate the development of more quantitative models capable of addressing the open issues of heterogenous nucleation and microstructure formation further, it is therefore essential to find complementary experimental systems which are less limited in accessing the above key parameters than metals. For this reason, within the Priority Program 1296 'Heterogenous Nucleation and Microstructure Formation—a Scale- and System-Bridging Approach' [8], the emphasis is to investigate the energetics and kinetics of heterogeneous nucleation and microstructure-formation processes experimentally jointly with metals as well as colloids as mesoscopic model systems for these processes. Thereby the most comprehensive experimental picture shall

  15. The Physics of Earthquakes: In the Quest for a Unified Theory (or Model) That Quantitatively Describes the Entire Process of an Earthquake Rupture, From its Nucleation to the Dynamic Regime and to its Arrest

    Science.gov (United States)

    Ohnaka, M.

    2004-12-01

    For the past four decades, great progress has been made in understanding earthquake source processes. In particular, recent progress in the field of the physics of earthquakes has contributed substantially to unraveling the earthquake generation process in quantitative terms. Yet, a fundamental problem remains unresolved in this field. The constitutive law that governs the behavior of earthquake ruptures is the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to the dynamic propagation to its arrest, quantitatively in a unified and consistent manner. Therefore, without establishing the rational constitutive law, the physics of earthquakes cannot be a quantitative science in a true sense, and hence it is urgent to establish the rational constitutive law. However, it has been controversial over the past two decades, and it is still controversial, what the constitutive law for earthquake ruptures ought to be, and how it should be formulated. To resolve the controversy is a necessary step towards a more complete, unified theory of earthquake physics, and now the time is ripe to do so. Because of its fundamental importance, we have to discuss thoroughly and rigorously what the constitutive law ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid evidence. There are prerequisites for the constitutive formulation. The brittle, seismogenic layer and individual faults therein are characterized by inhomogeneity, and fault inhomogeneity has profound implications for earthquake ruptures. In addition, rupture phenomena including earthquakes are inherently scale dependent; indeed, some of the physical quantities inherent in rupture exhibit scale dependence. To treat scale-dependent physical quantities inherent in the rupture over a broad scale range quantitatively in a unified and consistent manner, it is critical to

  16. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    Science.gov (United States)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  17. The nucleation of vorticity by ions in superfluid 4He

    International Nuclear Information System (INIS)

    Muirhead, C.M.; Vinen, W.F.; Donnelly, R.J.

    1985-01-01

    The theory developed in Part I is extended to include a discussion of nucleation by negative ions in the presence of dissolved 3 He at a concentration such that at a low temperature the negative ion bubble is likely to have adsorbed on its surface either one or two 3 He atoms. It is argued that the adsorbed 3 He atom can change the nucleation rate for two reasons: the atom can modify the perturbation applied to the helium at the surface of the ions; and it can act as a source of energy. The second of these effects is explored in some detail. It is shown that the 3 He atom is probably less strongly bound to the ion than it would be to the core of a vortex line; furthermore the atom adsorbed onto the surface of the ion can exist in a number of excited states (Shikin states), which are thermally populated even at quite low temperatures. Therefore, when nucleation of a vortex takes place, the 3 He atom might move from the ion surface to the core of the vortex or simply from one Shikin state to another of lower energy; in either case there is a release of energy. The existence of this energy release means, first, that nucleation becomes energetically possible at a reduced ionic velocity and secondly, that the energy barrier opposing nucleation is reduced in size. Therefore the critical velocity for vortex nucleation is reduced, and, for a given supercritical velocity, the rate of nucleation is increased. Addition of a second 3 He atom would have a similar effect. Further experiments are required to check the detailed predictions of the theory. (author)

  18. Learning Theory Foundations of Simulation-Based Mastery Learning.

    Science.gov (United States)

    McGaghie, William C; Harris, Ilene B

    2018-06-01

    Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.

  19. Role of nucleation in nanodiamond film growth

    International Nuclear Information System (INIS)

    Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.

    2006-01-01

    Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C 2 dimer growth (CH 4 and H 2 in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH 4 in H 2 ) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C 2 dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite

  20. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.

    Science.gov (United States)

    Nudelman, Fabio

    2015-10-01

    The wide diversity of biogenic minerals that is found in nature, each with its own morphology, mechanical properties and composition, is remarkable. In order to produce minerals that are optimally adapted for their function, biomineralisation usually occurs under strict cellular control. This control is exerted by specialised proteins and polysaccharides that assemble into a 3-dimensional organic matrix framework, forming a microenvironment where mineral deposition takes place. Molluscs are unique in that they use a striking variety of structural motifs to build their shells, each made of crystals with different morphologies and different calcium carbonate polymorphs. Much of want is known about mollusc shell formation comes from studies on the nacreous layer, or mother-of-pearl. In this review, we discuss two existing models on the nucleation of aragonite crystals during nacre formation: heteroepitaxial nucleation and mineral bridges. The heteroepitaxial nucleation model is based on the identification of chemical functional groups and aragonite-nucleating proteins at the centre of crystal imprints. It proposes that during nacre formation, each aragonite tablet nucleates independently on a nucleation site that is formed by acidic proteins and/or glycoproteins adsorbed on the chitin scaffold. The mineral bridges model is based on the identification of physical connections between the crystals in a stack, which results in a large number of crystals across several layers sharing the same crystallographic orientation. These observations suggest that there is one nucleation event per stack of tablets. Once the first crystal nucleates and reaches the top interlamellar matrix, it continues growing through pores, giving rise to the next layer of nacre, subsequently propagating into a stack. We compare both models and propose that they work in concert to control crystal nucleation in nacre. De novo crystal nucleation has to occur at least once per stack of aligned crystals

  1. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  2. Using Activity Theory as a Base for Investigating Language Teacher ...

    African Journals Online (AJOL)

    Using Activity Theory as a Base for Investigating Language Teacher Education through Digital Technology. ... Log in or Register to get access to full text downloads. ... how the platform has created tensions, contradictions and transformations.

  3. Towards a Theory-Based Framework for Assessing the ...

    African Journals Online (AJOL)

    The theory-based framework attempts to capture ESD's complexity in terms of the ... projects in teacher education institutions in Botswana, a brief description of the ..... How the 'four pillars of learning' relate to education for sustainable human.

  4. Modern Resource-Based Theory(ies)

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Stieglitz, Nils

    We survey the resource-based view in strategic management, focusing on its roots in economics. We organize our discussion in terms of the Gavetti and Levinthal distinction between a “high church” and a “low church” resource-based view, and argue that these hitherto rather separate streams...

  5. School-Based Management: Theory and Practice.

    Science.gov (United States)

    George, Patricia, Ed.; Potter, Eugenia Cooper, Ed.

    School-based management (SBM), sometimes called site-based management, is fast becoming the hottest restructuring item in the arsenal of reformers, teachers' unions, governors, and legislators who want to change the traditional ways in which schools and school districts do business. This document comprises three main sections with contributions…

  6. Making Theory Come Alive through Practice-based Design Research

    DEFF Research Database (Denmark)

    Markussen, Thomas; Knutz, Eva; Rind Christensen, Poul

    The aim of this paper is to demonstrate how practice-based design research is able not only to challenge, but also to push toward further development of some of the basic assumpstions in emotion theories as used within design research. In so doing, we wish to increase knolwedge on a central...... epistemological question for design research, namely how practice-based design research can be a vehicle for the construction of new theory for design research....

  7. Application of the Theory of Constraints in Project Based Structures

    OpenAIRE

    Martynas Sarapinas; Vytautas Pranas Sūdžius

    2011-01-01

    The article deals with the application of the Theory of Constraints (TOC) in project management. This article involves a short introduction to TOC as a project management method and deep analysis of project management specialties using the TOC: TOC based project planning, timetable management, tasks synchronization, project control and “relay runner work ethic”. Moreover, the article describes traditional and TOC based project management theories in their comparison, and emphasize the main be...

  8. Ground reaction curve based upon block theory

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.; Goodman, R.E.

    1985-09-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. Once a potentially unstable block is identified, the forces affecting it can be calculated to assess its stability. The normal and shear stresses on each block face before displacement are calculated using elastic theory and are modified in a nonlinear way by discontinuity deformations as the keyblock displaces. The stresses are summed into resultant forces to evaluate block stability. Since the resultant forces change with displacement, successive increments of block movement are examined to see whether the block ultimately becomes stable or fails. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were evaluated. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls blocks displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender

  9. An enstrophy-based linear and nonlinear receptivity theory

    Science.gov (United States)

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  10. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    Science.gov (United States)

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H 2 or CH 4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H 2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H 2 /CH 4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  11. INVESTIGATION OF FISCAL AND BUDGETARY POLICIES BASED ON ECONOMIC THEORIES

    Directory of Open Access Journals (Sweden)

    EMILIA CAMPEANU

    2011-04-01

    Full Text Available Empirical analysis of fiscal and budgetary policies cannot be achieved without first knowing how they are viewed in the economic theories. This approach is important to indicate the position and implications of fiscal and budgetary policy tools in the economic theory considering their major differences. Therefore, the paper aims is to investigate the fiscal and budgetary policies based on economic theories such as neoclassical, Keynesian and neo-Keynesian theory in order to indicate their divergent points. Once known these approaches at the economic theory level is easier to establish the appropriate measures taking into consideration the framing of a country economy in a certain pattern. This work was supported from the European Social Fund through Sectoral Operational Programme Human Resources Development 2007-2013, project number POSDRU/89/1.5/S/59184 „Performance and excellence in postdoctoral research in Romanian economics science domain” (contract no. 0501/01.11.2010.

  12. Understanding women's mammography intentions: a theory-based investigation.

    Science.gov (United States)

    Naito, Mikako; O'Callaghan, Frances V; Morrissey, Shirley

    2009-01-01

    The present study compared the utility of two models (the Theory of Planned Behavior and Protection Motivation Theory) in identifying factors associated with intentions to undertake screening mammography, before and after an intervention. The comparison was made between the unique components of the two models. The effect of including implementation intentions was also investigated. Two hundred and fifty-one women aged 37 to 69 years completed questionnaires at baseline and following the delivery of a standard (control) or a protection motivation theory-based informational intervention. Hierarchical multiple regressions indicated that theory of planned behavior variables were associated with mammography intentions. Results also showed that inclusion of implementation intention in the model significantly increased the association with mammography intentions. The findings suggest that future interventions aiming to increase screening mammography participation should focus on the theory of planned behavior variables and that implementation intention should also be targeted.

  13. Dynamical theory of subconstituents based on ternary algebras

    International Nuclear Information System (INIS)

    Bars, I.; Guenaydin, M.

    1980-01-01

    We propose a dynamical theory of possible fundamental constituents of matter. Our scheme is based on (super) ternary algebras which are building blocks of Lie (super) algebras. Elementary fields, called ''ternons,'' are associated with the elements of a (super) ternary algebra. Effective gauge bosons, ''quarks,'' and ''leptons'' are constructed as composite fields from ternons. We propose two- and four-dimensional (super) ternon theories whose structures are closely related to CP/sub N/ and Yang-Mills theories and their supersymmetric extensions. We conjecture that at large distances (low energies) the ternon theories dynamically produce effective gauge theories and thus may be capable of explaining the present particle-physics phenomenology. Such a scenario is valid in two dimensions

  14. Playing styles based on experiential learning theory

    NARCIS (Netherlands)

    Bontchev, Boyan; Vassileva, Dessislava; Aleksieva-Petrova, Adelina; Petrov, Milen

    2018-01-01

    In recent years, many researchers have reported positive outcomes and effects from applying computer games to the educational process. The main preconditions for an effective game-based learning process include the presence of high learning interest and the desire to study hard. Therefore,

  15. A note on the nucleation with multiple steps: Parallel and series nucleation

    OpenAIRE

    Iwamatsu, Masao

    2012-01-01

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized and the extension to the more complex nucleation process is su...

  16. A Unifying Theory of Value Based Management

    OpenAIRE

    Weaver, Samuel C.; Weston, J. Fred

    2003-01-01

    We identify four alternative performance metrics used in value based management (VBM). (1) Basic is an intrinsic value analysis (IVA), the discounted cash flow (DCF) methodology. (2) We show that this framework will be consistent with returns to shareholder (RTS, capital gains plus dividends) measured over appropriate time horizons. (3) Economic profit (EP) [also called economic value added (EVA®)] takes from the DCF free cash flow valuation, net operating profits after taxes (NOPAT), divide...

  17. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  18. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  19. Clustering of amines and hydrazines in atmospheric nucleation

    Science.gov (United States)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  20. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  1. Nucleation and cavitation in parahydrogen

    International Nuclear Information System (INIS)

    Pi, Martí; Barranco, Manuel; Navarro, Jesús; Ancilotto, Francesco

    2012-01-01

    Highlights: ► We have constructed a density functional (DF) for parahydrogen between 14 and 32 K. ► The experimental equation of state and the surface tension are well reproduced. ► We have investigated nucleation and cavitations processes in the metastable phase. ► We have obtained the electron bubble explosion within the capillary model. - Abstract: We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model.

  2. Action-Based Jurisprudence: Praxeological Legal Theory in Relation to Economic Theory, Ethics, and Legal Practice

    Directory of Open Access Journals (Sweden)

    Konrad Graf

    2011-08-01

    Full Text Available Action-based legal theory is a discrete branch of praxeology and the basis of an emerging school of jurisprudence related to, but distinct from, natural law. Legal theory and economic theory share content that is part of praxeology itself: the action axiom, the a priori of argumentation, universalizable property theory, and counterfactual-deductive methodology. Praxeological property-norm justification is separate from the strictly ethical “ought” question of selecting ends in an action context. Examples of action-based jurisprudence are found in existing “Austro-libertarian” literature. Legal theory and legal practice must remain distinct and work closely together if justice is to be found in real cases. Legal theorizing was shaped in religious ethical contexts, which contributed to confused field boundaries between law and ethics. The carrot and stick influence of rulers on theorists has distorted conventional economics and jurisprudence in particular directions over the course of centuries. An action-based approach is relatively immune to such sources of distortion in its methods and conclusions, but has tended historically to be marginalized from conventional institutions for this same reason.

  3. Opera house acoustics based on subjective preference theory

    CERN Document Server

    Ando, Yoichi

    2015-01-01

    This book focuses on opera house acoustics based on subjective preference theory; it targets researchers in acoustics and vision who are working in physics, psychology, and brain physiology. This book helps readers to understand any subjective attributes in relation to objective parameters based on the powerful and workable model of the auditory system. It is reconfirmed here that the well-known Helmholtz theory, which was based on a peripheral model of the auditory system, may not well describe pitch, timbre, and duration as well as the spatial sensations described in this book, nor overall responses such as subjective preference of sound fields and the annoyance of environmental noise.

  4. Laws of alloyed cementite particles nucleation during heat-resistant steels carburizing

    Directory of Open Access Journals (Sweden)

    M. Yu. Semenov

    2014-01-01

    Full Text Available The article considers a problem analyzing a nucleation of cementite type carbides in carburized heat-resistant steels for the turbofan engines gear wheels.The verification of previously hypothesized mechanism of dislocation nucleation particles chromium-alloyed cementite during process of carburizing was accepted as an objective of the work.As a methodological basis of this paper were accepted the numerical experiments based on the kinetic theory of nucleation, as well as on the known results of experimental studies.According to the kinetic theory of nucleation, a new phase in the solid solutions take place in the defects of the crystal structure of the metal such as inter-grain boundaries and dislocations clusters. A principle feature of the inter-grain boundary mechanism of nucleation is formation of carbide lattice. It is of great practical interest because the cementite lattice drops mechanical properties of hardened parts.According to the experimental studies, the average chromium concentration in the alloyed cementite twice exceeds its Cr content in the heat-resistant steels. Furthermore, the areas of abnormally high (more than ten times in comparison with the average content chromium concentration in cementite have been experimentally revealed.Numerical experiments have revealed that the nucleation of cementite particles alloyed with chromium (chromium concentration of 3% or more occurs, mainly, by the dislocation mechanism on the concentration fluctuations of the alloying element. According to calculations, an obligatory prerequisite to start an active nucleation process of new phase in the solid solution is a local increase of the chromium concentration up to 40%.Despite the lack of physical prerequisites for the formation of chromium precipitates, this phenomenon is explained by a strong chemical affinity of chromium and carbon, causing diffusion of chromium atoms in the region of the carbon atoms clusters. The formation of carbon

  5. Convective boiling in a parallel microchannel heat sink with a diverging cross-section design and artificial nucleation sites

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan, Chin

    2009-01-01

    To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)

  6. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Evaluating hydrological model performance using information theory-based metrics

    Science.gov (United States)

    The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...

  8. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic.

    Science.gov (United States)

    Gladinez, Kristof; Rosseel, Kris; Lim, Jun; Marino, Alessandro; Heynderickx, Geraldine; Aerts, Alexander

    2017-10-18

    Liquid lead-bismuth eutectic (LBE) is an important candidate to become the primary coolant of future, generation IV, nuclear fast reactors and Accelerator Driven System (ADS) concepts. One of the main challenges with the use of LBE as a coolant is to avoid its oxidation which results in solid lead oxide (PbO) precipitation. The chemical equilibria governing PbO formation are well understood. However, insufficient kinetic information is currently available for the development of LBE-based nuclear technology. Here, we report the results of experiments in which the nucleation, growth and dissolution of PbO in LBE during temperature cycling are measured by monitoring dissolved oxygen using potentiometric oxygen sensors. The metastable region, above which PbO nucleation can occur, has been determined under conditions relevant for the operation of LBE cooled nuclear systems and was found to be independent of setup geometry and thus thought to be widely applicable. A kinetic model to describe formation and dissolution of PbO particles in LBE is proposed, based on Classical Nucleation Theory (CNT) combined with mass transfer limited growth and dissolution. This model can accurately predict the experimentally observed changes in oxygen concentration due to nucleation, growth and dissolution of PbO, using the effective interfacial energy of a PbO nucleus in LBE as a fitting parameter. The results are invaluable to evaluate the consequences of oxygen ingress in LBE cooled nuclear systems under normal operating and accidental conditions and form the basis for the development of cold trap technology to avoid PbO formation in the primary reactor circuit.

  9. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.

    Science.gov (United States)

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-03-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Science.gov (United States)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  11. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  12. Robust optimization based upon statistical theory.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose

  13. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  14. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.

    Science.gov (United States)

    Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian

    2016-09-29

    In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.

  15. Contraction theory based adaptive synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2009-01-01

    Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.

  16. Structural motifs of pre-nucleation clusters.

    Science.gov (United States)

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  17. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  18. Nuclear fragmentation by nucleation approach

    International Nuclear Information System (INIS)

    Chung, K.C.

    1992-01-01

    The nucleation model is used to simulate nuclear fragmentation processes. The critical value of the effective interaction radius is shown to vary linearly with the expansion factor α. The calculated mass and charge distributions are compared with some experimental data. (author)

  19. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  20. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    Science.gov (United States)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the

  1. Continuing bonds in bereavement: an attachment theory based perspective.

    Science.gov (United States)

    Field, Nigel P; Gao, Beryl; Paderna, Lisa

    2005-05-01

    An attachment theory based perspective on the continuing bond to the deceased (CB) is proposed. The value of attachment theory in specifying the normative course of CB expression and in identifying adaptive versus maladaptive variants of CB expression based on their deviation from this normative course is outlined. The role of individual differences in attachment security on effective versus ineffective use of CB in coping with bereavement also is addressed. Finally, the moderating influence of type of loss (e.g., death of a spouse vs. child), culture, and religion on type of CB expression within an overarching attachment framework is discussed.

  2. Application of the Theory of Constraints in Project Based Structures

    Directory of Open Access Journals (Sweden)

    Martynas Sarapinas

    2011-04-01

    Full Text Available The article deals with the application of the Theory of Constraints (TOC in project management. This article involves a short introduction to TOC as a project management method and deep analysis of project management specialties using the TOC: TOC based project planning, timetable management, tasks synchronization, project control and “relay runner work ethic”. Moreover, the article describes traditional and TOC based project management theories in their comparison, and emphasize the main benefits we received as the results of the study. Article in Lithuanian

  3. Nucleation in Polymers and Soft Matter

    Science.gov (United States)

    Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang

    2014-04-01

    Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.

  4. Control of PbI2 nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process

    Science.gov (United States)

    Yang, Chongqiu; Peng, Yanke; Simon, Terrence; Cui, Tianhong

    2018-04-01

    Perovskite solar cells (PSC) have outstanding potential to be low-cost, high-efficiency photovoltaic devices. The PSC can be fabricated by numerous techniques; however, the power conversion efficiency (PCE) for the two-step-processed PSC falls behind that of the one-step method. In this work, we investigate the effects of relative humidity (RH) and dry air flow on the lead iodide (PbI2) solution deposition process. We conclude that the quality of the PbI2 film is critical to the development of the perovskite film and the performance of the PSC device. Low RH and dry air flow used during the PbI2 spin coating procedure can increase supersaturation concentration to form denser PbI2 nuclei and a more suitable PbI2 film. Moreover, airflow-assisted PbI2 drying and thermal annealing steps can smooth transformation from the nucleation stage to the crystallization stage.

  5. A classical view on nonclassical nucleation

    NARCIS (Netherlands)

    Smeets, P.J.M.; Finney, A.R.; Habraken, W.J.E.M.; Nudelman, F.; Friedrich, H.; Laven, J.; De Yoreo, J.J.; Rodger, P.M.; Sommerdijk, N.A.J.M.

    2017-01-01

    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO3) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO3 nucleation is still a

  6. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.

    Science.gov (United States)

    Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M

    2010-08-12

    This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.

  7. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  8. From glass to crystal - Nucleation, growth and de-mixing, from research to applications

    International Nuclear Information System (INIS)

    Neuville, Daniel R.; Cormier, Laurent; Caurant, Daniel; Montagne, Lionel; Charpentier, Thibault; Chevalier, Jerome; Comte, Monique; Dargaud, Olivier; Ligny, Dominique de; Deniard, Philippe; Dussardier, Bernard; Dussauze, Marc; Fargin, Evelyne; Gremillard, Laurent; Gredin, Patrick; Jousseaume, Cecile; Lafait, Jacques; Lancry, Mathieu; Lefebvre, Leila; Levelut, Claire; Magallanes-Pedromo, Marlin; Massiot, Dominique; Mear, Francois O.; Meille, Sylvain; Meng, Nicolas; Mortier, Michel; Papin, Sophie; Papon, Gautier; Pastouret, Main; Petit, Yannick; Poumellec, Bertrand; Pradel, Annie; Reillon, Vincent; Rodriguez, Vincent; Rogez, Jacques; Roussel, Pascal; Royon, Arnaud; Schuller, Sophie; Tricot, Gregory; Vigouroux, Helene

    2013-01-01

    This book first presents the conventional nucleation theory: vitrification, homogeneous and heterogeneous nucleation, induction time, crystal growth, Oswald law. The second part addresses the evolutions beyond this theory: cluster dynamics, validity of the Stokes-Einstein relationship, non conventional germ system, Gibbs generalized approach, two-stage model. The third part addresses the thermodynamic stability and the global kinetics of transformation: thermodynamic stability and instability of a vitreous system, phenomenological approach to transformation kinetics. The fourth part addresses the de-mixing process on glasses: thermodynamic description of phase separation, de-mixing kinetics, influence of glass structure on de-mixing trend, de-mixing characterisation. The next parts describe the crystal-chemical approach to the main crystalline phases noticed in glass-ceramics (silicate phases and phosphates), the elaboration and control of glass-ceramic microstructure (controllable parameters, elaboration processes, characterization methods, microstructure types, design of glass-ceramics with desired properties by control of crystallisation mechanisms), X ray diffraction in the case of glass-ceramics, calorimetry and differential thermal analysis for the study of glass ceramics, the application of electronic microscopy to the study of nucleation and crystallisation in glasses, small-angle scattering of X rays and neutrons, the use of nuclear magnetic resonance to understand the disorder and crystallisation in vitreous materials, the use of Raman spectrometry to study mechanisms of nucleation and crystal growth, large instruments aimed at an in situ approaches to crystallisation, commercial applications of glass-ceramics, applications of biomaterials in glass and glass-ceramics, the coloration of metal nanoparticles, transparent glass-ceramics, the formation and applications of nanoparticles in silica-based optic fibres, the both-way relationship between non linear

  9. Unifying ecology and macroevolution with individual-based theory.

    Science.gov (United States)

    Rosindell, James; Harmon, Luke J; Etienne, Rampal S

    2015-05-01

    A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage-based models, whereas ecology often focuses on individual organisms. Here, we develop a new parsimonious individual-based theory by adding mild selection to the neutral theory of biodiversity. We show that this model generates realistic phylogenies showing a slowdown in diversification and also improves on the ecological predictions of neutral theory by explaining the occurrence of very common species. Moreover, we find the distribution of individual fitness changes over time, with average fitness increasing at a pace that depends positively on community size. Consequently, large communities tend to produce fitter species than smaller communities. These findings have broad implications beyond biodiversity theory, potentially impacting, for example, invasion biology and paleontology. © 2015 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  10. A Model of Statistics Performance Based on Achievement Goal Theory.

    Science.gov (United States)

    Bandalos, Deborah L.; Finney, Sara J.; Geske, Jenenne A.

    2003-01-01

    Tests a model of statistics performance based on achievement goal theory. Both learning and performance goals affected achievement indirectly through study strategies, self-efficacy, and test anxiety. Implications of these findings for teaching and learning statistics are discussed. (Contains 47 references, 3 tables, 3 figures, and 1 appendix.)…

  11. Toward an Instructionally Oriented Theory of Example-Based Learning

    Science.gov (United States)

    Renkl, Alexander

    2014-01-01

    Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from…

  12. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  13. New unified field theory based on the conformal group

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-10-01

    Based on a six-dimensional generalization of Maxwell's equations, a new unified theory of the electromagnetic and gravitational field is developed. Additional space-time coordinates are interpreted only as mathematical tools in order to obtain a linear realization of the four-dimensional conformal group.

  14. Technical Note: Application of Decision Theory Based Criteria for ...

    African Journals Online (AJOL)

    Technical Note: Application of Decision Theory Based Criteria for Structural Appraisal of a Building during Construction. ... Nigerian Journal of Technology ... reliability of concrete in a structure during construction, a case study of laboratory block for College of Continuing Education, University of Port Harcourt, Rivers State.

  15. Mobile applications for weight management: theory-based content analysis.

    Science.gov (United States)

    Azar, Kristen M J; Lesser, Lenard I; Laing, Brian Y; Stephens, Janna; Aurora, Magi S; Burke, Lora E; Palaniappan, Latha P

    2013-11-01

    The use of smartphone applications (apps) to assist with weight management is increasingly prevalent, but the quality of these apps is not well characterized. The goal of the study was to evaluate diet/nutrition and anthropometric tracking apps based on incorporation of features consistent with theories of behavior change. A comparative, descriptive assessment was conducted of the top-rated free apps in the Health and Fitness category available in the iTunes App Store. Health and Fitness apps (N=200) were evaluated using predetermined inclusion/exclusion criteria and categorized based on commonality in functionality, features, and developer description. Four researchers then evaluated the two most popular apps in each category using two instruments: one based on traditional behavioral theory (score range: 0-100) and the other on the Fogg Behavioral Model (score range: 0-6). Data collection and analysis occurred in November 2012. Eligible apps (n=23) were divided into five categories: (1) diet tracking; (2) healthy cooking; (3) weight/anthropometric tracking; (4) grocery decision making; and (5) restaurant decision making. The mean behavioral theory score was 8.1 (SD=4.2); the mean persuasive technology score was 1.9 (SD=1.7). The top-rated app on both scales was Lose It! by Fitnow Inc. All apps received low overall scores for inclusion of behavioral theory-based strategies. © 2013 American Journal of Preventive Medicine.

  16. Applications of decision theory to test-based decision making

    NARCIS (Netherlands)

    van der Linden, Willem J.

    1987-01-01

    The use of Bayesian decision theory to solve problems in test-based decision making is discussed. Four basic decision problems are distinguished: (1) selection; (2) mastery; (3) placement; and (4) classification, the situation where each treatment has its own criterion. Each type of decision can be

  17. PhysarumSoft: An update based on rough set theory

    Science.gov (United States)

    Schumann, Andrew; Pancerz, Krzysztof

    2017-07-01

    PhysarumSoft is a software tool consisting of two modules developed for programming Physarum machines and simulating Physarum games, respectively. The paper briefly discusses what has been added since the last version released in 2015. New elements in both modules are based on rough set theory. Rough sets are used to model behaviour of Physarum machines and to describe strategy games.

  18. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.

    2014-01-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  19. Unifying ecology and macroevolution with individual-based theory

    NARCIS (Netherlands)

    Rosindell, James; Harmon, Luke J.; Etienne, Rampal S.

    A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage-based models,

  20. Mapping site-based construction workers’ motivation: Expectancy theory approach

    Directory of Open Access Journals (Sweden)

    Parviz Ghoddousi

    2014-03-01

    Full Text Available The aim of this study is to apply a recently proposed model of motivation based on expectancy theory to site-based workers in the construction context and confirm the validity of this model for the construction industry. The study drew upon data from 194 site-based construction workers in Iran to test the proposed model of motivation. To this end, the structural equation modelling (SEM approach based on the confirmatory factor analysis (CFA technique was deployed. The study reveals that the proposed model of expectancy theory incorporating five indicators (i.e. intrinsic instrumentality, extrinsic instrumentality, intrinsic valence, extrinsic valence and expectancy is able to map the process of construction workers’ motivation. Nonetheless, the findings posit that intrinsic indicators could be more effective than extrinsic ones. This proffers the necessity of construction managers placing further focus on intrinsic motivators to motivate workers. 

  1. Mapping site-based construction workers’ motivation: Expectancy theory approach

    Directory of Open Access Journals (Sweden)

    Parviz Ghoddousi

    2014-03-01

    Full Text Available The aim of this study is to apply a recently proposed model of motivation based on expectancy theory to site-based workers in the construction context and confirm the validity of this model for the construction industry. The study drew upon data from 194 site-based construction workers in Iran to test the proposed model of motivation. To this end, the structural equation modelling (SEM approach based on the confirmatory factor analysis (CFA technique was deployed. The study reveals that the proposed model of expectancy theory incorporating five indicators (i.e. intrinsic instrumentality, extrinsic instrumentality, intrinsic valence, extrinsic valence and expectancy is able to map the process of construction workers’ motivation. Nonetheless, the findings posit that intrinsic indicators could be more effective than extrinsic ones. This proffers the necessity of construction managers placing further focus on intrinsic motivators to motivate workers.

  2. Evidence for an expectancy-based theory of avoidance behaviour.

    Science.gov (United States)

    Declercq, Mieke; De Houwer, Jan; Baeyens, Frank

    2008-01-01

    In most studies on avoidance learning, participants receive an aversive unconditioned stimulus after a warning signal is presented, unless the participant performs a particular response. Lovibond (2006) recently proposed a cognitive theory of avoidance learning, according to which avoidance behaviour is a function of both Pavlovian and instrumental conditioning. In line with this theory, we found that avoidance behaviour was based on an integration of acquired knowledge about, on the one hand, the relation between stimuli and, on the other hand, the relation between behaviour and stimuli.

  3. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  4. A Game Theory Based Solution for Security Challenges in CRNs

    Science.gov (United States)

    Poonam; Nagpal, Chander Kumar

    2018-03-01

    Cognitive radio networks (CRNs) are being envisioned to drive the next generation Ad hoc wireless networks due to their ability to provide communications resilience in continuously changing environments through the use of dynamic spectrum access. Conventionally CRNs are dependent upon the information gathered by other secondary users to ensure the accuracy of spectrum sensing making them vulnerable to security attacks leading to the need of security mechanisms like cryptography and trust. However, a typical cryptography based solution is not a viable security solution for CRNs owing to their limited resources. Effectiveness of trust based approaches has always been, in question, due to credibility of secondary trust resources. Game theory with its ability to optimize in an environment of conflicting interests can be quite a suitable tool to manage an ad hoc network in the presence of autonomous selfish/malevolent/malicious and attacker nodes. The literature contains several theoretical proposals for augmenting game theory in the ad hoc networks without explicit/detailed implementation. This paper implements a game theory based solution in MATLAB-2015 to secure the CRN environment and compares the obtained results with the traditional approaches of trust and cryptography. The simulation result indicates that as the time progresses the game theory performs much better with higher throughput, lower jitter and better identification of selfish/malicious nodes.

  5. Extending Theory-Based Quantitative Predictions to New Health Behaviors.

    Science.gov (United States)

    Brick, Leslie Ann D; Velicer, Wayne F; Redding, Colleen A; Rossi, Joseph S; Prochaska, James O

    2016-04-01

    Traditional null hypothesis significance testing suffers many limitations and is poorly adapted to theory testing. A proposed alternative approach, called Testing Theory-based Quantitative Predictions, uses effect size estimates and confidence intervals to directly test predictions based on theory. This paper replicates findings from previous smoking studies and extends the approach to diet and sun protection behaviors using baseline data from a Transtheoretical Model behavioral intervention (N = 5407). Effect size predictions were developed using two methods: (1) applying refined effect size estimates from previous smoking research or (2) using predictions developed by an expert panel. Thirteen of 15 predictions were confirmed for smoking. For diet, 7 of 14 predictions were confirmed using smoking predictions and 6 of 16 using expert panel predictions. For sun protection, 3 of 11 predictions were confirmed using smoking predictions and 5 of 19 using expert panel predictions. Expert panel predictions and smoking-based predictions poorly predicted effect sizes for diet and sun protection constructs. Future studies should aim to use previous empirical data to generate predictions whenever possible. The best results occur when there have been several iterations of predictions for a behavior, such as with smoking, demonstrating that expected values begin to converge on the population effect size. Overall, the study supports necessity in strengthening and revising theory with empirical data.

  6. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    Science.gov (United States)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  7. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  8. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  9. An integrative, experience-based theory of attentional control.

    Science.gov (United States)

    Wilder, Matthew H; Mozer, Michael C; Wickens, Christopher D

    2011-02-09

    Although diverse, theories of visual attention generally share the notion that attention is controlled by some combination of three distinct strategies: (1) exogenous cuing from locally contrasting primitive visual features, such as abrupt onsets or color singletons (e.g., L. Itti, C. Koch, & E. Neiber, 1998), (2) endogenous gain modulation of exogenous activations, used to guide attention to task-relevant features (e.g., V. Navalpakkam & L. Itti, 2007; J. Wolfe, 1994, 2007), and (3) endogenous prediction of likely locations of interest, based on task and scene gist (e.g., A. Torralba, A. Oliva, M. Castelhano, & J. Henderson, 2006). However, little work has been done to synthesize these disparate theories. In this work, we propose a unifying conceptualization in which attention is controlled along two dimensions: the degree of task focus and the contextual scale of operation. Previously proposed strategies-and their combinations-can be viewed as instances of this one mechanism. Thus, this theory serves not as a replacement for existing models but as a means of bringing them into a coherent framework. We present an implementation of this theory and demonstrate its applicability to a wide range of attentional phenomena. The model accounts for key results in visual search with synthetic images and makes reasonable predictions for human eye movements in search tasks involving real-world images. In addition, the theory offers an unusual perspective on attention that places a fundamental emphasis on the role of experience and task-related knowledge.

  10. Homogeneous nucleation of water in argon. Nucleation rate computation from molecular simulations of TIP4P and TIP4P/2005 water model.

    Science.gov (United States)

    Dumitrescu, Lucia R; Smeulders, David M J; Dam, Jacques A M; Gaastra-Nedea, Silvia V

    2017-02-28

    Molecular dynamics (MD) simulations were conducted to study nucleation of water at 350 K in argon using TIP4P and TIP4P/2005 water models. We found that the stability of any cluster, even if large, strongly depends on the energetic interactions with its vicinity, while the stable clusters change their composition almost entirely during nucleation. Using the threshold method, direct nucleation rates are obtained. Our nucleation rates are found to be 1.08×10 27 cm -3 s -1 for TIP4P and 2.30×10 27 cm -3 s -1 for TIP4P/2005. The latter model prescribes a faster dynamics than the former, with a nucleation rate two times larger due to its higher electrostatic charges. The non-equilibrium water densities derived from simulations and state-of-art equilibrium parameters from Vega and de Miguel [J. Chem. Phys. 126, 154707 (2007)] are used for the classical nucleation theory (CNT) prediction. The CNT overestimates our results for both water models, where TIP4P/2005 shows largest discrepancy. Our results complement earlier data at high nucleation rates and supersaturations in the Hale plot [Phys. Rev. A 33, 4156 (1986)], and are consistent with MD data on the SPC/E and the TIP4P/2005 model.

  11. Evaporation rate of nucleating clusters.

    Science.gov (United States)

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  12. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  13. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.

    Science.gov (United States)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2015-08-14

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 10(6) molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 10(19) cm(-3) s(-1), helping close the gap between experimentally measured rates ∼ 10(17) cm(-3) s(-1). We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  14. Theory-Based Stakeholder Evaluation – applied. Competing Stakeholder Theories in the Quality Management of Primary Education

    DEFF Research Database (Denmark)

    Hansen, Morten Balle; Heilesen, J. B.

    In the broader context of evaluation design, this paper examines and compares pros and cons of a theory-based approach to evaluation (TBE) with the Theory-Based Stakeholder evaluation (TSE) model, introduced by Morten Balle Hansen and Evert Vedung (Hansen and Vedung 2010). While most approaches...... to TBE construct one unitary theory of the program (Coryn et al. 2011), the TSE-model emphasizes the importance of keeping theories of diverse stakeholders apart. This paper applies the TSE-model to an evaluation study conducted by the Danish Evaluation Institute (EVA) of the Danish system of quality......-model, as an alternative to traditional program theory evaluation....

  15. Responses of Mixed-Phase Cloud Condensates and Cloud Radiative Effects to Ice Nucleating Particle Concentrations in NCAR CAM5 and DOE ACME Climate Models

    Science.gov (United States)

    Liu, X.; Shi, Y.; Wu, M.; Zhang, K.

    2017-12-01

    Mixed-phase clouds frequently observed in the Arctic and mid-latitude storm tracks have the substantial impacts on the surface energy budget, precipitation and climate. In this study, we first implement the two empirical parameterizations (Niemand et al. 2012 and DeMott et al. 2015) of heterogeneous ice nucleation for mixed-phase clouds in the NCAR Community Atmosphere Model Version 5 (CAM5) and DOE Accelerated Climate Model for Energy Version 1 (ACME1). Model simulated ice nucleating particle (INP) concentrations based on Niemand et al. and DeMott et al. are compared with those from the default ice nucleation parameterization based on the classical nucleation theory (CNT) in CAM5 and ACME, and with in situ observations. Significantly higher INP concentrations (by up to a factor of 5) are simulated from Niemand et al. than DeMott et al. and CNT especially over the dust source regions in both CAM5 and ACME. Interestingly the ACME model simulates higher INP concentrations than CAM5, especially in the Polar regions. This is also the case when we nudge the two models' winds and temperature towards the same reanalysis, indicating more efficient transport of aerosols (dust) to the Polar regions in ACME. Next, we examine the responses of model simulated cloud liquid water and ice water contents to different INP concentrations from three ice nucleation parameterizations (Niemand et al., DeMott et al., and CNT) in CAM5 and ACME. Changes in liquid water path (LWP) reach as much as 20% in the Arctic regions in ACME between the three parameterizations while the LWP changes are smaller and limited in the Northern Hemispheric mid-latitudes in CAM5. Finally, the impacts on cloud radiative forcing and dust indirect effects on mixed-phase clouds are quantified with the three ice nucleation parameterizations in CAM5 and ACME.

  16. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  17. Hamiltonian theories quantization based on a probability operator

    International Nuclear Information System (INIS)

    Entral'go, E.E.

    1986-01-01

    The quantization method with a linear reflection of classical coordinate-momentum-time functions Λ(q,p,t) at quantum operators in a space of quantum states ψ, is considered. The probability operator satisfies a system of equations representing the principles of dynamical and canonical correspondences between the classical and quantum theories. The quantization based on a probability operator leads to a quantum theory with a nonnegative joint coordinate-momentum distribution function for any state ψ. The main consequences of quantum mechanics with a probability operator are discussed in comparison with the generally accepted quantum and classical theories. It is shown that a probability operator leads to an appearance of some new notions called ''subquantum'' ones. Hence the quantum theory with a probability operator does not pretend to any complete description of physical reality in terms of classical variables and by this reason contains no problems like Einstein-Podolsky-Rosen paradox. The results of some concrete problems are given: a free particle, a harmonic oscillator, an electron in the Coulomb field. These results give hope on the possibility of an experimental verification of the quantization based on a probability operator

  18. Commitment-based action: Rational choice theory and contrapreferential choice

    Directory of Open Access Journals (Sweden)

    Radovanović Bojana

    2014-01-01

    Full Text Available This paper focuses on Sen’s concept of contrapreferential choice. Sen has developed this concept in order to overcome weaknesses of the rational choice theory. According to rational choice theory a decision-maker can be always seen as someone who maximises utility, and each choice he makes as the one that brings to him the highest level of personal wellbeing. Sen argues that in some situations we chose alternatives that bring us lower level of wellbeing than we could achieve if we had chosen some other alternative available to us. This happens when we base our decisions on moral principles, when we act out of duty. Sen calls such action a commitment-based action. When we act out of commitment we actually neglect our preferences and thus we make a contrapreferential choice, as Sen argues. This paper shows that, contrary to Sen, a commitment-based action can be explained within the framework of rational choice theory. However, when each choice we make can be explained within the framework of rational choice theory, when in everything we do maximisation principle can be loaded, then the variety of our motives and traits is lost, and the explanatory power of the rational choice theory is questionable. [Projekat Ministarstva nauke Republike Srbije, br. 47009: Evropske integracije i društveno-ekonomske promene privrede Srbije na putu ka EU i br. 179015: Izazovi i perspektive strukturnih promena u Srbiji: Strateški pravci ekonomskog razvoja i usklađivanje sa zahtevima EU

  19. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  20. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    Science.gov (United States)

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.

  1. Multispectral iris recognition based on group selection and game theory

    Science.gov (United States)

    Ahmad, Foysal; Roy, Kaushik

    2017-05-01

    A commercially available iris recognition system uses only a narrow band of the near infrared spectrum (700-900 nm) while iris images captured in the wide range of 405 nm to 1550 nm offer potential benefits to enhance recognition performance of an iris biometric system. The novelty of this research is that a group selection algorithm based on coalition game theory is explored to select the best patch subsets. In this algorithm, patches are divided into several groups based on their maximum contribution in different groups. Shapley values are used to evaluate the contribution of patches in different groups. Results show that this group selection based iris recognition

  2. Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments

    Directory of Open Access Journals (Sweden)

    Guan Heng Yeoh

    2016-12-01

    Full Text Available The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the

  3. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory.

    Science.gov (United States)

    Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying

    2016-01-01

    Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately.

  4. Homogeneous nucleation in liquid nitrogen at negative pressures

    Energy Technology Data Exchange (ETDEWEB)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A. [Russian Academy of Sciences, Institute of Thermal Physics, Ural Branch (Russian Federation)

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9 MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.

  5. Charged and Neutral Binary Nucleation of Sulfuric Acid in Free Troposphere Conditions

    OpenAIRE

    Duplissy, Jonathan; Merikanto, Joonas; Sellegri, Karine; Rose, Clemence; Asmi, Eija; Freney, Evelyn; Juninen, Heikki; Sipilä, Mikko; Vehkamaki, Hanna; Kulmala, Markku

    2013-01-01

    We present a data set of binary nucleation of sulfuric acid and water, measured in the CLOUD chamber at CERN during the CLOUD3 and CLOUD5 campaigns. Four parameters have been varied to cover neutral and ion-induced binary nucleation processes: Sulfuric acid concentration (1e5 to 1e8 molecules per cm^(−3)), relative humidity (10% to 80%), temperature (208-293K) and ion concentration (0-4000 ions per cm^(−3)). In addition, classical nucleation theory implemented with hydrates and ion induced nu...

  6. Steady-state molecular dynamics simulation of vapor to liquid nucleation with Mc Donald's demon

    International Nuclear Information System (INIS)

    Horsch, M.; Miroshnichenko, S.; Vrabec, J.

    2009-01-01

    Grand canonical MD with McDonald's demon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapor. The idea behind the new approach is to simulate the production of clusters up to a given size for a specified supersaturation. The classical nucleation theory is found to overestimate the free energy of cluster formation and deviate by two orders of magnitude from the nucleation rate below the triple point at high supersaturations.

  7. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  8. Ensemble method: Community detection based on game theory

    Science.gov (United States)

    Zhang, Xia; Xia, Zhengyou; Xu, Shengwu; Wang, J. D.

    2014-08-01

    Timely and cost-effective analytics over social network has emerged as a key ingredient for success in many businesses and government endeavors. Community detection is an active research area of relevance to analyze online social network. The problem of selecting a particular community detection algorithm is crucial if the aim is to unveil the community structure of a network. The choice of a given methodology could affect the outcome of the experiments because different algorithms have different advantages and depend on tuning specific parameters. In this paper, we propose a community division model based on the notion of game theory, which can combine advantages of previous algorithms effectively to get a better community classification result. By making experiments on some standard dataset, it verifies that our community detection model based on game theory is valid and better.

  9. Route Choice Model Based on Game Theory for Commuters

    Directory of Open Access Journals (Sweden)

    Licai Yang

    2016-06-01

    Full Text Available The traffic behaviours of commuters may cause traffic congestion during peak hours. Advanced Traffic Information System can provide dynamic information to travellers. Due to the lack of timeliness and comprehensiveness, the provided information cannot satisfy the travellers’ needs. Since the assumptions of traditional route choice model based on Expected Utility Theory conflict with the actual situation, a route choice model based on Game Theory is proposed to provide reliable route choice to commuters in actual situation in this paper. The proposed model treats the alternative routes as game players and utilizes the precision of predicted information and familiarity of traffic condition to build a game. The optimal route can be generated considering Nash Equilibrium by solving the route choice game. Simulations and experimental analysis show that the proposed model can describe the commuters’ routine route choice decisionexactly and the provided route is reliable.

  10. Thermodynamic and Dynamic Aspects of Ice Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  11. Fire and Heat Spreading Model Based on Cellular Automata Theory

    Science.gov (United States)

    Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.

  12. Validating the predictions of case-based decision theory

    OpenAIRE

    Radoc, Benjamin

    2015-01-01

    Real-life decision-makers typically do not know all possible outcomes arising from alternative courses of action. Instead, when people face a problem, they may rely on the recollection of their past personal experience: the situation, the action taken, and the accompanying consequence. In addition, the applicability of a past experience in decision-making may depend on how similar the current problem is to situations encountered previously. Case-based decision theory (CBDT), proposed by Itzha...

  13. A note on the nucleation with multiple steps: parallel and series nucleation.

    Science.gov (United States)

    Iwamatsu, Masao

    2012-01-28

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested. © 2012 American Institute of Physics

  14. Crosslinked Aspartic Acids as Helix-Nucleating Templates.

    Science.gov (United States)

    Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang

    2016-09-19

    Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  16. Evaluation of onset of nucleate boiling models

    International Nuclear Information System (INIS)

    Huang, LiDong

    2009-01-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  17. What Communication Theories Can Teach the Designer of Computer-Based Training.

    Science.gov (United States)

    Larsen, Ronald E.

    1985-01-01

    Reviews characteristics of computer-based training (CBT) that make application of communication theories appropriate and presents principles from communication theory (e.g., general systems theory, symbolic interactionism, rule theories, and interpersonal communication theories) to illustrate how CBT developers can profitably apply them to…

  18. Homogeneous nucleation: a problem in nonequilibrium quantum statistical mechanics

    International Nuclear Information System (INIS)

    1978-08-01

    The master equation for cluster growth and evaporation is derived for many-body quantum mechanics and from a modified version of quantum damping theory used in laser physics. For application to nucleation theory, the quantum damping theory is generalized to include system and reservoir states that are not separate entities. Formulas for rate constants are obtained. Solutions of the master equation yield equations of state and system-averaged quantities recognized as thermodynamic variables. Formulas for Helmholtz free energies of clusters in a Debye approximation are derived. Coexistence-line equations for pressure, volume, and number of clusters are obtained from equations-of-state analysis. Coexistence-line and surface-tension data are used to obtain values of parameters for the Debye approximation. These data are employed in calculating both the nucleation current in diffusion cloud chamber experiments and the onset of condensation in expansion nozzle experiments. Theoretical and experimental results are similar for both cloud chamber and nozzle experiments, which measure water. Comparison with other theories reveals that classical theory only accidently agrees with experiment and that the Helmholtz free-energy formula used in the Lothe--Pound theory is incomplete. 27 figures, 3 tables, 149 references

  19. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  20. Principle-based concept analysis: intentionality in holistic nursing theories.

    Science.gov (United States)

    Aghebati, Nahid; Mohammadi, Eesa; Ahmadi, Fazlollah; Noaparast, Khosrow Bagheri

    2015-03-01

    This is a report of a principle-based concept analysis of intentionality in holistic nursing theories. A principle-based concept analysis method was used to analyze seven holistic theories. The data included eight books and 31 articles (1998-2011), which were retrieved through MEDLINE and CINAHL. Erickson, Kriger, Parse, Watson, and Zahourek define intentionality as a capacity, a focused consciousness, and a pattern of human being. Rogers and Newman do not explicitly mention intentionality; however, they do explain pattern and consciousness (epistemology). Intentionality has been operationalized as a core concept of nurse-client relationships (pragmatic). The theories are consistent on intentionality as a noun and as an attribute of the person-intentionality is different from intent and intention (linguistic). There is ambiguity concerning the boundaries between intentionality and consciousness (logic). Theoretically, intentionality is an evolutionary capacity to integrate human awareness and experience. Because intentionality is an individualized concept, we introduced it as "a matrix of continuous known changes" that emerges in two forms: as a capacity of human being and as a capacity of transpersonal caring. This study has produced a theoretical definition of intentionality and provides a foundation for future research to further investigate intentionality to better delineate its boundaries. © The Author(s) 2014.

  1. Theory-based practice in a major medical centre.

    Science.gov (United States)

    Alligood, Martha Raile

    2011-11-01

    This project was designed to improve care quality and nursing staff satisfaction. Nursing theory structures thought and action as demonstrated by evidence of improvement in complex health-care settings. Nursing administrators selected Modelling and Role-Modelling (MRM) for the theory-based practice goal in their strategic plan. An action research approach structured implementation of MRM in a 1-year consultation project in 2001-2002. Quality of health care improved according to national quality assessment ratings, as well as patient satisfaction and nurse satisfaction. Modelling and Role-Modelling demonstrated capacity to structure nursing thought and action in patient care in a major medical centre. Uniformity of patient care language was valued by nurses as well as by allied health providers who wished to learn the holistic MRM style of practice. The processes of MRM and action research contributed to project success. A positive health-care change project was carried out in a large medical centre with action research. Introducing MRM theory-based practice was a beneficial decision by nursing administration that improved care and nurse satisfaction. Attention to nursing practice stimulated career development among the nurses to pursue bachelors, masters, and doctoral degrees. © 2011 Blackwell Publishing Ltd.

  2. Truncated Dual-Cap Nucleation Site Development

    Science.gov (United States)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  3. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte

    2009-01-01

    Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...... the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd...

  4. Quantum game theory based on the Schmidt decomposition

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi; Cheon, Taksu

    2008-01-01

    We present a novel formulation of quantum game theory based on the Schmidt decomposition, which has the merit that the entanglement of quantum strategies is manifestly quantified. We apply this formulation to 2-player, 2-strategy symmetric games and obtain a complete set of quantum Nash equilibria. Apart from those available with the maximal entanglement, these quantum Nash equilibria are extensions of the Nash equilibria in classical game theory. The phase structure of the equilibria is determined for all values of entanglement, and thereby the possibility of resolving the dilemmas by entanglement in the game of Chicken, the Battle of the Sexes, the Prisoners' Dilemma, and the Stag Hunt, is examined. We find that entanglement transforms these dilemmas with each other but cannot resolve them, except in the Stag Hunt game where the dilemma can be alleviated to a certain degree

  5. Ice nucleation triggered by negative pressure.

    Science.gov (United States)

    Marcolli, Claudia

    2017-11-30

    Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.

  6. HOUSEHOLD NUCLEATION, DEPENDENCY AND CHILD HEALTH OUTCOMES IN GHANA.

    Science.gov (United States)

    Annim, Samuel Kobina; Awusabo-Asare, Kofi; Amo-Adjei, Joshua

    2015-09-01

    This study uses three key anthropometric measures of nutritional status among children (stunting, wasting and underweight) to explore the dual effects of household composition and dependency on nutritional outcomes of under-five children in Ghana. The objective is to examine changes in household living arrangements of under-five children to explore the interaction of dependency and nucleation on child health outcomes. The concept of nucleation refers to the changing structure and composition of household living arrangements, from highly extended with its associated socioeconomic system of production and reproduction, social behaviour and values, towards single-family households - especially the nuclear family, containing a husband and wife and their children alone. A negative relationship between levels of dependency, as measured by the number of children in the household, and child health outcomes is premised on the grounds that high dependency depletes resources, both tangible and intangible, to the disadvantage of young children. Data were drawn from the last four rounds of the Ghana Demographic and Health Surveys (GDHSs), from 1993 to 2008, for the first objective - to explore changes in household composition. For the second objective, the study used data from the 2008 GDHS. The results show that, over time, households in Ghana have been changing towards nucleation. The main finding is that in households with the same number of dependent children, in nucleated households children under age 5 have better health outcomes compared with children under age 5 in non-nucleated households. The results also indicate that the effect of dependency on child health outcomes is mediated by household nucleation and wealth status and that, as such, high levels of dependency do not necessarily translate into negative health outcomes for children under age 5, based on anthropometric measures.

  7. [Development and application of component-based Chinese medicine theory].

    Science.gov (United States)

    Zhang, Jun-Hua; Fan, Guan-Wei; Zhang, Han; Fan, Xiao-Hui; Wang, Yi; Liu, Li-Mei; Li, Chuan; Gao, Yue; Gao, Xiu-Mei; Zhang, Bo-Li

    2017-11-01

    Traditional Chinese medicine (TCM) prescription is the main therapies for disease prevention and treatment in Chinese medicine. Following the guidance of the theory of TCM and developing drug by composing prescriptions of TCM materials and pieces, it is a traditional application mode of TCM, and still widely used in clinic. TCM prescription has theoretical advantages and rich clinical application experience in dealing with multi-factor complex diseases, but scientific research is relatively weak. The lack of scientific cognition of the effective substances and mechanism of Chinese medicine leads to insufficient understanding of the efficacy regularity, which affects the stability of effect and hinders the improvement of quality of Chinese medicinal products. Component-based Chinese medicine (CCM) is an innovation based on inheritance, which breaks through the tradition of experience-based prescription and realize the transformation of compatibility from herbal pieces to components. CCM is an important achievement during the research process of modernization of Chinese medicine. Under the support of three national "973" projects, in order to reveal the scientific connotation of the prescription compatibility theory and develop innovative Chinese drugs, we have launched theoretical innovation and technological innovation around the "two relatively clear", and opened up the research field of CCM. CCM is an innovation based on inheritance, breaking through the tradition of experience based prescription, and realizing the transformation from compatibility of herbal pieces to component compatibility, which is an important achievement of the modernization of traditional Chinese medicine. In the past more than 10 years, with the deepening of research and the expansion of application, the theory and methods of CCM and efficacy-oriented compatibility have been continuously improved. The value of CCM is not only in developing new drug, more important is to build a

  8. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-08-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size. Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.

  9. Forewarning model for water pollution risk based on Bayes theory.

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Guo, Qizhong; Chen, Yaqian; Lu, Mengxiong; Tinoco, Luis

    2014-02-01

    In order to reduce the losses by water pollution, forewarning model for water pollution risk based on Bayes theory was studied. This model is built upon risk indexes in complex systems, proceeding from the whole structure and its components. In this study, the principal components analysis is used to screen out index systems. Hydrological model is employed to simulate index value according to the prediction principle. Bayes theory is adopted to obtain posterior distribution by prior distribution with sample information which can make samples' features preferably reflect and represent the totals to some extent. Forewarning level is judged on the maximum probability rule, and then local conditions for proposing management strategies that will have the effect of transforming heavy warnings to a lesser degree. This study takes Taihu Basin as an example. After forewarning model application and vertification for water pollution risk from 2000 to 2009 between the actual and simulated data, forewarning level in 2010 is given as a severe warning, which is well coincide with logistic curve. It is shown that the model is rigorous in theory with flexible method, reasonable in result with simple structure, and it has strong logic superiority and regional adaptability, providing a new way for warning water pollution risk.

  10. Workplace-based assessment: raters' performance theories and constructs.

    Science.gov (United States)

    Govaerts, M J B; Van de Wiel, M W J; Schuwirth, L W T; Van der Vleuten, C P M; Muijtjens, A M M

    2013-08-01

    Weaknesses in the nature of rater judgments are generally considered to compromise the utility of workplace-based assessment (WBA). In order to gain insight into the underpinnings of rater behaviours, we investigated how raters form impressions of and make judgments on trainee performance. Using theoretical frameworks of social cognition and person perception, we explored raters' implicit performance theories, use of task-specific performance schemas and the formation of person schemas during WBA. We used think-aloud procedures and verbal protocol analysis to investigate schema-based processing by experienced (N = 18) and inexperienced (N = 16) raters (supervisor-raters in general practice residency training). Qualitative data analysis was used to explore schema content and usage. We quantitatively assessed rater idiosyncrasy in the use of performance schemas and we investigated effects of rater expertise on the use of (task-specific) performance schemas. Raters used different schemas in judging trainee performance. We developed a normative performance theory comprising seventeen inter-related performance dimensions. Levels of rater idiosyncrasy were substantial and unrelated to rater expertise. Experienced raters made significantly more use of task-specific performance schemas compared to inexperienced raters, suggesting more differentiated performance schemas in experienced raters. Most raters started to develop person schemas the moment they began to observe trainee performance. The findings further our understanding of processes underpinning judgment and decision making in WBA. Raters make and justify judgments based on personal theories and performance constructs. Raters' information processing seems to be affected by differences in rater expertise. The results of this study can help to improve rater training, the design of assessment instruments and decision making in WBA.

  11. A communication-theory based view on telemedical communication.

    Science.gov (United States)

    Schall, Thomas; Roeckelein, Wolfgang; Mohr, Markus; Kampshoff, Joerg; Lange, Tim; Nerlich, Michael

    2003-01-01

    Communication theory based analysis sheds new light on the use of health telematics. This analysis of structures in electronic medical communication shows communicative structures with special features. Current and evolving telemedical applications are analyzed. The methodology of communicational theory (focusing on linguistic pragmatics) is used to compare it with its conventional counterpart. The semiotic model, the roles of partners, the respective message and their relation are discussed. Channels, sender, addressee, and other structural roles are analyzed for different types of electronic medical communication. The communicative processes are shown as mutual, rational action towards a common goal. The types of communication/texts are analyzed in general. Furthermore the basic communicative structures of medical education via internet are presented with their special features. The analysis shows that electronic medical communication has special features compared to everyday communication: A third participant role often is involved: the patient. Messages often are addressed to an unspecified partner or to an unspecified partner within a group. Addressing in this case is (at least partially) role-based. Communication and message often directly (rather than indirectly) influence actions of the participants. Communication often is heavily regulated including legal implications like liability, and more. The conclusion from the analysis is that the development of telemedical applications so far did not sufficiently take communicative structures into consideration. Based on these results recommendations for future developments of telemedical applications/services are given.

  12. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  13. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  14. Game Theory and Risk-Based Levee System Design

    Science.gov (United States)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  15. Application of the heuristically based GPT theory to termohydraulic problems

    International Nuclear Information System (INIS)

    Alvim, A.C.M.

    1988-01-01

    Application of heuristically based generalized perturbation theory (GPT) to the thermohydraulic (generally nonlinear) field is here illustrated. After a short description of the general methodology, the (linear) equations governing the importance function relevant to a generic multichannel problem are derived, within the physical model adopted in the COBRA IV-I Code. These equations are put in a form which should benefit of the calculational scheme of the original COBRA Code in the sense that only minor changes of it (mostly implying physical constants and source terms redefinitions) should be necessary for their solutions. (author) [pt

  16. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    Science.gov (United States)

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  17. Analytical modal diffusion theory based on flux separability

    International Nuclear Information System (INIS)

    Segev, M.

    1987-01-01

    The theory provides for an iterative solution of the mathematical problem of generating the assembly-wise power distribution in a LWR through the solution of the 2-group, multidimensional, diffusion equation. The companion problems of assembly pre-homogenization and of pin power reconstruction are of no direct concern presently. The theoretical development stems from the assumption of flux separability in X, Y and Z. The assumption derives from the notion that separability holds in a great part of the interior of a LWR assembly. More important, well accurate power maps are generated with a code based on the theoretical develpment yielded by the basic assumption

  18. Developing a Theory-Based Simulation Educator Resource.

    Science.gov (United States)

    Thomas, Christine M; Sievers, Lisa D; Kellgren, Molly; Manning, Sara J; Rojas, Deborah E; Gamblian, Vivian C

    2015-01-01

    The NLN Leadership Development Program for Simulation Educators 2014 faculty development group identified a lack of a common language/terminology to outline the progression of expertise of simulation educators. The group analyzed Benner's novice-to-expert model and applied its levels of experience to simulation educator growth. It established common operational categories of faculty development and used them to organize resources that support progression toward expertise. The resulting theory-based Simulator Educator Toolkit outlines levels of ability and provides quality resources to meet the diverse needs of simulation educators and team members.

  19. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  20. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    Czech Academy of Sciences Publication Activity Database

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-01-01

    Roč. 147, č. 16 (2017), č. článku 164702. ISSN 0021-9606 R&D Projects: GA MŠk(CZ) 7F14466; GA ČR(CZ) GJ15-07129Y Institutional support: RVO:61388998 Keywords : nucleation * classical nucleation theory * density gradient theory Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.965, year: 2016

  1. Category Theory as a Formal Mathematical Foundation for Model-Based Systems Engineering

    KAUST Repository

    Mabrok, Mohamed; Ryan, Michael J.

    2017-01-01

    In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised view of the system based on category theory is presented, where any system can be considered as a category. The objects

  2. Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites

    International Nuclear Information System (INIS)

    Molina, S I; Ben, T; Sales, D L; Pizarro, J; Galindo, P L; Varela, M; Pennycook, S J; Fuster, D; Gonzalez, Y; Gonzalez, L

    2006-01-01

    The compositional distribution in a self-assembled InAs(P) quantum wire grown by molecular beam epitaxy on an InP(001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects

  3. Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Ben, T [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Sales, D L [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Varela, M [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Fuster, D [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, Y [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, L [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2006-11-28

    The compositional distribution in a self-assembled InAs(P) quantum wire grown by molecular beam epitaxy on an InP(001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects.

  4. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  5. Nucleation in an ultra low ionisation environment

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    in aerosol nucleation. By exposing a controlled volume of air to varying levels of ionising radiation, and with the minimum ionisation level vastly reduced compared to normal surface laboratory conditions, we have provided both a validation of earlier studies of ion-induced nucleation and extended...

  6. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  7. How capping protein enhances actin filament growth and nucleation on biomimetic beads.

    Science.gov (United States)

    Wang, Ruizhe; Carlsson, Anders E

    2015-11-25

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  8. Correlation of Solubility with the Metastable Limit of Nucleation Using Gauge-Cell Monte Carlo Simulations.

    Science.gov (United States)

    Clark, Michael D; Morris, Kenneth R; Tomassone, Maria Silvina

    2017-09-12

    We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.

  9. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-05-14

    The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  10. Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland

    OpenAIRE

    S. Gagné; T. Nieminen; T. Kurtén; H. E. Manninen; T. Petäjä; L. Laakso; V.-M. Kerminen; M. Boy; M. Kulmala

    2010-01-01

    We present the longest series of measurements so far (2 years and 7 months) made with an Ion-DMPS at the SMEAR II measurement station in Hyytiälä, Southern Finland. We show that the classification into overcharged (implying some participation of ion-induced nucleation) and undercharged (implying no or very little participation of ion-induced nucleation) days, based on Ion-DMPS measurements, agrees with the fraction of ion-induced nucleation based on NAIS measurements. Those classes are based ...

  11. Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics

    Science.gov (United States)

    Pineda, Eloi; Crespo, Daniel

    1999-08-01

    A statistical model with the ability to evaluate the microstructure developed in nucleation and growth kinetics is built in the framework of the Kolmogorov, Johnson-Mehl, and Avrami theory. A populational approach is used to compute the observed grain-size distribution. The impingement process which delays grain growth is analyzed, and the effective growth rate of each population is estimated considering the previous grain history. The proposed model is integrated for a wide range of nucleation and growth protocols, including constant nucleation, pre-existing nuclei, and intermittent nucleation with interface or diffusion-controlled grain growth. The results are compared with Monte Carlo simulations, giving quantitative agreement even in cases where previous models fail.

  12. Transitional clerkship: an experiential course based on workplace learning theory.

    Science.gov (United States)

    Chittenden, Eva H; Henry, Duncan; Saxena, Varun; Loeser, Helen; O'Sullivan, Patricia S

    2009-07-01

    Starting clerkships is anxiety provoking for medical students. To ease the transition from preclerkship to clerkship curricula, schools offer classroom-based courses which may not be the best model for preparing learners. Drawing from workplace learning theory, the authors developed a seven-day transitional clerkship (TC) in 2007 at the University of California, San Francisco School of Medicine in which students spent half of the course in the hospital, learning routines and logistics of the wards along with their roles and responsibilities as members of ward teams. Twice, they admitted and followed a patient into the next day as part of a shadow team that had no patient-care responsibilities. Dedicated preceptors gave feedback on oral presentations and patient write-ups. Satisfaction with the TC was higher than with the previous year's classroom-based course. TC students felt clearer about their roles and more confident in their abilities as third-year students compared with previous students. TC students continued to rate the transitional course highly after their first clinical rotation. Preceptors were enthusiastic about the course and expressed willingness to commit to future TC preceptorships. The transitional course models an approach to translating workplace learning theory into practice and demonstrates improved satisfaction, better understanding of roles, and increased confidence among new third-year students.

  13. Chemically assisted crack nucleation in zircaloy

    International Nuclear Information System (INIS)

    Williford, R.E.

    1985-01-01

    Stress corrosion cracking models (proposed to explain fuel rod failures) generally address crack propagation and cladding rupture, but frequently neglect the necessary nucleation stage for microcracks small enough to violate fracture mechanics continuum requirements. Intergranular microcrack nucleation was modeled with diffusion-controlled grain-boundary cavitation concepts, including the effects of metal embrittlement by iodine species. Computed microcrack nucleation times and strains agree with experimental observation, but the predicted grain-boundary cavities are so small that detection may be difficult. Without a protective oxide film intergranular microcracks can nucleate within 30 s at even low stresses when the embrittler concentration exceeds a threshold value. Indications were found that intergranular microcrack nucleation may be caused by combined corrosive and embrittlement phenomena. (orig.)

  14. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2010-01-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.

  15. Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S

    2018-03-21

    Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.

  16. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  17. Inventory control based on advanced probability theory, an application

    CERN Document Server

    Krever, Maarten; Schorr, Bernd; Wunderink, S

    2005-01-01

    Whenever stock is placed as a buffer between consumption and supply the decision when to replenish the stock is based on uncertain values of future demand and supply variables. Uncertainty exists about the replenishment lead time, about the number of demands and the quantities demanded during this period. We develop a new analytical expression for the reorder point, which is based on the desired service level and three distributions: the distribution of the quantity of single demands during lead time, the distribution of the lengths of time intervals between successive demands, and the distribution of the lead time itself. The distribution of lead time demand is derived from the distributions of individual demand quantities and not from the demand per period. It is not surprising that the resulting formulae for the mean and variance are different from those currently used. The theory developed is also applicable to periodic review systems. The system has been implemented at CERN and enables a significant enha...

  18. Recent advances in multireference-based perturbation theory

    International Nuclear Information System (INIS)

    Nakano, Haruyuki; Hirao, Kimihiko

    2003-01-01

    Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of multireference-based approaches has opened up a completely new area, and has had a profound impact on the potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the closed-shell single reference Moeller-Plesset method, and has been successfully applied to many chemical and spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on our recent development in MRPT

  19. FUSION SEGMENTATION METHOD BASED ON FUZZY THEORY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available The image segmentation method based on two-dimensional histogram segments the image according to the thresholds of the intensity of the target pixel and the average intensity of its neighborhood. This method is essentially a hard-decision method. Due to the uncertainties when labeling the pixels around the threshold, the hard-decision method can easily get the wrong segmentation result. Therefore, a fusion segmentation method based on fuzzy theory is proposed in this paper. We use membership function to model the uncertainties on each color channel of the color image. Then, we segment the color image according to the fuzzy reasoning. The experiment results show that our proposed method can get better segmentation results both on the natural scene images and optical remote sensing images compared with the traditional thresholding method. The fusion method in this paper can provide new ideas for the information extraction of optical remote sensing images and polarization SAR images.

  20. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Directory of Open Access Journals (Sweden)

    S. Garimella

    2017-09-01

    Full Text Available This study investigates the measurement of ice nucleating particle (INP concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs. CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN, and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC. Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  1. Reversible island nucleation and growth with anomalous diffusion

    Science.gov (United States)

    Sabbar, Ehsan H.; Amar, Jacques G.

    2017-10-01

    Motivated by recent experiments on submonolayer organic film growth with anomalous diffusion, a general rate-equation (RE) theory of submonolayer island nucleation and growth was developed (Amar and Semaan, 2016) [23], which takes into account the critical island-size i, island fractal dimension df, substrate dimension d, and diffusion exponent μ, and good agreement with simulations was found for the case of irreversible growth corresponding to a critical island-size i = 1 with d = 2 . However, since many experiments correspond to a critical island-size larger than 1, it is of interest to determine if the RE predictions also hold in the case of reversible island nucleation with anomalous diffusion. Here we present the results of simulations of submonolayer growth with i = 2 (d = 2) which were carried out for both the case of superdiffusion (μ > 1) and subdiffusion (μ deposited monomers, excellent agreement is obtained with the predictions of the generalized RE theory for the exponents χ(μ) and χ1(μ) which describe the dependence of the island and monomer densities at fixed coverage on deposition rate F. In addition, the exponents do not depend on whether or not monomers remain superdiffusive or are thermalized (e.g. undergo regular diffusion) after detaching from a dimer. However, we also find that, as was previously found in the case of irreversible growth, the exponent χ only approaches its asymptotic value logarithmically with increasing 1/F. This result has important implications for the interpretation of experiments. Good agreement with the RE theory is also found in the case of subdiffusion for point-islands. However, in the case of ramified islands with subdiffusion and i = 2 , the exponents are significantly higher than predicted due to the fact that monomer capture dominates in the nucleation regime. A modified RE theory which takes this into account is presented, and excellent agreement is found with our simulations.

  2. Plato: A localised orbital based density functional theory code

    Science.gov (United States)

    Kenny, S. D.; Horsfield, A. P.

    2009-12-01

    The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available

  3. Investigating the Learning-Theory Foundations of Game-Based Learning: A Meta-Analysis

    Science.gov (United States)

    Wu, W-H.; Hsiao, H-C.; Wu, P-L.; Lin, C-H.; Huang, S-H.

    2012-01-01

    Past studies on the issue of learning-theory foundations in game-based learning stressed the importance of establishing learning-theory foundation and provided an exploratory examination of established learning theories. However, we found research seldom addressed the development of the use or failure to use learning-theory foundations and…

  4. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  5. Treatment of adolescent sexual offenders: theory-based practice.

    Science.gov (United States)

    Sermabeikian, P; Martinez, D

    1994-11-01

    The treatment of adolescent sexual offenders (ASO) has its theoretical underpinnings in social learning theory. Although social learning theory has been frequently cited in literature, a comprehensive application of this theory, as applied to practice, has not been mapped out. The social learning and social cognitive theories of Bandura appear to be particularly relevant to the group treatment of this population. The application of these theories to practice, as demonstrated in a program model, is discussed as a means of demonstrating how theory-driven practice methods can be developed.

  6. Nucleation and growth of new particles in Po Valley, Italy

    Directory of Open Access Journals (Sweden)

    A. Hamed

    2007-01-01

    Full Text Available Aerosol number distribution measurements are reported at San Pietro Capofiume (SPC station (44°39' N, 11°37' E for the time period 2002–2005. The station is located in Po Valley, the largest industrial, trading and agricultural area in Italy with a high population density. New particle formation was studied based on observations of the particle size distribution, meteorological and gas phase parameters. The nucleation events were classified according to the event clarity based on the particle number concentrations, and the particle formation and growth rates. Out of a total of 769 operational days from 2002 to 2005 clear events were detected on 36% of the days whilst 33% are clearly non-event days. The event frequency was high during spring and summer months with maximum values in May and July, whereas lower frequency was observed in winter and autumn months. The average particle formation and growth rates were estimated as ~6 cm−3 s−1 and ~7 nm h−1, respectively. Such high growth and formation rates are typical for polluted areas. Temperature, wind speed, solar radiation, SO2 and O3 concentrations were on average higher on nucleation days than on non-event days, whereas relative and absolute humidity and NO2 concentration were lower; however, seasonal differences were observed. Backtrajectory analysis suggests that during majority of nucleation event days, the air masses originate from northern to eastern directions. We also study previously developed nucleation event correlations with environmental variables and show that they predict Po Valley nucleation events with variable success.

  7. Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques

    International Nuclear Information System (INIS)

    Xiao, Kechao; Vlassak, Joost J.

    2015-01-01

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10 1 to 10 4 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials

  8. An IDS Alerts Aggregation Algorithm Based on Rough Set Theory

    Science.gov (United States)

    Zhang, Ru; Guo, Tao; Liu, Jianyi

    2018-03-01

    Within a system in which has been deployed several IDS, a great number of alerts can be triggered by a single security event, making real alerts harder to be found. To deal with redundant alerts, we propose a scheme based on rough set theory. In combination with basic concepts in rough set theory, the importance of attributes in alerts was calculated firstly. With the result of attributes importance, we could compute the similarity of two alerts, which will be compared with a pre-defined threshold to determine whether these two alerts can be aggregated or not. Also, time interval should be taken into consideration. Allowed time interval for different types of alerts is computed individually, since different types of alerts may have different time gap between two alerts. In the end of this paper, we apply proposed scheme on DAPRA98 dataset and the results of experiment show that our scheme can efficiently reduce the redundancy of alerts so that administrators of security system could avoid wasting time on useless alerts.

  9. Qigong in Cancer Care: Theory, Evidence-Base, and Practice

    Directory of Open Access Journals (Sweden)

    Penelope Klein

    2017-01-01

    Full Text Available Background: The purpose of this discussion is to explore the theory, evidence base, and practice of Qigong for individuals with cancer. Questions addressed are: What is qigong? How does it work? What evidence exists supporting its practice in integrative oncology? What barriers to wide-spread programming access exist? Methods: Sources for this discussion include a review of scholarly texts, the Internet, PubMed, field observations, and expert opinion. Results: Qigong is a gentle, mind/body exercise integral within Chinese medicine. Theoretical foundations include Chinese medicine energy theory, psychoneuroimmunology, the relaxation response, the meditation effect, and epigenetics. Research supports positive effects on quality of life (QOL, fatigue, immune function and cortisol levels, and cognition for individuals with cancer. There is indirect, scientific evidence suggesting that qigong practice may positively influence cancer prevention and survival. No one Qigong exercise regimen has been established as superior. Effective protocols do have common elements: slow mindful exercise, easy to learn, breath regulation, meditation, emphasis on relaxation, and energy cultivation including mental intent and self-massage. Conclusions: Regular practice of Qigong exercise therapy has the potential to improve cancer-related QOL and is indirectly linked to cancer prevention and survival. Wide-spread access to quality Qigong in cancer care programming may be challenged by the availability of existing programming and work force capacity.

  10. A Lie based 4-dimensional higher Chern-Simons theory

    Science.gov (United States)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  11. Nucleation and dissociation of nano-particles in gas phase

    International Nuclear Information System (INIS)

    Feiden, P.

    2007-09-01

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na n and heterogeneous Na n X particles (X = (NaOH) 2 or (Na 2 O) 2 ). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na + (NaOH) p et Na + (NaF) p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na + Na + (NaOH) p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  12. Nucleation and dynamics of vortices in type-II superconductors

    International Nuclear Information System (INIS)

    Balley, R.E.

    1977-03-01

    The one- and two-dimensional Ginzburg-Landau equations are numerically integrated in a slab geometry, which is appropriate for comparison to experimental work done on films. When two-dimensional variations become energetically favorable, a vortex is found to nucleate and move to the center of the film with the Gibbs free energy decreasing during the process. An important process by which the energy is lowered during this nucleation procedure is found to be the savings in condensation energy arising from the shrinking size of the vortex core as it moves to the center of the film. The solutions of the Ginzburg-Landau equations are used to explain anomalies observed experimentally in the tunneling characteristics of thin films of PbIn. Excellent agreement between theory and experiment is found with the Ginzburg-Landau equations correctly predicting the field at which flux would first enter the films. We then use the Clem model of an isolated vortex to model vortex nucleation and dynamics under the influence of a transport current. The entry fields predicted by the model are found to be off by almost a factor of two but have the advantage of requiring simple computer programs for their solution, while the Ginzburg-Landau solutions require substantially more numerical work

  13. Impact of surface nanostructure on ice nucleation.

    Science.gov (United States)

    Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

    2014-09-28

    Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

  14. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  15. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  16. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  17. Advanced digital PWR plant protection system based on optimal estimation theory

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-04-01

    An advanced plant protection system for the Loss-of-Fluid Test (LOFT) reactor plant is described and evaluated. The system, based on a Kalman filter estimator, is capable of providing on-line estimates of such critical variables as fuel and cladding temperature, departure from nucleate boiling ratio, and maximum linear heat generation rate. The Kalman filter equations are presented, as is a description of the LOFT plant dynamic model inherent in the filter. Simulation results demonstrate the performance of the advanced system

  18. The Bus Station Spacing Optimization Based on Game Theory

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2015-01-01

    Full Text Available With the development of city, the problem of traffic is becoming more and more serious. Developing public transportation has become the key to solving this problem in all countries. Based on the existing public transit network, how to improve the bus operation efficiency, and reduce the residents transit trip cost has become a simple and effective way to develop the public transportation. Bus stop spacing is an important factor affecting passengers’ travel time. How to set up bus stop spacing has become the key to reducing passengers’ travel time. According to comprehensive traffic survey, theoretical analysis, and summary of urban public transport characteristics, this paper analyzes the impact of bus stop spacing on passenger in-bus time cost and out-bus time cost and establishes in-bus time and out-bus time model. Finally, the paper gets the balance best station spacing by introducing the game theory.

  19. Preservation of information in Fourier theory based deconvolved nuclear spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Gopalakrishnan, K.R.; Sharma, R.C.; Rattan, S.S.

    1995-01-01

    Nuclear spectroscopy is extremely useful to the internal radiation dosimetry for the estimation of body burden due to gamma emitters. Analysis of nuclear spectra is concerned with the extraction of qualitative and quantitative information embedded in the spectra. A spectral deconvolution method based on Fourier theory is probably the simplest method of deconvolving nuclear spectra. It is proved mathematically that the deconvolution method preserves the qualitative information. It is shown by using simulated spectra and an observed gamma ray spectrum that the method preserves the quantitative information. This may provide a novel approach of information extraction from a deconvolved spectrum. The paper discusses the methodology, mathematical analysis, and the results obtained by deconvolving spectra. (author). 6 refs., 2 tabs

  20. Novel welding image processing method based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    陈强; 孙振国; 肖勇; 路井荣

    2002-01-01

    Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.

  1. A Lyapunov theory based UPFC controller for power flow control

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, Ali; Kazemi, Ahad; Hajatipour, Majid; Jadid, Shahram [Center of Excellence for Power Systems Automation and Operation, Iran University of Science and Technology, Tehran (Iran)

    2009-09-15

    Unified power flow controller (UPFC) is the most comprehensive multivariable device among the FACTS controllers. Capability of power flow control is the most important responsibility of UPFC. According to high importance of power flow control in transmission lines, the proper controller should be robust against uncertainty and disturbance and also have suitable settling time. For this purpose, a new controller is designed based on the Lyapunov theory and its stability is also evaluated. The Main goal of this paper is to design a controller which enables a power system to track reference signals precisely and to be robust in the presence of uncertainty of system parameters and disturbances. The performance of the proposed controller is simulated on a two bus test system and compared with a conventional PI controller. The simulation results show the power and accuracy of the proposed controller. (author)

  2. Market Mechanism Design for Renewable Energy based on Risk Theory

    Science.gov (United States)

    Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi

    2018-02-01

    Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.

  3. Damage nucleation in Si during ion irradiation

    International Nuclear Information System (INIS)

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed

  4. Controlled nucleation and crystallization of fluorozirconate glasses

    International Nuclear Information System (INIS)

    Frischat, G.H.

    1993-01-01

    Pt, Se, and Ag, respectively, were used as nucleating agents for a ZrF 4 -BaF 4 -YF 3 -AlF 3 glass. Nucleation and crystal growth rates were determined as a function of experimental conditions. In all cases the bulk crystals mainly consist of β-BaZrF6, leading to a relatively coarse-grained microstructure. However, in the case of Ag used as a nucleating agent, the microstructure is bimodal with an additional fine-grained crystal phase. In the cases of Se and Ag the relative crystal fraction could be developed in a controlled way between 0 and 100%

  5. Learning Styles of Baccalaureate Nursing Students and Attitudes toward Theory-Based Nursing.

    Science.gov (United States)

    Laschinger, Heather K.; Boss, Marvin K.

    1989-01-01

    The personal and environmental factors related to undergraduate and post-RN nursing students' attitudes toward theory-based nursing from Kolb's experiential learning theory perspective were investigated. Learning style and environmental press perceptions were found to be related to attitudes toward theory-based nursing. (Author/MLW)

  6. Critical Theory-Based Approaches in Geography Teaching Departments in Turkey

    Science.gov (United States)

    Bilgili, Münür

    2018-01-01

    The aim of this study is to understand the relationships between critical theory-based approaches and its implementations in geography teaching departments in Turkey. Critical theory dates back to 1930s and has developed over time aiming to deal with institutions, culture and society through critical lens. Currently, critical theory-based research…

  7. Evolutionary game theory using agent-based methods.

    Science.gov (United States)

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Operation Method of Smarter City Based on Ecological Theory

    Science.gov (United States)

    Fan, C.; Fan, H. Y.

    2017-10-01

    As the city and urbanization’s accelerated pace has caused galloping population, the urban framework is extending with increasingly complex social problems. The urban management tends to become complicated and the governance seems more difficult to pursue. exploring the urban management’s new model has attracted local governments’ urgent attention. tcombines the guiding ideology and that management’s practices based on ecological theory, explains the Smarter city Ecology Managementmodel’s formation, makes modern urban management’s comparative analysis and further defines the aforesaid management mode’s conceptual model. Based on the smarter city system theory’s ecological carrying capacity, the author uses mathematical model to prove the coordination relationship between the smarter city Ecology Managementmode’s subsystems, demonstrates that it can improve the urban management’s overall level, emphasizes smarter city management integrity, believing that urban system’s optimization is based on each subsystem being optimized, attaching the importance to elements, structure, and balance between each subsystem and between internal elements. Through the establishment of the smarter city Ecology Managementmodel’s conceptual model and theoretical argumentation, it provides a theoretical basis and technical guidance to that model’s innovation.

  9. Nucleation and dissociation of nano-particles in gas phase; Nucleation et evaporation de nanoparticules en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, P

    2007-09-15

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na{sub n} and heterogeneous Na{sub n}X particles (X = (NaOH){sub 2} or (Na{sub 2}O){sub 2}). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na{sup +}(NaOH){sub p} et Na{sup +}(NaF){sub p} particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na{sup +} Na{sup +} (NaOH){sub p} clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  10. Application of nonequilibrium quantum statistical mechanics to homogeneous nucleation

    International Nuclear Information System (INIS)

    Larson, A.R.; Cantrell, C.D.

    1978-01-01

    The master equation for cluster growth and evaporation is derived from many-body quantum mechanics and from a modified version of quantum damping theory used in laser physics. For application to nucleation theory, the quantum damping theory has been generalized to include system and reservoir states that are not separate entities. Formulae for rate constants are obtained. Solutions of the master equation yield equations of state and system-averaged quantities recognized as thermodynamic variables. Formulae for Helmholtz free energies of clusters in a Debye approximation are derived. Coexistence-line equations for pressure volume, and number of clusters are obtained from equations-of-state analysis. Coexistence-line and surface-tension data are used to obtain values of parameters for the Debye approximation. These data are employed in calculating both the nucleation current in diffusion cloud chamber experiments and the onset of condensation in expansion nozzle experiments. Theoretical and experimental results are similar for both cloud-chamber and nozzle experiments, which measure water

  11. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakasuji, Toshiki, E-mail: t-nakasuji@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Morishita, Kazunori [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ruan, Xiaoyong [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2017-02-15

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  12. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    International Nuclear Information System (INIS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-01-01

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  13. Hydration Effects on the Stability of Calcium Carbonate Pre-Nucleation Species

    Directory of Open Access Journals (Sweden)

    Alejandro Burgos-Cara

    2017-07-01

    Full Text Available Recent experimental evidence and computer modeling have shown that the crystallization of a range of minerals does not necessarily follow classical models and theories. In several systems, liquid precursors, stable pre-nucleation clusters and amorphous phases precede the nucleation and growth of stable mineral phases. However, little is known on the effect of background ionic species on the formation and stability of pre-nucleation species formed in aqueous solutions. Here, we present a systematic study on the effect of a range of background ions on the crystallization of solid phases in the CaCO3-H2O system, which has been thoroughly studied due to its technical and mineralogical importance, and is known to undergo non-classical crystallization pathways. The induction time for the onset of calcium carbonate nucleation and effective critical supersaturation are systematically higher in the presence of background ions with decreasing ionic radii. We propose that the stabilization of water molecules in the pre-nucleation clusters by background ions can explain these results. The stabilization of solvation water hinders cluster dehydration, which is an essential step for precipitation. This hypothesis is corroborated by the observed correlation between parameters such as the macroscopic equilibrium constant for the formation of calcium/carbonate ion associates, the induction time, and the ionic radius of the background ions in the solution. Overall, these results provide new evidence supporting the hypothesis that pre-nucleation cluster dehydration is the rate-controlling step for calcium carbonate precipitation.

  14. A new approach to sperm preservation based on bioenergetic theory.

    Science.gov (United States)

    Froman, D P; Feltmann, A J

    2010-04-01

    To date, attempts to preserve chicken sperm have been based on a trial-and-error experimental approach. The present work outlines the development of an alternative approach based on empiricism and bioenergetic theory. In previous work, we found fowl sperm motility to be dependent on mitochondrial calcium cycling, phospholipase A(2), and long-chain fatty acids as an endogenous energy source. It is noteworthy that fowl sperm reside within the sperm storage tubules (SST) of the oviduct over an interval of days to weeks after insemination. In this regard, a model for in vivo sperm storage was developed and tested in additional previous research. Sperm penetration of the SST, sperm residence within the SST, and sperm egress from the SST can be explained in terms mitochondrial function. Understanding sperm function and longevity in terms of bioenergetics presented the possibility that sperm could be inactivated by disrupting mitochondrial calcium cycling and could thereby be preserved. However, this possibility also posed a problem: maintenance of the inner membrane potential of the mitochondrion within inactivated sperm. This report describes a series of experiments in which fowl sperm were inactivated by treatment with the calcium chelator tetrasodium 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, and then reactivated by treatment with calcium ions. The effect of tetrasodium 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid on mitochondrial calcium cycling was confirmed by flow cytometry and confocal microscopy. When treated sperm were cooled to 10 degrees C, inactivated sperm could be reactivated throughout a 5-h storage interval. When stored sperm were held for 3 h before reactivation and insemination, fertility was 88% of the control. Storage did not affect hatchability. In summary, short-term storage was realized by manipulating mitochondrial function. We propose that 1) complex V consumes ATP within inactivated sperm and, by doing so, maintains

  15. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  16. Switching theory-based steganographic system for JPEG images

    Science.gov (United States)

    Cherukuri, Ravindranath C.; Agaian, Sos S.

    2007-04-01

    Cellular communications constitute a significant portion of the global telecommunications market. Therefore, the need for secured communication over a mobile platform has increased exponentially. Steganography is an art of hiding critical data into an innocuous signal, which provide answers to the above needs. The JPEG is one of commonly used format for storing and transmitting images on the web. In addition, the pictures captured using mobile cameras are in mostly in JPEG format. In this article, we introduce a switching theory based steganographic system for JPEG images which is applicable for mobile and computer platforms. The proposed algorithm uses the fact that energy distribution among the quantized AC coefficients varies from block to block and coefficient to coefficient. Existing approaches are effective with a part of these coefficients but when employed over all the coefficients they show there ineffectiveness. Therefore, we propose an approach that works each set of AC coefficients with different frame work thus enhancing the performance of the approach. The proposed system offers a high capacity and embedding efficiency simultaneously withstanding to simple statistical attacks. In addition, the embedded information could be retrieved without prior knowledge of the cover image. Based on simulation results, the proposed method demonstrates an improved embedding capacity over existing algorithms while maintaining a high embedding efficiency and preserving the statistics of the JPEG image after hiding information.

  17. Planar nucleation and crystallization in the annealing process of ion implanted silicon

    International Nuclear Information System (INIS)

    Luo Yimin; Chen Zhenhua; Chen Ding

    2010-01-01

    According to thermodynamic and kinetic theory, considering the variation of bulk free energy and superficial energy after nucleation as well as the migration of atoms, we study systematically the planar nucleation and crystallization that relate to two possible transition mechanisms in the annealing process of ion implanted Si: (1) liquid/solid transition: the critical nucleation work is equal to half the increased superficial energy and inversely proportional to the supercooling ΔT. Compared with bulk nucleation, the radius of the critical nucleus decreases by half, and the nucleation rate attains its maximum at T = T m /2. (2) amorphous/crystalline transition: the atoms contained in the critical nucleus and situated on its surface, as well as critical nucleation work, are all directly proportional to the height of the nucleus, and the nucleation barrier is equal to half the superficial energy too. In addition, we take SiGe semiconductor as a specific example for calculation; a value of 0.03 eV/atom is obtained for the elastic strain energy, and a more reasonable result can be gotten after taking into account its effect on transition Finally, we reach the following conclusion as a result of the calculation: for the annealing of ion implanted Si, no matter what the transition method is-liquid or solid planar nucleation-the recrystallization process is actually carried out layer by layer on the crystal substrate, and the probability of forming a 'rod-like' nucleus is much larger than that of a 'plate-like' nucleus. (semiconductor materials)

  18. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  19. Nucleation versus instability race in strained films

    Science.gov (United States)

    Liu, Kailang; Berbezier, Isabelle; David, Thomas; Favre, Luc; Ronda, Antoine; Abbarchi, Marco; Voorhees, Peter; Aqua, Jean-Noël

    2017-10-01

    Under the generic term "Stranski-Krastanov" are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with exp(1 /x4) for nucleation, while it only behaves as 1 /x8 for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

  20. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  1. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation

    CERN Document Server

    Ehrhart, Sebastian; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208–292 K, sulphuric acid concentrations from 1·106 to 1·109 cm−3, and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphu...

  2. MaxEnt-Based Ecological Theory: A Template for Integrated Catchment Theory

    Science.gov (United States)

    Harte, J.

    2017-12-01

    The maximum information entropy procedure (MaxEnt) is both a powerful tool for inferring least-biased probability distributions from limited data and a framework for the construction of complex systems theory. The maximum entropy theory of ecology (METE) describes remarkably well widely observed patterns in the distribution, abundance and energetics of individuals and taxa in relatively static ecosystems. An extension to ecosystems undergoing change in response to disturbance or natural succession (DynaMETE) is in progress. I describe the structure of both the static and the dynamic theory and show a range of comparisons with census data. I then propose a generalization of the MaxEnt approach that could provide a framework for a predictive theory of both static and dynamic, fully-coupled, eco-socio-hydrological catchment systems.

  3. A classical view on nonclassical nucleation.

    Science.gov (United States)

    Smeets, Paul J M; Finney, Aaron R; Habraken, Wouter J E M; Nudelman, Fabio; Friedrich, Heiner; Laven, Jozua; De Yoreo, James J; Rodger, P Mark; Sommerdijk, Nico A J M

    2017-09-19

    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO 3 ) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO 3 nucleation is still a topic of intense discussion, with new pathways for its growth from ions in solution proposed in recent years. These new pathways include the so-called nonclassical nucleation mechanism via the assembly of thermodynamically stable prenucleation clusters, as well as the formation of a dense liquid precursor phase via liquid-liquid phase separation. Here, we present results from a combined experimental and computational investigation on the precipitation of CaCO 3 in dilute aqueous solutions. We propose that a dense liquid phase (containing 4-7 H 2 O per CaCO 3 unit) forms in supersaturated solutions through the association of ions and ion pairs without significant participation of larger ion clusters. This liquid acts as the precursor for the formation of solid CaCO 3 in the form of vaterite, which grows via a net transfer of ions from solution according to z Ca 2+ + z CO 3 2- → z CaCO 3 The results show that all steps in this process can be explained according to classical concepts of crystal nucleation and growth, and that long-standing physical concepts of nucleation can describe multistep, multiphase growth mechanisms.

  4. IMMAN: free software for information theory-based chemometric analysis.

    Science.gov (United States)

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA

  5. The void nucleation mechanism within lead phase during spallation of leaded brass

    Science.gov (United States)

    Yang, Yang; Wang, Can; Chen, Xingzhi; Chen, Kaiguo; Hu, Haibo; Fu, Yanan

    2018-07-01

    The incipient spall behaviours of Cu-34%Zn-3%Pb leaded brass samples with annealed and cryogenic-treated conditions were loaded using one-stage light gas gun experiments. The effect of Pb-phase on dynamic damage nucleation in leaded brass specimens was investigated by means of optical microscopy, scanning electron microscopy and x-ray computer tomography. It was found that the voids of incipient spall were mainly nucleated in the interior of the lead (no tensile stress would be produced within lead according to the impact theory) instead of nucleated at the phase interface as expected by quasi-static damage fracture theory. A nucleation model is proposed in the present work that is the asymmetry high compression zones in the centre of the lead-phase were formed by the rarefaction wave convergence effects of matrix/quasi-spherical lead interface, which caused adiabatic temperature rise that exceeded melting point of lead due to severe plastic deformation, finally led to local melting and void nucleation. In addition, the spall strength and damage rate increased with the increase in the Pb-phase number.

  6. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Bagchi, Biman

    2014-01-01

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments

  7. Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2001-01-01

    The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...

  8. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  9. Overview of TANGENT (Tandem Aerosol Nucleation and Growth ENvironment Tube) 2017 IOP Study

    Science.gov (United States)

    Tiszenkel, L.

    2017-12-01

    New particle formation consists of two steps: nucleation and growth of nucleated particles. However, most laboratory studies have been conducted under conditions where these two processes are convoluted together, thereby hampering the detailed understanding of the effect of chemical species and atmospheric conditions on two processes. The objective of the Tandem Aerosol Nucleation and Growth ENvironment Tube (TANGENT) laboratory study is to investigate aerosol nucleation and growth properties independently by separating these two processes in two different flow tubes. This research is a collaboration between the University of Alabama in Huntsville and the University of Delaware. In this poster we will present the experimental setup of TANGENT and summarize the key results from the first IOP (intense observation period) experiments undertaken during Summer 2017. Nucleation takes place in a temperature- and RH-controlled fast flow reactor (FT-1) where sulfuric acid forms from OH radicals and sulfur dioxide. Sulfuric acid and impurity base compounds are detected with chemical ionization mass spectrometers (CIMS). Particle sizes and number concentrations of newly nucleated particles are measured with a scanning mobility particle sizer (SMPS) and particle size magnifier (PSM), providing concentrations of particles between 1-100 nm. The nucleation particles are transferred directly to the growth tube (FT-2) where oxidants and biogenic organic precursors are added to grow nucleated nanoparticles. Sizes of particles after growth are analyzed with an additional SMPS and elemental chemical composition of 50 nm and above particles detected with a nano-aerosol mass spectrometer (NAMS). TANGENT provides the unique ability to conduct experiments that can monitor and control reactant concentrations, aerosol size and aerosol chemical composition during nucleation and growth. Experiments during this first IOP study have elucidated the effects of sulfur dioxide, particle size

  10. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  11. Cognitive performance modeling based on general systems performance theory.

    Science.gov (United States)

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  12. Statistical lamb wave localization based on extreme value theory

    Science.gov (United States)

    Harley, Joel B.

    2018-04-01

    Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.

  13. Fowler Nordheim theory of carbon nanotube based field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Parveen, Shama; Kumar, Avshish [Department of Physics, Jamia Millia Islamia (Central University), New Delhi (India); Husain, Samina [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), New Delhi (India); Husain, Mushahid, E-mail: mush_reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (Central University), New Delhi (India)

    2017-01-15

    Field emission (FE) phenomena are generally explained in the frame-work of Fowler Nordheim (FN) theory which was given for flat metal surfaces. In this work, an effort has been made to present the field emission mechanism in carbon nanotubes (CNTs) which have tip type geometry at nanoscale. High aspect ratio of CNTs leads to large field enhancement factor and lower operating voltages because the electric field strength in the vicinity of the nanotubes tip can be enhanced by thousand times. The work function of nanostructure by using FN plot has been calculated with reverse engineering. With the help of modified FN equation, an important formula for effective emitting area (active area for emission of electrons) has been derived and employed to calculate the active emitting area for CNT field emitters. Therefore, it is of great interest to present a state of art study on the complete solution of FN equation for CNTs based field emitter displays. This manuscript will also provide a better understanding of calculation of different FE parameters of CNTs field emitters using FN equation.

  14. STUDENTS’ GEOMETRIC THINKING BASED ON VAN HIELE’S THEORY

    Directory of Open Access Journals (Sweden)

    Harina Fitriyani

    2018-02-01

    Full Text Available The current study aims to identify the development level of students’ geometric thinking in mathematics education department, Universitas Ahmad Dahlan based on van Hiele’s theory. This is a descriptive qualitative research with the respondents as many as 129 students. In addition to researchers, the instrument used in this study is a test consisting of 25 items multiple choice questions. The data is analyzed by using Milles and Huberman model. The result shows that there were 30,65% of students in pre-visualization level, 21,51% of students in visualizes level, and 29,03% of students in analyze level, 16,67% of students in informal deduction level, 2,15% of students in deduction level, and 0,00% of student in rigor level. Furthermore, findings indicated a transition level among development levels of geometric thinking in pre-analyze, pre-informal deduction, pre-deduction, and pre-rigor that were 20%; 13,44%; 6,45%; 1,08% respectively. The other findings were 40,32% of students were difficult to determine and 4,3% of students cannot be identified.

  15. Feature extraction algorithm for space targets based on fractal theory

    Science.gov (United States)

    Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin

    2007-11-01

    In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.

  16. System of marketing deciding support based on game theory

    Directory of Open Access Journals (Sweden)

    Gordana Dukić

    2008-12-01

    Full Text Available Quantitative methods and models can be applied in numerous spheres of marketing deciding. The choice of optimal strategy in product advertising is one of the problems that the marketing-management often meets. The use of models developed within the framework of game theory makes significantly easier to find out the solutions of conflict situations that appear herewith. The system of deciding support presented in this work is based on the supposition that two opposed sides take part in the game. With the aim of deciding process promotion, the starting model incorporates computer simulation of percentile changes in the market share that represent elements of payment matrix. The supposition is that the random variables that represent them follow the normal division. It is necessary to carry out the evaluation of their parameters because of relevant data. Information techniques, computer and the adequate program applications take the special position in solving and analysis of the suggested model. This kind of their application represents the basic characteristic of the deciding support system.

  17. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    Directory of Open Access Journals (Sweden)

    Kaijuan Yuan

    2016-01-01

    Full Text Available Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  18. Morphology-dependent crossover effects in heterogeneous nucleation of peritectic materials studied via the phase-field method for Al-Ni

    International Nuclear Information System (INIS)

    Siquieri, R; Emmerich, H

    2009-01-01

    The application of phase-field modeling to nucleation as a phenomenon at the nanoscale is justified, if one takes into account the great success of continuum approaches in nanofluidics as proven by the many comparisons to experiments. Employed in this manner it provides an approach allowing us to account for effects of the physical diffuseness of a nucleus' interface and thereby go beyond classical nucleation theory (Granasy and James 2000 J. Chem. Phys. 113 9810; Emmerich and Siquieri 2006 J. Phys.: Condens. Matter 18 11121). Here we extend the focus of previous work in this field and address the question of how far the phase-field method can also be applied to gain further insight into nucleation statistics, in particular the nucleation prefactor appearing in the nucleation rate. In this context we describe in detail a morphology-dependent crossover effect noticeable for the nucleation rate at small driving forces.

  19. Molecular dynamics studies of crystalline nucleation in one-component Yukawa plasmas

    International Nuclear Information System (INIS)

    Ravelo, R.; Hammerberg, J.E.; Holian, B.L.

    1992-01-01

    We report on molecular dynamics studies of one-component Yukawa plasmas undergoing rapid quenches from a fluid state with a Coulomb parameter Γ = 40 to solid states in the range 350 < Γ < 800. The detailed dynamical structure of ordering appears more complicated than results from classical theories of nucleation, with planar formation being observed before fully 3-dimensional ordering appears

  20. Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory

    Directory of Open Access Journals (Sweden)

    Nahi Mohammed Hadi

    2016-01-01

    Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.

  1. The Development of an Attribution-Based Theory of Motivation: A History of Ideas

    Science.gov (United States)

    Weiner, Bernard

    2010-01-01

    The history of ideas guiding the development of an attribution-based theory of motivation is presented. These influences include the search for a "grand" theory of motivation (from drive and expectancy/value theory), an attempt to represent how the past may influence the present and the future (as Thorndike accomplished), and the…

  2. Theory-Based Evaluation Meets Ambiguity: The Role of Janus Variables

    Science.gov (United States)

    Dahler-Larsen, Peter

    2018-01-01

    As theory-based evaluation (TBE) engages in situations where multiple stakeholders help develop complex program theory about dynamic phenomena in politically contested settings, it becomes difficult to develop and use program theory without ambiguity. The purpose of this article is to explore ambiguity as a fruitful perspective that helps TBE face…

  3. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  4. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  5. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    Science.gov (United States)

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi

  6. Learning Theory Bases of Communicative Methodology and the Notional/Functional Syllabus

    OpenAIRE

    Jacqueline D., Beebe

    1992-01-01

    This paper examines the learning theories that underlie the philosophy and practices known as communicative language teaching methodology. These theories are identified first as a reaction against the behavioristic learning theory of audiolingualism. Approaches to syllabus design based on both the "weak" version of communicative language teaching-learning to use the second language-and the "strong" version-using the second language to learn it-are examined. The application of cognitive theory...

  7. The Application of Carl Rogers' Person-Centered Learning Theory to Web-Based Instruction.

    Science.gov (United States)

    Miller, Christopher T.

    This paper provides a review of literature that relates research on Carl Rogers' person-centered learning theory to Web-based learning. Based on the review of the literature, a set of criteria is described that can be used to determine how closely a Web-based course matches the different components of Rogers' person-centered learning theory. Using…

  8. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    Science.gov (United States)

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  9. Molecular nucleation mechanisms and control strategies for crystal polymorph selection

    Science.gov (United States)

    van Driessche, Alexander E. S.; van Gerven, Nani; Bomans, Paul H. H.; Joosten, Rick R. M.; Friedrich, Heiner; Gil-Carton, David; Sommerdijk, Nico A. J. M.; Sleutel, Mike

    2018-04-01

    The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer’s disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures (‘polymorphs’) of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based

  10. Laboratory, Computational and Theoretical Investigations of Ice Nucleation and its Implications for Mixed Phase Clouds

    Science.gov (United States)

    Yang, Fan

    Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields

  11. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  12. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich; Pottmann, Helmut; Wallner, Johannes

    2009-01-01

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces' areas and mixed areas. Remarkably these notions are capable

  13. Pre-Game-Theory Based Information Technology (GAMBIT) Study

    National Research Council Canada - National Science Library

    Polk, Charles

    2003-01-01

    .... The generic GAMBIT scenario has been characterized as Dynamic Hierarchical Gaming (DHG). Game theory is not yet ready to fully support analysis of DHG, though existing partial analysis suggests that a full treatment is practical in the midterm...

  14. State variable theories based on Hart's formulation

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, M.A.; Hannula, S.P.; Li, C.Y.

    1985-01-01

    In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and future developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.

  15. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  16. Justifying Design Decisions with Theory-based Design Principles

    OpenAIRE

    Schermann, Michael;Gehlert, Andreas;Pohl, Klaus;Krcmar, Helmut

    2014-01-01

    Although the role of theories in design research is recognized, we show that little attention has been paid on how to use theories when designing new artifacts. We introduce design principles as a new methodological approach to address this problem. Design principles extend the notion of design rationales that document how a design decision emerged. We extend the concept of design rationales by using theoretical hypotheses to support or object to design decisions. At the example of developing...

  17. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    Energy Technology Data Exchange (ETDEWEB)

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  18. Toward a brain-based theory of beauty.

    Science.gov (United States)

    Ishizu, Tomohiro; Zeki, Semir

    2011-01-01

    We wanted to learn whether activity in the same area(s) of the brain correlate with the experience of beauty derived from different sources. 21 subjects took part in a brain-scanning experiment using functional magnetic resonance imaging. Prior to the experiment, they viewed pictures of paintings and listened to musical excerpts, both of which they rated on a scale of 1-9, with 9 being the most beautiful. This allowed us to select three sets of stimuli--beautiful, indifferent and ugly--which subjects viewed and heard in the scanner, and rated at the end of each presentation. The results of a conjunction analysis of brain activity showed that, of the several areas that were active with each type of stimulus, only one cortical area, located in the medial orbito-frontal cortex (mOFC), was active during the experience of musical and visual beauty, with the activity produced by the experience of beauty derived from either source overlapping almost completely within it. The strength of activation in this part of the mOFC was proportional to the strength of the declared intensity of the experience of beauty. We conclude that, as far as activity in the brain is concerned, there is a faculty of beauty that is not dependent on the modality through which it is conveyed but which can be activated by at least two sources--musical and visual--and probably by other sources as well. This has led us to formulate a brain-based theory of beauty.

  19. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  20. Modelling the stochastic behaviour of primary nucleation.

    Science.gov (United States)

    Maggioni, Giovanni Maria; Mazzotti, Marco

    2015-01-01

    We study the stochastic nature of primary nucleation and how it manifests itself in a crystallisation process at different scales and under different operating conditions. Such characteristics of nucleation are evident in many experiments where detection times of crystals are not identical, despite identical experimental conditions, but instead are distributed around an average value. While abundant experimental evidence has been reported in the literature, a clear theoretical understanding and an appropriate modelling of this feature is still missing. In this contribution, we present two models describing a batch cooling crystallisation, where the interplay between stochastic nucleation and deterministic crystal growth is described differently in each. The nucleation and growth rates of the two models are estimated by a comprehensive set of measurements of paracetamol crystallisation from aqueous solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012, 72, 10-19]. Both models are applied to the cooling crystallisation process above under different operating conditions, i.e. different volumes, initial concentrations, cooling rates. The advantages and disadvantages of the two approaches are illustrated and discussed, with particular reference to their use across scales of nucleation rate measured in very small crystallisers.

  1. Investigation of bubble flow regimes in nucleate boiling of highly-wetting liquids

    International Nuclear Information System (INIS)

    Tong, W.; Bar-Cohen, A.; Simon, T.W.

    1991-01-01

    This paper describes an investigation of the bubble flow regimes in nucleate boiling of FC-72, a highly-wetting liquid. Theoretically analysis of vapor bubble generation and departure from the heated surface reveals that the heat fluxes required for the merging of consecutive bubbles, for highly-wetting liquids, lie in the upper range of the nucleate boiling heat flux. A visual and photographic study of nucleate boiling from sputtered platinum surfaces has supported the theoretical results and shown that the isolated bubble behavior extends to at least 50-80% of the critical heat flux, considerably higher than observed by others with water. Lateral coalescence of adjacent bubbles has been found to be a more likely cause of the termination of the isolated bubble regime. These findings suggest that thermal transport models which are based on isolated bubble behavior may be applicable to nearly the entire range of nucleate boiling of electronic cooling fluids

  2. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  3. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    Science.gov (United States)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially

  4. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  5. A prediction method based on grey system theory in equipment condition based maintenance

    International Nuclear Information System (INIS)

    Yan, Shengyuan; Yan, Shengyuan; Zhang, Hongguo; Zhang, Zhijian; Peng, Minjun; Yang, Ming

    2007-01-01

    Grey prediction is a modeling method based on historical or present, known or indefinite information, which can be used for forecasting the development of the eigenvalues of the targeted equipment system and setting up the model by using less information. In this paper, the postulate of grey system theory, which includes the grey generating, the sorts of grey generating and the grey forecasting model, is introduced first. The concrete application process, which includes the grey prediction modeling, grey prediction, error calculation, equal dimension and new information approach, is introduced secondly. Application of a so-called 'Equal Dimension and New Information' (EDNI) technology in grey system theory is adopted in an application case, aiming at improving the accuracy of prediction without increasing the amount of calculation by replacing old data with new ones. The proposed method can provide a new way for solving the problem of eigenvalue data exploding in equal distance effectively, short time interval and real time prediction. The proposed method, which was based on historical or present, known or indefinite information, was verified by the vibration prediction of induced draft fan of a boiler of the Yantai Power Station in China, and the results show that the proposed method based on grey system theory is simple and provides a high accuracy in prediction. So, it is very useful and significant to the controlling and controllable management in safety production. (authors)

  6. Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations

    NARCIS (Netherlands)

    Kooi, BJ

    An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is

  7. ON THE PRECISION OF THE NUCLEATOR

    Directory of Open Access Journals (Sweden)

    Javier González-Villa

    2017-06-01

    Full Text Available The nucleator is a design unbiased method of local stereology for estimating the volume of a bounded object. The only information required lies in the intersection of the object with an isotropic random ray emanating from a fixed point (called the pivotal point associated with the object. For instance, the volume of a neuron can be estimated from a random ray emanating from its nucleolus. The nucleator is extensively used in biosciences because it is efficient and easy to apply. The estimator variance can be reduced by increasing the number of rays. In an earlier paper a systematic sampling design was proposed, and theoretical variance predictors were derived, for the corresponding volume estimator. Being the only variance predictors hitherto available for the nucleator, our basic goal was to check their statistical performance by means of Monte Carlo resampling on computer reconstructions of real objects. As a plus, the empirical distribution of the volume estimator revealed statistical properties of practical relevance.

  8. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers......, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol . H2O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol...... bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed....

  9. Effect of Air Injection on Nucleation Rates

    DEFF Research Database (Denmark)

    Capellades Mendez, Gerard; Kiil, Søren; Dam-Johansen, Kim

    2017-01-01

    From disruption of the supersaturated solution to improved mass transfer in the crystallizing suspension, the introduction of a moving gas phase in a crystallizer could lead to improved rates of nucleation and crystal growth. In this work, saturated air has been injected to batch crystallizers...... to study the effects on formation of the first crystal and subsequent turbidity buildup. To account for the typically large sample-to-sample variation, nucleation rates were evaluated for a large number of replicates using probability distributions of induction times. The slope and the intercept...... was reduced from 69 to 13 min, and the mean induction time decreased from 128 to 36 min. The effect on aqueous solutions of l-arginine was less apparent, with a detection delay reduction from 15 to 3 min, and no significant changes on the rate of primary nucleation. These results demonstrate the potential...

  10. A parameterization of cloud droplet nucleation

    International Nuclear Information System (INIS)

    Ghan, S.J.; Chuang, C.; Penner, J.E.

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization

  11. Heterogeneous nucleation of ice in the atmosphere

    International Nuclear Information System (INIS)

    Nicosia, A; Piazza, M; Santachiara, G; Belosi, F

    2017-01-01

    The occurrence of ice-nucleating aerosols in the atmosphere has a profound impact on the properties of clouds, and in turn, influences our understanding on weather and climate. Research on this topic has grown constantly over the last decades, driven by advances in online and offline instruments capable of measuring the characteristics of these cloud-modifying aerosol particles. This article presents different aspects to the understanding of how aerosol particles can trigger the nucleation of ice in clouds. In addition, we present some experimental results obtained with the Dynamic Filter Processing Chamber, an off-line instrument that has been applied extensively in the last years and that circumvents some of the problems related to the measurement of Ice Nucleating Particles properties. (paper)

  12. Approach to the nonrelatiVistic scattering theory based on the causality superposition and unitarity principles

    International Nuclear Information System (INIS)

    Gajnutdinov, R.Kh.

    1983-01-01

    Possibility is studied to build the nonrelativistic scattering theory on the base of the general physical principles: causality, superposition, and unitarity, making no use of the Schroedinger formalism. The suggested approach is shown to be more general than the nonrelativistic scattering theory based on the Schroedinger equation. The approach is applied to build a model ofthe scattering theory for a system which consists of heavy nonrelativistic particles and a light relativistic particle

  13. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    International Nuclear Information System (INIS)

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-01-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m −2 ) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10 33−34 s −1  m −3 ) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence

  14. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y. [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Wu, H. A., E-mail: wuha@ustc.edu.cn [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China)

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  15. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    Science.gov (United States)

    Cai, Y; Wu, H A; Luo, S N

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  16. Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model

    Science.gov (United States)

    Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang

    2018-02-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.

  17. Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-06-18

    Using molecular dynamics simulation, we study the impact of the degree of supercooling on the crystal nucleation of ultra-soft particles, modeled with the Gaussian core potential. Focusing on systems with a high number density, our simulations reveal dramatically different behaviors as the degree of supercooling is varied. In the moderate supercooling regime, crystal nucleation proceeds as expected from classical nucleation theory, with a decrease in the free energy of nucleation, as well as in the size of the critical nucleus, as supercooling is increased. On the other hand, in the large supercooling regime, we observe an unusual reversal of behavior with an increase in the free energy of nucleation and in the critical size, as supercooling is increased. This unexpected result is analyzed in terms of the interplay between the glass transition and the crystal nucleation process. Specifically, medium range order crystal-like domains, with structural features different from that of the crystal nucleus, are found to form throughout the system when the supercooling is very large. These, in turn, play a pivotal role in the increase in the free energy of nucleation, as well as in the critical size, as the temperature gets closer to the glass transition.

  18. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)

    1999-11-01

    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  19. An experimental study of dislocation loop nucleation

    International Nuclear Information System (INIS)

    Bounaud, J.Y.; Leteurtre, J.

    1975-01-01

    The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr

  20. Crystal nucleation in simple and complex fluids.

    Science.gov (United States)

    Oxtoby, David W

    2003-03-15

    The application of density-functional methods from statistical mechanics to the nucleation of crystals from the melt is described. Simple fluids such as metals, with sizes comparable with the range of their attractive forces, are compared with complex fluids such as colloidal suspensions and proteins dissolved in solution. A different mechanism for crystal nucleation is proposed in the latter case, in which density (concentration) changes before periodic crystalline order appears. This leads to a theoretical foundation for empirical observations on the 'crystallization window' in protein crystallization. Comparisons are made with the results of computer simulation via molecular dynamics.