WorldWideScience

Sample records for nuclear-fuel reprocessing plants

  1. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  2. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  3. Remotex and servomanipulator needs in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Garin, J.

    1981-01-01

    Work on the conceptual design of a pilot-scale plant for reprocessing breeder reactor fuels is being performed at Oak Ridge National Laboratory. The plant design will meet all current federal regulations for repocessing plants and will serve as prototype for future production plants. A unique future of the concept is the incorporation of totally remote operation and maintenance of the process equipment within a large barn-like hot cell. This approach, caled Remotex, utilizes servomanipulators coupled with television viewing to extend man's capabilities into the hostile cell environment. The Remotex concept provides significant improvements for fuel reprocessing plants and other nuclear facilities in the areas of safeguarding nuclear materials, reducing radiation exposure, improving plant availability, recovering from unplanned events, and plant decommissioning

  4. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  5. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents

  6. Administrative and managerial controls for the operation of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidelines are provided for the administrative and managerial controls necessary for the safe and efficient operation of nuclear fuel reprocessing plants. Topics covered include: administrative organization; review and audit; facility administrative policies and procedures; and tests and inspections. Recognizing that administrative practices vary among organizations operating nuclear fuel reprocessing plants, the standard incorporates flexibility that provides for compliance by any organization

  7. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  8. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  9. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  10. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  11. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  12. Design aspects of water usage in the Windscale nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wharton, J.; Bullock, M.J.

    1982-01-01

    The safeguard requirements of a nuclear fuel reprocessing plant place unique constraints on a designer which, in turn, affect the scope for the exercise of water economy. These constraints are examined within the context of the British Nuclear Fuels Limited reprocessing plants at Windscale and indicate the scope for water conservation. The plants and their design principles are described with particular reference to water services and usage. Progressive design development is discussed to illustrate the increasing importance of water economy. (author)

  13. Remote maintenance in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Herndon, J.N.

    1985-01-01

    Remote maintenance techniques applied in large-scale nuclear fuel reprocessing plants are reviewed with particular attention to the three major maintenance philosophy groupings: contact, remote crane canyon, and remote/contact. Examples are given, and the relative success of each type is discussed. Probable future directions for large-scale reprocessing plant maintenance are described along with advanced manipulation systems for application in the plants. The remote maintenance development program within the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is also described. 19 refs., 19 figs

  14. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  15. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  16. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  17. General criteria for the project of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-01-01

    Recommendations are presented establishing the general criteria for the project of nuclear fuel reprocessing plants to be licensed according to the legislation in effect. They apply to all the plant's systems, components and structures which are important to operation safety and to the public's health and safety. (F.E.) [pt

  18. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  19. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  20. Analytical chemistry needs for nuclear safeguards in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1977-01-01

    A fuel reprocessing plant designed to process 1500 tons of light water reactor fuel per year will recover 15 tons of Pu during that time, or approximately 40 to 50 kg of Pu per day. Conventional nuclear safeguards accountability has relied on batch accounting at the head and tail ends of the reprocessing plant with semi-annual plant cleanout to determine in-process holdup. An alternative proposed safeguards system relies on dynamic material accounting whereby in-line NDA and conventional analytical techniques provide indications on a daily basis of SNM transfers into the system and information of Pu holdup within the system. Some of the analytical requirements and problems for dynamic materials accounting in a nuclear fuel reprocessing plant are described. Some suggestions for further development will be proposed

  1. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. Instead of releasing the 85 Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing 85 Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of 85 Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for 85 Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated 3 H and 14 C also encourage delaying implementation of the 85 Kr recovery in the early plants

  2. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    International Nuclear Information System (INIS)

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions

  3. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  4. Development of remote maintenance technology for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kawahara, Akira; Saito, Masayuki; Kawamura, Hironobu; Yamade, Atsushi; Sugiyama, Sen; Sugiyama, Sakae.

    1986-01-01

    In the plants for reprocessing spent nuclear fuel containing fission products, due to the facts that the facilities are in high radiations fields, and the surfaces of equipments are contaminated with radioactive substances, the troubles of process equipments are directly connected to the remarkable drop of the rate of operation of the facilities. Therefore, the development of various remote maintenance techniques has been carried out so far, but this time, Hitachi Ltd. got a chance to take part in the repair of spent fuel dissolving tanks in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp. and the development of several kinds of remote checkup equipment related to the repair work. Especially in the repair of the dissolving tanks, a radiation-withstanding checkup and repair apparatus which has high remote operability taking the conditions of radioactive environment and the restriction of the repaired objects in consideration was required, and a dissolving tank repairing robot composed of six kinds has been developed. The key points of the development were the selective use of high radiation-withstanding parts and materials, small size structure and the realization of full remote operability. The full remote maintenance apparatus of this kind is unique in the world, and applicable to wide fields. (Kako, I.)

  5. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  6. A survey of methods to immobilize tritium and carbon-14 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1991-02-01

    This report reviews the literature on methods to separate and immobilize tritium ( 3 H) and carbon-14 ( 14 C) released from U0 2 fuel in a nuclear fuel reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future application in Canada. The calculated inventories of both 3 H and 14 C in used fuel are low; special measures to limit releases of these radionuclides from reprocessing plants are not currently in place, and may not be necessary in future. If required, however, several possible approaches to the concentration and immobilization of both radionuclides are available for development. Technology to control these radionuclides in reactor process streams is in general more highly developed than for reprocessing plant effluent, and some control methods may be adaptable to reprocessing applications

  7. NO/sub x/ emissions from Hanford nuclear fuels reprocessing plants

    International Nuclear Information System (INIS)

    Pajunen, A.L.; Dirkes, R.L.

    1978-01-01

    Operation of the existing Hanford nuclear fuel reprocessing facilities will increase the release of nitrogen oxides (NO/sub x/) to the atmosphere over present emission rates. Stack emissions from two reprocessing facilities, one waste storage facility and two coal burning power plants will contain increased concentrations of NO/sub x/. The opacity of the reprocessing facilities' emissions is predicted to periodically exceed the State and local opacity limit of twenty percent. Past measurements failed to detect differences in the ambient air NO/sub x/ concentration with and without reprocessing plant operations. Since the facilities are not presently operating, increases in the non-occupational ambient air NO/sub x/ concentration were predicted from theoretical diffusion models. Based on the calculations, the annual average ambient air NO/sub x/ concentration will increase from the present level of less than 0.004 ppM to less than 0.006 ppM at the Hanford site boundaries. The national standard for the annual mean ambient air NO 2 concentration is 0.05 ppM. Therefore, the non-occupational ambient air NO/sub x/ concentration will not be increased to significant levels by reprocessing operations in the Hanford 200 Areas

  8. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  9. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  10. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  11. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  12. Methodology for estimating reprocessing costs for nuclear fuels

    International Nuclear Information System (INIS)

    Carter, W.L.; Rainey, R.H.

    1980-02-01

    A technological and economic evaluation of reprocessing requirements for alternate fuel cycles requires a common assessment method and a common basis to which various cycles can be related. A methodology is described for the assessment of alternate fuel cycles utilizing a side-by-side comparison of functional flow diagrams of major areas of the reprocessing plant with corresponding diagrams of the well-developed Purex process as installed in the Barnwell Nuclear Fuel Plant (BNFP). The BNFP treats 1500 metric tons of uranium per year (MTU/yr). Complexity and capacity factors are determined for adjusting the estimated facility and equipment costs of BNFP to determine the corresponding costs for the alternate fuel cycle. Costs of capacities other than the reference 1500 MT of heavy metal per year are estimated by the use of scaling factors. Unit costs of reprocessed fuel are calculated using a discounted cash flow analysis for three economic bases to show the effect of low-risk, typical, and high-risk financing methods

  13. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  14. Characterization of the head end cells at the West Valley Nuclear Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Vance, R.F.

    1986-11-01

    The head-end cells at the West Valley Nuclear Fuel Reprocessing Plant are characterized in this report. These cells consist of the Process Mechanical Cell (PMC) where irradiated nuclear fuel was trimmed of excess hardware and sheared into short segments; and the General Purpose Cell (GPC) where the segments were collected and stored prior to dissolution, and leached hulls were packaged for disposal. Between 1966 and 1972, while Nuclear Fuels Services operated the plant, these cells became highly contaminated with radioactive materials. The purpose of this characterization work was to develop technical information as a basis of decontamination and decommissioning planning and engineering. It was accomplished by performing remote in-cell visual examinations, radiation surveys, and sampling. Supplementary information was obtained from available written records, out-of-cell inspections, and interviews with plant personnel

  15. Problems of nuclear fuel reprocessing in Japan

    International Nuclear Information System (INIS)

    Tanaka, Naojiro

    1974-01-01

    The reprocessing capacity of the plant No. 1 of Power Reactor and Nuclear Fuel Development Corporation, which is scheduled to start operation in fiscal year 1975, will be insufficient after fiscal year 1978 for the estimated demand for reprocessing based on Japanese nuclear energy development program. Taking into consideration the results examined by JAIF's study team to Europe and the U.S., it is necessary that Japan builds 2nd reprocessing plant. But there will be a gap from 1978 to 1984 during which Japan must rely on overseas reprocessing services. The establishment of a reprocessing system is a task of national scale, and there are many problems to be solved before it can be done. These include the problems of site and environment, the problem of treatment and disposal of radioactive wastes, the raising of huge required funds and so on. Therefore, even if a private enterprise is allowed to undertake the task, it will be impossible to achieve the aim without the cooperation and assistance of the government. (Wakatsuki, Y.)

  16. Development of remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Kunikata, Michio; Kawamura, Hironobu.

    1985-01-01

    For nuclear facilities, various types of remote maintenance and inspection devices have been developed to reduce radiation exposure to workers, save labor, and improve the operating rate of the plant. Existing robot technology, however, could not be employed when we were recently called upon to inspect and repair pinhole defects which had occurred in the spent fuel dissolvers of the Power Reactor and Nuclear Fuel Development Corporation's Tokai Reprocessing Plant, because the work had to be done in an extremely radioactive environment, conditions too extreme for conventional robots. For this reason, we developed highly radiation-resistant repair robots capable of fully remote-controlled operation inside the barrels of the dissolvers, which have the inconvenient shape of 270 mm inside diameter and 6 m length. The process for developing the six different repair robots and the their functions are described in this paper. This development was sponsored by the Power Reactor and Nuclear Fuel Development Corporation (PNC) under contract with Hitachi, Ltd. (author)

  17. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  18. Air conditioning facilities in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kawasaki, Michitaka; Oka, Tsutomu

    1987-01-01

    Reprocessing plants are the facilities for separating the plutonium produced by nuclear reaction and unconsumed remaining uranium from fission products in the spent fuel taken out of nuclear reactors and recovering them. The fuel reprocessing procedure is outlined. In order to ensure safety in handling radioactive substances, triple confinement using vessels, concrete cells and buildings is carried out in addition to the prevention of criticality and radiation shielding, and stainless steel linings and drip trays are installed as occasion demands. The ventilation system in a reprocessing plant is roughly divided into three systems, that is, tower and tank ventilation system to deal with offgas, cell ventilation system for the cells in which main towers and tanks are installed, and building ventilation system. Air pressure becomes higher from tower and tank system to building system. In a reprocessing plant, the areas in a building are classified according to dose rate. The building ventilation system deals with green and amber areas, and the cell ventilation system deals with red area. These three ventilation systems are explained. Radiation monitors are installed to monitor the radiation dose rate and air contamination in working places. The maintenance and checkup of ventilation systems are important. (Kako, I.)

  19. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  20. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  1. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  2. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ilas, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  3. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  4. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  5. Cost analysis of the US spent nuclear fuel reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas, Austin TX (United States); Cady, K.B. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca NY (United States)

    2009-09-15

    The US Department of Energy is actively seeking ways in which to delay or obviate the need for additional nuclear waste repositories beyond Yucca Mountain. All of the realistic approaches require the reprocessing of spent nuclear fuel. However, the US currently lacks the infrastructure to do this and the costs of building and operating the required facilities are poorly established. Recent studies have also suggested that there is a financial advantage to delaying the deployment of such facilities. We consider a system of government owned reprocessing plants, each with a 40 year service life, that would reprocess spent nuclear fuel generated between 2010 and 2100. Using published data for the component costs, and a social discount rate appropriate for intergenerational analyses, we establish the unit cost for reprocessing and show that it increases slightly if deployment of infrastructure is delayed by a decade. The analysis indicates that achieving higher spent fuel discharge burnup is the most important pathway to reducing the overall cost of reprocessing. The analysis also suggests that a nuclear power production fee would be a way for the US government to recover the costs in a manner that is relatively insensitive to discount and nuclear power growth rates. (author)

  6. Survey of economics of spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1976-01-01

    Literature data are surveyed on the economic problems of reprocessing spent fuel from light-water reactors in the period 1970 to 1975 and on the capacity of some reprocessing plants, such as NFS, Windscale, Marcoule, etc. The sharp increase in capital and production costs is analyzed and the future trend is estimated. The question is discussed of the use of plutonium and the cost thereof. The economic advantageousness previously considered to be the primary factor is no longer decisive due to new circumstances. The main objective today is to safeguard uninterrupted operation of nuclear power plants and the separation of radioactive wastes from the fuel cycle and the safe disposal thereof. (Oy)

  7. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  8. The refurbishment of the D1206 fuel reprocessing plant

    International Nuclear Information System (INIS)

    Bailey, G.

    1988-01-01

    The term decommissioning can be applied not only to reactors but to any nuclear plant, laboratory, building or part of a building that may have been associated with radioactive material and needs to be restored to clean conditions. In this case the decommissioning and reconstruction of the Dounreay Fast Reactor fuel reprocessing plant, so that plutonium oxide could be reprocessed as well as enriched uranium fuel, is described. The work included improving containment and shielding, building a new head-end treatment cave for the more complex and larger fuel elements, improving the ventilation and constructing a new dissolver. In this paper the breakdown cave and dissolver cell are described and compared and the work done explained. (U.K.)

  9. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  10. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  11. A numerical simulation of 129I in the atmosphere emitted from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A global chemical transport model, MOZART-4, is applied to investigate the behavior of 129 I emitted from nuclear fuel reprocessing plants in Europe (Sellafield in the UK and La Hague in France). The result of numerical simulation for more than fifty-year period from the 1950s is validated by comparison with measurements of 129 I around the world and analyzed to clarify the characteristic of the distributions of concentration and deposition of 129 I. The modeled concentrations of 129 I in precipitation in Europe and the United States and inventories in the seawater around Japan and the Gulf of Mexico are in the same order as measurements. the emitted 129 I to the atmosphere is distributed all over the Northern Hemisphere due mainly to the prevailing westerlies and can be an important source of supply of artificial 129 I for the seawater remote from the point source such as a nuclear fuel reprocessing plant. (author)

  12. A global-scale dispersion analysis of iodine-129 from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A three-dimensional global chemical transport model, MOZART-2, is applied to investigate the global-sale dispersion of Iodine-129 from nuclear fuel reprocessing plants. The concentration and deposition of 129 I obtained by MOZART-2 are dispersed all over the Northern Hemisphere. The emission of 129 I to the atmosphere is thus important in considering the transport of 129 I to remote sites. (author)

  13. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  14. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  15. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  16. Plant for retention of 14C in reprocessing plants for LWR fuel elements

    International Nuclear Information System (INIS)

    Braun, H.; Gutowski, H.; Bonka, H.; Gruendler, D.

    1983-01-01

    The 14 C produced from nuclear power plants is actually totally emitted from nuclear power plants and reprocessing plants. Using the radiation protection principles proposed in ICRP 26, 14 C should be retained at heavy water moderated reactors and reprocessing plants due to a cost-benefit analysis. In the frame of a research work to cost-benefit analysis, which was sponsored by the Federal Minister of the Interior, an industrial plant for 14 C retention at reprocessing plants for LWR fuel elements has been planned according to the double alkali process. The double alkali process has been chosen because of the sufficient operation experience in the conventional chemical technique. In order to verify some operational parameters and to gain experiences, a cold test plant was constructed. The experiment results showed that the double alkali process is a technically suitable method with high operation security. Solidifying CaCO 3 with cement gives a product fit for final disposal

  17. History and current status of nuclear fuel reprocessing technology

    International Nuclear Information System (INIS)

    Funasaka, Hideyuki; Nagai, Toshihisa; Washiya, Tadahiro

    2008-01-01

    History and present state of fast breeder reactor was reviewed in series. As a history and current status of nuclear fuel reprocessing technology, this ninth lecture presented the progress of the FBR fuel reprocessing technology and advanced reprocessing processes. FBR fuel reprocessing technology had been developed to construct the reprocessing equipment test facilities (RETF) based on PUREX process technologies. With economics, reduction of environmental burdens and proliferation resistance taken into consideration, advanced aqueous method for nuclear fuel cycle activities has been promoted as the government's basic policy. Innovative technologies on mechanical disassembly, continuous rotary dissolver, crystallizer, solvent extraction and actinides recovery have been mainly studied. (T. Tanaka)

  18. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  19. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  20. Standard model for the safety analysis report of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1980-02-01

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization

  1. Reprocessing plants safety

    International Nuclear Information System (INIS)

    Davies, A.G.; Leighton, C.; Millington, D.

    1989-01-01

    The reprocessing of irradiated nuclear fuel at British Nuclear Fuels (BNFL) Sellafield site consists of a number of relatively self-contained activities carried out in separate plants across the site. The physical conditions and time scales applied in reprocessing and storage make it relatively benign. The potential for minor releases of radioactivity under fault conditioning is minimised by plant design definition of control procedures, training and supervision. The risks to both the general public and workforce are shown to be low with all the safety criteria being met. Normal operating conditions also have the potential for some occupational radiation exposure and the plant and workers are monitored continuously. Exposure levels have been reduced steadily and will continue to fall with plant improvements. (U.K.)

  2. Radioactive wastes management in fiscal year 1983 in the fuel reprocessing plant

    International Nuclear Information System (INIS)

    1985-01-01

    In the nuclear fuel reprocessing plant of Power Reactor and Nuclear Fuel Development Corporation, the releases of radioactive gaseous and liquid wastes are so managed not to exceed the respective objective release levels. Of the radioactive liquid wastes, the high level concentrated wastes are stored in tanks and the low level wastes are stored in tanks or asphalt solidified. For radioactive solid wastes, high level solid wastes are stored in casks, low level solid wastes and asphalt solids in drums etc. The releases of radioactive gaseous and liquid wastes in the fiscal year 1983 were below the objective release levels. The radioactive wastes management in the fuel reprocessing plant in fiscal year 1983 is given in tables, the released quantities, the stored quantities, etc. (Mori, K.)

  3. Fuel reprocessing plant: No qualitative differences as compared to other sensitive process plants

    International Nuclear Information System (INIS)

    Schweinoch, J.

    1986-01-01

    Nuclear power plants like the fuel reprocessing plant belong to the highly sensitive installations in respect of safety, but involve the same risks qualitatively as liquid-gas plants or chemical plants. Therefore no consequences for basic rights are discernible. The police can take adequate preventive measures. The regulations governing police action provide proper and sufficient warrants. (DG) [de

  4. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  5. Reprocessing of spent fuel and public acceptance

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1977-01-01

    The public acceptance has to be considered regarding whole atomic power rather than the reprocessing of nuclear fuel separately, and the problems concerned are as follows; the release of radioactive materials in the normal and abnormal operations of reprocessing plants, the disposal of wastes with high level radioactivity, the transportation of high level radioactive material, the relation to the economic activity near nuclear plants, the environmental effect of 85 Kr. and 3 H, etc., and the physical protection for reprocessing facility itself, the special handling of the materials of very high radioactivity level such as fission products and plutonium, the radiation exposure of operators, and the demonstration of reprocessing techniques of commercial base, etc., as a part of the nuclear fuel cycle, and the relation between atomic power and other technologies in energy supply, the evalution of atomic power as the symbol of huge scale science, and the energy problem within the confrontation of economic development and the preservation of environment and resources regarding whole nuclear energy. The situations of fuel reprocessing in USA, UK, France, Germany and Japan are explained from the viewpoint of the history. The general background for the needs of nuclear energy in Japan, the image of nuclear energy and fuel reprocessing entertained by the general public, and the special feature of reprocessing techniques are described. (Nakai, Y.)

  6. Reprocessing RTR fuel in the La Hague plants

    International Nuclear Information System (INIS)

    Thomasson, J.; Drain, F.; David, A.

    2001-01-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  7. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, F-78140 Velizy (France); Drain, F.; David, A. [SGN, F-78182 Saint Quentin en Yvelines (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  8. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, 78 - Velizy Villacoublay (France); Drain, F.; David, A. [SGN, 78 - Saint Quentin en Yveline (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for their research and testing reactors spent fuel back-end management. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  9. Suggestions of radiation protection instruments in ships used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants

    International Nuclear Information System (INIS)

    Warenmo, G.

    1979-01-01

    Some radiation protection measures are necessary in ships which will be used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants in order to protect the crew from unnecessarily high radiation doses and to ensure that not allowable values occur. Such measures are discussed in this report as well as suitable radiation protection instruments for such ships. (E.R.)

  10. Handbook on process and chemistry of nuclear fuel reprocessing version 2

    International Nuclear Information System (INIS)

    2008-10-01

    Aqueous nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of aqueous reprocessing, because it contributes to establish and develop fuel reprocessing technology and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize aqueous reprocessing technology much widely. This handbook is the second edition of the first report, which summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing' from FY 1993 until FY 2000. (author)

  11. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  12. Economic feasibility study of regional centers for nuclear fuel reprocessing in the developing countries

    International Nuclear Information System (INIS)

    Bakeshloo, A.A.

    1977-01-01

    The fuel cycle costs for the following three different economic alternatives were studied: (1) Reprocessing in an industrialized country (such as the U.S.); (2) Reprocessing in the individual developing country; (3) Reprocessing in a regional center. The nuclear fuel cycle cost for the ''Throw-away'' fuel cycle was evaluated. Among the six regions which were considered in this study, region one (South America including Mexico) was selected for the economic analysis of the nuclear fuel cycle for the above three alternatives. For evaluation of the cases where the fuel is reprocessed in a regional center or in an individual developing country, a unit reprocessing cost equation was developed. An economic evaluation was developed to estimate the least expensive method for transporting radioactive nuclear material by either leased or purchased shipping casks. The necessary equations were also developed for estimating plutonium transportation and the safeguard costs. On the basis of nuclear material and services requirements and unit costs for each component, the levelized nuclear fuel cycle costs for each alternative were estimated. Finally, by a comparison of cost, among these three alternatives plus the ''Throw-away'' case,it was found that it is not at all economical to build individual reprocessing plants inside the developing countries in region one. However, it also was found that the economic advantage of a regional center with respect to the first alternative is less than a 4% difference between their total fuel cycle costs. It is concluded that there is no great economic advantage in any developing countries to seek to process their fuel in one of the advanced countries. Construction of regional reprocessing centers is an economically viable concept

  13. Ventilating system for reprocessing of nuclear fuel rods

    International Nuclear Information System (INIS)

    Szulinski, M.J.

    1981-01-01

    In a nuclear facility such as a reprocessing plant for nuclear fuel rods, the central air cleaner discharging ventilating gas to the atmosphere must meet preselected standards not only as to the momentary concentration of radioactive components, but also as to total quantity per year. In order to comply more satisfactorily with such standards, reprocessing steps are conducted by remote control in a plurality of separate compartments. The air flow for each compartment is regulated so that the air inventory for each compartment has a slow turnover rate of more than a day but less than a year, which slow rate is conveniently designated as quasihermetic sealing. The air inventory in each such compartment is recirculated through a specialized processing unit adapted to cool and/or filter and/or otherwise process the gas. Stale air is withdrawn from such recirculating inventory and fresh air is injected (eg., By the less than perfect sealing of a compartment) into such recirculating inventory so that the air turnover rate is more than a day but less than a year. The amount of air directed through the manifold and duct system from the reprocessing units to the central air cleaner is less than in reprocessing plants of conventional design

  14. Iodine-129 in the environment of a nuclear fuel reprocessing plant: Pt. 5

    International Nuclear Information System (INIS)

    Hauschild, J.; Aumann, D.C.

    1989-01-01

    A field investigation of the transfer of 129 I and of natural 127 I in the soil-pasture-cow-milk/meat pathway has been carried out at a dairy farm situated 5400 m to the north of the small Karlsruhe nuclear fuel reprocessing plant. Soil and herbage samples were collected during the period between April 1986 and April 1987. Milk samples were collected during the 1986 grazing season. The concentrations of 129 I and 127 I were determined in all soil, herbage and milk samples. (author)

  15. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  16. Present status of fuel reprocessing plant in PNC

    International Nuclear Information System (INIS)

    Koyama, Kenji

    1981-01-01

    In the fuel reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation, its hot test has now been completed. For starting its full-scale operation duly, the data are being collected on the operation performance and safety. The construction was started in June, 1971, and completed in October, 1974. In July, 1977, spent fuel was accepted in the plant, and the hot test was started. In September, the same year, the first fuel shearing was made. So far, a total of about 31 t U from both BWR and PWR plants has been processed, thus the hot test was entirely completed. The following matters are described: hot test and its results, research on Pu and U mixed extraction, utilization of product plutonium, development of safeguard technology, and repair work on the acid recovery evaporation tank. (J.P.N.)

  17. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  18. Spent fuel reprocessing system availability definition by process simulation

    International Nuclear Information System (INIS)

    Holder, N.; Haldy, B.B.; Jonzen, M.

    1978-05-01

    To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported

  19. Microbial transformations of radionuclides released from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Francis, A.J.

    2007-01-01

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed. (author)

  20. Working conditions in nuclear reprocessing plants

    International Nuclear Information System (INIS)

    1986-12-01

    In the context of the project, the working conditions of workers in reprocessing plants and associated plant of the fuel circuit were thoroughly examined. The project design and course of the project are a good example of a precautionary technical assessment necessary for social policy reasons, which is in the public interest and is required by the Trade Unions. By working conditions, one means the whole set of scientific/technical, medical, legal, economic and political conditions for the permanent employment of workers in reprocessing plants including the associated parts of the fuel circuit. (orig./HP) [de

  1. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  2. Revisit of analytical methods for the process and plant control analyses during reprocessing of fast reactor fuels

    International Nuclear Information System (INIS)

    Subba Rao, R.V.

    2016-01-01

    CORAL (COmpact facility for Reprocessing of Advanced fuels in Lead cell) is an experimental facility for demonstrating the reprocessing of irradiated fast reactor fuels discharged from the Fast Breeder Test Reactor (FBTR). The objective of the reprocessing plant is to achieve nuclear grade plutonium and uranium oxides with minimum process waste volumes. The process flow sheet for the reprocessing of spent Fast Reactor Fuel consists of Transport of spent fuel, Chopping, Dissolution, Feed conditioning, Solvent Extraction cycle, Partitioning Cycle and Re-conversion of Plutonium nitrate and uranium nitrate to respective oxides. The efficiency and performance of the plant to achieve desired objective depends on the analyses of various species in the different steps adopted during reprocessing of fuels. The analytical requirements in the plant can be broadly classified as 1. Process control Analyses (Analyses which effect the performance of the plant- PCA); 2. Plant control Analyses (Analyses which indicates efficiency of the plant-PLCA); 3. Nuclear Material Accounting samples (Analyses which has bearing on nuclear material accounting in the plant - NUMAC) and Quality control Analyses (Quality of the input bulk chemicals as well as products - QCA). The analytical methods selected are based on the duration of analyses, precision and accuracies required for each type analytical requirement classified earlier. The process and plant control analyses requires lower precision and accuracies as compared to NUMAC analyses, which requires very high precision accuracy. The time taken for analyses should be as lower as possible for process and plant control analyses as compared to NUMAC analyses. The analytical methods required for determining U and Pu in process and plant samples from FRFR will be different as compared to samples from TRFR (Thermal Reactor Fuel Reprocessing) due to higher Pu to U ratio in FRFR as compared TRFR and they should be such that they can be easily

  3. Model of iodine transport and reaction kinetics in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Davis, W. Jr.

    1977-05-01

    A model is presented to describe the time-dependent flow and retention of stable iodine isotopes and the decay of 131 I in a nuclear fuel reprocessing plant. The plant consists of 16 units of equipment such as a voloxidizer or graphite burner, fuel dissolver, solvent extractors, storage tanks, vaporizers, primary iodine sorbers, and silver zeolite. The rate of accumulation of bulk and radioactive iodine in these units and in the environment is described using 19 differential equations. Reasonable time-dependence of iodine retention factors (RFs) by the plant were calculated. RFs for a new plant in excess of 10 6 for stable iodine and 129 I decrease to the range of 10 3 to 10 2 as plant operating times exceed 50 to 100 days. The RFs for 131 I also decrease initially, for a period of approximately 10 days, but then increase by several orders of magnitude due to radioactive decay and isotopic exchange. Generally, the RFs for 131 I exceed those for stable iodine by factors of 10 4 or more. 19 references, 13 figures, 2 tables

  4. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  5. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  6. Inventory estimation for nuclear fuel reprocessing systems

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1987-01-01

    The accuracy of nuclear material accounting methods for nuclear fuel reprocessing facilities is limited by nuclear material inventory variations in the solvent extraction contactors, which affect the separation and purification of uranium and plutonium. Since in-line methods for measuring contactor inventory are not available, simple inventory estimation models are being developed for mixer-settler contactors operating at steady state with a view toward improving the accuracy of nuclear material accounting methods for reprocessing facilities. The authors investigated the following items: (1) improvements in the utility of the inventory estimation models, (2) extension of improvements to inventory estimation for transient nonsteady-state conditions during, for example, process upset or throughput variations, and (3) development of simple inventory estimation models for reprocessing systems using pulsed columns

  7. Evaluation of methods for seismic analysis of nuclear fuel reprocessing and fabrication facilities

    International Nuclear Information System (INIS)

    Arthur, D.F.; Dong, R.G.; Murray, R.C.; Nelson, T.A.; Smith, P.D.; Wight, L.H.

    1978-01-01

    Methods of seismic analysis for critical structures and equipment in nuclear fuel reprocessing plants (NFRPs) and mixed oxide fuel fabrication plants (MOFFPs) are evaluated. The purpose of this series of reports is to provide the NRC with a technical basis for assessing seismic analysis methods and for writing regulatory guides in which methods ensuring the safe design of nuclear fuel cycle facilities are recommended. The present report evaluates methods of analyzing buried pipes and wells, sloshing effects in large pools, earth dams, multiply supported equipment, pile foundations, and soil-structure interactions

  8. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  9. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  10. Cost estimation of the decommissioning of nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Barbe, A.; Pech, R.

    1991-01-01

    Most studies conducted to date on the cost of decommissioning nuclear facilities pertain to reactors. Few such studies have been performed on the cost of decommissioning nuclear fuel cycle plants, particularly spent fuel reprocessing plants. Present operators of these plants nevertheless need to assess such costs, at least in order to include the related expenses in their short-, medium- or long-term projections. They also need to determine now, for example, suitable production costs that the plant owners will have to propose to their customers. Unlike nuclear reactors for which a series effect is involved (PWRs, BWRs, etc.) and where radioactivity is relatively concentrated, industrial-scale reprocessing plants are large, complex installations for which decommissioning is a long and costly operation that requires a special approach. Faced with this problem, Cogema, the owner and operator of the La Hague and Marcoule reprocessing plants in France, called on SGN to assess the total decommissioning costs for its plants. This assessment led SGN to development by SGN engineers of a novel methodology and a computerized calculation model described below. The resulting methodology and model are applicable to other complex nuclear facilities besides reprocessing plants, such as laboratories and nuclear auxiliaries of reactor cores. (author)

  11. The Planning of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeborg, T U; Haeffner, E; Hultgren, Aa

    1963-10-15

    A shielded volume (42 m{sup 3}) in the hot laboratory at Kjeller, Norway, has been used for the installation of a small pilot plant intended for studies on nuclear fuel reprocessing. During the first period of operation (1963) a plutonium separation method (the Silex process) developed at AB Atomenergi will be studied. This document is a description of the project during the stage of technical planning and chemical process development.

  12. Spent fuel reprocessing past experience and future prospects

    International Nuclear Information System (INIS)

    Megy, J.

    1983-09-01

    A large experience has been gathered from the early fifties till now in the field of spent fuel reprocessing. As the main efforts in the world have been made for developping the reactors and the fuel fabrication industry to feed them, the spent fuel reprocessing activities came later and have not yet reached the industrial maturity existing to day for plants such as PWRs. But in the principal nuclear countries spent fuel reprocessing is to day considered as a necessity with two simultaneous targets: 1. Recovering the valuable materials, uranium and plutonium. 2. Conditionning the radioactive wastes to ensure safe definitive storage. The paper reviews the main steps: 1. Reprocessing for thermal reactor fuels: large plants are already operating or in construction, but in parallel a large effort of R and D is still under way for improvements. 2. The development of fast breeder plants implies associated fuel reprocessing facilities: pilot plants have demonstrated the closing of the cycle. The main difficulties encountered will be examined and particularly the importance of taking into account the problems of effluents processing and wastes storage [fr

  13. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  14. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  15. A review of liquor transfer systems for use in nuclear reprocessing plants

    International Nuclear Information System (INIS)

    Singh, J.

    1982-01-01

    Liquor pumping systems for use in nuclear fuel reprocessing plants are described. Comparison of the operating characteristics and system constants are made between the air lift/Vacuum Operated Slug Lift, power fluidics and ejector pump systems. (author)

  16. Diethylene-triamine-penta-acetate administration protocol for radiological emergency medicine in nuclear fuel reprocessing plants.

    Science.gov (United States)

    Jin, Yutaka

    2008-01-01

    Inhalation therapy of diethylene-triamine-penta-acetate (DTPA) should be initiated immediately to workers who have significant incorporation of plutonium, americium or curium in the nuclear fuel reprocessing plant. A newly designed electric mesh nebulizer is a small battery-operated passive vibrating mesh device, in which vibrations in an ultrasonic horn are used to force drug solution through a mesh of micron-sized holes. This nebulizer enables DTPA administration at an early stage in the event of a radiation emergency from contamination from the above radioactive metals.

  17. Legal problems of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1987-01-01

    The contributions in this book are intended to exemplify the legal situation in connection with the reprocessing of spent nuclear fuel from the point of view of constitutional law, administrative law, and international law. Outline solutions are presented with regard to ensuring health, personal freedom, democratic rights and other rights, and are discussed. The author Rossnagel investigates whether the principle of essential matter can guarantee a parliamentary prerogative concerning this field of large-scale technology. The author Schmidt shows that there is no legal obligation of commitment to a reprocessing technology that would exclude research for or application of a less hazardous technology. The contribution by Baumann explains the problems presented by a technology not yet developed to maturity with regard to the outline approval of the technological concept, which is a prerequisite of any partial licence to be issued. The final contribution by Guendling investigates the duties under international law, as for instance transfrontier information, consultation, and legal protection, and how these duties can be better put into practice in order to comply the seriousness of the hazards involved in nuclear fuel reprocessing. (orig./HP) [de

  18. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  19. Experience in construction of a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    In June 1970, Japan Gasoline Co., Ltd (JGC)and Saint-Goblan Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. JGC was responsible for: procurement, inspection, and schedule control of equipment and materials other than those imported from Europe; for conclusion of contracts with various subcontractors relating to the building construction, piping, and similar work; and for supervision of field work. Field work began in June 1971 and was completed in about 40 months. This paper describes the experiences of JGC during the period of the entire operation, and on the basis of this experience recommends modifications to their approach to similar projects in the future

  20. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  1. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  2. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  3. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  4. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem

  5. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  6. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  7. Fuel reprocessing and environmental problem

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    1977-01-01

    The radioactive nuclides which are released from the reprocessing plants of nuclear fuel are 137 Cs, 106 Ru, 95 Zr and 3 H in waste water and 85 Kr in the atmosphere. This release affects the environment for example, the reprocessing plant of the Nuclear Fuel Service Co in the USA releases about 2 x 10 5 Ci/y of 85 Kr, which is evaluated as about 0.025 mr/y as external exposure dose. The radioactivity in milk around this plant was measured as less than 10 pCi/lit of 129sup(I. The radioactive concentration in the sea, especially in fish and shellfish, was measured near the reprocessing plant of Windscale in UK. The radioactive release rate from this plants more than 10)5sup( Ci/y as the total amount of )137sup(Cs, )3sup(H, )106sup(Ru, )95sup(Zr, )95sup(Nb, )90sup(Sr, )144sup(Ce, etc., and the radioactivity in seaweeds near Windscale is about 400 pCi/g as the maximum value, and the mayonnaise which was made of this seaweeds contained about 1 pCi/g of )106sup(Ru, which is estimated as about 7 mr/y for the digestive organ if 100 g is eaten every day. On the other hand, the experimental result is presented for the reprocessing plant of La Hague in France, in which the radioactive release rate from this plant is about 10)4sup( Ci/y, and the radioactivity in sea water and shellfish is about 4 pCi/l of )106sup(Ru and about 400 pCi/kg of )137 Cs, respectively, near this plant. The philosophy of ALAP (as low as practicable) is also applied to reprocessing plants. (Nakai, Y.)

  8. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  9. Optimization of the sizes and dates of starting up of reprocessing plants

    International Nuclear Information System (INIS)

    Nagashima, Kikusaburo

    1977-01-01

    It is desirable to complete the nuclear fuel cycle domestically for promoting nuclear power generation in Japan, and the reprocessing of spent fuel is indispensable. However, the capacity of the reprocessing plant in PNC and the reprocessing by the commissioning to foreign countries will be insufficient by the latter half of 1980s. In the planning of the second reprocessing plant in Japan, the following problems remain yet to be solved. The international regulation and the laws in Japan regarding the storage and transport of spent fuel, the disposal of radioactive wastes, and the recycling of plutonium must be established. The consensus of the public on the necessity and the safety of fuel reprocessing must be obtained. The technical investigation about fuel reprocessing and related business must be carried out sufficiently, including the necessity of introducing the technology from abroad. The economy and various conditions for industrializing fuel reprocessing must be studied. The economy of fuel reprocessing plants, the reprocessing cost taking escalation into account, mean reprocessing cost, the optimization of the time of starting full operation and the time of starting-up, the rise of reprocessing cost due to the escalation of operational cost are explained. Numerical calculation was carried out about the second reprocessing plant in Japan, and the results are examined. (Kako, I.)

  10. Summary of the seismic analyses of the Nuclear Fuel Services Reprocessing Plant at West Valley, New York

    International Nuclear Information System (INIS)

    Endebrock, E.G.

    1978-03-01

    Results are presented from the seismic investigations of the Nuclear Fuel Services Fuel Reprocessing Plant conducted by the Chemical Plants Division of Dravo Corporation (CPD), the Los Alamos Scientific Laboratory (LASL), and the Lawrence Livermore Laboratory (LLL). Results of the different analytical procedures are summarized. The LASL studies showed that structural distress would initially occur in two places, the building piles and the walls of the Mechanical Crane Room. This structural distress would occur at 0.14 g. The LLL investigation showed that the Liquid Waste Cell and the General Purpose Cell would start to show structural distress at 0.09g, and that lateral pile distress would begin at 0.11g

  11. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  12. An overview on dry reprocessing of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Ouyang Yinggen

    2002-01-01

    Although spent nuclear fuels have been reprocessed successfully for many years by the well-know Purex process based on solvent extraction, other reprocessing method which do not depend upon the use of organic solvents and aqueous media appear to have important potential advantage. There are two main non-aqueous methods for the reprocessing of spent fuel: fluoride-volatility process and pyro-electrochemical process. The presence of a poser in the process is that PuF 6 is obviously thermodynamically stable only in the presence of a large excess of fluorine. Pyro-electrochemical process is suited to processing metallic, oxide and carbide fuels. First, the fuel is dissolved in fresh salts, then, electrodes are introduced into the bath, U and Pu are deposited on the cathode, third, separation and refinement U and Pu are deposited on the cathode. There is a couple of contradictions in the process that are not in harmonious proportion in the fields on the nuclear fuel is dissolved the ability in the molten salt and corrosiveness of the molten salt for equipment used in the process

  13. A survey of methods for separating and immobilizing krypton-85 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-12-01

    This report reviews the literature on methods to separate and immobilize krypton-85 arising from dissolution or prior treatment of nuclear fuel in a reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future applications in Canada. Cryogenic distillation is the most fully demonstrated method of separation of krypton from off-gases, but it is complex. In particular, it requires pretreatment of the gas stream to eliminate several other components before the final distillation. The most highly developed alternative process is fluorocarbon adsorption, while several other processes have been investigated on a bench scale. The simplest method of storing radioactive krypton is in compressed-gas cylinders, but the risks of accidental release are increased by the corrosive nature of the decay product, rubidium. Encapsulation in either a metal matrix or a hydrothermally vitrified zeolite appears to offer the most secure immobilization of krypton. Processes for both types of material have been demonstrated inactively on a scale approaching that required for treatment of off-gases from a commercial-scale fuel reprocessing plant. Low-operating temperatures and pressures of the metal encapsulation process, compared with encapsulation in zeolites, represent a definite advantage, but electrical power requirements for the former process are relatively high. It appears that suitable technology is available for separation and immobilization of radioactive krypton, should the need arise in Canada in the future

  14. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Yoshiuji, Takahiro

    1998-12-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  15. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki; Yoshiuji, Takahiro

    1998-01-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  16. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    Directory of Open Access Journals (Sweden)

    Nick R. Soelberg

    2013-01-01

    Full Text Available The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs, have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  17. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  18. Fast reactor system factors affecting reprocessing plant design

    International Nuclear Information System (INIS)

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  19. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  20. The economics of reprocessing versus direct disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Bunn, M.; Holdren, J.P.; Fetter, S.; Zwaan, B. van der

    2007-01-01

    The economics of reprocessing versus direct disposal of spent nuclear fuel are assessed. The break-even uranium price at which reprocessing spent nuclear fuel from existing light water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is estimated for a wide range of reprocessing prices and other fuel cycle costs and parameters. The contribution of each fuel cycle option to the cost of electricity is also estimated. A similar analysis is performed for the breakeven uranium price at which deploying fast neutron reactors (FRs) would become competitive compared with a once-through fuel cycle in LWRs, for a range of differences in capital cost between LWRs and FRs. Available information about reprocessing prices and various other fuel cycle costs and input parameters are reviewed, as well as the quantities of uranium likely to be recoverable worldwide at a range of different possible future prices. It is concluded that the once-through fuel cycle is likely to remain significantly cheaper than reprocessing and recycling in either LWRs or FRs for at least the next 50 years. Finally, there is a discussion of how scarce and expensive repository space would have to become before separation and transmutation would be economically attractive. (author)

  1. Italian experience with pilot reprocessing plants

    International Nuclear Information System (INIS)

    Cao, S.; Dworschak, H.; Rolandi, G.; Simonetta, R.

    1977-01-01

    Problems and difficulties recently experienced in the reprocessing technology of high burnup power reactor fuel elements have shown the importance of pilot plant experiments to optimize the separation processes and to test advanced equipment on a representative scale. The CNEN Eurex plant, in Saluggia (Vercelli), with a 50 kg/d thruput, in operation since '71, has completed several reprocessing campaigns on MTR type fuel elements. Two different chemical flowsheets based respectively on TBP and tertiary amines were thoroughly tested and compared: a concise comparative evaluation of the results obtained with the two schemes is given. Extensive modifications have then been introduced (namely a new headend cell equipped with a shear) to make the plant suitable to reprocess power reactor fuels. The experimental program of the plant includes a joint CNEN-AECL reprocessing experiment on CANDU (Pickering) type fuel elements to demonstrate a two cycle, amine based recovery of the plutonium. Later, a stock of high burnup fuel elements from the PWR Trino power station will be reprocessed to recover Pu and U with a Purex type flowsheet. ITREC, the second CNEN experimental reprocessing plant located at Trisaia Nuclear Center (Matera), started active operation two years ago. In the first campaign Th-U mixed oxide fuel elements irradiated in the Elk River reactor were processed. Results of this experiment are reported. ITREC special design features confer a high degree of versability to the plant allowing for substantial equipment modification under remote control conditions. For this reason the plant will be principally devoted in the near future to advanced equipment testing. Along this line high speed centrifugal contactor of a new type developed in Poland will be tested in the plant in the frame of a joint experiment between CNEN and the Polish AEC. Later on the plant program will include experimental campaign on fast reactor fuels; a detailed study on this program is in

  2. Reprocessing of nuclear fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.

    1986-01-01

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets

  3. Evironmental assessment factors relating to reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-05-01

    This document is in two parts. Part I presents the criteria and evaluation factors, based primarily on US experience, which may be used to carry out an environmental assessment of spent fuel reprocessing. The concept of As Low as is Reasonably Achievable (ALARA) is introduced in limiting radiation exposure. The factors influencing both occupational and general public radiation exposure are reviewed. Part II provides information on occupational and general public radiation exposure in relation to reprocessing taken from various sources including UNSCEAR and GESMO. Some information is provided in relation to potential accidents at reprocessing or MOX fuel refabrication plants. The magnitude of the services, energy, land use and non-radiological effluents for the reference design of reprocessing plant are also presented

  4. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  5. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  6. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R.; Harrison, R. [UKAEA, Nuclear Materials Control Dep., Dounreay (United Kingdom)

    1997-07-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  7. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    International Nuclear Information System (INIS)

    Barrett, T.R.; Harrison, R.

    1997-01-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  8. Reprocessing of MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Hough, N.

    1997-01-01

    UKAEA at Dounreay has been reprocessing MTR fuel for over 30 years. During that time considerable experience has been gained in the reprocessing of traditional HEU alloy fuel and more recently with dispersed fuel. Latterly a reprocessing route for silicide fuel has been demonstrated. Reprocessing of the fuel results in a recycled uranium product of either high or low enrichment and a liquid waste stream which is suitable for conditioning in a stable form for disposal. A plant to provide this conditioning, the Dounreay Cementation Plant is currently undergoing active commissioning. This paper details the plant at Dounreay involved in the reprocessing of MTR fuel and the treatment and conditioning of the liquid stream. (author)

  9. Application of probabilistic risk assessment to nuclear fuel reprocessing at the Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.

    1980-01-01

    The Savannah River Laboratory has developed an integrated risk assessment methodology that has been applied to systems in the nuclear fuel reprocessing facilities at the Savannah River Plant. The methodology can be applied to several types of design and operational problems. Basically, the analysis is subdivided into individual modules that can be either utilized separately or integrated into an overall risk analysis. Computer codes and computer data banks are utilized extensively to minimize the manual effort. The flow of information begins with a definition of the system to be analyzed followed by an evaluation of sources of fault information, storage of this information in data banks, design analysis and data treatment, risk calculations, and end product options

  10. Status of radioiodine control for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Burger, L.L.; Scheele, R.D.

    1983-07-01

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used

  11. Barnwell Nuclear Fuels Plant applicability study. Executive summary

    International Nuclear Information System (INIS)

    1978-04-01

    A study was conducted of the Barnwell Nuclear Fuels Plant in South Carolina to determine if that facility can be utilized in support of the nonproliferation objectives of the United States; and for activities contributing to the International Nuclear Fuel Cycle Evaluation to be carried out under contract at the Barnwell plant. One of the conclusions of this study is that there is nothing to support modification of the Presidential decision that the BNFP receive neither Federal encouragement nor funding for its completion on a reprocessing facility

  12. Experience in constructing a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    Towards the end of 1970, Japan Gasoline Co. Ltd. (JGC) and Saint-Gobain Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. The work executed by JGC in this project is reported and consisted of: (1) Procurement, inspection and schedule control of equipment and materials other than those imported from Europe; (2) Conclusion of contracts with various subcontractors relating to the building construction, piping and other work; and (3) Supervision of field work. The field work began in June 1971 and was completed in about 40 months. The overall field labour mobilized during that time totalled about 410,000 man-days, and 900,000 man-hours were spent by the JGC engineers. With the object of constructing a high-quality plant, JGC since 1969 has started to investigate subcontractors in Japan as well as undertaking the selection, education and training of prospective subcontractors. For the welding work in particular, techniques were imported from France and domestic techniques were developed at the same time. Completion of the blank tests was estimated to require 33 months, but the schedule was delayed about seven months for various reasons. Obviously there is room for many improvements when constructing future nuclear chemical plants. However, careful consideration should also be given from the basic design stage onward, to the methods and sequence of construction so that a simplified plan can be obtained from which the work could be easily executed without resorting to special technology. This would lead to reduction in construction time, and a safer and more reliable plant at lower cost. (author)

  13. Indian experience in fuel reprocessing

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1977-01-01

    Plant scale experience in fuel reprocessing in India was started with the successful design, execution and commissioning of the Trombay plant in 1964 to reprocess aluminium clad metallic uranium fuel from the 40 MWt research reactor. The plant has helped in generating expertise and trained manpower for future reprocessing plants. With the Trombay experience, a larger plant of capacity 100 tonnes U/year to reprocess spent oxide fuels from the Tarapur (BWR) and Rajasthan (PHWR) power reactors has been built at Tarapur which is undergoing precommissioning trial runs. Some of the details of this plant are dealt with in this paper. In view of the highly corrosive chemical attack the equipment and piping are subjected to in a fuel reprocessing plant, some of them require replacement during their service if the plant life has to be extended. This calls for extensive decontamination for bringing the radiation levels low enough to establish direct accesss to such equipment. For making modifications in the plant to extend its life and also to enable expansion of capacity, the Trombay plant has been successfully decontaminated and partially decommissioned. Some aspects of thi decontamination campaign are presented in this paper

  14. Fuel reprocessing/fabrication interface

    International Nuclear Information System (INIS)

    Benistan, G.; Blanchon, T.; Galimberti, M.; Mignot, E.

    1987-01-01

    EDF has conducted a major research, development and experimental programme concerning the recycling of plutonium and reprocessed uranium in pressurized water reactors, in collaboration with its major partners in the nuclear fuel cycle industry. Studies already conducted have demonstrated the technical and economic advantages of this recycling, as also its feasibility with due observance of the safety and reliability criteria constantly applied throughout the industrial development of the nuclear power sector in France. Data feedback from actual experience will make it possible to control the specific technical characteristics of MOX and reprocessed uranium fuels to a higher degree, as also management, viewed from the economic standpoint, of irradiated fuels and materials recovered from reprocessing. The next step will be to examine the reprocessing of MOX for reprocessed uranium fuels, either for secondary recycling in the PWR units, or, looking further ahead, in the fast breeders or later generation PWR units, after a storage period of a few years

  15. Predicting the behaviour or neptunium during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Drake, V.A.

    1988-01-01

    Behaviour of Np and its distribution over reprocessing flowsheet is studied due to the necessity of improvement of reprocessing methods of wastes formed during purex-process. Valency states of Np in solutions of reprocessing cycles, Np distribution in organic and acid phases, Np(5) oxidation by nitric acid at the stage of extraction, effect of U and Pu presence on Np behaviour, are considered. Calculation and experimental data are compared; the possibility of Np behaviour forecasting in the process of nuclear fuel reprocessing, provided initial data vay, is shown. 7 refs.; 4 figs.; 1 tab

  16. Electrochemical reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    A method is described for the reprocessing of irradiated nuclear fuel which is particularly suitable for use with fuel from fast reactors and has the advantage of being a dry process in which there is no danger of radiation damage to a solvent medium as in a wet process. It comprises the steps of dissolving the fuel in a salt melt under such conditions that uranium and plutonium therein are converted to sulphate form. The plutonium sulphate may then be thermally decomposed to PuO 2 and removed. The salt melt is then subjected to electrolysis conditions to achieve cathodic deposition of UO 2 (and possibly PuO 2 ). The salt melt can then be recycled or conditioned for final disposal. (author)

  17. Dynamic behaviour of solvent contactors in fuel reprocessing plants- an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Raju, R P; Siddiqui, H R [Nuclear Waste Management Group, Bhabha Atomic Research Centre, Mumbai (India); Murthy, K K; Kansra, V P [Fuel Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fuel reprocessing plants carry out separation of useful fissile and fertile materials from spent nuclear fuels by isolating highly radioactive fission products using solvent extraction method. In the fuel reprocessing step of nuclear fuel cycle, optimisation of process parameters in the PUREX flowsheet design is of great importance particularly on account of the need to realize high degree of recovery of fissile and fertile materials and to ensure proper control on concentrations of fissile element in process streams for avoidance of criticality. In counter-current solvent contactors of PUREX flowsheet there are a variety of processes conditions which may cause plutonium accumulations that requires attention to ascertain safe Pu concentrations within the contactors. A study was carried out using the PUREX process mathematical model Solvent Extraction Program Having Interacting Solutes (SEPHIS) for pulsed solvent contactors in PREFRE-1, Tarapur and PREFRE-2, Kalpakkam flowsheets for optimising the process parameters in plutonium purification cycles. The study was extended to predict the behaviour of contactors handling plutonium bearing solutions under certain anticipated deviations in the process parameters. Modifications wherever necessary were carried out to the original SEPHIS code. This paper discusses the results obtained during this analysis. (author). 2 figs., 2 tabs.

  18. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  19. Material control for a reprocessing plant

    International Nuclear Information System (INIS)

    Rundquist, D.; Bray, G.; Donelson, S.; Glancy, J.; Gozani, T.; Harris, L.; McNamera, R.; Pence, D.; Ringham, M.

    1976-01-01

    Adequate control of special nuclear material (SNM) implies a basic knowledge of the quantities of SNM processed through or contained within a fuels processing facility with sufficient accuracy that diversion of the SNM for deleterious purposes can be detected in a timely manner. This report to the Lawrence Livermore Laboratory (LLL) describes the primary process streams containing plutonium that are handled routinely within a spent fuel reprocessing plant and conversion facility. As an aid in implementing the objectives of the accountability system in a realistic situation, the Allied General Nuclear Services (AGNS) reprocessing plant now under construction near Barnwell, South Carolina, was chosen as the study model. The AGNS plant processes are discussed in detail emphasizing those portions of the process that contain significant quantities of plutonium. The unit processes within the separations plant, nitrate storage, plutonium product facility and the analytical laboratory are described with regard to the SNM control system currently planned for use in the facilities. A general discussion of laboratory techniques, nondestructive assay and process instrumentation for plutonium process and product material from a reprocessing plant is included. A comprehensive discussion is given of holdup measurements in plutonium recycle facilities. A brief preliminary overview is presented of alternative processing strategies for LWR fuel. An extensive review and summary of modeling efforts for liquid-liquid extraction cycles is included. A comprehensive bibliography of previous modeling efforts is covered

  20. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  1. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  2. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  3. Roles of programmable logic controllers in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Mishra, Hrishikesh; Balakrishnan, V.P.; Pandya, G.J.

    1999-01-01

    Fuel charging facility is another application of Programmable Logic Controllers (PLC) in fuel reprocessing plants, that involves automatic operation of fuel cask dolly, charging motor, pneumatic doors, clutches, clamps, stepper motors and rod pushers in a pre-determined sequence. Block diagram of ACF system is given for underlining the scope of control and interlocks requirements involved for automation of the fuel charging system has been provided for the purpose at KARP Plant, Kalpakkam

  4. THE ECONOMICS OF REPROCESSING vs. DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Bunn, Matthew; Fetter, Steve; Holdren, John P.; Zwaan, Bob van der

    2003-01-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices

  5. Occupational exposure at the nuclear fuel reprocessing plant at Sellafield in Cumbria

    International Nuclear Information System (INIS)

    Coyle, A.; Partington, C.

    1991-01-01

    The nuclear reprocessing plant at Sellafield employs approximately 6500 people in a wide range of activities involving radioactive materials. The exposure to personnel over the period 1978-1989 is reviewed. Information is presented on collective and average dose exposure which both show significant downward trends. The current annual collective dose for reprocessing operations is 21.4 man Sv and the average whole body exposure 3.7 mSv.y -1 , taking account of both internal and external exposure. The introduction of radiological design targets for new plants and the use of formal ALARP assessments on projects has contributed substantially to the observed reduction in dose uptake. Experience also indicates that significant dose reduction can be achieved by heightening the awareness of both managers and workers of the dose implications of their work and working methods. (author)

  6. Future of the reprocessing business at the RT-1 plant

    International Nuclear Information System (INIS)

    Bukharin, O.

    1995-01-01

    Economic viability of reprocessing operations at the RT-1 plant is provided by the contracts with nuclear utilities from Finland and Hungary. Finland will stop sending fuel to Mayak for reprocessing after 1996. Hungary will be capable to resolve the problem of spent fuel domestically some time in the future. This increases vulnerability of the reprocessing business at Mayak to future political uncertainties. (author)

  7. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  8. Mechanical and Instrumental Experiences from the Erection, Commissioning, and Operation of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels

    International Nuclear Information System (INIS)

    Joensson, K.

    1965-05-01

    A radio chemical pilot plant for the reprocessing of irradiated nuclear fuels has been built by AB Atomenergi at Kjeller in Norway. In the report a short description of the main equipment is given as well as of the procedure during the erection of the plant. Finally the results and experiences from the cold tests, tracer tests and active runs are indicated

  9. Mechanical and Instrumental Experiences from the Erection, Commissioning, and Operation of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, K

    1965-05-15

    A radio chemical pilot plant for the reprocessing of irradiated nuclear fuels has been built by AB Atomenergi at Kjeller in Norway. In the report a short description of the main equipment is given as well as of the procedure during the erection of the plant. Finally the results and experiences from the cold tests, tracer tests and active runs are indicated.

  10. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the European Community

    International Nuclear Information System (INIS)

    Luykx, F.; Fraser, G.

    1983-01-01

    The report covers operational nuclear power stations of capacity greater than 5C MWe and nucler fuel reprocessing plants in the European Community. Radioactive gaseous and liquid effluent discharges from these installations are given for the period 1976 to 1980, expressed both in absolute terms and normalized to net electricity production from the fuel. An assesssment is then made of exposure of members of the public consequent to the 1980 discharges. Where environmental contamination levels were detectable the results have been taken into account in the dose assessment; however, environmental contamination was in general below the limit of detection. In these circumstances the dose estimates rely entirely on theoretical models which frequently incorporate conservative assumptions; hence these estimates are likely to be greater than the doses actually received. The estimated exposures have then been compared with the dose limits set out in the Euratom Directive of 15th July, 1980. It is concluded that the exposure of members of the public always left an appreciable safety margin relative to the limits and indeed lay within the variations in exposure which result from natural background

  11. Requirements for near-real-time accounting of strategic nuclear materials in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dietz, R.J.; Shipley, J.P.; Smith, D.B.

    1978-01-01

    A Purex-based nuclear fuel reprocessing plant has been studied for possible incorporation of near-real-time accounting to supplement conventional accounting procedures. Near-real-time accounting of special nuclear materials relies on in-line or at-line flow measurements and plutonium assay of product and waste streams, complemented by conventional analytical chemistry for daily instrument calibrations. In-line alpha monitors could be used for waste stream measurements of plutonium, even in the presence of high beta-gamma fluxes from fission products. X-ray absorption edge densitometry using either K- or L-absorption edges could be used for plutonium concentration measurements in main product streams. Some problem areas identified in waste stream measurements include measurements of leached hulls and of centrifuge sludge. Conventional analytical chemical methods for measuring plutonium in weapons grade material can be modified for reprocessed plutonium. Analytical techniques requiring special precautions will be reviewed

  12. Technical aspects of fuel reprocessing

    International Nuclear Information System (INIS)

    Groenier, W.S.

    1982-02-01

    The purpose of this paper is to present a brief description of fuel reprocessing and some present developments which show the reliability of nuclear energy as a long-term supply. The following topics are discussed: technical reasons for reprocessing; economic reasons for reprocessing; past experience; justification for advanced reprocessing R and D; technical aspects of current reprocessing development. The present developments are mainly directed at the reprocessing of breeder reactor fuels but there are also many applications to light-water reactor fuel reprocessing. These new developments involve totally remote operation, and maintenance. To demonstrate this advanced reprocessing concept, pilot-scale demonstration facilities are planned with commercial application occurring sometime after the year 2000

  13. Filter safety tests under solvent fire in a cell of nuclear-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji

    1988-01-01

    In a nuclear-fuel reprocessing plant, a solvent fire in an extraction process is postulated. Since 1983, large scale solvent fire tests were carried out by Fire/Filter Facility to demonstrate solvent burning behavior in the cell, HEPA filter integrity by the fire and radioactive confinement by air-ventilation of the plant under postulated fire conditions. From results of 30 % TBP-70 % n-dodecane fire, burning rate of solvent in the cell, smoke generation rate and smoke deposition onto duct surface were obtained by a relation between air-ventilation rate into the cell and burning surface area of the solvent. The endurance of HEPA filter due to smoke plugging was measured by a pressure drop across the filter during the fire. The confinement of radioactive materials from the burning solvent was determined by the measurement of airborne concentrations in the cell for stable nuclei simulated fission products, radioactive tracers and uranium nitrate. (author)

  14. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  15. Design of vertical thermosiphon reboilers for operation under vacuum conditions application in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Moore, M.J.C.; Keys, M.H.; Plumb, G.R.

    1988-01-01

    Reprocessing of nuclear fuel requires concentration of uranium, plutonium and other active effluent streams at various stages for purification, storage or solidification. This is usually achieved by evaporation and in U.K. plant such processes are often carried out under reduced pressure. For high throughput streams, there are considerable advantages in using vertical thermosiphon systems for evaporation and for recovery of nitric acid. However, data for such systems at reduced pressure is limited and the development by John Brown E and C Ltd of a computer program for reliable prediction of thermosiphon performance was carried out on behalf of British Nuclear Fuels Plc using data from operating plant. (author)

  16. Contribution to the study of the degradation of the solvent used in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Goasmat, F.

    1984-01-01

    The degradation of a mixed solvent (tributylphosphate - hydrocarbons) in a fuel reprocessing plant (UP 2 at La Hague, France) is studied in this thesis. Laboratory studies on degradation mechanisms, decomposition products and regeneration processes are reviewed in a bibliographic synthesis. Solvent degradation is investigated on a real solvent from a reprocessing plant. Influence of degradation on solvent performance is shown and regeneration processes should be improved. Many regeneration processes are tested on solvent from the plant and results are discussed. Separation and analysis of degradation products show the polyfunctional structure of compounds formed [fr

  17. Fuel management for the Beznau nuclear power plant in Switzerland

    International Nuclear Information System (INIS)

    Clausen, A.

    1988-01-01

    The Beznau nuclear power plant consists of two 350 MW(e) PWRs of Westinghouse design. A number of special features characterize the nuclear industry in Switzerland: there is no fuel cycle industry; nuclear materials must be moved through several countries before they arrive in our country, it is therefore important that agreements are in place between those countries and Switzerland; nearly all of the materials and services required have to be paid in foreign currencies; the interest rate in Switzerland is traditionally low. Aspects of fuel management at the Beznau plant discussed against this background are: the procurement of natural uranium, its conversion and enrichment; fuel fabrication, in-core management, reprocessing and plutonium recycling; and fuel cycle costs. (author)

  18. Industrial experience of irradiated nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Delange, M.

    1981-01-01

    At the moment and during the next following years, France and La Hague plant particularly, own the greatest amount of industrial experience in the field of reprocessing, since this experience is referred to three types of reactors, either broadly spread all through the world (GCR and LWR) or ready to be greatly developed in the next future (FBR). Then, the description of processes and technologies used now in France, and the examination of the results obtained, on the production or on the security points of view, are a good approach of the actual industrial experience in the field of spent fuel reprocessing. (author)

  19. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  20. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  1. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  2. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  3. Outline of human machine interface at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Niioka, T.; Miyazaki, T.; Fujita, D.; Esashika, A.; Yoshida, Y.; Nakamura, W.; Tochigi, T.; Yoshimoto, A.; Yokoi, M.

    2006-01-01

    The Japan Nuclear Fuel Limited (JNFL) has been performing the active tests since the end of March, 2006, for its Rokkasho Reprocessing Plant using the spent fuels retrieved from the Light Water Reactors. At the early stage of the tests relatively low burn-up fuels have been used, and the burn-up will be increased at later stages until the start of commercial operation planned next year. The plant is operated from the main control room in the Control Building, where two types of operator consoles are located for plant monitoring and operation. The Operator Interface Station (OIS) driven by computer systems is chiefly used for instrumentation and control for production activities during normal operation. In addition to this, safety panels composed of hardware circuits are installed for nuclear safety functions such as criticality safety management, explosion protection, and confinement of radioactive materials. This paper outlines the Human Machine Interface features applied to the Rokkasho Reprocessing Plant. (authors)

  4. Seismic investigation of the Nuclear Fuel Services, Inc., Reprocessing Plant at West Valley, New York

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Bartholomew, R.J.; Bennett, J.G.; Brasier, R.I.; Corcoran, W.F.

    1978-03-01

    An investigation was undertaken to determine the earthquake level at which the Nuclear Fuel Service, Inc., Reprocessing Plant at West Valley, New York, could first experience a predefined structural failure. The effort was divided into tasks of evaluating soil-structure interaction, determining overall facility motion, and analyzing the substructures. The analysis included using two- and three-dimensional finite element computer codes. Shear wall failure, cell flexural failure (beam action), and foundation (pile) failure were identified as possible structural failure types. The cells that contain radioactive materials and that are required to confine such materials during an earthquake should remain intact up to 0.20 g's. At the same loading, the piles supporting the confinement cells could undergo displacements sufficient to cause fracture of piping between nonmonolithically connected cells

  5. Status of project design work for a German reprocessing plant

    International Nuclear Information System (INIS)

    Lang, K.; Zuehlke, P.

    1976-01-01

    A reprocessing plant will be built within the framework of a comprehensive waste management center planned by the Federal Government to treat the fuel elements unloaded from German nuclear power stations. On the basis of an annual throughput of 1,400 te of uranium averaged over the life of the plant, the center will be able to serve between 45,000 and 50,000 MWe of installed nuclear generating capacity. A comprehensive conceptual design study of the reprocessing plant to be built has been completed on the basis of the operating experience accumulated at the Karlsruhe reprocessing plant and the development work carried out by the Karlsruhe Nuclear Research Center and in the light also of an intensive exchange of experience with British and French reprocessing companies within the framework of United Reprocessors GmbH. This conceptual design study is the foundation for the preliminary project to be carried out on a collaborative basis by KEWA and PWK. (orig.) [de

  6. Decommissioning of nuclear facilities: COGEMA expertise devoted to UP1 reprocessing plant dismantling programme

    International Nuclear Information System (INIS)

    Gay, A.

    2001-01-01

    Over the last past decades, the French nuclear industry has acquired a great experience and know-how in the field of dismantling. Today this experience amounts to more than 200,000 hours. The fundamental aims within dismantling strategy are the same as for all nuclear facilities: minimising doses received by workers, minimising waste volume and adapting waste management to radioactivity levels, minimising costs. French experience is based on technologies which are currently used in nuclear maintenance facilities. Dismantling is a dynamic process especially in the field of decontamination (chemical and mechanical), cleaning, robotics and remote control operations. The strategy for the dismantling of former UP1 reprocessing plant is based on the feedback of experience gained through the dismantling of other facilities such as the AT1 workshop at La Hague. This workshop, a pilot plant for reprocessing of fast-breeder reactor fuels (Rapsodie and Phenix) has to be dismantled to IAEA level 3 (unrestricted site use), excluding civil works structures. Currently conducted by trained shifts, this dismantling project should end in 1999. The experience already acquired proves that chemical rinsings with the use of specific reagents is sufficient to decontaminate the hot cells and that the use of remote operations or robotics is not as important as previously envisaged. The UP1 reprocessing plant of Marcoule operated from 1958 to 1997. End of the operation was pronounced on the 31st of December 1997. 20,000 tons of spent fuels were reprocessed at UP1. The cleaning and dismantling operations at the Marcoule site depend upon the CEA, EDF and COGEMA. The Defence and Industry Ministries asked for a specific structure to be set up. An economic interest group called CODEM was created in May 1996. CODEM decides, finances and supervises dismantling operations, while respecting the constraints of nuclear safety, environmental protection and cost-effectiveness. The cleaning operations of

  7. Ministerial ordinance on the establishment of a reserve fund for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    1984-01-01

    The ministerial ordinance provides for a reserve fund for spent nuclear fuel reprocessing, according to the Electricity Enterprises Act. The Government designates an electricity enterprise that must deposit a reserve fund for spent nuclear fuel reprocessing. The electricity enterprise concerned must deposit a certain sum of money as a reserve fund which is the payment left over from spent fuel reprocessing at the end of a fiscal year minus the same at the end of the preceding year less a certain sum, when the former exceeds the latter. Then, concerning the remainder of the reserve fund in the preceding year, a certain sum must be subtracted from this reserve fund. (Mori, K.)

  8. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  9. Sector activities related to spent nuclear fuel in the spanish nuclear power plants; Actuaciones sectoriales en relaci@n con el combustible nuclear gastado en las centrales nucleares espa@olas.

    Energy Technology Data Exchange (ETDEWEB)

    Francia, L.

    2016-07-01

    Royal Decree 102/2014 of February 21 defines spent nuclear fuel as the irradiated nuclear fuel in the reactor core that is permanently removed from it. Spent nuclear fuel can be considered either as a usable resource that can be reprocessed, or else as a radioactive waste destined for final disposal. Likewise, spent nuclear fuel management refers to all the activities related to handling, temporary storage, reprocessing and final storage. The article presents all the plans and actions taken by the nuclear power plants, which can be divided into the following two categories: Actions taken by the plants themselves to not only maintain the fuel in stable, safe conditions, but also to characterize and process it for the subsequent management routes established by the current General Radioactive Waste Plan. Activities undertaken under the UNESA umbrella to help implement the above mentioned management routes.

  10. Safety problems in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Amaury, P.; Jouannaud, C.; Niezborala, F.

    1979-01-01

    The document first situates the reprocessing in the fuel cycle as a whole. It shows that a large reprocessing plant serves a significant number of reactors (50 for a plant of 1500 tonnes per annum). It then assesses the potential risks with respect to the environment as well as with respect to the operating personnel. The amounts of radioactive matter handled are very significant and their easily dispersible physical form represents very important risks. But the low potential energy likely to bring about this dispersion and the very severe and plentiful confinement arrangements are such that the radioactive risks are very small, both with respect to the environment and the operating personnel. The problems of the interventions for maintenance or repairs are mentioned. The intervention techniques in a radioactive environment are perfected, but they represent the main causes of operating personnel irradiation. The design principle applied in the new plants take this fact into account, involving a very significant effort to improve the reliability of the equipment and ensuring the provision of devices enabling the failing components to be replaced without causing irradiation of the personnel [fr

  11. Releases of radioiodine from the Karlsruhe nuclear fuel reprocessing plant as a result of spontaneous fission of actinides

    International Nuclear Information System (INIS)

    Schuettelkopf, H.

    1977-02-01

    Fro, 23,7,1976 to 28.7.76 and from 8.3.76 to 9.16.76 50 pCi 131 I/m 3 , 116 pCi 133 I/m 3 und 195 pCi 135 I/m 3 were measured on an average in 11 samples of waste air from the Karlsruhe Nuclear Fuel Reprocessing Plant (WAK). During these time intervals no dissolution of fuel material was performed. From 16.9.76 to 27.10.76 18 charges of nuclear fuel were dissolved. During this period 3.3 pCi 131 I/m 3 and 7.9 pCi 133 I/m 3 were obtained as mean waste air concentrations which were higher than the lower detection limit of the method of measurement used. 244 Cm, 242 Cm, 242 Pu, 240 Pu and 238 Pu are responsible for the production of radioiodine in nuclear fuel by spontaneous fission. 244 Cm is the most important nuclide in highly active waste solutions (HAL). The cumulative fission yield is well approximated by 3% for 13 I and by 6% for 133 I. The radioiodine is set free during fuel dissolution by venting of tanks and HAL pipes and during the vritification of such solutions. The radioiodine produced by spontaneous fission is released from WAK only by venting of tanks and HAL pipes. Corresponding to the conditions of venting, air concentrations as high as 4.4 pCi 131 I/m 3 and 8.2 pCi 133 I/m 3 are expected. These concentrations agree well with air concentrations measured during the period of fuel dissolution. Based on plausible assumptions the 131 I and 133 I waste air concentrations for the period of outage are calculated from an evaporated volume of HAL in the pipes corresponding to about 10 g of 244 Cm and with 40% equilibrium between I 2 in evaporated HAL and in waste air. In the worst case 131 I-concentrations in the waste air of WAK result in an annual release of 0.2 mCi 131 I. This value is less than 1% of the authorized annual releases of 1976. For a reprocessing plant of 1,400 t/a capacity the annual expected release of 131 I lies in the mCi range. (orig.) [de

  12. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications. This report provides an overview of the status of reprocessing technology and its future prospects in terms of various criteria in Section 2. Section 3 provides a review of emerging technologies which have been attracting the interest of Member States, especially in the international initiatives for future development of innovative nuclear systems. A historical review of IAEA activities associated with spent fuel reprocessing, traceable back to the mid-1970s, is provided in Section 4, and conclusions in Section 5. A list of references is provided at the end the main text for readers interested in further information on the related topics. Annex I summarizes the current status of reprocessing facilities around the world, including the civil operational statistics of Purex-based plants, progress with decommissioning and

  13. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  14. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options

  15. Direction of reprocessing technology development based on 30 years operation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nomura, S; Tanaka, T.; Ohshima, H.

    2006-01-01

    Full text: Full text: Recent global interest focuses the possibility of recycling of spent fuel with advanced fast reactor fuel cycle system. Goal of closed fuel cycle is to achieve the maximum use of uranium resources and minimum disposal of waste by multi recycle of TRU as a competitive nuclear energy system. The future reprocessing and fuel fabrication system should be synchronized completely with the advanced reactor system and waste treatment and disposal back-end system to complete closed fuel cycle. To realize such system, current reprocessing system should be changed to handle Pu-U-Minor Actinide with more reductions in the cost and less waste volume, as well as an inherent proliferation resistance. For the successful industrialization of advanced reprocessing technology, it is necessary to combine three key elements of R and D efforts, engineering base demonstration and experiences of plant operation. Tokai Reprocessing Facilities licensed a maximum capacity of 0.7tHM/day began a hot operation in 1977 and reprocessed l,100tHM U02 spent fuel and 20tHM ATR-MOX with a continuous technological improvements under IAEA full scope safeguards. With 30 years experience, candidate of key technologies proposed for realizing the next advanced reprocessing are as follows: 1) Simplified co-extraction process of Pu-Np-U by using multistage centrifugal extractors in stead of pulsed columns; 2) Corrosion free components in acid condition by using corrosion resistant refractory alloys and ceramics; 3) Co-conversion technology to MA containing MOX powder by micro-wave heating method for a short process for MA containing MOX pellets fabrication; 4) Advanced verification of high level radioactive liquid waste combining separation technology of TRU and LLFP elements; 5) Advanced chemical analysis and monitoring system for TRU elements in a plant. These advanced reprocessing technologies will be applied mainly to reprocess the LWR spent fuel accumulated past and future

  16. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  17. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  18. Cost probability analysis of reprocessing spent nuclear fuel in the US

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Deinert, M.R.

    2012-01-01

    The methods by which nuclear power's radioactive signature could be reduced typically require the reprocessing of spent nuclear fuel. However, economic assessments of the costs that are associated with doing this are subject to a high degree of uncertainty. We present a probabilistic analysis of the costs to build, operate and decommission the facilities that would be required to reprocess all US spent nuclear fuel generated over a one hundred year time frame, starting from a 2010 power production rate. The analysis suggests a total life-cycle cost of 2.11 ± 0.26 mills/kWh, with a 90% and 99% confidence that the overall cost would remain below 2.45 and 2.75 mills/kWh respectively. The most significant effects on cost come from the efficiency of the reactor fleet and the growth rate of nuclear power. The analysis shows that discounting results in life-cycle costs decreasing as recycling is delayed. However the costs to store spent fuel closely counter the effect of discounting when an intergenerational discount rate is used.

  19. Nuclear accountability data at the EUREX reprocessing plant

    International Nuclear Information System (INIS)

    Ilardi, S.; Pozzi, F.

    1976-01-01

    In the present work the physical inventory's and fissile material balance's data, which have been collected during the irradiated MTR fuel reprocessing campaign at the EUREX plant in Saluggia (VC), are reported, together with the most important procedures of fissile material accountability

  20. Safety-related concrete structure design and construction of Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Morishita, Hideki; Munakata, Yoshinari; Togashi, Akihito

    2003-01-01

    The Rokkasho Reprocessing Plant of the Japan Nuclear Fuel Co. Ltd., is a facility to reprocess remained uranium without firing and newly formed plutonium contained in spent fuels used at the nuclear power stations, to produce fuels to be repeatedly used. Constructions in this facility has some characteristics shown as follows: 1) radiation shielding and seismic isolated functions like those at the nuclear power plants, 2) reduction of wall thickness based on partially using heavy concrete at walls required for radiation shielding, 3) protective design against fly-coming matters such as aircrafts, 4) construction period reduction based on winter construction and large scale block engineering. Here were described characteristics of designs on radiation shielding, seismic isolated and fly-coming matters protection construction engineering and quality control on concrete. (G.K.)

  1. Nuclear fuel reprocessing: A time for decision

    International Nuclear Information System (INIS)

    O'Donnell, A.J.; Sandbery, R.O.

    1983-01-01

    Availability of adequate supplies of energy at an affordable cost is essential to continued growth of the world's economics. The tie between economic growth and electricity usage is particularly strong and the pervasive wordwide trend toward increasing electrification shows no signs of abating. Very few viable alternatives are available for supplying the projected increase in baseload electric generating capacity in the next several decades, and most industrialized nations have chosen nuclear power to play a major role. Sustained growth of nuclear power can only be achieved, however, by reprocessing spent fuel to recover and utilize the residual uranium and plutonium energy values

  2. Fuel reprocessing plant - no solution for the economy of the region

    International Nuclear Information System (INIS)

    Elvers, G.

    1986-01-01

    Both for the construction and operation stage, the direct and indirect impact of the fuel reprocessing plant on employment on the whole will be negative. It is not altogether certain either that there will be no adverse effects for the areas of tourism. The top organization of German trade unions (DGB) holds that a different structure-political concept from the one represented by the large-scale project of the fuel reprocessing plant would be more appropriate for the region. Employment in the steel and construction industries must be safeguarded by corresponding programmes, and new employment must be created in small- and medium-size companies. (DG) [de

  3. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  4. Fuel handling, reprocessing, and waste and related nuclear data aspects

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.; Wiese, H.W.

    1979-06-01

    The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uranium ores, enrichment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with respect to their potential operational impacts and long-term hazards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large PuO 2 content are described. The HTR fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. (orig.) [de

  5. Identification of potential safety-related incidents applicable to a breeder fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.

    1980-01-01

    The current emphasis on safety in all phases of the nuclear fuel cycle requires that safety features be identified and included in designs of nuclear facilities at the earliest possible stage. A popular method for the early identification of these safety features is the Preliminary Hazards Analysis. An extension of this analysis is to illustrate the nature of a hazard by its effects in accident situations, that is, to identify what are called safety-related incidents. Some useful tools are described which have been used at the Savannah River Laboratory, SRL, to make Preliminary Hazards Analyses as well as safety analyses of facilities for processing spent nuclear fuels from both power and production reactors. These tools have also been used in safety studies of waste handling operations at the Savannah River Plant. The tools are the SRL Incidents Data Bank and the What If meeting. The application of this methodology to a proposed facility which has breeder fuel reprocessing capability, the Hot Experimental Facility (HEF) is illustrated

  6. On permission of reprocessing project change at the Reprocessing Works of the Japan Nuclear Fuel Ltd. (Reply)

    International Nuclear Information System (INIS)

    1997-01-01

    The Nuclear Safety Commission replied as follows to the Prime Minister on July 14, 1997 on permission of reprocessing project change at the Reprocessing Works of the Japan Nuclear Fuel Ltd. inquired on Dec. 26, 1996. Contents of the inquiry consisted of change of refinery facility and its related instruments, integration of low level wasted liquid treating instrument and change of low level solid waste treating instrument, integration of high level wasted liquid storing building and high level wasted liquid glassification building, installation of used fuel transporting container maintenance instrument and its relating instruments, and so forth. As a result of careful discussion at the Commission for these items, they were admitted to be valid on her technical ability and her safety. (G.K.)

  7. Compilation of papers presented to the KTG conference on 'Advanced LWR fuel elements: Design, performance and reprocessing', 17-18 November 1988, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-05-01

    The two expert groups of the Nuclear Society (KTG), 'chemistry and waste disposal' and 'fuel elements' discussed interdisciplinary problems concerning the development and reprocessing of advanced fuel elements. The 10 lectures deal with waste disposal, mechanical layout, operating behaviour, operating experiences and new developments of fuel elements for water moderated reactors as well as operational experiences of the Karlsruhe reprocessing plant (WAK) with reprocessing of high burnup LWR and MOX fuel elements, the distribution of fission products, the condition of the fission products during dissolution and with the effects of the higher burnup of fuel elements on the PUREX process. (DG) [de

  8. Fallout of cesium-137 on a forest ecosystem in the vicinity of a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Adriano, D.C.; Hoyt, G.D.; Pinder, J.E. III

    1981-01-01

    Forest canopies intercepted airborne radionuclide-bearing particles released by a nuclear fuel reprocessing plant at the Savannah River Plant producing higher concentrations and accumulations of 137 Cs, 238 Pu and sup(239,240)Pu in the forest litter and mineral soil. This impact resulted in 137 Cs contents usually more than double that for the control samples not influenced by the plant release. The variations in accumulation and distribution patterns of 137 Cs, 238 Pu and sup(239,240)Pu were caused by the apparent greater mobility of 137 Cs in the soil profile and the time of deposition of the Pu isotopes. The use of 137 Cs as an environmental analog for Pu appears questionable as indicated by inconsistent relationships in samples between 137 Cs and 238 Pu or 137 Cs and sup(239,240)Pu. However, its use looks promising in situations elsewhere where erosional transport mechanism determines the mobility of these radionuclides. (author)

  9. Strontium-90 concentrations in pronghorn antelope bones near a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Markham, O.D.; Halford, D.K.

    1980-01-01

    Metacarpal bones were collected from pronghorn antelope near a nuclear fuel reprocessing plant and adjacent areas on the Idaho National Engineering Laboratory (INEL) Site in Southeastern Idaho. Control bones were collected from offsite animals at higher elevations. Average concentrations in metacarpals were 9.6+-2.8(SE) pCi/g(ash) within 10 km of the Idaho Chemical Processing Plant (ICPP), 4.0+-0.9pCi/g for animals on the remainder of the INEL Site and 5.5+-1.0pCi/g for control animals. ICPP atmospheric releases of 90 Sr appeared to have caused a significant (P 90 Sr concentrations in antelope bones within 10 km of the ICPP as compared to bones of other INEL antelope. However, the ICPP antelope bone 90 Sr concentrations were not statistically different from that occurring in bones of the control animals from higher elevations. Antelope near the ICPP received approximately double the radiation dose to bone compared to doses received by other INEL antelope as a result of 90 Sr in bone. Strontium-90 in bone from both fallout and ICPP sources resulted in an estimated average radiation dose of 40 mrad/yr to edosteal cells and 20 mrad/yr to active bone marrow. (author)

  10. Fuel reprocessing at a loss to prove its justification

    International Nuclear Information System (INIS)

    Traube, K.

    1986-01-01

    Commercial utilization of nuclear energy is possible with or without fuel reprocessing of spent fuel elements. Demands on terminal storage are about equal in both cases. There is no reason - excluding the military one - to decide in favour of fuel reprocessing instead of direct terminal storage, for neither does fuel reprocessing offer advantages in regard of the safety of nuclear waste disposal, nor is it necessary to produce plutonium for the breeder reactor. Fuel reprocessing is analyzed considering those changed aspects with a view to scarcer uranium resources, juridical motives, and what is termed the development deficit. (DG) [de

  11. Analysis and study of spent fuel reprocessing technology from birth to present

    International Nuclear Information System (INIS)

    Takahashi, Keizo

    2006-01-01

    As for the nuclear fuel reprocessing of the spent fuel, although there was argument of pros and cons, it was decided to start Rokkasho reprocessing project further at the Japan Atomic Energy Commission of ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' in year 2004. The operation of Tokai Reprocessing is going steadily to reprocess spent fuel more than 1,100 tons. In this paper, history, present status and future of reprocessing technology is discussed focusing from military Pu production, Magnox fuel reprocessing to oxide fuel reprocessing. Amount of reprocessed fuel are estimated based on fuel type. Then, history of reprocessing, US, UK, France, Germany, Russian, Belgian and Japan is presented and compared on technology, national character, development organization, environmental protection, and high active waste vitrification. Technical requirements are increased from Pu production fuel, Magnox fuel and oxide fuel mainly because of higher burnup. Reprocessing technology is synthetic of engineering and accumulation of operational experience. The lessons learned from the operational experience of the world will be helpful for establishment of nuclear fuel reprocessing technology in Japan. (author)

  12. The fuel reprocessing plant at Wackersdorf

    International Nuclear Information System (INIS)

    Held, M.

    1986-01-01

    For a more systematic discussion about the fuel reprocessing plant at Wackersdorf, the colloquium tried to cover the most important questions put forward in the controversies: economic efficiency and energy-political needs; safety and ecological repercussions; inner safety and consequences for basic rights and the regional economic structure; majority decisions and participation of the population of the region. Elements of evaluation are the conservation of resources, health, economic efficiency, and citizens' rights of liberty. The related basic ethical questions are considered. The 18 contributions are individually recorded in the data base. (DG) [de

  13. Nuclear fuel cycle: reprocessing. A bibliography

    International Nuclear Information System (INIS)

    Smith, L.B.

    1982-12-01

    This bibliography contains information on the reprocessing portion of the nuclear fuel cycle included in the Department of Energy's Energy Data Base from January 1981 through November 1982. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  14. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  15. Final report, Task 3: possible uses of the Nuclear Fuel Services, Inc. reprocessing plant at West Valley, New York

    International Nuclear Information System (INIS)

    1978-01-01

    The West Valley Plant could readily be used for work on reprocessing of alternative fuels, spiking, coprocessing (including CIVEX), waste solidification, and the recovery of radioactive gases. The plant could be easily modified for any scale between small-scale experimental work to production-scale demonstration, involving virtually any combination of fissile/fertile fuel materials that might be used in the future. The use of this plant for the contemplated experimental work would involve lower capital costs than the use of other facilities at DOE sites, except possibly for spiking of recovered products; the operating costs would be no greater than at other sites. The work on reprocessing of alternative fuels and coprocessing could commence within about one year; on recovery of radioactive gases, in 3 to 5 years; on spiking, in 4 years; and on waste solidification demonstration, in about 5 years. The contemplated work could be begun at this plant at least as early as at Barnwell, although work on spiking of recovered products could probably be started in existing hot cells earlier than at West Valley

  16. Turning point of U.S. government decision in US-Japan nuclear fuel reprocessing negotiation in 1977

    International Nuclear Information System (INIS)

    Izumi, Yoshinori

    2010-01-01

    U.S. President Carter's Nuclear Nonproliferation Policy, announced in April 1977, which terminated federal funding for reprocessing, was a shock to the Atomic Energy Authority of the Japanese Government that had promoted the construction of Tokai Reprocessing Plant (TRP). After that, it became necessary to negotiate the 'Joint Determination for the Effective Safeguardability of TRP' subject to the 1968 Agreement for cooperation between the Government of Japan and the Government of the United States of America concerning civil use of Atomic Energy. Negotiations for the 'Joint Determination for the Effective Safguardability of TRP' were conducted in the U.S.-Japan Nuclear Fuel Reprocessing Negotiation and Joint Field Work meetings from April to September 1977. Both governments agreed to the TRP operation's terms and conditions including 'Joint Determination for the Effective Safeguardability of TRP' in the third negotiation. In spite of the hard position on reprocessing stated in the Nuclear Nonproliferation Policy enacted by President Carter, these negotiations concluded accepting the operation of TRP with condition. In this paper, I will explore the reasons for the abovementioned political decision by the U.S. government based on its disclosure documents. (author)

  17. The use of neptunium-239 to assess neptunium distribution throughout a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.; Prentice, P.C.

    1989-08-01

    A radiometric technique has been devised to use the gamma emission from the neptunium-239 daughter of americium-243 to estimate neptunium distribution in a plant reprocessing irradiated plutonium based fuels. Three trials were undertaken with samples from the Prototype Fast Reactor at Dounreay. The trials have confirmed the previous chemical measurements and the usefulness of this technique to highlight the effect of altered flowsheet conditions. (author)

  18. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  19. Japanese national reference reprocessing plant

    International Nuclear Information System (INIS)

    1978-08-01

    This paper gives a general description of the proposed Japanese national reprocessing plant and of the design philosophy. The plant is in most respects similar to the base case reprocessing plant, with an annual throughput of 100-1500 tU. The plant would be co-located with a fuel fabrication facility

  20. Statement on the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1984-01-01

    Oak Ridge National Laboratory has chosen the following objectives for future reprocessing plant design: reduced radiation exposure to workers; minimal environmental impact; improved plant operation and maintenance; improved accountability; no plutonium diversion; and reduced overall capital and operating cost. These objectives lead to a plant with totally remote operation. The Breeder Reactor Engineering Test (BRET) has been designed to perform a key role in demonstrating advanced reprocessing technology. It has been scheduled to be available to reprocess spent fuel from the Fast Flux Test Facility. The principal features of the Consolidated Fuel Reprocessing Program and of the BRET facility are appropriate for all reactor types

  1. Release of radioactive materials in simulation test of a postulated solvent fire in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, G.; Hashimoto, K.

    1989-01-01

    This paper reports on small- and large-scale fire tests performed to examine the adequacy of a safety evaluation method for a solvent fire in the extraction process of a nuclear fuel reprocessing plant. The test objectives were to obtain information on the confinement of radioactive materials during a 30% tri-n-butyl phosphate-n-dodecane fire while air ventilation is operating in the cell. The rates of release of cesium, strontium, cerium, ruthenium, and uranium from a burning solvent were determined. The quantities of species released were obtained from the solvent burning rate, smoke generation rate, partition coefficients of species between solvent and water, and coefficients of species entrainment to atmosphere in cell

  2. Experience in the construction of a spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Yamashita, Hiroshi

    1976-01-01

    The construction and operation of a reprocessing plant was first published in 1956. The Reprocessing Expert Committee of AEC was established in 1959, and the preliminary design was finished in 1964 by NCP of Britain. The detailed design was completed in 1969 by SGN of France, and the training of operators was carried out in parallel with this in France. The results of the safety investigation was approved in Jan. 1970, and the construction was started in June 1971. The site of the reprocessing plant is the eastern part of the Tokai Establishment of PNC. The process adopted is the wet Purex process having been established in large practical plants. The treating capacity is 0.7 t/day. The main processes are acceptance and storage, mechanical treatment, and chemical treatment. The reprocessing facilities comprise the main shop, the analysis station, the main exhaust stack, the decontamination station, the solid waste store, the sea discharge pipe, and other incidental facilities. The construction works were about 7 months behind the schedule when the water flow test was finished. The chemical test was finished in March, 1975, and the uranium test is in progress since Sept., 1975. The problems for future are the developments of effective waste treatment and storing techniques, and the researches have been carried out by PNC. The construction project of the second plant is urgently required, since it takes 10 years from planning to operation. (Kako, I.)

  3. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  4. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  5. Processing of spent nuclear fuel from light water reactors

    International Nuclear Information System (INIS)

    Sraier, V.

    1978-11-01

    A comprehensive review is given of the reprocessing of spent nuclear fuel from LWR's (covering references up to No. 18 (1977) of INIS inclusively). Particular attention is devoted to waste processing, safety, and reprocessing plants. In the addendum, the present status is shown on the example of KEWA, the projected large German fuel reprocessing plant. (author)

  6. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  7. Development of a real-time detection strategy for process monitoring during nuclear fuel reprocessing using the UREX+3a method

    International Nuclear Information System (INIS)

    Goddard, Braden; Charlton, William S.; McDeavitt, Sean M.

    2010-01-01

    Research highlights: → HPGe detectors are suitable for UREX+3a real-time spectroscopy. → HPGe N-type detectors may be suitable for a reprocessing facility. → Gamma ray self-shielding does not occur for pipe diameters less than 2 in. - Abstract: Reprocessing nuclear fuel is becoming more viable in the United States due to the anticipated increase in construction of nuclear power plants, the growing stockpile of existing used nuclear fuel, and a public desire to reduce the amount of this fuel. A new reprocessing facility will likely have state of the art controls and monitoring methods to safeguard special nuclear materials, as well as to provide real-time monitoring for process control. The focus of this research was to create a proof of concept to enable the development of a detection strategy that uses well established gamma and neutron measurement methods to characterize samples from the Uranium Extraction Plus 3a (UREX+3a) reprocessing method using a variety of detector types and measurement times. A facility that implemented real-time gamma detection equipment could improve product quality control and provide additional benefits, such as waste volume reduction. In addition to the spectral analyses, it was determined by Monte Carlo N Particle (MCNP) simulations that there is no noticeable self-shielding for internal pipe diameters less than 5.08 cm, indicating that no self-shielding correction factors are needed. Further, it was determined that High Purity Germanium (HPGe) N-type detectors have the high gamma ray energy resolution and neutron damage resistance that would be required in a reprocessing facility. Finally, the gamma ray spectra for the measured samples were simulated using MCNP and then the model was extended to predict the responses from an actual reprocessing scenario from UREX+3a applied to fuel that had a decay time of 3 years. The 3-year decayed fuel was more representative of commercially reprocessed fuel than the acquired UREX+3a

  8. Corrosion resistance of Ultra-Low-Carbon 19% Cr-11% Ni stainless steel for nuclear fuel reprocessing plants in nitric acid

    International Nuclear Information System (INIS)

    Ariga, Tamako; Takagi, Yoshio; Inazumi, Toru; Masamura, Katsumi; Sukekawa, M.

    1995-01-01

    An Ultra-Low-Carbon 19% Cr-11% Ni Stainless Steels used in nuclear fuel reprocessing plants where highly corrosion resistance in nitric acid is required has been developed. This steel has optimized the chemistry composition to decrease inclusions and deformation-induced martensitic transformation. The formation of deformation-induced martensite has the potential danger of accelerating corrosion in nitric acid. In this paper, effects of cold reduction and martensitic transformation on corrosion resistance of Ultra-Low-Carbon Stainless Steels in nitric acid are discussed. The developed steel showed excellent corrosion resistance during long-term exposure to nitric acid. (author)

  9. Waste management in reprocessing plants

    International Nuclear Information System (INIS)

    Mortreuil, M.

    1982-01-01

    This lecture will give a survey of the French policy for the management of wastes in reprocessing plants. In consideration of their radioactivity, they must be immobilized in matrix in such a manner that they are stored under optimal safety conditions. A general review on the nature, nucleide content and quantity of the various wastes arising from thermal nuclear fuel reprocessing is given in the light of the French plants UP1 at Marcoule and UP2 at La Hague. The procedures of treatment of such wastes and their conditioning into inert packages suitable for temporary or terminal storage are presented, especially concerning the continuous vitrification process carried out for fission product solutions. The requirements of each option are discussed and possible alternative solutions are exposed. (orig./RW)

  10. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  11. Economic aspects of the development of nuclear power and fuel-cycle plants in the USSR

    International Nuclear Information System (INIS)

    Dergachev, N.P.; Kruglov, A.K.; Sedov, V.M.; Shuklin, S.V.

    1977-01-01

    Different possible versions of the construction programme for nuclear power stations and fuel-cycle plants in the USSR are discussed in relation to the target level of installed electrical capacity for 1980 and the predictions for the year 2000. The likely structure of the nuclear power industry is considered and the role of nuclear power stations with fast reactors is discussed, including their effect on the natural uranium supply situation. The effect of the development of fuel-cycle plants and of the organization of the reprocessing of fuel from nuclear power stations on the rate of introduction of fast reactor stations is analysed, and the effect of the technical and economic characteristics of fuel-cycle plants on the economic indices of nuclear power is studied. (author)

  12. Aspects of nuclear safety at power plants and fuel cycle plants in the USSR

    International Nuclear Information System (INIS)

    Kozlov, N.I.; Efimov, E.; Dubovskij, B.G.; Dikarev, V.; Lyubchenko, V.; Kruglov, A.K.

    1977-01-01

    The paper discusses the problems of organizing inspection monitoring of power plants including the development of some regulations and norms and the interaction between the USSR State Nuclear Safety Organization, scientific and designing organizations and power plants. The principles of computer use to work out advice for operational staff and warning signals and commands for the reactor control and protection system are discussed. Some attention is turned to the importance of using high-speed computers to calculate prompt reactivity values and to determine impurity concentrations in the coolant and margins to permissible operational limits. In particular, reactimeters are considered as signal generators in monitor and protection systems. Some problems of nuclear safety inspection, the issue and inculcation of some regulations and operational documents on nuclear safety, and instrumentation of plants reprocessing or processing fuel elements are presented. Methods of determining the critical parameters of technological units are described, together with the fundamental principles of fuel cycle plant nuclear safety, providing margin coefficients, accounting for deviations from the normal operational process and other problems, as well as methods of keeping the restrictions on nuclear safety requirements at fuel cycle plants. (author)

  13. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  14. Hybrid KED/XRF measurement of minor actinides in reprocessing plants

    International Nuclear Information System (INIS)

    Hsue, S.T.; Collins, M.L.

    1996-01-01

    Minor actinides have received considerable attention recently in the nuclear power industry. Because of their potential value as recycle fuels in thermal and breeder reactors, reprocessing plants may have an economic incentive to extract Np, Am, and Cm from their waste streams. This report discusses the technique of hybrid densitometry and its potential to measure Np and Am in reprocessing plants. Precision estimates are made for the hybrid analysis of Np and Am in two types of dissolver solutions

  15. Dose evaluation model for radionuclides released from the spent nuclear fuel reprocessing plant in Rokkasho

    International Nuclear Information System (INIS)

    Hisamatsu, Shun'ichi; Iyogi, Takashi; Inaba, Jiro; Chiang, Jing-Hsien; Suwa, Hiroji; Koide, Mitsuo

    2007-01-01

    A dose evaluation model was developed for radionuclides released from the spent nuclear fuel reprocessing plant which is located in Rokkasho, Aomori Prefecture, and now undergoing test operation. The dose evaluation model suitable for medium- and long-term dose assessments for both prolonged and short-term releases of radionuclides to the atmosphere was developed on the PC. The ARAC-2, a particle tracing type dispersion model coupled with 3-D wind field calculation by a mass conservative model, was adopted as the atmospheric dispersion model. The terrestrial transfer model included movement in soil and groundwater as well as an agricultural and livestock farming system. The available site-specific social and environmental characteristics were incorporated in the model. Growing of the crops was also introduced and radionuclides absorbed were calculated from weight increase from the start of deposition to harvest, and transfer factors. Most of the computer code system of the models was completed by 2005, and this paper reports the results of the development. (author)

  16. Safeguarding a future industrial reprocessing plant

    International Nuclear Information System (INIS)

    1978-11-01

    This paper is submitted to Working Group 5, Sub-Group B for information. It is being submitted to Working Group 4 for discussion at their meeting in January 1979 and shows that by a combination of accountancy, surveillance and containment a reliable safeguards system can be designed for the reprocessing of fuels of the BWR and PWR type. Its arguments can, in general terms, be applied to plants for reprocessing LMFBR fuels, with due allowance for future advances which should improve our overall knowledge of the reliability of safeguards systems. In the reprocessing of fast reactor (LMFBR) fuels, as compared with LWR fuels, the main differences are the higher plutonium concentration and lower heavy metal throughput in the early stages of the reprocessing operations. At later stages in the process (after plutonium/uranium separation) the plants could be similar and have similar safeguarding problems. Plants for reprocessing LMFBR on a commercial scale will not be in operation for a number of years. In these plants greater attention may have to be paid to safeguards at the early stages, especially to waste/raffinate streams, than in the PWR/BWR reprocessing plant. The actual balance between containment, surveillance and accountancy adopted will depend on the status of the technology of safeguards and reprocessing. It can be anticipated that improvements to measurement systems will be made which may allow greater reliance on actual measurement. Treatment and recycle of solid wastes will advance and could therefore lead to improvements in accountancy in, for example, the ''head-end''

  17. Energies and media nr 30. Conditions for the nuclear sector. The fuel cycle and wastes. The usefulness of fuel reprocessing. Wastes

    International Nuclear Information System (INIS)

    2009-10-01

    After some comments on recent events in the nuclear sector in different countries (energy policy and projects in the USA, Europe, China, India, Russia), this issue proposes some explanations on the nuclear fuel cycle and on nuclear wastes: involved processes and products from mining to reprocessing and recycling, usefulness of reprocessing (future opportunities of fast neutron reactors, present usefulness of reprocessing with the recycling of separated fissile materials), impact of reprocessing on the environment in La Hague (gas and liquid releases, release standard definition), and the destiny of wastes

  18. Fuel cycle of nuclear power plants and safeguards system of nuclear weapon nonproliferation

    International Nuclear Information System (INIS)

    Malek, Z.

    1980-10-01

    The international safeguard system of nuclear weapon nonproliferation and the IAEA safeguard system are briefly described. In Czechoslovakia, a decree was issued in 1977 governing the accounting for and control of nuclear materials. The contents of the decree are presented. Described are computer processing of accounting data, technical criteria for the safeguard system application, containment and inspection in the IAEA safeguard system. The method is shown of the control of and accounting for nuclear materials in nuclear power plants and in fuel manufacturing, reprocessing and enrichment plants. Nondestructive and destructive methods of nuclear materials analysis are discussed. Nondestructive methods used include gamma spectrometry, neutron techniques, X-ray fluores--cence techniques. (J.P.)

  19. A comprehensive fuel nuclide analysis at the reprocessing plant

    International Nuclear Information System (INIS)

    Arenz, H.J.; Koch, L.

    1983-01-01

    The composition of spent fuel can be determined by various methods. They rely partially on different information. Therefore the synopsis of the results of all methods permits a detection of systematic errors and their explanation. Methods for determining the masses of fuel nuclides at the reprocessing input point range from pure calculations (shipper data) to mere experimental determinations (volumetric analysis). In between, a mix of ''fresh'' experimental results and ''historical'' data is used to establish a material balance. Deviations in the results obtained by the individual methods can be attributed to the information source, which is unique for the method in question. The methodology of the approach consists of three steps: by paired comparison of the operator analysis (usually volumetric or gravimetric) with remeasurements the error components are determined on a batch-by-batch basis. Using the isotope correlation technique the operator data as well as the remeasurements are checked on an inter-batch basis for outliers, precision and bias. Systematic errors can be uncovered by inter-lab comparison of remeasurements and confirmed by using historical information. Experience collected during the reprocessing of LWR fuel at two reprocessing plants prove the flexibility and effectiveness of this approach. An example is presented to demonstrate its capability in detecting outliers and determining systematic errors. (author)

  20. Studies and research concerning BNFP: evaluation of spent-fuel-examination techniques for the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Gray, J.H.; Rogell, M.L.

    1982-09-01

    A study was made of various examinations which could be remotely performed on a production basis with spent fuel at the Barnwell Nuclear Fuel Plant (BNFP). These techniques could form an integral portion of fuel disassembly and canning operations. Their benefits accrue to either improved fuel storage, reprocessing, or both. In conjunctoin with these studies, evaluations have been made of the operational impact of receiving failed or canned fuel at the BNFP

  1. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  2. Steel construction in the nuclear reprocessing industry

    International Nuclear Information System (INIS)

    Jordan, G.W.

    1990-01-01

    Over the past decade British Nuclear Fuels plc (BNFL) has pursued a large capital expenditure programme at Sellafield in Cumbria. This has used large quantities of structural steelwork. For example, Thorp plant for reprocessing spend AGR and LWR fuels, due for completion in 1992, has 20,000 tonnes. The design of these plants has been entrusted to BNFL Engineering based at Risley near Warrington, England. These safety-related structures are designed, as required by the Nuclear Installations Inspectorate, to withstand the effects of environmental hazards such as extremes of earthquake, wind, temperature, ice, snow, flooding, and lightning strikes. In some cases they may be subjected to impact loading from possible mishandling of lifted loads such as fuel transportation flasks. Design criteria for these structures have been developed by BNFL Engineering. Some examples are mentioned. (author)

  3. An analysis of development and research on spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Borges Silverio, Leticia; Queiroz Lamas, Wendell de

    2011-01-01

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated.

  4. An analysis of development and research on spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Borges Silverio, Leticia; Lamas, Wendell de Queiroz [University of Taubate, Postgraduate Programme in Mechanical Engineering, Rua Daniel Danelli, s/n, Jd. Morumbi, Taubate, SP 12060-440 (Brazil)

    2011-01-15

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated. (author)

  5. Operating experience in reprocessing

    International Nuclear Information System (INIS)

    Schueller, W.

    1983-01-01

    Since 1953, reprocessing has accumulated 180 years of operating experience in ten plants, six of them with 41 years of operation in reprocessing oxide fuel from light water reactors. After abortive, premature attempts at what is called commercial reprocessing, which had been oriented towards the market value of recoverable uranium and plutonium, non-military reprocessing technologies have proved their technical feasibility, since 1966 on a pilot scale and since 1976 on an industrial scale. Reprocessing experience obtained on uranium metal fuel with low and medium burnups can now certainly be extrapolated to oxide fuel with high burnup and from pilot plants to industrial scale plants using the same technologies. The perspectives of waste management of the nuclear power plants operated in the Federal Republic of Germany should be viewed realistically. The technical problems still to be solved are in a balanced relationship to the benefit arising to the national economy out of nuclear power generation and can be solved in time, provided there are clearcut political boundary conditions. (orig.) [de

  6. A review of reprocessing, partitioning, and transmutation of spent nuclear fuel and the implications for Canada

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2006-01-01

    The current status of the reprocessing, partitioning, and transmutation of used nuclear fuel are reviewed in the context of assessing the possible application of these technologies to used CANDU fuel. The status of commercial reprocessing is briefly surveyed and recent progress in world R and D programs on the transmutation of FP's and actinides using Accelerator Driven Systems is summarized. The implications of reprocessing for Canada are explored from the point of view of a long strategy for managing used CANDU fuel in terms of the costs of initiating reprocessing domestically at some time in the future including public and occupational radiation doses, and the wastes generated. (author)

  7. Reprocessing of nuclear fuels - status report

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The paper gives a survey on reprocessing plants at present under construction, in operation, and planned, as well as on the most important process steps such as receipt, storage, conversion, the extraction process, purification of the end products, gaseous waste treatment and waste treatment, and repair and maintenance of reprocessing plants. An outline on operational experience with WAK follows. (HR/LN) [de

  8. Reprocessing of irradiated fuel: pros and cons

    International Nuclear Information System (INIS)

    Lebedev, O.G.; Novikov, V.M.

    1991-01-01

    The acceptable-safety nuclear reactors (APWR, LMFBR, MSBR, MSCR) can be provided by the enrichment industry and by plutonium reserves. But steady accumulation of spent fuel will inevitably make to return to the problems of fuel recycle. PUREX-processing increases a danger of radionuclides spreading due to the presence of large buffer tanks. Using of compact fluoride - volatility process will sharply reduce a nuclide leakage likewise permit to reprocess a fuel with a burnup as high as possible. Success of a powerful robots development give an opportunity to design a fluoride-volatility plant twice cheaper than PUREX. (author)

  9. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  10. Some technical aspects of the nuclear material accounting and control at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, O.A.; Babaev, N.S.; Gryazev, V.M.; Gadzhiev, G.I.; Gabeskiriya, V.Ya.

    1977-01-01

    The possibilities of nuclear material accounting and control are discussed at nuclear facilities of fuel cycle (WWER-type reactor, fuel fabrication plant, reprocessing plant and uranium enrichment facility) and zero energy fast reactor facility. It is shown that for nuclear material control the main method is the accounting with the application isotopic correlations at the reprocessing plant and enrichment facility. Possibilities and limitations of the application of destructive and non-destructive methods are discussed for nuclear material determinations at fuel facilities and their role in the accounting and safeguards systems as well as possibilities of the application of neutron method at a zero energy fast reactor facility [ru

  11. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is stipulated under the provisions of reprocessing business in the law concerning regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and to execute them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, security area, surrounding monitoring area, worker, radioactive waste and facility for discharging into the sea. The application for the designation for reprocessing business under the law shall include the maximum reprocessing capacities per day and per year of each kind of spent fuel, to be reprocessed and the location, structure and equipment of reprocessing facilities as specified in the regulation. Records shall be made in each works or enterprise on the inspection, operation and maintenance of reprocessing facilities, radiation control, accidents and weather, and kept for particular periods respectively. Reprocessing enterprisers shall set up control area, security area and surrounding monitoring area to restrict entrance, etc. Specified measures shall be taken by these enterprisers concerning the exposure radiation doses of workers. Reprocessing facilities shall be inspected and examined more than once a day. The regular self-inspection and operation of reprocessing facilities, the transport and storage of nuclear fuel materials, the disposal of radioactive wastes in works or enterprises where reprocessing facilities are located, and security rules are defined in detail, respectively. (Okada, K.)

  12. Standard model for the safety analysis report of nuclear fuel reprocessing plants; Modelo padrao para relatorio de analise de seguranca de usinas de reprocessamento de combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-02-15

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization.

  13. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  14. Guide to the selection, training, and licensing or certification of reprocessing plant operators. Volume I

    International Nuclear Information System (INIS)

    1976-06-01

    The Code of Federal Regulations, Title 10, Part 55, establishes procedures and criteria for the licensing of operators, including senior operators, in ''Production and Utilization Facilities'', which includes plants for reprocessing irradiated fuel. A training guide is presented which will facilitate the licensing of operators for nuclear reprocessing plants by offering generalized descriptions of the basic principles (theory) and the unit operations (mechanics) employed in reprocessing spent fuels. In the present volume, details about the portions of a training program that are of major interest to management are presented

  15. Guide to the selection, training, and licensing or certification of reprocessing plant operators. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-06-01

    The Code of Federal Regulations, Title 10, Part 55, establishes procedures and criteria for the licensing of operators, including senior operators, in ''Production and Utilization Facilities'', which includes plants for reprocessing irradiated fuel. A training guide is presented which will facilitate the licensing of operators for nuclear reprocessing plants by offering generalized descriptions of the basic principles (theory) and the unit operations (mechanics) employed in reprocessing spent fuels. In the present volume, details about the portions of a training program that are of major interest to management are presented. (JSR)

  16. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  17. Spent nuclear fuel reprocessing and international law. Germany's obligations under international law in matters of spent fuel reprocessing and the relevant contracts concluded with France and the United Kingdom

    International Nuclear Information System (INIS)

    Heintschel v Heinegg, W.

    1999-01-01

    The review presented is an excerpt from an expert opinion written by the author in December last year, in response to changes in nuclear energy policy announced by the new German government. The reprocessing of spent nuclear fuels from German power reactors in the reprocessing facilities of France (La Hague) and the UK (Sellafield) is not only based on contracts concluded by the German electric utilities and the French COGEMA or the British BNFL, but has been agreed as well by an exchange of diplomatic notes between the French Ministry of Foreign Affairs and the German ambassador in Paris, the German Foreign Ministry and the French ambassador as well as the British ambassador in Bonn. The article therefore first examines from the angle of international law the legal obligations binding the states involved, and Germany in particular, in matters of spent fuel reprocessing contracts. The next question arising in this context and discussed by the article is that of whether and how much indemnification can be demanded by the reprocessing companies, or their governments, resp., if Germany should discontinue spent fuel reprocessing and thus might be made liable for breach of the bilateral agreements. (orig/CB) [de

  18. Prospect of spent fuel reprocessing and back-end cycling in China in 1990's

    International Nuclear Information System (INIS)

    Ke Youzhi; Wang Rengtao

    1987-01-01

    According to the CHinese Program of nuclear energy in 1990's, the amount of spent fuel by the year 2000 is estimated in this paper. Reprocessing is considered as an important link in the back-end fuel cycle. A pilot plant is scheduled for hot start up in 1996. The main goal of the study is LWR spent fuel reprocessing. We will use the experience gained from reprocessing of production reactor fuel and last research results. The advanced foreign technigue and experience will be introduced. The study emphasizes on the test of technology, equipments, instrumentation and automation, development of remote maintenance and decontamination. China will start to demonstrate the way for fuel cycle. (author)

  19. Review of experience with plutonium exposure assessment methodologies at the nuclear fuel reprocessing site of British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Strong, R.

    1988-01-01

    British Nuclear Fuels plc and its predecessors have provided a complete range of nuclear fuel services to utilities in the UK and elsewhere for more than 30 years. Over 30,000 ton of Magnox and Oxide fuel have been reprocessed at Sellafield. During this time substantial experience has accumulated of methodologies for the assessment of exposure to actinides, mainly isotopes of plutonium. For most of the period monitoring of personnel included assessment of systemic uptake deduced from plutonium-in-urine results. The purpose of the paper is to present some conclusions of contemporary work in this area

  20. Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal

    International Nuclear Information System (INIS)

    1993-10-01

    The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that open-quotes Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.close quotes This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity

  1. Reprocessing decision

    International Nuclear Information System (INIS)

    Heising, C.D.

    1978-01-01

    The United States must decide whether to permit, delay, or prohibit the reprocessing and recycling of nuclear spent fuel. To permit reprocessing would allow recycle as early as 1985; to delay the decision for a later administration to deal with means spent fuel would mount up at nuclear reactor sites; to prohibit would eliminate recycling and mandate permanent storage. Bayesian decision analysis was used to examine reprocessing costs associated with risks and economic benefits. Three distinct categories of risk that are important in the nuclear fuel cycle are discussed. These are: health, environment, and safety risks; nuclear theft and sabotage; and nuclear weapons proliferation risks. Results are discussed from comparing nine routes to weapons-usuable mterial available to nonweapons states that desire a nuclear capability. These are: production reactor and military reporcessor; research reacotr and military reprocessor; power plant plus military reprocessor or commercial reprocessor; enrichment (centrifuge, gaseous diffusion, electromagnetic separation, or aerodynamic jet cascade); and accelerator. It was found that the commercial power reactor-commercial reprocessor route is comparatively unattractive to a nonweapons state. In summary, allowing nuclear fuel reprocessing to go forward in the United States can be expected to increase the costs to society by a maximum $360 million a year. This is approximately one-seventh of the expected benefit (reduced electricity bills) to be dderived by society from closing the fuel cycle. It appears that the permitting reprocessing now is logically preferable to delaying or prohibiting the technology, the author concludes

  2. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  3. Methodology for evaluation of alternative technologies applied to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Selvaduray, G.S.; Goldstein, M.K.; Anderson, R.N.

    1977-07-01

    An analytic methodology has been developed to compare the performance of various nuclear fuel reprocessing techniques for advanced fuel cycle applications including low proliferation risk systems. The need to identify and to compare those processes, which have the versatility to handle the variety of fuel types expected to be in use in the next century, is becoming increasingly imperative. This methodology allows processes in any stage of development to be compared and to assess the effect of changing external conditions on the process

  4. Advance purex process for the new reprocessing plants in France and in Japan

    International Nuclear Information System (INIS)

    Viala, M.

    1991-01-01

    In the early Eighties, Japanese utilities formed the Japan Nuclear Fuel Service Co (JNFS), which is in charge of the construction and the operation of the first commercial reprocessing plant in Japan to be erected in Rokkasho Village, Aomori Prefecture. Following a thorough worldwide examination of available processes and technologies, JNFS selected the French technology developed for UP3 and UP2 800 for the plants' main facilities. For these three new plants, the 40-year old PUREX process which is used worldwide for spent fuel reprocessing, has been significantly improved. This paper describes some of the innovative features of the selected processes

  5. Discharges from a fast reactor reprocessing plant

    International Nuclear Information System (INIS)

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  6. On-line control of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Parus, I.; Kierzek, J.; Zoltowski, T.

    1977-01-01

    The development trends in the field of chemical processes control and the present state of the development of continuous composition analysers has been described. On this background the peculiarities of on-line control methods for spent nuclear fuel reprocessing have been discussed. The measuring methods for direct and indirect determination of chemical composition and nuclear safety are reviewed in detail. The review comprises such methods as: measurement of α, γ and neutron radiation emitted both by nuclides present in technological solutions and using external sources of different radiation, X-ray fluorescence, measurements of physicochemical parameters connected with the composition (pH, density, electrical conductivity), polarography and spectrophotometry. At the end of this review some new trends in process control based on dynamic process models have been presented. (author)

  7. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  8. Coordinated safeguards for materials management in a fuel reprocessing plant. Volume I

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.; Augustson, R.H.; Barnes, J.W.

    1977-09-01

    A materials management system is described for safeguarding special nuclear materials in a fuel-reprocessing plant. Recently developed nondestructive-analysis techniques and process-monitoring devices are combined with conventional chemical analyses and process-control instrumentation for improved materials accounting data. Unit-process accounting based on dynamic material balances permits localization of diversion in time and space, and the application of advanced statistical methods supported by decision-analysis theory ensures optimum use of accounting information for detecting diversion. This coordinated safeguards system provides maximum effectiveness consistent with modest cost and minimum process interference. Modeling and simulation techniques are used to evaluate the sensitivity of the system to single and multiple thefts and to compare various safeguards options. The study identifies design criteria that would improve the safeguardability of future plants

  9. Experience and prospects in reprocessing

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1997-01-01

    Reprocessing nuclear fuels is a long and successful industrial story. For decades, commercial reprocessing plants have been operating in France, the United Kingdom and Japan. The industrial outcome is clear and widely recognized: thousand tons of spent fuels have been reprocessed in these plants. Over the years, these facilities have been adapted to new types of fuel. Thus, the nuclear industry has fully demonstrated its ability to cope with technological change and its capacity to adapt itself to improvements. For decades, technical capability has been stressed and emphasized by nuclear industrial leaders as the most important point. This is no longer the case. Today the industry has to face a new commercial reality and to find the most adaptable answer to the utilities' requirements. This paper presents the current achievements and medium and long-term trends of the nuclear reprocessing activity, the ongoing commercial changes and gives an outlook for future evolutions. International political factors will also be examined. (author)

  10. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  11. New long-term plan of nuclear development and perspectives of nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    2005-01-01

    Japan's nuclear fuel cycle policy, recently issued as an interim report of the Council to Formulate the New Long-Term Nuclear Program of the Atomic Energy Commission, is summarized and briefly explained together with the concluding remarks from the sub-committee for discussing technical and economical problems on the spent nuclear fuels with the present state of the Rokkasho reprocessing plant in mind. As for the nuclear fuel treatment, the panel considered four scenarios: (1) total reprocessing (the reprocessing for spent fuel after an appropriate period of storage); (2) partial reprocessing (spent fuel is reprocessed, with direct disposal of any spent fuel in excess of reprocessing capacity); (3) total direct disposal (direct disposal of all spent fuel); and (4) temporary storage (spent fuel is temporarily stored, and in about 2060 a choice will be made about whether to reprocess it or directly dispose of it). These four scenarios were studied from various perspectives, namely: (1) ensuring safety; (2) energy security; (3) environmental compatibility; (4) economic efficiency; (5) nuclear nonproliferation; (6) technical feasibility; (7) social acceptance; (8) securing choices; (9) issues concerning change in policy; and (10) overseas trends. Regarding economic efficiency, the council in particular conducted detailed studies and reassessment of nuclear fuel cycle costs. Scenario 1 (total reprocessing) is about 0.5-0.7 yen/kWh higher than scenario 3 (total direct disposal). However, looking at the situation from the perspectives of energy security, that is the stable supply and moderate use of resources, and environmental compatibility, scenario 1 (total reprocessing) can be evaluated as superior to the other scenarios. And more importantly, if the fast-breeder reactor cycle is commercialized, this superiority increases considerably. (S. Ohno)

  12. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Science.gov (United States)

    2010-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  13. Recent prospects of MOX fuel and strategy about nuclear fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1991-04-01

    It is clearly described what is the preliminary adequate strategic concern for different nuclear power countries under different nuclear power development conditions. It is also stressed on the basic situation of the design technology, manufacture technology, operation experiences and quantitative economic analysis for MOX fuel application since fast breed reactor commercialization has been delayed. The author specially proposed that in a short term China should adopt an intermediate storage strategy matched with the construction of a pilot reprocessing plant to prepare the technical basis for commercialized reprocessing plant later on and to follow the development of MOX fuel technology

  14. Chemical engineering in fuel reprocessing. The French experience

    International Nuclear Information System (INIS)

    Viala, M.; Sombret, C.; Bernard, C.; Miquel, P.; Moulin, J.P.

    1992-01-01

    Reprocessing is the back-end of the nuclear fuel cycle, designed to recover valuable fissile materials, especially plutonium, and to condition safely all the wastes ready for disposal. For its new commercial reprocessing plants (UP 3 and UP 2 800) COGEMA decided to include many engineering innovations as well as new processes and key-components developed by CEA. UP 3 is a complete new plant with a capacity of 800 t/y which was put in operation in August 1990. UP 2 800 is an extension of the existing UP 2 facility, designed to achieve the same annual capacity of 800 t/y, to be put in operation at the end of 1993 by the commissioning of a new head-end and highly active chemical process facilities

  15. Policy in France regarding the back-end of the fuel cycle reprocessing/recycling route

    International Nuclear Information System (INIS)

    Gloaguen, A.; Lenail, B.

    1991-01-01

    The decision taken in early 1970s to base the French power policy on the use of pressurized water reactors also included the strategy for the back end of the nuclear fuel cycle based on reprocessing, waste conditioning for the final disposal in the most suitable form in terms of safety and plutonium recycling to fast breeder reactors. Twenty years have elapsed, and substantial development and investment have been made. New evidences have emerged especially regarding breeder development, and the initial choice has been proved to be sound. EDF and COGEMA, the French utility and fuel cycle companies, respectively, are working together in order to take the best advantage of past efforts. The good behavior of MOX fuel in EDF reactors and the excellent start of the UP3 reprocessing plant of La Hague, which was completed and commissioned in August, 1990, made EDF and COGEMA extremely confident for future decision. The French choice made in favor of fuel reprocessing the history of fuel reprocessing in France, the policy concerning the back end of nuclear fuel cycle of EDF, and the present consideration and circumstances on this matter are reported. (K.I.)

  16. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  17. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  18. Implications of ICPR 60 for nuclear fuel reprocessing in france

    International Nuclear Information System (INIS)

    Mathieu, P.

    1992-01-01

    The ICRP 60 publication intends to guide the regulatory agencies on the main rules and principle of protection. The text contains recommendations for practices and for emergencies. The following report intends to develop the possible consequences of the publication for the reprocessing of spent fuel as managed by COGEMA in the plants of La Hague and Marcoule. (author)

  19. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    International Nuclear Information System (INIS)

    Cottrell, J.E.; Shallo, F.A.; Musselwhite, E.L.; Wiedemann, G.F.; Young, M.

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model

  20. Lifting devices in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The regulation applies to lifts, cranes, winches, rail trolleys, load pick-up equipment and fuel charging machines for LWR reactors, as far as these are employed in plants for the production or fission of nuclear fuels or for the reprocessing of spent nuclear fuels or for the storage or other uses of nuclear fuels. (orig.) 891 HP [de

  1. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  2. Pyrolytic electrochemical process for the reprocessing of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    The reprocessing is aimed at synthetic UO 2 -PuO 2 mixed oxides, UC-PuC mixed carbides and at oxides and carbides of U, Pu and Th from fast nuclear reactors. The nuclear fuel is dissolved in a salt melting bath. The conversion of the Pu(SO 4 ) 2 is done thermally and that of UO 2 is done electrolytically. The molten salts are returned to the input of the process and the fission products and the molten salts are conditioned. (DG) [de

  3. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  4. Maintenance of nuclear chemical and fuel fabrication plants [Invited talk no. IT-3

    International Nuclear Information System (INIS)

    Prasad, A.M.

    1981-01-01

    Though the objective of the maintenance practices followed in nuclear facilities is to optimise production as in other conventional production plants, the radioactivity associated with nuclear materials is a major constraint in all maintenance jobs on equipment of the nuclear facility. Often non-routine maintenance have to be adopted. Maintenance aspect has to be taken into consideration at the design stage of the nuclear facility. The maintenance concept adopted in a nuclear facility depends on the type of plant and varies from full indirect remote maintenance to direct contact maintenance. This is illustrated by discussing maintenance practices followed in a fuel reprocessing plant, a high level radioactive waste management facility, a fuel fabrication plant, and a heavy water plant. Exposure of maintenance staff to radiation has to be kept within limits governed by safety regulations. Along with planning and scheduling of maintenance, training of manpower with mock-up facilities assumes importance and the maintenance jobs must be carried out under strict supervision. (M.G.B.)

  5. Fuel reprocessing at THORP: profitability and public liabilities

    International Nuclear Information System (INIS)

    Berkhout, F.

    1992-01-01

    Since the economics of British Nuclear Fuels Limited's (BNFL) Thermal Oxide Reprocessing Plant (THORP) were analysed in an earlier report, a number of domestic and international developments have affected the prospects for THORP. The present report outlines these changes, and analyses their implications for the profits and public liabilities associated with the project. Timing is of some significance because once THORP becomes radioactive (planned to occur in March 1993) the bill for decommissioning the plant will rise from a trivial sum to a very large one - Pound 900 million (1992 prices) in BNFL's own estimates. The report begins with a brief outline of reprocessing and the THORP project. It then examines the market prospects for reprocessing beyond THORP's first ten years and revises BNFL's own projections. It then considers the potential profitability of THORP in relation to various possible cost increases and finally outlines the possible implications of different THORP scenarios for the public purse. (author)

  6. Alpha-contaminated waste from reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Sumner, W.

    1982-01-01

    The anticipated alpha-waste production rates from the Barnwell Nuclear Fuel Reprocessing plant is discussed. The estimated alpha-waste production rate from the 1500 metric ton/year plant is about 85,000 ft 3 /year at the 10 nCi/g limit. Most of this waste is estimated to come from the separation facility, and the major waste sources were cladding, which was 27%, and low-level contact-handled general process trash, which was estimated at 32% of the total. It was estimated that 45% of the waste was combustible and 72% of the waste was compactible. These characteristics could have a significant impact on the final volumes as disposed. Changing the alpha-waste limit from 10 nCi/g to 100 nCi/g was estimated to reduce the amount of alpha waste produced by about 20%. Again, the uncertainty in this value obviously has to be substantial. One has to recognize that these estimates were just that; they were not based on any operating experience. The total plutonium losses to waste, including the high-level waste, was estimated to be 1.5%. The cladding waste was estimated to be contaminated with alpha emitters to the extent of 10 4 to 10 5 nCi/g

  7. Back-end of the nuclear fuel cycle. A comparison of the direct disposal and reprocessing options

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.

    1997-01-01

    Based on the need to address public concerns, the need to ensure long-term safety and an ethical concern for future generations, many countries are developing technology to dispose of nuclear fuel waste. The waste substances in used fuel can be disposed of either by directly disposing of the used fuel assemblies themselves, or by disposing of the long-lived waste from fuel reprocessing. The basic thesis of this paper is that the direct disposal of either used fuel or of the long-lived heat-generating and non-heat generating waste that arise from reprocessing is technically and economically feasible and that both options will meet the fundamental objectives of protecting human health and the environment. Decisions about whether, or when, to reprocess used fuel, or about whether to dispose of used fuel directly, are not fundamentally waste management issues. (author)

  8. Remote systems and remote maintenance of a reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Funaya, T.

    1977-01-01

    The design concept and overall maintenance philosophy applied in the Power Reactor and Nuclear Fuel Development Corporation Reprocessing Plant at Tokai-mura, Japan, are briefly introduced. Details on remote systems and remote maintenance in mechanical processing areas are described

  9. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    International Nuclear Information System (INIS)

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-01-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R and D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R and D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants

  10. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  11. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  12. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation

  13. Base case industrial reprocessing plant

    International Nuclear Information System (INIS)

    1978-11-01

    This paper briefly describes an industrial scale plant for reprocessing thermal oxide fuel. This description was used as a base case by the Group for their later assessments and for comparing actual national plans for reprocessing plants. The plant described uses the Purex process and assumes an annual throughput of 1000 t/U. The maintenance, safety and safeguards philosophy is described. An indication of the construction schedule and capital and operating costs is also given

  14. Remote repair and inspection technics in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Koyama, Kenji; Ishibashi, Yuzo; Otani, Yosikuni

    1986-01-01

    Tokai reprocessing plant of Power Reactor and Nuclear Fuel Development Corp. is the only factory in Japan which treats 0.7 t/day of the spent fuel from LWR power stations and recovers remaining uranium and newly produced plutonium. Since the reprocessing plant started the hot test in September, 1977, about eight years have elapsed, and 233 t of spent fuel was treated as of August, 1985. During this period, the development of various remote working techniques have been carried out to cope with the failure of equipment and to strengthen the preventive maintenance of equipment. In this report, the development of the techniques for the remote repair of leaking dissolving tanks and the development of the remote inspection system for confirming the soundness of equipment in cells are described. In nuclear facilities, from the viewpoint of the reduction of radiation exposure accompanying the works under high radiation, labor saving, the increase of capacity factor by shortening the period of repair works, the improvement of safety and reliability of the facilities by perfecting checkup and inspection and so on, it is strongly desired to put robots in practical use for maintenance and inspection. (Kako, I.)

  15. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  16. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  17. Advanced techniques for storage and disposal of spent fuel from commercial nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Sowa, W.

    1999-01-01

    Electricity generation using fossil fuel at comparatively low costs forces nuclear energy to explore all economic potentials. The cost advantage of direct disposal of spent nuclear fuel compared to reprocessing gives reason enough to follow that path more and more. The present paper describes components and facilities for long-term storage as well as packaging strategies, developed and implemented under the responsibility of the German utilities operating nuclear power plants. A proposal is made to complement or even to replace the POLLUX cask concept by a system using BSK 3 fuel rod containers together with LB 21 storage casks. (author)

  18. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  19. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  20. Safety aspects in fuel reprocessing and radioactive waste management

    International Nuclear Information System (INIS)

    Agarwal, K.

    2018-01-01

    Nuclear energy is used for generation of electricity and for production of a wide range of radionuclides for use in research and development, healthcare and industry. Nuclear industry uses nuclear fission as source of energy so a large amount of energy is available from very small amount of fuel. As India has adopted c losed fuel cycle , spent nuclear fuel from nuclear reactor is considered as a material of resource and reprocessed to recovery valuable fuel elements. Main incentive of reprocessing is to use the uranium resources effectively by recovering/recycling Pu and U present in the spent fuel. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Program is the attention paid from the very beginning to the safe management of radioactive waste

  1. Access control system for two person rule at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Yanagisawa, Sawako; Ino, Munekazu; Yamada, Noriyuki; Oota, Hiroto; Iwasaki, Mitsuaki; Kodani, Yoshiki; Iwamoto, Tomonori

    2014-01-01

    Following the amendment and enforcement of Regulation of Reprocessing Activity on March 29th 2012, two person rule has become compulsory for the specific rooms to counter and prevent the sabotage or theft of nuclear materials by the insiders at reprocessing plant in Japan. The rooms will include those which contains cooling systems for decay heat removal from spent fuels and so on, scavenging systems to prevent the hydrogen accumulation, and those which contains nuclear material. To ensure the two person rule at Rokkasho Reprocessing Plant, JNFL has recently, after comprehensive study, introduced efficient and effective access control system for the rooms mentioned above. The system is composed of bio-attestation devices, surveillance cameras and electronic locks to establish access control system. This report outlines the access control system for two person rule and introduces the operation. (author)

  2. Safety in nuclear power plants

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  3. The Union view of back end fuel cycle provisions for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    After a long political and technical discussion, the German trade unions united in the German Federation of Labor (DGB) arrived at the finding that back end fuel cycle provisions for nuclear power plants in the Federal Republic of Germany, in addition to the present concept of the Government providing for a reprocessing plant, should also include studies of the alternative possibility to store spent fuel elements over long periods of time, perhaps with a possibility to recover them later. That decision is also based on a report by the Nuclear Technology Working Group of the Metal Workers Union (IG Metall) and the Public Workers Union (OeTV). (orig.) [de

  4. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  5. Reprocessing in breeder fuel cycles

    International Nuclear Information System (INIS)

    Burch, W.D.; Groenier, W.S.

    1982-01-01

    Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with the first breeder demonstration reactor. A renewed commitment to moving forward with the construction of the Clinch River Breeder Reactor (CRBR) has been made, with startup anticipated near the end of this decade. While plans for the CRBR and its associated fuel cycle are still being firmed up, the basic research and development programs required to carry out the demonstrations have continued. This paper updates the status of the reprocessing plans and programs. Policies call for breeder recycle to begin in the early to mid-1990's. Contents of this paper are: (1) evolving plans for breeder reprocessing (demonstration reprocessing plant, reprocessing head-end colocated at an existing facility); (2) relationship to LWR reprocessing; (3) integrated equipment test (IET) facility and related hardware development activities (mechanical considerations in shearing and dissolving, remote operations and maintenance demonstration phase of IET, integrated process demonstration phase of IET, separate component development activities); and (4) supporting process R and D

  6. Features in the aspect of materials in reprocessing plants

    International Nuclear Information System (INIS)

    Tanaka, Toshikazu; Suzuki, Kazuhiro

    1992-01-01

    The process of the reprocessing plant installed in Rokkasho, Aomori Prefecture, by Japan Nuclear Fuel Service Co., Ltd. is the Purex wet process experienced in Japan and abroad, and which can obtain the uranium and plutonium products of high purity at high recovery rate. This process is to melt spent fuel with nitric acid, and extract and separate uranium, plutonium and fission products from the obtained solution by utilizing the difference in chemical properties. The yearly amount of treatment of the reprocessing plant of this company is 800 t uranium. In order to ensure the safety in the reprocessing plant that handles the solution with high radioactivity, the function of confining radioactive substances in definite areas is demanded. For the purpose, the machinery, equipment and piping containing radioactive substances are made of the materials having the corrosion resistance against nitric acid, and welded structure is adopted to prevent leakage. Negative pressure is maintained in waste gas treatment facilities in relation to cells, and in the cells in relation to the building. The outline of the facilities, the materials of the main machinery and equipment, and the applied technologies are reported. (K.I.)

  7. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Tanner, J.E.; Brackenbush, L.W.; Gilbert, E.S.

    1984-08-01

    A health risk assessment was conducted to investigate the impact of implementing regulations from the Environmental Protection Agency's Final Environmental Statement - 40 CFR 190 - Environmental Protection Requirements for Normal Operation of Activities in the Uranium Fuel Cycle. Potential risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. The average occupationally exposed worker was estimated to receive about 400 to 600 mrem/y from 85 Kr recovery and immobilization activities. This dose is a factor of 20,000 to 30,000 higher than the estimated dose to the maximum offsite individual (0.02 mrem/y), and a factor of 130,000 to 200,000 higher than the dose received by the average member of the 50-mile population (0.003 mrem/y) from routine release of all 85 Kr. Given the uncertainties in the models used to generate lifetime risk numbers (0.02-0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks cannot be considered meaningful. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from recovery, immobilization and storage of the noble gas. 22 references, 1 figure, 3 tables

  8. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the European Community. Discharge data 1972-1976 radiological aspects

    International Nuclear Information System (INIS)

    Luykx, F.; Fraser, G.

    1978-04-01

    The report presents the available data on radioactive gaseous and liquid effluents discharged by nuclear power stations and nuclear fuel reprocessing plants in the European Community from 1972 to 1976. Discharges are expressed both in absolute terms and relative to the net production of electricity from the fuel. On the basis of the discharges recorded for 1976 the resulting maximum exposure of members of the population is quantified and compared with the dose limits prescribed by Euratom radiological protection standards and with the exposure resulting from natural radioactivity. It is concluded that there is no case in which a discharge could have given rise to an exposure exceeding the relevant prescribed limit. Not only did the possible maximum exposures incurred by individuals leave an appreciable safety margin relative to that limit but, for the vast majority of installations, they were comparable with or were considerably lower than the geographical and temporal variations in exposures resulting from natural radioactivity. Where environmental levels have been detectable the measured results have of course been used but, with few exceptions, the levels have remained less than the very low limits of detection currently possible. In general, where theoretical models are used to evaluate exposure, they are designed to give conservative results and hence it is likely that the true exposures are even less than those calculated

  9. Research and development of FBR fuel reprocessing in PNC

    International Nuclear Information System (INIS)

    Hoshino, T.

    1976-05-01

    The research program of the PNC for FBR fuel reprocessing in Japan is discussed. The general characteristics of FBR fuel reprocessing are pointed out and a comparison with LWR fuel is made. The R and D program is based on reprocessing using the aqueous Purex process. So far, some preliminary steps of the research program have been carried out, these include solvent extraction test, off-gas treatment test, voloxidation process study, solidification test of high-level liquid waste, and study of the dissolution behaviour of irradiated mixed oxide fuel. By the end of the 1980s, a pilot plant for FBR fuel reprocessing will be completed. For the design of the pilot plant, further research will be carried out in the following fields: head-end techniques; voloxidation process; dissolution and extraction techniques; waste treatment techniques. A time schedule for the different steps of the program is included

  10. Simulation of nuclear fuel reprocessing for safeguards

    International Nuclear Information System (INIS)

    Canty, M.J.; Dayem, H.A.; Kern, E.A.; Spannagel, G.

    1983-11-01

    For safeguarding the chemical process area of future reprocessing plants the near-real-time material accountancy (NRTMA) method might be applied. Experimental data are not yet available for testing the capability of the NRTMA method but can be simulated using a digital computer. This report describes the mathematical modeling of the Pu-bearing components of reprocessing plants and presents first results obtained by simulation models. (orig.) [de

  11. The impact of nuclear power stations and of a fuel reprocessing plant on the Rhone river and its prodelta

    International Nuclear Information System (INIS)

    Foulquier, L.; Garnier-Laplace, J.; Lambrechts, A.; Charmasson, S.; Pally, M.

    1992-01-01

    The Rhone, with its 6 nuclear sites (17 reactors of various types and a fuel reprocessing unit), presents a relevant example for comparing the impact of these various installations on the aquatic ecosystem. Artificial radioactivity (γ emitters, Pu, 3 H, 90 Sr...) and natural radioactivity are monitored in sediments and various living organisms in the river and its prodelta. A summary of the radioecological procedure is given and illustrated with examples selected from results obtained over the last fifteen years (data resulting from about 7500 samples taken up- and downstream of the installations and in the prodelta). The evolution of results obtained during this period by γ spectrometry on fish up- and downstream of the nuclear power station at Bugey and the Marcoule fuel reprocessing unit is presented. The role of aquatic vegetation as indicator of radiocontamination is also illustrated. The evolution in the concentration levels of γ emitting artificial radionuclides in sediments and mussels in the prodelta is commented on in order to show the global radioecological impact of the Rhone in the Mediterranean sea. The analyses presented show that it is possible to quantify the influence of each source term on the total artificial radioactivity of the compartments of the ecosystem. The source terms are atmospheric fallout from early nuclear weapon tests and of the Chernobyl accident, and liquid wastes of various composition from nuclear installations

  12. Considerations for handling failed fuel at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Cholister, R.J.

    1982-05-01

    The impact of failed fuel receipt on reprocessing operations is qualitatively described. It appears that extended storage of fuel, particularly with advanced storage techniques, will increase the quantity of failed fuel, the nature and possibly the configuration of the fuel. The receipt of failed fuel at the BNFP increases handling problems, waste volumes, and operator exposure. If it is necessary to impose special operating precautions to minimize this impact, a loss in plant throughput will result. Hence, ideally, the reprocessing plant operator would take every reasonable precaution so that no failed fuel is received. An alternative policy would be to require that failed fuel be placed in a sealed canister. In the latter case the canister must be compatible with the shipping cask and suitable for in-plant storage. A required inspection of bare fuel would be made at the reactor prior to shipping off-site. This would verify fuel integrity. These requirements are obviously idealistic. Due to the current uncertain status of reprocessing and the need to keep reactors operating, business or governmental policy may be enacted resulting in the receipt of a negotiated quantity of non-standard fuel (including failed fuel). In this situation, BNFP fuel receiving policy based soley on fuel cladding integrity would be difficult to enforce. There are certain areas where process incompatibility does exist and where a compromise would be virtually impossible, e.g., canned fuel for which material or dimensional conflicts exist. This fuel would have to be refused or the fuel would require recanning prior to shipment. In other cases, knowledge of the type and nature of the failure may be acceptable to the operator. A physical inspection of the fuel either before shipment or after the cask unloading operation would be warranted. In this manner, concerns with pool contamination can be identified and the assembly canned if deemed necessary

  13. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Warner, D.L.; Steindler, M.J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10 -4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  14. Nuclear fuel reprocessing is challenged

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a brief discussion of litigation to determine if the Thermal Oxide Reprocessing Plant (THORP) in the United Kingdom will be allowed to operate. Litigants (including Greenpeace) contend that the government's December approval of discharge permits for the plant was unlawful without a public hearing. A description of the THORP process is also provided in this article

  15. Development of remote fuel pushing system in Reprocessing Plant, Tarapur

    International Nuclear Information System (INIS)

    Chandra, Munish; Coelho, G.; Kodilkar, S.S.; Mishra, A.K.; Bajpai, D.D.; Nair, M.K.T.

    1990-01-01

    Power Reactor Fuel Reprocessing Plant (PREFRE), Tarapur has been processing spent fuel arising from Pressurized Heavy Water Reactors for quite some time. The process adopted in the plant is purex process with chopleach head end treatment. The head end treatment involves loading of ten spent fuel bundles in the charging cask at a time in the fuel bay and aligning the cask with the transfer port and subsequently pushing all the ten bundles together into the fuel magazine. At present the fuel is pushed into the magazine manually. Since the ten bundles weigh approximately 200 Kg. and involves pushing of 9.4 meters length, the operation is carried out using stainless steel screwed pipes, in steps of five lengths. The entire operation requires a large number of trained skilled workers and is found to be tedious. To solve this problem a hydraulic cum pneumatic fuel pushing system has been designed, fabricated, tested and is in the process of installation in the fuel handling area. This paper describes various requirements, constraints and dimensional details arising in the incorporation of such a system to be back fitted in an existing plant, though many of these constraints can be avoided in future plants. Further, complete sequence of operations, technical specifications regarding the telescopic hydraulic power pack and associated controls incorporated in the system are highlighted. (author). 2 figs

  16. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  17. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  18. The development of basic glass formulations for solidifying HLW from nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Jiang Yaozhong; Tang Baolong; Zhang Baoshan; Zhou Hui

    1995-01-01

    Basic glass formulations 90U/19, 90U/20, 90Nd/7 and 90Nd/10 applied in electric melting process are developed by using the mathematical model of the viscosity and electric resistance of waste glass. The yellow phase does not occur for basic glass formulations 90U/19 and 90U/20 solidifying HLW from nuclear fuel reprocessing plant when the waste loading is 20%. Under the waste loading is 16%, the process and product properties of glass 90U/19 and 90U/20 come up to or surpass the properties of the same kind of foreign waste glasses, and other properties are about the same to them of foreign waste glasses. The process and product properties of basic glass formulations 90Nd/7 and 90Nd/10 used for the solidification of 'U replaced by Nd' liquid waste are almost similar to them of 90U/19 and 90U/20. These properties fairly meet the requirements of 'joint test' (performed at KfK-INE, Germany). Among these formulations, 90Nd/7 is applied in cold engineering scale electric melting test performed at KfK-INE in Germany. The main process properties of cold test is similar to laboratory results

  19. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  20. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  1. UP3 plant first reprocessing campaigns

    International Nuclear Information System (INIS)

    Leudet, A.; Hugelmann, D.; Fournier, W.; Dalverny, G.

    1991-01-01

    The UP3 plant start up has been achieved in two successive steps. The first one, from November 89 to April 90, involved all the facilities but T1, the head-end facility. During that period, shearing, dissolution and the first cycle extraction operations were performed in UP2 plant. 100 tons of fuel have been reprocessed that way. The second step began in August 1990, with the T1 facility start-up and the reprocessing of the resulting active solutions in the rest of the plant. This second phase involving the entire UP3 plant continued until the end of January 1991. At that time, 160 tons of fuel have been completely treated in UP3 plant

  2. Evaluation on maintenance technology developed in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2008-01-01

    Tokai reprocessing plant (TRP) has been processing 1,140 tons of spent fuels, including 29tons of Fugen MOX fuels, since the beginning of its active operation in Sept.1977. For 30 years operation of TRP, many technological problems have been overcome to obtain the stable and reliable operation. This knowledge of maintenance technology could contribute to the safety and stable operation of Rokkasho reprocessing plant (RRP), as well as to the design and construction of the next reprocessing plant. (author)

  3. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  4. Reprocessing the truth

    International Nuclear Information System (INIS)

    Goldsmith, E.; Bunyard, P.; Hildyard, N.

    1978-01-01

    Comments are made on the Report by the Inspector, Mr. Justice Parker, after the public inquiry into the application by British Nuclear Fuels Limited for permission to construct and operate a thermal oxide reprocessing plant at their Windscale works. Particular questions raised include: corrosion or storage of spent fuel, vitrification of radioactive waste; radiation effects, and permissible levels; radioactive emissions, critical groups and critical pathways; risks; reprocessing economics; commitment to the FBR; sociological aspects, including employment, nuclear weapon proliferation and terrorism, and Britain's moral responsibilities. (U.K.)

  5. Estimation of gamma dose rate from hulls and shield design for the hull transport cask of Fuel Reprocessing Plant (FRP)

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)

  6. Mine... electricity... reprocessing... Nuclear energy, how and why? Second edition

    International Nuclear Information System (INIS)

    Grisez, F.

    2003-01-01

    This book makes a short and consistent synthesis of nuclear power: how electricity can be generated by braking up atoms and what is the advantage of this mean with respect to the use of fossil fuels or renewable energy sources. Beside the text, this book contains transparency-like illustrations which give a general overview of the civil nuclear domain. Content: 1 - introduction; 2 - radioactivity and nuclear safety: natural and artificial atoms, radioactivity, exposure, nuclear safety; 3 - nuclear fuel cycle: uranium mines and yellow cake, uranium conversion, uranium enrichment, fuel fabrication, nuclear power plants, reprocessing, recycling and conditioning, wastes, statuses, needs, companies and industrial capacities, R and D; 4 - energy consumption; 5 - what energy sources for even more electricity: available energies, environmental impact and accidents, costs of electricity, energy reserves, summary, opinions and conclusions. (J.S.)

  7. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  8. Microchemical chip technology and nuclear energy. To develop new analytical system for process control in reprocessing plant

    International Nuclear Information System (INIS)

    Tokeshi, Manabu; Ikeda, Yasuhisa; Kitamori, Takehiko

    2006-01-01

    A feasibility study for two years has been done to apply micro-chemical chip technology to nuclear fuel reprocessing plant. Desktop-sized thermal lens microscope (DT-TLM) combined with integrated glass ship was examined in order to find a rapid and sensitive analytical method. A laser-beam is split into two beams, one as the reference while the other to be absorbed in a small quantity of sample solution in a cell with short optical-path length. The solution, on absorbing laser photons, increases in temperature accompanied with change in refractive index, which can be detected by using thermal lens microscope. After examinations of Co-complexes in the presence of 10 -6 M Cu ions by using micro chip-extraction behavior from aqueous phase to chloroform organic phase, and of U(VI) solutions in 3M nitric acid with added 8-quinolinol and others to develop optical density at absorbing wavelength, the author concluded that the system may be applicable for the practical analysis of U(VI) and H + in the spent fuel reprocessing plant. (S. Ohno)

  9. Reprocessing method of ceramic nuclear fuels in low-melting nitrate molten salts

    International Nuclear Information System (INIS)

    Brambilla, G.; Caporali, G.; Zambianchi, M.

    1976-01-01

    Ceramic nuclear fuel is reprocessed through a method wherein the fuel is dispersed in a molten eutectic mixture of at least two alkali metal nitrates and heated to a temperature in the range between 200 and 300 0 C. That heated mixture is then subjected to the action of a gaseous stream containing nitric acid vapors, preferably in the presence of a catalyst such as sodium fluoride. Dissolved fuel can then be precipitated out of solution in crystalline form by cooling the solution to a temperature only slightly above the melting point of the bath

  10. Analysis of a control and data acquisition system for radiation protection monitors of spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Liu Boxue

    1997-01-01

    For the radiation protection monitoring of spent nuclear fuel reprocessing plant, the paper analyzes the composition and requirements of a control and data acquisition system. With the concepts of typical distributing and opening models, the hardware consists of IPC, communication of RS-485 bus lines and data multiplexer. The software consists of real-time multi-services operation system and modelling program. It can sample monitoring data, control monitor's operation, and process data and other information. It has good expansive and compatible features

  11. Safety culture in a major nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Pushparaja; Abani, M.C.

    2002-01-01

    Human factor plays an important role in development of safety culture in any nuclear fuel cycle facility. This is more relevant in major nuclear facility such as a reactor or a reprocessing plant. In Indian reprocessing plants, an effective worker's training, education and certification program is in place to sensitize the worker's response to safety and safe work procedures. The methodology followed to self evaluation of safety culture and the benefits in a reprocessing plant is briefly discussed. Various indicators of safety performance and visible signs of a good safety management are also qualitatively analyzed. (author)

  12. Overview of Nuclear Fuel-Cycle Policy and the Role of the Nuclear Safety Commission in Japan

    International Nuclear Information System (INIS)

    Higashi, K.; Nishinosono, S.

    2008-01-01

    Since the first generation of electricity by the Japan Power Demonstration Reactor in 1963, Japan has been extensively developing nuclear technologies solely for peaceful purposes. The country now operates 55 nuclear power plants consisted of BWRs and PWRs. Although Japan is one of the largest consumers of energy in the world, the country has very limited domestic energy resources. Therefore, Japan considers the nuclear power generation very important as plutonium and uranium recovered from spent fuels can be used in new nuclear fuels as quasi-domestic energy resource. For recycle use of nuclear fuels, the establishment of nuclear fuel recycling technologies including reprocessing technologies is essential. Since 1977, Japan has been recovering plutonium and uranium by a small scale reprocessing plant built by French technology. Recently, 800 ton/year scale commercial reprocessing plant is under construction. After overcoming the current technical problem in the vitrification facility, the commercial plant is expected to be in full operation soon. Concerning the disposal of radioactive wastes, which arises from nuclear utilization, sallow land disposal has already been implemented and medium depth (50 to 100 m) disposal plan is in progress. For high-level waste, possible candidate sites for disposal are being sought. In this paper, the statuses of nuclear power plants and of nuclear fuel cycle facilities in Japan are summarized. As safety is essential for these nuclear installations, safety regulations in Japan are briefly presented from the viewpoint of Nuclear Safety Commission. Furthermore, as the most significant recent safety issue in Japan, the impacts of the large near-site earthquake hit Kashiwazaki-Kariwa NPP last July are reported.(author)

  13. Disposal of Kr-85 separated from the dissolver off-gas of a reprocessing plant for LWR fuels

    International Nuclear Information System (INIS)

    Nommensen, O.

    1981-08-01

    The principle of the radiation protection to keep the radiation load of the population as low as possible requires the development of methods for retaining the radionuclide Krypton 85 seperated off the dissolver waste gas of future reprocessing plants for LWR-nuclear fuel elements. In a recommendation of the RSK the long-termed storage of the Kr-85 in a pressure gas bottle and the marine disposal we considered to be disposal methods low in risk. The present work develops a concept for both of the disposal methods and demonstrates their technical feasibility. The comparison of the cost estimations effected for both of the disposal methods shows that the costs related with the marine disposal of the pressure gas bottles amounting to 1.90 DM/kg of reprocessed U fall by the factor 10 below the costs that result from the surface storage of the bottles. In both cases was referred to a reprocessing capacity of 1400 t U/a corresponding to 50 GW installed nuclear power, thereby accumulating approximately 629 PBq (17 MCi) Kr-85 per year. Both concepts project the seperated radioactive inert gas to be filled in pressure gas bottles in a low temperature rectification plant. Each of the 85 bottles to be filled per year contains 7.4 PBq (200 kCi) Kr-85. (orig./HP) [de

  14. The environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hamard, J.

    1975-01-01

    A survey about the environmental pollution and the population exposure caused by the nuclear fuel cycle is set up. Proceeding from the environmental changes caused by the construction of plants, the author shows the hazards of the operation of the plants. The fuel cycle beginning with the mining of nuclear fuels and reaching to their reprocessing, the environmental pollution by radionuclides and the population exposure resulting from this are outlined. After indicating the advantages of the concentration of nuclear plants, the author shows comparatively the hazards caused by conventional energy sources. (ORU) [de

  15. Rokkashomura: debut of the nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Japan Nuclear Fuel Industries and local governments signed the safety agreement, and the work began to initiate the operation of a uranium enrichment plant. In this way, the national Rokkashomura project to be constructed with the total cost of 1.2 trillion yen marked the debut of nuclear fuel cycle business in Japan. The public hearing concerning the low level radioactive waste storage facility was finished. However, a fuel reprocessing plant has not advanced since the national government did not clarify the policy for the management of high level rad-waste from the plant. Gubernatorial election was the best thing to happen for the public acceptance, and the local opposition movement lost steam. The operation of the uranium enrichment plant is to begin next January, and the construction of the low level waste storage facility proceeds on schedule. Regarding the fuel reprocessing plant, the public hearing is to be held in autumn, but it faces difficulties. The siting of nuclear fuel cycle facilities has already produced benefits for the local economy. 18 business establishments representing 15 firms have so far decided to open in Aomori Prefecture. JNFI and JNFS began the specific study for merger. (K.I.)

  16. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Garcin, I.

    1989-01-01

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process [fr

  17. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  18. Fast reactor fuel reprocessing development in the United States: an overview

    International Nuclear Information System (INIS)

    Groenier, W.S.; Burch, W.D.

    1979-01-01

    As a result of the reduced nuclear power demand and the growing concerns over the potential proliferation of sensitive nuclear materials, there has not been a necessity to make immediate decisions regarding near-term reprocessing and breeder reactor commercialization. Programs which formed the basic thrust of nuclear development in the early 1970's have already been adjusted: increased emphasis on problems of radioactive waste management; increased attention to nonproliferation objectives and subsequent reorientation of the overall fuel cycle and breeder programs; increased emphasis on a once-through light-water reactor technology; increased concern for a more detailed knowledge of the uranium resource base; reorientation of the uranium enrichment programs; and exploration of alternative fuel cycles (such as thorium) to minimize the use of plutonium. Nevertheless, major strategic decisions still loom over breeder commercialization, the breeder's requisite demand for reprocessing, and the future role of more proliferation-resistant nuclear technologies. The current program in the United States is organized to provide the necessary technology for the reprocessing of breeder fuels on a timetable that is consistent with the reactor development and demonstration program. Also addressed in this paper are the present day concerns of environmental protection, safety, nuclear material safeguards, and proliferation resistance. It is structured on the well-known Purex processing method but includes new efforts aimed at advanced and alternative fuels. At the present time, the program consists mainly of a generic effort that is planned to progress through an integrated equipment engineering demonstration to an eventual pilot-plant operation. Each of these facilities is viewed as a test bed for advanced and alternative processing steps to address the many significant technical and political issues. 16 figures

  19. Numerical simulations of waste forms from the reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Schneider, Stephan

    2014-01-01

    The usage of fissile material for nuclear fuel causes that alongside radioactive wastes are produced. These waste materials are created during all handling or usage operations within the nuclear fuel cycle. The main source of radiotoxicity is produced during the usage of nuclear fuel within the reactor. Energy is released by neutron induced fission reactions in heavy isotopes. Parts of the created fission products have large radiotoxicities. Due to neutron capture within the nuclear fuel the radiotoxicity is furthermore increased. These waste streams from the nuclear fuel cycle must be stored in a safe way to prevent any contamination of the biosphere and any harm to the civilization or the environment. The waste packages must be treated and conditioned for the final disposal. These created packages are subject to an independent product control to ensure there acceptability for transport, interim and final storage. The independent product control is a significant component of an effective waste management system. The aim of this work is the development of a software system used for the assessment of radioactive waste packages. The software shall permit the auditor to perform scenario analysis to forecast the product properties of a certain waste stream and therefore optimize the needed inspection scope in preparation of a new campaign. The software is designed as a modular library this permits the most flexible use of the software components and a high reusability of written analysis software. The software system is used for coupling of established and well-known simulation programs used for nuclear systems. The results of Monte-Carlo simulations and burn-up calculations are automatically imported and prepared for user interaction. The usage of simulation programs cause different challenges to the computing infrastructure. The scenario analyses need a large number of parameter variations which are bound to the computing time. For this reason additional to the

  20. Fast and Simultaneous Determination of Pu(Ⅳ) and Nitric Acid in Spent Nuclear Fuel Reprocessing Sample by Near Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI; Ding-ming; ZHANG; Li-hua; WANG; Ling; GONG; Yan-ping; FAN; De-jun; YI; Bao-shan; CHEN; Qiang; JI; Yong-chao; WU; Ji-zong

    2013-01-01

    Determination of Pu(Ⅳ)and nitric acid plays significant role in nuclear fuel reprocessing plant to control process accurately and timely.Coupling C-T fixed-type grating with InGaAs detector,a new novel analytical system for simultaneous measurement of nitric acid and Pu(Ⅳ)was developed by our working group.After obtaining near infrared absorptive spectra by the spectroscopic instrument,the spectra data

  1. Decontamination and decommissioning of the West Valley Reprocessing Plant

    International Nuclear Information System (INIS)

    Daugherty, H.F.; Keel, R.

    1986-11-01

    This report presents the decontamination and decommissioning (D and D) activities at the West Valley Nuclear Fuel Reprocessing Plant through September 1, 1986. The topics addressed are: D and D of areas for reuse by the Liquid Waste Treatment System (LWTS); D and D of areas for reuse as High Level Waste (HLW) canister storage; and technologies developed in D and D work

  2. Accidents and troubles in nuclear fuel facilities in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The number of the accidents and troubles reported in fiscal year 1987 in relation to nuclear fuel facilities based on the stipulation of the law on the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors was two. In Tokai Works, Power Reactor and Nuclear Fuel Development Corp., on September 17, 1987, the conveyor for transporting spent fuel in the separation and refining shop of the reprocessing plant broke down, consequently, the operation of the reprocessing plant was stopped for about five months. In Tokai Testing Works, Mitsubishi Heavy Industries Ltd., on February 7, 1988, a worker who was putting up posters in the control area of the uranium experiment facilities fell from a stepladder, and required treatment by entering a hospital for about one month, suffering bone fracture. (K.I.)

  3. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Jim E.; Shallo, Frank A.; Musselwhite, E Larry; Wiedemann, George F.; Young, Moylen

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model.

  4. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  5. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  6. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  7. Reprocessing and fuel fabrication systems

    International Nuclear Information System (INIS)

    Field, F.R.; Tooper, F.E.

    1978-01-01

    The study of alternative fuel cycles was initiated to identify a fuel cycle with inherent technical resistance to proliferation; however, other key features such as resource use, cost, and development status are major elements in a sound fuel cycle strategy if there is no significant difference in proliferation resistance. Special fuel reprocessing techniques such as coprocessing or spiking provide limited resistance to diversion. The nuclear fuel cycle system that will be most effective may be more dependent on the institutional agreements that can be implemented to supplement the technical controls of fuel cycle materials

  8. Consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Kuban, D.P.; Noakes, M.W.; Bradley, E.C.

    1987-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller or master, and the control system. The ASM is a remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program of (CFRP). This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, and reliability. It uses an all-gear force transmission system. The master arms were designed as a kinematic replica of ASM and use cable force transmission. Special digital control algorithms were developed to improve the system performance. The system is presently operational and undergoing evaluation. Preliminary testing has been completed and is reported. The system is now undergoing commercialization by transferring the technology to the private sector

  9. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  10. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  11. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  12. Wrapping up the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rueth, N.

    1976-01-01

    Reprocessing basically entails recovering uranium and plutonium from spent fuel for reuse in light water reactors (LWRs). The wastes resulting from this process are transformed to products suitable for disposal. These endeavors extend uranium supplies and also reduce the size and amount of nuclear waste that must be stored. Reprocessing, however, also ''unlocks'' the fuel rods that currently imprison radioactive substances. If great care is not taken, it could rip open a Pandora's box, exposing reprocessing plant workers, the general public, and the environment to deadly radioactive substances. While no commercial reprocessing plants are currently operating in the U.S., a scenario for such efforts has been mapped out. The first step is to chop the fuel elements into small pieces so that the fuel is no longer protected by its corrosion-resistant cladding. The fuel is then dissolved away from the cladding with nitric acid. An organic solvent extracts plutonium and uranium, and additional solvent extraction or ion exchange operations separate the two substances. Plutonium is converted to plutonium oxide; uranium 235 is converted to uranium oxide. They can then be combined to a make mixed oxide fuel, and formed into fuel elements for use in nuclear reactors. Various wastes with varied levels of radioactivity are generated during these operations. All demand attention. Radioactive gaseous waste most often is filtered before release through tall stacks. Metal solid waste--debris, fuel claddings, and hulls--may be compacted or cryogenically crushed and stored at specially designed storage sites. Contaminated combustibles, such as paper and resins, are incinerated and the ash is fixed and packaged for storage. The plans of Allied-General Nuclear Services (AGNS), which claims to have the closest thing in the United States to a ready reprocessor are described

  13. Reprocessing of nuclear fuels: economical, ecological and technical aspects

    International Nuclear Information System (INIS)

    Kueffer, K.

    1994-01-01

    The report deals with the questions on reprocessing and final storage of spent fuel elements from the point of view of the Swiss. The contractual obligations were discussed, of the present situation of reprocessing and their assessment. 1 fig

  14. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under provisions concerning the reprocessing business in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area; employee; radioactive waste and marine discharging facilities. Any person who gets permission for design of reprocessing facilities and method of the construction shall file an application, listing name and address of the person and the works or the place of enterprise where reprocessing facilities are to be set up, design of such facilities and method of the construction, in and out-put chart of nuclear fuel materials in reprocessing course, etc. Records shall be made and kept for particularly periods in each works or enterprise on inspection of reprocessing facilities, control of dose, operation, maintenance, accident of reprocessing facilities and weather. Detailed prescriptions are settled on entrance limitation to controlled area, exposure dose, inspection and check, regular independent examination and operation of reprocessing facilities, transportation in the works or the enterprise, storage, disposal, safeguard and measures in dangerous situations, etc. Reports shall be filed on exposure dose of employees and other specified matters in the forms attached and in the case otherwise defined. (Okada, K.)

  15. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  16. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  17. Applications of chemical sensors in spent fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Achuthan, P.V.

    2012-01-01

    Environmental friendly power generation is essential to preserve the quality of life for the future generations. For more than fifty years, nuclear energy has proven its potential as an economically and commercially viable alternative to conventional energy. More over it is a clean source of energy with minimum green house effect. Recent data on climate changes have stressed the need for more caution on atmospheric discharges, hence a revival of interest in nuclear energy is in the offing. The entire world is committed to protect the atmosphere from polluting agents. Even nuclear power plants and the fuel cycle facilities are looking forward to reduce the already low gaseous emissions further and also to develop ways and means of controlling the impact of the small but significant radiotoxicity of the wastes generated in the nuclear fuel cycle. Spent fuel reprocessing and associated waste management, an integral part of the nuclear fuel cycle, employs chemical processes for the recovery of fuel value and for the conditioning of the reprocessed waste. In this respect they can be classified as a chemical plant dealing with radioactive materials. Hence it is essential to keep the gaseous, liquid and solid discharges at the lowest possible levels to comply with the regulations of discharges stipulated by the regulatory authorities. Elaborate cleaning and detection systems are needed for effective control of these discharges from both radioactive and chemical contamination point of view. Even though radiation detectors, which are non specific to the analytes, are the major tools for these controls, analyte specific chemical sensors can play a vital role in controlling the chemical vapours/gases generated during processing. The presentation will cover the major areas where chemical sensors play a significant role in this industry. (author)

  18. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  19. Study on the abnormal reaction in an evaporator at a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu; Ohsaki, Hiroshi

    2004-01-01

    The calculation code was constructed in order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions. This report describes the model of the calculation code and the result of the trial calculation. (author)

  20. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  1. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    International Nuclear Information System (INIS)

    Van Hecke, K.; Goethals, P.

    2006-01-01

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  2. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  3. Apparatus and method for reprocessing and separating spent nuclear fuels

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H.; Coops, M.S.

    1983-01-01

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A non-oxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel. (author)

  4. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...

  5. Open problems in reprocessing of a molten salt reactor fuel

    International Nuclear Information System (INIS)

    Lelek, Vladimir; Vocka, Radim

    2000-01-01

    The study of fuel cycle in a molten salt reactor (MSR) needs deeper understanding of chemical methods used for reprocessing of spent nuclear fuel and preparation of MSR fuel, as well as of the methods employed for reprocessing of MSR fuel itself. Assuming that all the reprocessing is done on the basis of electrorefining, we formulate some open questions that should be answered before a flow sheet diagram of the reactor is designed. Most of the questions concern phenomena taking place in the vicinity of an electrode, which influence the efficiency of the reprocessing and sensibility of element separation. Answer to these questions would be an important step forward in reactor set out. (Authors)

  6. Abnormal reactions in a evaporator in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu

    2003-01-01

    In order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions, a development of a calculation code is under way. Mock-up tests were performed to investigate the fluid dynamic behavior of the organic solvent in the evaporator. Based on these results, the model of the calculation code was constructed. This report describes the results of mock-up tests and the model of the calculation code. (author)

  7. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  8. Study of assessing aqueous reprocessing process for the pipeless reprocessing plant

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Morioka, Nobuo; Fumoto, Hiromichi; Nishimura, Kenji; Chikazawa, Takahiro

    2000-02-01

    The purpose of this study is to investigate the possibility of new reprocessing process for the purpose of introducing pipeless plant concept, where aqueous separation methods other than solvent extraction method are adopted in order to develop more economical FBR fuel (MOX fuel) reprocessing process. At it's first stage, literature survey on precipitation method, crystallization method and ion-exchange method was performed. Based on the results, following processes were candidated for pipeless reprocessing plant. (1) The process adopting crystallization method and peroxide precipitation method (2) The process adopting oxalate precipitation method (3) The process under mild aqueous conditions (crystallization method and precipitation method) (4) The process adopting crystallization method and ion-exchange method (5) The process adopting crystallization method and solvent extraction method. The processes (1)-(5) were compared with each others in terms of competitiveness to the conventional reference process, and merits and demerits were evaluated from the viewpoint of applicability to pipeless reprocessing plant, safety, economy, Efficiencies in consumption of Resources, non-proliferation, and, Operation and Maintenance. As a result, (1) The process adopting crystallization method and peroxide precipitation method was selected as the most reasonable process to pipeless plant. Preliminary criticality safety analyses, main process chemical flowsheet, main equipment list and layout of mobile vessels and stations were reported for the (1) process. (author)

  9. Capability of minor nuclide confinement in fuel reprocessing

    International Nuclear Information System (INIS)

    Fujine, Sachio; Uchiyama, Gunzo; Mineo, Hideaki; Kihara, Takehiro; Asakura, Toshihide

    1999-01-01

    Experiment with spent fuels has started with the small scale reprocessing facility in NUCEF-BECKY αγ cell. Primary purpose of the experiment is to study the capability of long-lived nuclide confinement both in the PUREX flow sheet applied to the large scale reprocessing plant and also in the PARC (Partitioning Conundrum key process) flow sheet which is our proposal as a simplified reprocessing of one cycle extraction system. Our interests in the experiment are the behaviors of minor long-lived nuclides and the behaviors of the heterogeneous substances, such as sedimentation in the dissolver, organic cruds in the extraction banks. The significance of those behaviors will be assessed from the standpoint of the process safety of reprocessing for high burn-up fuels and MOX fuels. (author)

  10. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  11. Outline of center for research and development in Rokkasho reprocessing plant site

    International Nuclear Information System (INIS)

    Araya, S.; Kanatsugu, K.; Shakutsui, M.

    1998-01-01

    Japan Nuclear Fuel Ltd.(JNFL) is now constructing a commercial nuclear fuel reprocessing plant at Rokkasho Mura, introducing French Technology on the main processes of it. In October 1995 prior to the reprocessing plant operation, JNFL established the CENTER FOR RESEARCH and DEVELOPMENT (Center for R and D) inside the plant site to perform various tests which are intended to improve the safety, availability and reliability of the reprocessing plant. The test facility of the center was constructed from 1991 to 1995, and now many tests have been being performed in the center. A full-scale mock-up of the Head end process components based on French Technology, which consist of a tilting crane, shearing machine, dissolver, hull rinser, end piece rinser and maintenance equipment, was moved into a new building from the Head End Demonstration Test facility in Kobe (reported in RECOD '91). Functional tests and system performance tests are carried out under cold conditions (non radioactive). As equipment and piping layout in the cell and working area layout outside of the cell are simulated to the reprocessing plant design, it is possible to test remote maintainability and repairability under the same condition as the reprocessing plant except radioactive condition. A full-scale mock-up of the Centrifugal clarifier based on French Technology, which can clarify the dissolution solution is operated to confirm clarification performance under various cold conditions and is tested for the maintainability and the repairability. A sampling bench imported from France is the same one planed to be operated in the reprocessing plant which samples for various analysis from each process. The sampling bench is tested to confirm operability, maintainability and reliability. Also the sampling piping and pneumatic piping are going to be install to the sampling bench for a system test of sampling system. Two types of MERC (Mobile Equipment Replacement Cask), which replace worn parts remotely

  12. Benefit analysis of reprocessing and recycling light water reactor fuel

    International Nuclear Information System (INIS)

    1976-12-01

    The macro-economic impact of reprocessing and recycling fuel for nuclear power reactors is examined, and the impact of reprocessing on the conservation of natural uranium resources is assessed. The LWR fuel recycle is compared with a throwaway cycle, and it is concluded that fuel recycle is favorable on the basis of economics, as well as being highly desirable from the standpoint of utilization of uranium resources

  13. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  14. Light water reactor fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    1977-07-01

    This document was originally intended to provide the basis for an environmental impact statement to assist ERDA in making decisions with respect to possible LWR fuel reprocessing and recycling programs. Since the Administration has recently made a decision to indefinitely defer reprocessing, this environmental impact statement is no longer needed. Nevertheless, this document is issued as a report to assist the public in its consideration of nuclear power issues. The statement compares the various alternatives for the LWR fuel cycle. Costs and environmental effects are compared. Safeguards for plutonium from sabotage and theft are analyzed

  15. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  16. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  17. APL used for control of a reprocessing plant

    International Nuclear Information System (INIS)

    Petruschka, B.

    1975-05-01

    A package of interactive APL functions for data maintaining and processing is discussed in some detail. The data is recorded during the cycle of irradiated fuels and is used to control the reprocessing plant at the Karlsruhe Nuclear Research Center (WAK). First nuclear fuel processing is explained. A short justification is given of the reasons why the program language APL and the facilities of the file subsystem APL PLUS had been chosen for data handling. This is followed by the description of workspace and file organisation, all mainfunctions and files are described. Finally all functions are listed, an example of a user session and the output of daily and monthly reports from terminal and high-speed printer are presented. (orig.) [de

  18. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  19. Decommissioning of nuclear reprocessing plants French past experience and approach to future large scale operations

    International Nuclear Information System (INIS)

    Jean Jacques, M.; Maurel, J.J.; Maillet, J.

    1994-01-01

    Over the years, France has built up significant experience in dismantling nuclear fuel reprocessing facilities or various types of units representative of a modern reprocessing plant. However, only small or medium scale operations have been carried out so far. To prepare the future decommissioning of large size industrial facilities such as UP1 (Marcoule) and UP2 (La Hague), new technologies must be developed to maximize waste recycling and optimize direct operations by operators, taking the integrated dose and cost aspects into account. The decommissioning and dismantling methodology comprises: a preparation phase for inventory, choice and installation of tools and arrangement of working areas, a dismantling phase with decontamination, and a final contamination control phase. Detailed description of dismantling operations of the MA Pu finishing facility (La Hague) and of the RM2 radio metallurgical laboratory (CEA-Fontenay-aux-Roses) are given as examples. (J.S.). 3 tabs

  20. French experience and prospects in the reprocessing of fast breeder reactor fuels

    International Nuclear Information System (INIS)

    Megy, J.

    1983-06-01

    Experience acquired in France in the field of reprocessing spent fuels from fast breeder reactors is recalled. Emphasis is put on characteristics and quantities of spent fuels reprocessed in La Hague and Marcoule facilities. Then reprocessing developments with the realisation of the new pilot plant TOR at Marcoule, new equipments and study of industrial reprocessing units are reviewed [fr

  1. Report of Nuclear Fuel Cycle Subcommittee

    International Nuclear Information System (INIS)

    1982-01-01

    In order to secure stable energy supply over a long period of time, the development and utilization of atomic energy have been actively promoted as the substitute energy for petroleum. Accordingly, the establishment of nuclear fuel cycle is indispensable to support this policy, and efforts have been exerted to promote the technical development and to put it in practical use. The Tokai reprocessing plant has been in operation since the beginning of 1981, and the pilot plant for uranium enrichment is about to start the full scale operation. Considering the progress in the refining and conversion techniques, plutonium fuel fabrication and son on, the prospect to technically establish the nuclear fuel cycle in Japan has been bright. The important problem for the future is to put these techniques in practical use economically. The main point of technical development hereafter is the enlargement and rationalization of the techniques, and the cooperation of the government and the people, and the smooth transfer of the technical development results in public corporations to private organization are necessary. The important problems for establishing the nuclear fuel cycle, the securing of enriched uranium, the reprocessing of spent fuel, unused resources, and the problems related to industrialization, location and fuel storing are reported. (Kako, I.)

  2. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  3. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  4. Nuclear material inventory estimation in a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Bennett, J.E.; Beyerlein, A.L.

    1981-01-01

    A new approach in the application of modern system identification and estimation techniques is proposed to help nuclear reprocessing facilities meet the nuclear accountability requirement proposed by the International Atomic Energy Agency. The proposed identification and estimation method considers the material inventory in a portion of the chemical separations area of a reprocessing facility. The method addresses the nonlinear aspects of the problem, the time delay through the separation facility, and the lack of measurement access. The method utilizes only input-output measured data and knowledge of the uncertainties associated with the process and measured data. 14 refs

  5. Behavior of Nb fission product during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Gue, J.P.

    1977-02-01

    Investigations on niobium fission product behavior in nitric acid and tributyl phosphate media have been carried out in order to explain the difficulties encountered in separating this element from fissile materials during spent nuclear fuel reprocessing. The studies have shown that in nitric acid solution, pentavalent niobium has a colloidal hydroxide form. The so-obtained sols were characterized by light scattering, electronic microscopy, electrophoresis and ultracentrifugation methods. In heterogeneous extracting media containing tributyl phosphate and dibutyl phosphoric acid the niobium hydroxide sols could be flocculated by low dibutyl phosphoric acid concentration or extracted into the organic phase containing an excess of dibutyl phosphoric acid [fr

  6. Spent Nuclear Fuel Reprocessing Flowsheet. A Report by the WPFC Expert Group on Chemical Partitioning of the NEA Nuclear Science Committee

    International Nuclear Information System (INIS)

    Na, Chan; Yamagishi, Isao; Choi, Yong-Joon; Glatz, Jean-Paul; Hyland, Bronwyn; Uhlir, Jan; Baron, Pascal; Warin, Dominique; De Angelis, Giorgio; Luce, Alfredo; INOUE, Tadashi; Morita, Yasuji; Minato, Kazuo; Lee, Han Soo; Ignatiev, Victor V.; Kormilitsyn, Mikhail V.; Caravaca, Concepcion; Lewin, Robert G.; Taylor, Robin J.; Collins, Emory D.; Laidler, James J.

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials, and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific fields in the nuclear fuel cycle. The Expert Group on Chemical Partitioning was created in 2001 to (1) perform a thorough technical assessment of separations processes in application to a broad set of partitioning and transmutation (P and T) operating scenarios and (2) identify important research, development and demonstration necessary to bring preferred technologies to a deployable stage and (3) recommend collaborative international efforts to further technological development. This report aims to collect spent nuclear fuel reprocessing flowsheet of various processes developed by member states: aqueous, pyro and fluoride volatility. Contents: 1 - Hydrometallurgy process: Standard PUREX, Extended PUREX, UREX+3, Grind/Leach; 2 - Pyrometallurgy process: pyro-process (CRIEPI - Japan), 4-group partitioning process, pyro-process (KAERI - Korea), Direct electrochemical processing of metallic fuel, PyroGreen (reduce radiotoxicity to the level of low and intermediate level waste - LILW); 3 - Fluoride volatility process: Fluoride volatility process, Uranium and protactinium removal from fuel salt compositions by fluorine bubbling, Flowsheet studies on non-aqueous reprocessing of LWR/FBR spent nuclear fuel; Appendix A: Flowsheet studies of RIAR (Russian Federation), List of contributors, Members of the expert group

  7. Advanced fuel cycle on the basis of pyroelectrochemical process for irradiated fuel reprocessing and vibropacking technology

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Skiba, O.V.; Tsykanov, V.A.; Golovanov, V.N.; Bychkov, A.V.; Kisly, V.A.; Bobrov, D.A.

    2000-01-01

    For advanced nuclear fuel cycle in SSC RIAR there is developed the pyroelectrochemical process to reprocess irradiated fuel and produce granulated oxide fuel UO 2 , PuO 2 or (U,Pu)O 2 from chloride melts. The basic technological stage is the extraction of oxides as a crystal product with the methods either of the electrolysis (UO 2 and UO 2 -PuO 2 ) or of the precipitating crystalIization (PuO 2 ). After treating the granulated fuel is ready for direct use to manufacture vibropacking fuel pins. Electrochemical model for (U,Pu)O 2 coprecipitation is described. There are new processes being developed: electroprecipitation of mixed oxides - (U,Np)O 2 , (U,Pu,Np)O 2 , (U,Am)O 2 and (U,Pu,Am)O 2 . Pyroelectrochemical production of mixed actinide oxides is used both for reprocessing spent fuel and for producing actinide fuel. Both the efficiency of pyroelectrochemical methods application for reprocessing nuclear fuel and of vibropac technology for plutonium recovery are estimated. (author)

  8. Optimal sizes and siting of nuclear fuel reprocessing plants; Tailles et localisations optimales des usines de retraitement des combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet, L; Deledicq, A [Commissariat a l' Energie Atomique, Siege (France). Centre d' Etudes Nucleaires

    1967-07-01

    The expansion of a nuclear economy entails the development of fuel process and reprocessing plant programmes. The model proposed makes it possible to select the size, the site and the start-up schedule of the plants in such a way as to minimize the total freight and reprocessing costs. As an illustration, we have approached the problem of burnt natural uranium processing plants related to natural uranium-graphite as nuclear power stations. The sites and annual output of the reactors, the possible plant sites and cost functions (freight and reprocessing) are supposed to be known. The method consists in first approaching the process plant problem as a Dynamic Programming problem, increasing programme slices (total reactor output) being explored sequentially. When the quantities of burnt natural uranium to be reprocessed are fixed, the minimization of the transport cost is then also carried out as a dynamic programming problem. The neighbourhood of the optimum process cost is explored in order to find the minimum summation of a suboptimal processing cost and corresponding optimal transport cost. As the reprocessing problem can be represented on a sequential graph, in order to compute the sub-optima, we developed and used a 'reflexion algorithm'. The method can be interpreted as a general mechanism for determining the optimum when to a sequential dynamic problem (for example an equipment programme) is added a complementary problem (transport, for instance). It also makes it possible to estimate the economic losses which result from the choice of a non optimal policy for other than economic reasons. (author) [French] L'expansion de l'economie nucleaire se traduit par un developpement des programmes d'usines d'elaboration et de retraitement des combustibles. Le modele propose permet de choisir la taille, la localisation et la cadence de mise en service des usines de maniere a minimiser le total des frais de transport et de retraitement. A titre d'exemple nous avons

  9. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1980-01-01

    The office ordinance is established under the provisions related to reprocessing businesses of the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors, to enforce the provisions. The basic terms are defined, such as exposure radiation dose; accumulated dose; controlled area; maintenance area; surrounding watch area; employee; radioactive waste; the facilities for discharge to sea. An application for the designation of reprocessing businesses shall be filed, listing the following matters: the maximum daily and yearly reprocessing capacities for each kind of spent fuel; the location and general structure of reprocessing facilities; the structures of buildings; the structure and equipments of main reprocessing facilities, the storage facilities for products and the disposal facilities for radioactive wastes; the equipments of measuring and control system facilities and radiation control facilities, etc. Records shall be made on the inspection of reprocessing facilities, radiation control, operation, maintenance, the accidents of reprocessing facilities and weather, and kept for the period from one to ten years, respectively. Any person engaging in reprocessing businesses shall set up control, maintenance and surrounding watch areas, and take specified measures to restrict the entrance of persons. The measures to be taken against exposure radiation dose, the inspection, regular independent examination and operation of reprocessing facilities and other related matters are stipulated in detail. (Okada, K.)

  10. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  11. Work on fuel reprocessing at the Boris Kidric Institute of Nuclear Sciences at Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Pavasovic, V.

    1969-01-01

    Activity in the region of fuel reprocessing since 1959 up to now has been reported. During that period all necessary conditions were created to enable successful work in that domain (hot laboratory with all necessary devices was constructed, the corresponding staff was trained, also the connections with other research centers were established dealing with these problems). Among the procedures Purex procedure was selected and laboratory plant was constructed to investigate different variants of this procedure. A pre-project has been made in cooperation with the Norway experts covering semi-industrial reprocessing plant. A device for countercurrent extraction is also under development (author) [sr

  12. Fuel reprocessing and waste management in the UK

    International Nuclear Information System (INIS)

    Heafield, W.; Griffin, N.L.

    1994-01-01

    The currently preferred route for the management of irradiated fuel in the UK is reprocessing. This paper, therefore, concentrates on outlining the policies, practices and achievement of British Nuclear Fuels plc (BNFL) associated with the management of its irradiated fuel facilities at Sellafield. The paper covers reprocessing and how the safe management of each of the major waste categories is achieved. BNFL's overall waste management policy is to develop, in close consultation with the regulatory authorities, a strategy to minimize effluent discharges and provide a safe, cost effective method of treating and preparing for disposal all wastes arising on the site

  13. Department of Energy: monitoring and control of British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    1989-01-01

    British Nuclear Fuels plc (BNFL) was set up in 1971 to take over the nuclear fuel production and reprocessing activities of the United Kingdom Atomic Energy Authority with the Department of Energy (as majority shareholder) being responsible for the monitoring and control of BNFL's activities. BNFL's activities include the production of nuclear fuel, uranium enrichment, and the transportation and reprocessing of spent fuel. Its major capital investment includes the construction of the Thermal Oxide Reprocessing Plant (THORP) due for completion in 1992. This study examined the effectiveness of the Department's arrangements for monitoring and control and for safeguarding the Government's investment in the company, the arrangements for examining BNFL's capital investment programme and the extent to which the Department's main aims have been achieved. The examination was restricted to the financial performance. The National Audit Office found evidence to suggest that BNFL's financial performance has not kept pace with the general performance level of British Industry. Future success and performance will depend on the success of the THORP plant. (U.K.)

  14. Study on reprocessing plant during transition period from LWR to FBR

    International Nuclear Information System (INIS)

    Shimada, Takashi; Matsui, Minefumi; Nishimura, Masashi; Ishida, Yasuhiro; Mori, Yukihide; Kuroda, Kazuhiko

    2011-01-01

    We have proposed a concept of a reprocessing plant suitable for the transition period from the light water reactors (LWRs) to the fast breeder reactors (FBRs) by making comparison of two plant concepts: (1) Independent Plant which processes LWR fuel and FBR fuel in separately constructed lines and (2) Modularized Plant which processes LWR fuel and FBR fuel in a same line. We made construction plans based on the reference power generation plan, and evaluated the Pu supply capability using the power generation plan as an indicator of plant operation flexibility. In general, a margin of processing capacity increases the Pu supply capability. The margin of the Modularized Plant necessary to obtain equivalent Pu supply capability is smaller than that of the Independent Plant. Also the margin of the Independent Plant results in decrease in the plant utilization factor. But the margin of the Modularized Plant results in little decrease in the plant utilization factor, because the Modularized Plant can address the types of reprocessing fuel to adjust to Pu demand and processing capacity. Therefore, the Modularized Plant has a greater potential for the reprocessing plants during transition period. (author)

  15. The proceedings of China-Japan workshop on nuclear waste management and reprocessing

    International Nuclear Information System (INIS)

    2000-01-01

    China-Japan workshop on Nuclear Waste Management and Reprocessing held by sponsors, Nuclear Chemical Engineering Association, Chinese nuclear Society and Division of nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan and by co-sponsor, Nuclear and Radiochemistry Association, Chinese Nuclear Society, on April 5-7, 2000, in Beijing, China. The proceedings is published. It collected 34 articles. The contents include nuclear fuel reprocessing, radioactive waste processing and radioactive waste disposal, partitioning and transmutation, radionuclide migration, sorption and diffusion and actinide chemistry

  16. Design and development of effluent treatment plants for the Sellafield reprocessing factory

    International Nuclear Information System (INIS)

    Howden, M.

    1989-01-01

    The reprocessing of spent nuclear fuel has been carried out at Sellafield since the early 1950s. The storage of fuel in water filled ponds prior to reprocessing and the reprocessing operation itself results in the generation of a number of radioactive liquid effluents. The highly active liquors are stored in stainless steel tanks and will, with the commissioning of the Windscale Vitrification Plant, be converted into glass for long term storage and disposal. The medium and low active liquors are, after appropriate treatment, discharged to sea well below the Authorised Limits which are set by the appropriate Regulatory Bodies. Since 1960 these have been the Department of the Environment and the Ministry of Agriculture, Fisheries and Food. Even though the discharges have been well below the limits set, BNFL have for many years adopted a policy of reducing the levels of activity still further. Considerable progress has already been made, by changing reprocessing operations regimes but more importantly by the development and construction of specialised effluent treatment plants. Further reductions are, however, planned. Two major effluent treatment plants form the main basis of BNFL's policy to reduce activity discharges from Sellafield. The first, the Site Ion Exchange Effluent Plant, to treat storage pond water was brought into operation in 1985. The second, the enhanced Actinide Removal Plant to treat medium and low active effluents, is programmed to operate in 1992. (author)

  17. The actual state of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sawai, Masako

    2014-01-01

    The describing author's claims are as follows: a new mythology, semi made-in Japan energy, which 'the energy fundamental plan' creates; what is a nuclear fuel cycle?; operation processes in a reprocessing plant; the existing state against a recycle in dream; does a recycle reduce waste masses?; discharged liquid and gaseous radioactive wastes; an evaluation of exposure 'the value 22 μSv is irresponsible'; the putting off of waste problem in reprocessing; a guide in reprocessing; should a reprocessing be a duty of electric power companies? (M.H.)

  18. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  19. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  20. Geohydrologic conditions at the Nuclear Fuel Reprocessing Plant and Waste-Management Facilities at the western New York Nuclear Service Center, Cattaraugus County, New York

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, NY. The facilities are underlain by glacial and postglacial deposits that fill an ancestral bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses, ranges from 0.000018 to 0.000086 m/day

  1. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  2. The economic influence of reprocessing strategy in the early stages of a commercial breeder programme

    International Nuclear Information System (INIS)

    Pounder, F.

    1982-01-01

    The effect on reprocessing cost of constructing fast reactors in nuclear parks is examined and compared with carrying out reprocessing for a range of installation programmes of fast reactor in central reprocessing facilities. Consideration is also given to the economics of storing irradiated fuel to improve the load factor of reprocessing plants and to reprocessing both thermal reactor and fast reactor fuel in a common plant. (author)

  3. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  4. Dynamic considerations in the development of centrifugal separators used for reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    Strunk, W.D.; Singh, S.P.; Tuft, R.M.

    1988-01-01

    The development of centrifugal separators has been a key ingredient in improving the process used for reprocessing of spent nuclear fuel. The separators are used to segregate uranium and plutonium from the fission products produced by a controlled nuclear reaction. The separators are small variable speed centrifuges, designed to operate in a harsh environment. Dynamic problems were detected by vibration analysis and resolved using modal analysis and trending. Problems with critical speeds, resonances in the base, balancing, weak components, precision manufacturing, and short life have been solved

  5. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.

    2012-01-01

    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  6. Reprocessing ability of high density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Gay, A.; Belieres, M.

    1997-01-01

    The development of a new high density fuel is becoming a key issue for Research Reactors operators. Such a new fuel should be a Low Enrichment Uranium (LEU) fuel with a high density, to improve present in core performances. It must be compatible with the reprocessing in an industrial plant to provide a steady back-end solution. Within the framework of a work group CEA/CERCA/COGEMA on new fuel development for Research Reactors, COGEMA has performed an evaluation of the reprocessing ability of some fuel dispersants selected as good candidates. The results will allow US to classify these fuel dispersants from a reprocessing ability point of view. (author)

  7. Fuel fabrication and reprocessing at UKAEA Dounreay

    International Nuclear Information System (INIS)

    Anderson, B.

    1994-01-01

    The Dounreay fuel plants, which are the most flexible anywhere in the world, will continue to carry out work for foreign commercial customers. A number of German companies are important customers of UKAEA and examples of the wide variety of the work currently being carried out for them in the Dounreay plants is given (reprocessing and fabrication of fuel elements from and for research reactors). (orig./HP) [de

  8. Report of short term research group on environment safety in nuclear fuel cycle, 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The research group on environment safety in nuclear fuel cycle was organized in fiscal 1979 as the research group in the range of the common utilization of Yayoi, and this is the third year since it developed into the short term research group in the Nuclear Engineering Research Laboratory. The results obtained so far were summarized in three reports, UTNL-R110, 134 and 147. In this fiscal year, ''The chemistry of reprocessing'' is the subtheme, and this short term research is to be carried out. The meeting is held on March 23 and 24, 1984, in this Laboratory, and the following reports are presented. The conference on institutional stability and the disposal of nuclear and chemically toxic wastes held at MIT, the social scientific analysis of nuclear power development, the present status of reprocessing research in foreign countries, the problems based on the operation experience of actual plants, the chemistry of fuel dissolution, the chemistry of solvent extraction, reprocessing offgas treatment and problems, the chemistry of fixing Kr and I in zeolite, waste treatment in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp., the chemistry of actinoids, denitration process and the chemistry of MOX production, and future reprocessing research. (Kako, I.)

  9. Summary of plutonium terrestrial research studies in the vicinity of a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Corey, J.C.; Boni, A.L.; Andriano, D.C.; Pinder, J.F.; McLeod, K.W.

    1978-01-01

    This paper reports plutonium concentrations of wheat, soybeans, and corn grown (a) on a field adjacent to one of the nuclear reprocessing facilities at the Savannah River Plant (SRP), (b) in a glasshouse, and (c) offsite. The crops on SRP were grown on a field that has been receiving both fallout plutonium and plutonium emitted at low chronic levels from an air exhaust stack since 1955. The crops grown in the glasshouse were raised on soil from the onsite agricultural field. The offsite field has received only fallout plutonium. The crop data indicate that the dose to an individual from ingesting grain grown on the field, although higher than from ingesting grain grown offsite, is still small (the 70-year dose-to-bone from eating 2 X 10 5 g (440 lb) of wheat in a year would be less than one mrem). Crop data from the field and the glasshouse experiment indicate that less than 10% of the total contamination of field-grown crops adjacent to a reprocessing facility was contributed by root uptake, the remainder by deposition on the plant surfaces. The plutonium content of the grain was generally 10 to 100 times less than that of the vegetation, again suggesting that deposition from stack emissions vegetation, again suggesting that deposition from stack emissions on the vegetation increased the plutonium content; whereas the grain, particularly corn and soybeans, was protected by thehusk or pod and contained principally plutonium from the root uptake pathway

  10. Consolidated fuel reprocessing program. Developments for the future in reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.

    1982-01-01

    The future reprocessing developments focus on three major areas: (1) the retention of gaseous fission products to reduce off-site doses to very low values; (2) the initial steps of breakdown, shearing, and dissolution of breeder fuels; and (3) advanced facility and equipment concepts, which are expected to lead to a reliable, cost-effective, totally remotely operated and maintained plant. Work in the first area - removal of fission gases (the most important of which is 85 Kr) - is largely completed through tracer and bench-scale engineering equipment. Efforts are now mainly devoted to breeder fuels and advanced remote concepts. A facility, the Integrated Equipment Test Facility, which will be used to carry out much of this work, is nearing completion in Oak Ridge. In it a large, simulated, remote reprocessing cell will house a disassembly-shear machine for either breeder or LWR fuels, a rotary continuous dissolver, a solvent extraction cycle utilizing a new generation of centrifugal contactors, and related equipment

  11. Ion exchange technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1986-02-01

    The application of ion exchange has been expanded to various parts of the nuclear fuel cycle. Major applications are in uranium production facilities, nuclear power plants, spent fuel reprocessing and waste treatment. Furthermore, application to isotope separation has been under development. The appendix contains a compilation of resin data. A separate abstract was prepared for each of the 6 chapters in this technical document

  12. Examination of methods of proliferation control for application to nuclear fuel reprocessing facilities

    International Nuclear Information System (INIS)

    O'Hara, F.A.

    1980-01-01

    Potential methods are examined that could be applied to the nuclear fuel reprocessing facility as a means of more effectively controlling the proliferation threat and, at the same time, permitting the further development of nuclear power as an energy source. The proposed remedies for this problem are basically technical or economic and political in nature and include: ''technical fixes'', institutional arrangements, and international political solutions. Each of these approaches to the problem is examined, along with a consideration of their interaction and an estimation of their effectiveness, either individually or in combination. 22 refs

  13. The use of nuclear data in the field of nuclear fuel recycling

    Directory of Open Access Journals (Sweden)

    Martin Julie-Fiona

    2017-01-01

    Full Text Available AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste – fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand – is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  14. The use of nuclear data in the field of nuclear fuel recycling

    Science.gov (United States)

    Martin, Julie-Fiona; Launay, Agnès; Grassi, Gabriele; Binet, Christophe; Lelandais, Jacques; Lecampion, Erick

    2017-09-01

    AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste - fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand - is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  15. A strategy analysis of the fast breeder reactor introduction and nuclear fuel cycle systems deployment

    International Nuclear Information System (INIS)

    Wajima, Tsunetaka; Kawashima, Katsuyuki; Yamashita, Takashi

    1996-01-01

    A study is made on a strategy analysis of the long term nuclear fuel cycle systems deployment in accordance with the nuclear power growth projection and fast breeder reactor (FBR) introduction. In the analysis, the reprocessed plutonium (Pu) is charged into the reactor in such a way that the reprocessed Pu is not stored outside the reactor, i.e., there is no excess Pu outside the reactor. The analysis characterized the fuel cycle systems, and showed the usefulness of the present method to determine future directions for the FBR introduction and nuclear fuel cycle systems deployment. Concerning an intermediate-term strategy, the time of introduction and required capacities of a second commercial LWR reprocessing plant, Pu-thermal, and the first FBR reprocessing plant deployment are evaluated. A long term strategy analysis shows that the two or three large plants are run in parallel for each fuel cycle facility and that FBR related facilities deal with a markedly large amount of Pu. It is concluded that the early stage introduction of FBRs of significant capacities seems necessary to materialize a consistent total FBR/fuel cycle system where Pu balance becomes feasible through its flexible operation of, for instance, adjusting breeding ratio, in order to keep the transparency of the Pu utilization. (author)

  16. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing light-water reactor fuel

    International Nuclear Information System (INIS)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Hill, G.S.; Kitts, F.G.; Moore, R.E.; Witherspoon, J.P.

    1976-10-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term as low as reasonably achievable in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs, and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. This report is a revision of the original study

  17. Advances in reprocessing

    International Nuclear Information System (INIS)

    Giraud, J.P.; Guais, J.C.

    1993-01-01

    In a comprehensive nuclear energy program based on Light Water Reactor, closing the nuclear fuel cycle by reprocessing the spent fuel and recycling the recovered fissile materials is a key activity which is now fully mastered at the industrial level. In France a large, modern commercial reprocessing plant called UP3 is operating at La Hague since 18 months in excellent conditions regarding products quality, plant availability, safety and waste management. At the same time, industrial capacities for plutonium recycling by MOX fuel fabrication are under operation and larger units are in construction in France and in Europe. Our customers, the utilities which are engaged in a complete closed fuel cycle in Japan, in Germany, Switzerland, Belgium, the Netherlands, and in France, are having a comprehensive industrial system available for their spent fuel management. Three main objectives are being met by this system: (1) saving natural resources by recycling energetic material: plutonium and uranium; (2) solving the waste management question by a segregating the waste according to their characteristics for a proper conditioning, in particular with vitrification for HLW; and (3) preparing the future developments of nuclear power generation with advanced reactors, and best Pu use, and keeping open progresses in long lived waste processing and disposal

  18. Removal of spent fuel from the TVR reactor for reprocessing and proposals for the RA reactor spent fuel handling

    International Nuclear Information System (INIS)

    Volkov, E.B.; Konev, V.N.; Shvedov, O.V.; Bulkin, S.Yu; Sokolov, A.V.

    2002-01-01

    The 2,5 MW heavy-water moderated and cooled research reactor TVR was located at the Moscow Institute for Theoretical and Experimental Physics site. In 1990 the final batch of spent nuclear fuel (SNF) from the TVR reactor was transported for reprocessing to Production Association (PA) 'Mayak'. This transportation of the SNF was a part of TVR reactor decommissioning. The special technology and equipment was developed in order to fulfill the preparation of TVR SNF for transportation. The design of the TVR reactor and the fuel elements used are similar to the design and fuel elements of the RA reactor. Two different ways of RA spent fuel elements for transportation to reprocessing plant are considered: in aluminum barrels, and in additional cans. The experience and equipment used for the preparing TVR fuel elements for transportation can help the staff of RA reactor to find the optimal way for these technical operations. (author)

  19. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    Science.gov (United States)

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  20. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  1. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  2. Electrocoagulation of solvent residues in the reprocessing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gidarakos, E.; Gramatte, W.; Koehling, A.; Schmitt, R.E.

    1989-03-01

    The aim of this project was to find out the potential of the method for the electrocoagulation (EC) of colloidally dispersed particles for an improved fine feed purification in the reprocessing of high burnup nuclear fuels with the help of real fuel solutions on a laboratory scale. In EC, the particles colloidally dispersed in the solution are fed with electric charges at the electrodes; this leads to a coagulation of the particles, with separation taking place at the electrodes. The methods of analysis chosen for the EC were nephelometry for inactive experiments with RuO 2 suspensions, and gamma spectroscopy for experiments with radioactive fuel solutions, with the nuclide pair Ru/Rh-106 acting as a colloidal tracer nuclide. On the whole, the present experimental data permit the conclusion that under the experimental conditions and with the apparatus applied, EC gives rise to the separation of colloidally dispersed noble metal particles in an active fuel solution. (orig./RB) [de

  3. Reprocessing business in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, W L

    1985-01-01

    The development of the process for separating uranium, plutonium and fission products from irradiated fuel began in Britain in late 1940s, and the first separation plant was operated at Sellafield in 1952. This plant was operated very well for more than 12 years with the overall availability over 95%. The second separation plant to meet the needs of the growing nuclear power program became operational in 1964. This plant has been extremely successful, but the significant improvement was made to extend the operating life of the key items. In mid 1970s, by the introduction of uranium oxide fuel reactors, significant reprocessing capacity became to be required. Therefore, it was decided to embark upon the development of a thermal oxide reprocessing plant (THORP) to complement the existing facilities at Sellafield. The THORP is a very large complex of plants. The first duty for the THORP is to reprocess 6,000 t U of oxide fuel in 10 years. But the plant is designed for the life of 25 years. The plant has the capacity of 1200 tes/year. The scope covered by the THORP, the plant processes and the wastes produced from the THORP are described. (Kako, I.).

  4. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas

    International Nuclear Information System (INIS)

    Waggoner, R.C.

    1982-08-01

    A technical and economical analysis has been made of methods for collecting and concentrating krypton from the off-gas from a typical nuclear fuel reprocessing plant. The methods considered were cryogenic distillation, fluorocarbon absorption, mordenite adsorption, and selective permeation. The conclusions reached were: Cryogenic distillation is the only demonstrated route to date. Fluorocarbon absorption may offer economic and technical advantages if fully developed and demonstrated. Mordenite adsorption has been demonstrated only on a bench scale and is estimated to cost more than either cryogenic distillation or fluorocarbon absorption. Selective permeation through a silicone rubber membrane is not sufficiently selective for the route to be cost effective

  5. Government on the spot over Sellafield's reprocessing plant

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The 18-year gestation of British Nuclear Fuels' Thermal Oxide Reprocessing Plant (THORP) is almost at an end. Only one hurdle seemingly remains - the authorisation to dispose of its wastes. Opponents see this as the last chance to scrap what they regard as an environmental and financial white elephant. BNF's original rationale for THORP has grown increasingly threadbare since it was proposed in the mid-1970s - and the Government may now be forced into a last-minute rethink of the consequences of allowing it to be commissioned. (Author)

  6. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  7. Historical fuel reprocessing and HLW management in Idaho

    International Nuclear Information System (INIS)

    Knecht, D.A.; Staiger, M.D.; Christian, J.D.

    1997-01-01

    This article review some of the key decision points in the historical development of spent fuel reprocessing and waste management practices at the Idaho Chemical Processing Plant that have helped ICPP to successfully accomplish its mission safely and with minimal impact on the environment. Topics include ICPP reprocessing development; batch aluminum-uranium dissolution; continuous aluminum uranium dissolution; batch zirconium dissolution; batch stainless steel dissolution; semicontinuous zirconium dissolution with soluble poison; electrolytic dissolution of stainless steel-clad fuel; graphite-based rover fuel processing; fluorinel fuel processing; ICPP waste management consideration and design decisions; calcination technology development; ICPP calcination demonstration and hot operations; NWCF design, construction, and operation; HLW immobilization technology development. 80 refs., 4 figs

  8. Environmental hazards from nuclear power plants

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1973-04-01

    The article discusses the radiation exposure due to nuclear power stations in normal operation and after reactor incidents. Also mentioned is the radiation exposure to the emissions from fuel reprocessing plants and radioactive waste facilities. (RW/AK) [de

  9. Alloy 33: A new material for the handling of HNO3/HF media in reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1997-01-01

    Alloy 33, an austenitic 33Cr-32Fe-31Ni-1.6Mo-0.6Cu-0.4N material shows excellent resistance to corrosion when exposed to highly oxidizing media as e.g. HNO 3 and HNO 3 /HF mixtures which are encountered in reprocessing of nuclear fuel. According to the test results available so far, resistance to corrosion in boiling azeotropic (67%) HNO 3 is about 6 and 2 times superior to AISI 304 L and 310 L. In higher concentrated nitric acid it can be considered corrosion resistant up to 95% HNO 3 at 25 C, up to 90% HNO 3 at 50 C and up to somewhat less than 85% HNO 3 at 75 C. In 20% HNO 3 /7% HF at 50 C its resistance to corrosion is superior to AISI 316 Ti and Alloy 28 by factors of about 200 and 2.4. Other media tested with different results include 12% HNO 3 with up to 3.5% HF and 0.4% HF with 32 to 67.5% HNO 3 at 90 C. Alloy 33 is easily fabricated into all product forms required for chemical plants (e.g. plate, sheet, strip, wire, tube and flanges). Components such as dished ends and tube to tube sheet weldments have been successfully fabricated facilitating the use of Alloy 33 for reprocessing of nuclear fuel

  10. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  11. Krypton separation from waste gas of a reprocessing plant by low temperature rectification

    International Nuclear Information System (INIS)

    1987-01-01

    6 lectures at this seminar describe and evaluate the results of the research and development work on low temperature krypton separation from the waste gas of the reprocessing of nuclear fuels. They are used for making decisions for the process to be used in the future on a large scale at the Wackersdorf reprocessing plant. 2 further lectures deal with alternatives to this process, which were also developed: the freon washing and low temperature adsorption of krypton. All the lectures were included separately in the INIS and ENERGY databases. (RB) [de

  12. Probabilistic safety assessment of nuclear power plants: a monograph

    International Nuclear Information System (INIS)

    Solanki, R.B.; Prasad, Mahendra

    2007-11-01

    This monograph on probabilistic safety assessment (PSA) is addressed to the wide community of professionals engaged in the nuclear industry and concerned with the safety issues of nuclear power plants (NPPs). While the monograph describes PSA of NPPs, the principles described in this monograph can be extended to other facilities like spent fuel storage, fuel reprocessing plants and non-nuclear facilities like chemical plants, refineries etc. as applicable. The methodology for risk assessment in chemical plants or refineries is generally known as quantitative risk analysis (QRA). The fundamental difference between NPP and chemical plant is that in NPPs the hazardous material (fuel and fission products) are contained at a single location (i.e. inside containment), whereas in a chemical plant and reprocessing plants, the hazardous material is present simultaneously at many places, like pipelines, reaction towers, storage tanks, etc. Also unlike PSA, QRA does not deal with levels; it uses an integrated approach combining all the levels. The monograph covers the areas of broad interest in the field of PSA such as historical perspective, fundamentals of PSA, strengths and weaknesses of PSA, applications of PSA, role of PSA in the regulatory decision making and issues for advancement of PSA

  13. A view from the nuclear fuel reprocessing industry

    International Nuclear Information System (INIS)

    Smith, R.; Hartley, G.

    1982-01-01

    Radiological protection in UK nuclear industry is discussed, with special reference to British Nuclear Fuels Ltd. The following aspects are covered: historical introduction, relevant legislation and general principles; radioactive decay processes (fission, fission products, radio-isotopes, ionising radiations, neutrons); risk assessment (historical, biological radiation effects; ICRP recommendations, dose limits); cost effectiveness of protection; plant design principles; examples of containment (shielding, ventilation and contamination control required for various types of radioactive materials, e.g. fission products, plutonium, depleted uranium; fuel rod storage ponds and decanning caves; fission products at dissolution stage; glovebox handling of Pu operations; critical assembly of fissile materials; surface contamination control; monitoring radiation levels). (U.K.)

  14. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  15. On the Potential of Nuclear Fission Energy for Effective Reduction of Carbon Emission under the Constraint of Uranium Resources Use without Spent Fuel Reprocessing

    International Nuclear Information System (INIS)

    Knapp, V.; Pevec, D.; Matijevic, M.

    2010-01-01

    Urgency to stop further increase of greenhouse gases emissions and reverse the trends, as stated in the Fourth Intergovernmental Panel on Climate Change (IPPC) Report and in Copenhagen discussions, limits the realistic choice of energy technologies to those available now or in the near future of few decades. In the coming fifty years neither nuclear fusion nor carbon capture and storage (CCS) can be expected to give a significant contribution to world energy production. Two perspective intermittent sources such as wind and solar together with nuclear fission energy covering the base load consumption appears to be a combination with a potential to produce a large share of carbon free energy in the total world energy production. This contribution considers the issues, associated with required large scale deployment of nuclear fission energy. A serious question associated with nuclear energy is nuclear proliferation. Spread of uranium enrichment and spent fuel reprocessing installations in many new countries constructing nuclear reactors would be a major concern in present political environment. We investigate whether uranium resources would be sufficient to support nuclear build-up in next 50-60 years sufficiently large to significantly reduce carbon emission without reprocessing of spent nuclear fuel. A positive answer would mean that 50-60 years can be available to develop effective international control of nuclear fuel cycle installations. Our results show that a maximum nuclear build-up which would consume currently estimated uranium resources by 2065 without reprocessing could reduce by 2065 carbon emission by 39.6% of the total reduction needed to bring the WEO 2009 Reference Scenario prediction of total GHG emissions in 2065 to the level of the WEO 450 Scenario limiting global temperature increase to 2 degrees of C. The less demanding strategy of the nuclear replacement of all non-CCS coal power plants retiring during the 2025-2065 period would reduce emission

  16. Radiation exposure control in back end of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pendharkar, K.A.

    2003-01-01

    Fuel Reprocessing Plant and Waste Immobilization Plant for management of high level liquid waste, generated during reprocessing, form part of the back end of Nuclear Fuel Cycle. Both the plants handle annually several million curie of fission products in easily dispersible form. There is potential for significant external exposure and internal contamination to plant workers during plant operations, associated maintenance works and also during outages for carrying out repairs/modifications inside cells where process equipment handling/storing radioactive materials are installed. In view of handling of fissile material (Pu) in a reprocessing plant, special attention has to be paid to ensure that a condition for self sustaining nuclear fission chain reaction (criticality) does not arise even under foreseeable maloperation conditions. The reprocessing plant and Waste Immobilization plant have several engineered safety features such as shielding, ventilation, containment, remote operation etc. These features aim at reducing exposure to plant personnel and keeping the release of radioactive materials to environment below the limits specified in Technical Specifications of the plant. Execution of a comprehensive radiological surveillance programme which includes area monitoring, personal monitoring, effluent monitoring and investigative surveys in connection with safety related unusual occurrences, plays very important role in ensuring radiation safety of plant personnel and the environment. This together with training in radiation safety to plant workers helps reduce 'radiation phobia' in some workers. The paper describes radiological safety considerations and radiological surveillance programme (giving specific examples where required) that is being implemented in reprocessing plants and Waste Immobilization Plants in India. (author)

  17. Aerial deposition of plutonium in mixed forest stands from nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Adriano, D.C.; Pinder, J.E. III

    1977-01-01

    Concentrations of 238 Pu and 239 , 240 Pu were determined in bark, organic matter, and soil samples collected in the summer of 1975 from pine (Pinus taeda) and hardwood (Quercus falcata; Carya tormentosa) stands near a nuclear fuel reprocessing plant at the U.S. Energy Res. and Dev. Admin.'s Savannah River Plant near Aiken, S.C. The results indicated that tree crowns intercepted fallout Pu (Pu-bearing particles) and produced higher Pu concentrations in the organic matter and soil under tree crowns. Higher 239 , 240 Pu concentrations were found under pines than under hardwoods. Plutonium concentrations in the O1 (litter, A 00 ) and O2 (organic matter, A 0 ) layers were higher than those in mineral soil, but most of the Pu was contained in the mineral soil. Higher contents of 239 , 240 Pu were observed near the tree stems than in locations outside of the tree crowns. In pines these values were 163 and 80 nCi 239 , 240 Pu/m 2 , and in hardwoods, 122 and 80 nCi 239 , 240 Pu/m 2 , for the respective locations, from the litter to the 15-cm depth. The proportion of 238 Pu contained in foliage, litter, and organic matter was greater than for 239 , 240 Pu. However, the latter radionuclides had a greater proportion contained in the mineral soil. This observation is consistent with the more recent releases containing a higher percentage of 238 Pu from reprocessing operation. Plutonium concentrations in the 5 to 15 cm depth indicated limited Pu mobility in soil, but 238 , 240 Pu concentrations at this depth were higher near tree stems, suggesting greater mobility perhaps as a result of stem flow

  18. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  19. Reprocessing of fast reactor fuels in the UP2 plant at La Hague

    International Nuclear Information System (INIS)

    Chenevier, F.; Grellard, J.; Wauquier, J.M.

    The installations of the UP2 plant and particularly the geometry of the HAO shop equipment were defined for reprocessing fuels from the ordinary water system. The high fissile substance level of fuels from the fast neutron system necessitated certain modifications to the installations and some operating restrictions so that they could be treated in the existing installation. After reviewing the characteristics of the reference fuel and describing the particular restrictions to be respected for safety-criticality, the choices made with respect to installation modifications and operating restrictions are presented. The observations made during a first treatment campaign confirm the validity of the options chosen [fr

  20. The main methods of solving the problem of radioactive waste management from nuclear power stations and spent fuel reprocessing plants in the USSR

    International Nuclear Information System (INIS)

    1978-09-01

    The main directions of solving the problem of radioactive waste management from nuclear power stations and radiochemical plants, the aspects of gaseous waste management, liquid HLW storage in vessels and the problems of heat removal during storage of vitrified HLW in surface storages are considered. The main problems arising during fine decontamination of gaseous discharges from nuclear power stations and reprocessing plants are discussed. The migration of fission products in the environment and technical aspects of their capture from gaseous discharges are also considered

  1. Safety aspects of reprocessing and plutonium fuel facilities in power reactor and nuclear fuel development corporation

    International Nuclear Information System (INIS)

    Sato, S.; Akutsu, H.; Nakajima, K.; Kono, K.; Muto, T.

    1977-01-01

    PNC completed the construction of the first Japanese reprocessing plant in 1974, and the startup is now under way. The plant will have a capacity of 0.7 metric tons of spent fuel per day. Various safety measures for earthquake, radiation, criticality, fire, explosion and leakage of radioactive materials are provided in the plant. 8,000 Ci of Kr-85 and 50 Ci of H-3 per day will be released from the plant to enviroment. Skin dose is conservatively estimated to be about 30 mrem per year. Liquid waste containing 0.7 Ci per day will be discharged into the sea. Whole body dose is conservatively estimated to be 10 mrem per year. R and D for removal of Kr-85 and reducing radioactivity released into the sea are being carried out. Developmental works for solidification of radioactive liquid waste are also being conducted. Safety control in plutonium handling work for both R and D and fuel fabrication has been successfully conducted without significant abnormal occurrence in these ten years. By ''zero-contamination control policy'', surface contamination and airborne contamination in operation rooms are maintained at the background level in usual operation. The intake of plutonium was found at the maximum about one-hundredths of the MPB. External exposure has been generally controlled below three-tenths rem for three months, by shielding and mechanization of process. The radioactivity concentration of exhaust air and liquid effluent disposal is ensured far below the regulation level. Nuclear material control is maintained by a computer system, and no criticality problem has occurred. The safeguard system and installation has been improved, and is sufficient to satisfy the IAEA regulation

  2. Possible toxic effects from the nuclear reprocessing at Sellafield and Cap de la Hague

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Coeytaux, X.; Faid, Y.B.; Marignac, Y.; Rouy, E. [Wise, 75 - Paris (France); Thompson, G. [IRSS, Cambridge (United States); Fairlie, I.; Lowry, D.; Sumner, D

    2001-11-15

    The principal aim of this report is to assist the Committee of Petitions of the European Parliament in its consideration of Petition 393/95 brought by Dr. W. Nachtwey. The Petition expresses concerns about radioactive discharges from nuclear reprocessing plants at Sellafield in the UK and La Hague in France, and their possible adverse health effects. Six years after the Petition was introduced, the Petitioner main concerns remain relevant. This report concludes that reprocessing discharges are a valid matter for the Committee consideration. It also concludes that, on balance, the Petitioner's concerns over radioactive discharges from Sellafield and La Hague are justified. The report presents evidence and data on: 1) radioactive discharges from the Sellafield and La Hague sites; 2) resulting nuclide concentrations in environmental media including foodstuffs; 3) radiation doses from nuclide discharges to critical groups near the sites; 4) adverse health effects near the two sites; and 5) resulting collective doses from nuclide discharges. The report also examines a number of current issues in radiobiology concerning health effects from exposure to ionising radiation, in particular genetic and in utero effects. In addition, in accordance with contract specifications, the report examines other major factors that might influence future decision-making on reprocessing. It provides information on the legal framework, the operational history of the plants and the economic case for reprocessing compared with available alternatives for spent nuclear fuel management. The report also makes policy-related recommendations that take into account current knowledge and uncertainties in risk assessment and the availability of alternatives to reprocessing in spent fuel management. (authors)

  3. Possible toxic effects from the nuclear reprocessing at Sellafield and Cap de la Hague

    International Nuclear Information System (INIS)

    Schneider, M.; Coeytaux, X.; Faid, Y.B.; Marignac, Y.; Rouy, E.; Thompson, G.; Fairlie, I.; Lowry, D.; Sumner, D.

    2001-11-01

    The principal aim of this report is to assist the Committee of Petitions of the European Parliament in its consideration of Petition 393/95 brought by Dr. W. Nachtwey. The Petition expresses concerns about radioactive discharges from nuclear reprocessing plants at Sellafield in the UK and La Hague in France, and their possible adverse health effects. Six years after the Petition was introduced, the Petitioner main concerns remain relevant. This report concludes that reprocessing discharges are a valid matter for the Committee consideration. It also concludes that, on balance, the Petitioner's concerns over radioactive discharges from Sellafield and La Hague are justified. The report presents evidence and data on: 1) radioactive discharges from the Sellafield and La Hague sites; 2) resulting nuclide concentrations in environmental media including foodstuffs; 3) radiation doses from nuclide discharges to critical groups near the sites; 4) adverse health effects near the two sites; and 5) resulting collective doses from nuclide discharges. The report also examines a number of current issues in radiobiology concerning health effects from exposure to ionising radiation, in particular genetic and in utero effects. In addition, in accordance with contract specifications, the report examines other major factors that might influence future decision-making on reprocessing. It provides information on the legal framework, the operational history of the plants and the economic case for reprocessing compared with available alternatives for spent nuclear fuel management. The report also makes policy-related recommendations that take into account current knowledge and uncertainties in risk assessment and the availability of alternatives to reprocessing in spent fuel management. (authors)

  4. International auspices for the storage of spent nuclear fuel as a nonproliferation measure

    International Nuclear Information System (INIS)

    O'Brien, J.N.

    1981-01-01

    The maintenance of spent nuclear fuel from power reactors will pose problems regardless of how or when the debate over reprocessing is resolved. At present, many reactor sites contain significant buildups of spent fuel stored in holding pools, and no measure short of shutting down reactors with no remaining storage capacity will alleviate the need for away-from-reactor storage. Although the federal government has committed itself to dealing with the spent fuel problem, no solution has been reached, largely because of a debate over differing projections of storage capacity requirements. Proliferation of weapons grade nuclear material in many nations presents another pressing issue. If nations with small nuclear programs are forced to deal with their own spent fuel accumulations, they will either have to reprocess it indigenously or contract to have it reprocessed in a foreign reprocessing plant. In either case, these nations may eventually possess sufficient resources to assemble a nuclear weapon. The problem of spent fuel management demands real global solutions, and further delay in solving the problem of spent nuclear fuel accumulation, both nationally and globally, can benefit only a small class of elected officials in the short term and may inflict substantial costs on the American public, and possibly the world

  5. Status and trends in spent fuel reprocessing. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1999-08-01

    Spent fuel management has always been an important part of the nuclear fuel cycle and is still one of the most important activities in all countries exploiting the peaceful use of nuclear energy. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and to coordinate and encourage closer co-operation among Member States in certain research and developing activities that are of common interest. As part of spent fuel management, reprocessing activities have been reviewed from time to time on a low profile level under the terminology 'spent fuel treatment'. However, spent fuel treatment covers, in broad terms, spent fuel storage (short, interim and long term), fuel rod consolidation, reprocessing and, in case the once-through cycle is selected, conditioning of the spent fuel for disposal. Hence the reprocessing activities under the heading 'spent fuel treatment' were somewhat misleading. Several meetings on spent fuel treatment have been organized during the fast decade: an Advisory Group meeting (AGM) in 1992, a Technical Committee meeting in 1995 and recently an Advisory Group meeting from 7 to 10 September 1998. The objectives of the meetings were to review the status and trends of spent fuel reprocessing, to discuss the environmental impact and safety aspects of reprocessing facilities and to define the most important issues in this field. Notwithstanding the fact that the Summary of the report does not include aspects of military reprocessing, some of the national presentations do refer to some relevant aspects (e.g. experience, fissile stockpiles)

  6. China's spent nuclear fuel management: Current practices and future strategies

    International Nuclear Information System (INIS)

    Zhou Yun

    2011-01-01

    Although China's nuclear power industry is relatively young and the management of its spent nuclear fuel is not yet a concern, China's commitment to nuclear energy and its rapid pace of development require detailed analyses of its future spent fuel management policies. The purpose of this study is to provide an overview of China's fuel cycle program and its reprocessing policy, and to suggest strategies for managing its future fuel cycle program. The study is broken into four sections. The first reviews China's current nuclear fuel cycle program and facilities. The second discusses China's current spent fuel management methods and the storage capability of China's 13 operational nuclear power plants. The third estimates China's total accumulated spent fuel, its required spent fuel storage from present day until 2035, when China expects its first commercialized fast neutron reactors to be operational, and its likely demand for uranium resources. The fourth examines several spent fuel management scenarios for the present period up until 2035; the financial cost and proliferation risk of each scenario is evaluated. The study concludes that China can and should maintain a reprocessing operation to meet its R and D activities before its fast reactor program is further developed. - Highlights: → This study provides an overview of China's fuel cycle program and its reprocessing policy.→ This study suggests strategies for managing its future fuel cycle program.→ China will experience no pressure to lessen the burden of spent fuel storage in the next 30 years.→ China should maintain sufficient reprocessing operations to meet its demands for R and D activities.→ China should actively invest on R and D activities of both fuel cycling and fast reactor programs.

  7. World-wide redistribution of 129Iodine from nuclear fuel reprocessing facilities: Results from meteoric, river, and seawater tracer studies

    International Nuclear Information System (INIS)

    Moran, J.E.; Oktay, S.; Santschi, P.H.; Schink, D.R.; Fehn, U.; Snyder, G.

    1999-01-01

    Releases of the long-lived radioisotope of iodine, 129 I, from commercial nuclear fuel reprocessing facilities in England and France have surpassed natural, and even bomb test inventories. 129 I/ 127 I ratios measured in a variety of environmental matrices from Europe, North America and the southern hemisphere show the influence of fuel reprocessing-derived 129 I, which is transported globally via the atmosphere. Transport and cycling of I and 129 I in the hydrosphere and in soils are described based on a spatial survey of 129 I in freshwater. (author)

  8. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Kitts, F.G.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs and the radiological doses, detailed calculations, and tabulations is presented in Appendix A and ORNL-4992. (U.S.)

  9. Refurbishment of the BNFL Magnox reprocessing plant

    International Nuclear Information System (INIS)

    Carr, V.M.; Edgar, R.

    1998-01-01

    The Magnox Reprocessing Plant was commissioned in 1964. Since then it has reprocessed more than 35,000 t of irradiated uranium metal fuel. The plant is subject to routine shutdowns to allow maintenance and project work to be undertaken. During the 1997 shutdown the opportunity was taken to replace several life limiting parts of the plant to ensure Magnox reprocessing capability well beyond the year 2010. This shutdown was the largest and most complex undertaken by Magnox Reprocessing, with a total committed value of 130 million UK pounds, 17.5 million UK pounds committed in the shutdown itself and the balance on installation, design and procurement preparing for the shutdown. The work was completed within safety targets, to programme and within budget. The lessons learned and experience gained have been fed into the methodologies and procedures for planning future project and shutdown work within BNFL. This report is part of the output from this process of continually improving performance. (author)

  10. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  11. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  12. EdF speaks about economic advantages of fuel reprocessing as compared with interim storage

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The French company Electricite de France (EdF) will prefer nuclear fuel reprocessing and plutonium recycling to spent fuel storage also in the years after 2000. This option is economically advantageous if the proportional cost of reprocessing does not exceed 1900 FRF/kg heavy metal. Economic analysis shows that this is feasible. EdF will soon have to reprocess annually about 1000 Mt spent fuel to supply enough plutonium for MOX fuel fabrication to feed as many as 28 PWR units and the Superphenix reactor. Spent fuel reprocessing is seen as promising as long as the efficiency of the MOX fuel approaches that of natural uranium based fuel. The French national industrial, political and legal context of EdF operations is also considered. (P.A.)

  13. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1978-01-01

    In compliance with ''The law for the regulations of nuclear source material, nuclear fuel material and reactors'' these regulations prescribe concerning reprocessing facilities: The procedures to apply for the approval of the design and method of construction and the approval of the change thereof; as well as the procedure to apply for the inspection of the facilities, and details of the inspection (in sections 2-6). After that, the regulations require the enterpriser of reprocessing business to keep necessary records and take necessary measures for safety concerning the facilities, operation of reprocessing equipments, and transportation, storage on disposal of used fuel, materials separated therefrom or materials contaminated by either of them (in sections 8-16). Further, the regulations prescribe the procedure to apply for the approval of the safety rule required to the enterpriser of reprocessing business by above mentioned law and specifies items which should be included into the rule (section 17). Moreover, the regulations require the enterpriser to submit reports of each use of the internationally controllled material and specifies the items which should be included into these reports (section 19). (Matsushima, A.)

  14. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, Alex [ORNL; Billings, Jay Jay [ORNL; de Almeida, Valmor F [ORNL

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  15. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  16. Design of the vitrification plant for HLLW generated from the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Vematsu, K.

    1986-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is now designing a vitrification plant. This plant is for the solidification of high-level liquid waste (HLLW) which is generated from the Tokai Reprocessing Plant, and for the demonstration of the vitrification technology. The detailed design of the plant which started in 1982 was completed in 1984. At present the design improvement is being made for the reduction of construction cost and for the licensing which is going to be applied in 1986. The construction will be started in autumn 1987. The plant has a large shielded cell with low flow ventilation, and employs rack-mounted module system and high performance two-armed servomanipulator system to accomplish the fully remote operations and maintenance. The vitrification of HLLW is based on the liquid-fed Joule-heated ceramic melter process. The processing capacity is equivalent to the reprocessing of 0.7 ton of heavy metals per day. The glass production rate is about 9 kg/h, and about 300 kg of glass is poured periodically from the bottom of the melter into a canister. Produced glass is stored under the forced air cooling condition

  17. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  18. Review of monitoring instruments for transuranics in fuel fabrication and reprocessing plants. A progress report to the physical and technological programs, Division of Biomedical and Environmental Research, U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Kordas, J.F.; Phelps, P.L.

    A comprehensive review of the monitoring instruments for transuranic elements released from nuclear fuel fabrication and reprocessing plants has been compiled. The extent of routine operational releases has been reviewed for the light water reactor (LWR) fuel cycle (including plutonium recycle), the breeder reactor fuel cycle, and the high-temperature gas cooled reactor (HTGR) fuel cycle. The stack monitoring instrumentation presently in use at the various fabrication and reprocessing plants around the country is discussed. Sampling difficulties and the effectiveness of the entire sampling system are reviewed, as are the measurement problems for alpha-emitting, long-lived, transuranic aerosols, 129 I, 106 Ru, and tritium oxide. The potential problems in the HTGR fuel cycle such as the measurement of releases of alpha-emitting aerosols and of gaseous releases of 220 Rn and 14 C are also considered

  19. Concept of a large-capacity irradiated-fuel-reprocessing plant

    International Nuclear Information System (INIS)

    Buck, C.; Couture, J.; Issel, W.; Mamelle, J.

    The processing of LWR fuels in recent years has run into difficulties due to the adaptation of the Purex process to these fuels with a high irradiation rate. This has led to development of new technological techniques. High-capacity plants should, in the future, limit their discharge of liquid and gaseous effluents to values comparable to those of nuclear electric stations. Investment costs necessary for processing the effluents and for temporary storage of the wastes are part of the total cost of these plants. However, the investments remain within acceptable limits. The 1500-ton/year plant presented is an example of what can be done in the 1980's

  20. Reprocessing of spent nuclear fuels. Status and trends

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs

  1. Radiological impact of emissions from reprocessing plants during normal operation

    International Nuclear Information System (INIS)

    Bonka, H.; Gruendler, D.; Hesel, D.; Muenster, M.; Schmidtlein, P.; Suender, B.

    1977-01-01

    When comparing the expected radiation exposure due to emissions from reprocessing plants with those from nuclear power plants it can be seen that the emissions from reprocessing plants contribute much more to the radiation exposure of the population than those from nuclear power plants. In the vicinity of reprocessing plants the highest contributions to the radiation exposure of the population are delivered by the following radionuclides: T, C 14 , Kr 85 , Sr 90 , Ru 106 , I 129 , Cs 134 , Cs 137 and Ce 144 as will as the Pu- and Cm-isotopes. Among these nuclides T, C 14 , Kr 85 und I 129 are globally distributed. While for T the contribution to the collective dose due to globally distributed T is small in comparison with the first pass exposure, the global contribution predominates for C 14 and Kr 85 . If an integration time of less than 10 5 years is considered, the contribution due to first pass exposure predominates for I 129 . When taking the radiation protection of the population into consideration, it seems sensible to retain 10% of T, 80 to 90% of C 14 , 90% of Kr 85 and 99,5% of I 129 in reprocessing plants and dispose of this material in a controlled manner. The fraction of the aerosols released should be about 10 -9 . Considering the global effects and the increasing number of nuclear power plants and reprocessing plants, an international agreement should be reached on these matters. (orig.) [de

  2. Monitoring of releases from an irradiated fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    At its UP 2 plant, the La Hague facility reprocesses irradiated fuel by the PUREX process. The fuel stems from graphite/gas, natural-uranium reactors and pressurized or boiling water enriched-uranium reactors. The gaseous effluents are collected and purified by high-efficiency washing and filtration. After purification the gas stream is discharged into the atmosphere by a single stack, 100m high and 6m in diameter, located at a high point on the site (184m). The radionuclides released into the air are: krypton-85, iodine-129 and -131, and tritium. The liquid effluents are collected by drainage systems, which transfer them to the effluent treatment station in the case of active or suspect solutions. Active solutions undergo treatment by chemical and physical processes. After purification the waste water is released into the sea by an underwater drainage system 5km long, which brings the outlet point into the middle of a tidal current 2km offshore. The radionuclides contained in the purified waste water are fission products originating from irradiated fuels in only slightly variable proportions, in which ruthenium-rhodium-106 predominates. Traces of the transuranium elements are also found in these solutions

  3. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  4. Nondestructive assay measurements applied to reprocessing plants

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lee, R. Stephen; Ottmar, Herbert; Guardini, Sergio

    1999-01-01

    Nondestructive assay for reprocessing plants relies on passive gamma-ray spectrometry for plutonium isotopic and plutonium mass values of medium-to-low-density samples and holdup deposits; on active x-ray fluorescence and densitometry techniques for uranium and plutonium concentrations in solutions; on calorimetry for plutonium mass in product; and passive neutron techniques for plutonium mass in spent fuel, product, and waste. This paper will describe the radiation-based nondestructive assay techniques used to perform materials accounting measurements. The paper will also discuss nondestructive assay measurements used in inspections of reprocessing plants [ru

  5. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  6. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Alexandre, D.

    1986-05-01

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen [fr

  7. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    International Nuclear Information System (INIS)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation

  8. Economic assessment factors relating to spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    This paper is in two parts. Part I discusses the factors to be applied in an economic assessment of reprocessing. It sets forth three basic cost components, namely capital costs, operating costs and the cost of capital utilization. It lists the various components of each cost area. Part II proposes a relationship between these respective cost areas, tabulates a range of costs and then develops unit costs for reprocessing operations. Finally, an addendum to the paper gives a more detailed breakdown of the capital costs of a reprocessing plant

  9. Method of reprocessing nuclear fuel using vacuum freeze-drying method

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Kondo, Isao.

    1989-01-01

    Solutions of plutonium nitrate and uranyl nitrate, spent solvents and liquid wastes separated by the treatment in the solvent extractant steps in the wet processing steps of re-processing plants or fuel fabrication plants are processed by means of freeze-drying under vacuum. Then, the solutions of plutonium nitrate and uranyl nitrate are separated into nitrates and liquid condensates and the spent solvents are freeze-dried. Thus, they are separated into tri-n-butyl phosphate, diester, monoester and n-dodecane and the liquid wastes are processed by means of freeze-drying and separated into liquids and residues. In this way, since sodium carbonate, etc. are not used, the amount of resultant liquid wastes is reduced and sodium is not contained in liquid wastes sent to an asphalt solidification step and a vitrification step, the processing steps can be simplified. (S.T.)

  10. Design and analysis of free-standing spent fuel racks in nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; DeGrassi, G.

    1989-01-01

    With the prohibition on reprocessing of spent fuel in the late 1970's the pools which were supposed to be short term storage became quasi-permanent storage spaces for spent fuel. Recognizing a need to provide permanent storage facilities for such nuclear wastes, the US Congress enacted a law cited as the Nuclear Waste Policy Act of 1982. The Act, in essence, required the Department of Energy to find ways for long term storage of high level waste. However, it also is required the owners of nuclear power plants to provide for interim storage of their spent fuel. The permanent government owned repositories are not scheduled to be operational until the year 2005. In order to accommodate the increasing inventory of spent fuel, the US utilities started looking for various means to store spent fuel at the reactor sites. One of the most economical ways to accommodate more spent fuel is to arrange storage locations as closely as possible at the same time making sure that the fuel remains subcritical and that there are adequate means to cope with the heat load. The free standing high density rack configuration is an outcome of efforts to accommodate to more fuel in the limited space. 3 refs., 3 figs

  11. Radiation protection aspects in decommissioning of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kotrappa, P.; Joshi, P.P.; Theyyunni, T.K.; Sidhwa, B.M.; Nadkarni, M.N.

    1980-01-01

    The decontamination of a fuel reprocessing plant which underwent partial decommissioning is described. The following radiation protection aspects of the work are discussed: dismantling and removal of process vessels, columns and process off-gas filters; decontamination of various process areas; and management of liquid and solid wastes. The work was completed safely by using personnel protective equipment such as plastic suits and respirators (gas, particulate and fresh air). Total dose commitment for this work was around 3000 man-rems, including dose received by staff for certain jobs related to the operation of a section of the plant. The external dose was kept below the annual limit of 5000 mrems for any individual. No internal contamination incident occurred which caused a dose commitment in excess of 10% of the annual limit. The fact that all the work was completed by the staff normally associated with the operation of the plant contributed significantly to the management and control of personnel exposures. (H.K.)

  12. Management of radioactive wastes from nuclear fuels and power plants in Canada

    International Nuclear Information System (INIS)

    Tomlinson, M.; Mayman, S.A.; Tammemagi, H.Y.; Gale, J.; Sanford, B.

    1977-05-01

    The nature of Canadian nuclear fuel and nuclear generating plant radioactive wastes is summarized. Principles of a scheme for disposal of long-lived radioactive wastes deep underground in isolation from man and the biosphere are outlined. The status of the development and construction program is indicated. We have demonstrated incorporation of fission products in solids that in the short term (17 years) dissolve more slowly than plutonium decays. Investigations of long-term stability are in hand. Additional capacity for storage of used fuel prior to reprocessing and disposal is required by 1986 and a preliminary design has been prepared for a pool facility to be located at a central fuel recycling and disposal complex. A demonstration of dry storage of fuel in concrete containers is in progress. The quantities of CANDU generating-station wastes and the principles and methods for managing them are summarized. A radioactive-waste operations site is being developed with several different types of surface storage, each with multiple barriers against leakage. A reactor decommissioning study has been completed. Estimated costs of the various waste management operations are summarized. (author)

  13. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  14. Nuclear fuels - swords and ploughshares

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, N.L.

    1986-05-01

    In 1986 the problems associated with the implementation of nuclear power programmes mainly arise from difficulties of social acceptability. The scientific and technological achievements are no longer a source of wonder and are taken for granted by a public which has become accustomed to such achievements in other fields. This lecture recounts the history of the nuclear fuel cycle starting around 1955 but continuing, to look at future prospects. The problems are discussed. The technical improvements that have occurred over the years mean that, currently it is possible for all the problems to be overcome technically. Although there is always room for improvements in endurance, design etc. commercial and safety requirements can be met. In economic terms, the real costs of the fuel cycle have reached a plateau and should decrease as the result of lower cost for enriched uranium, lower reprocessing costs and better fuel management. However, in social and political terms, the position is not so certain because of public concern about reprocessing plants and the disposal of radioactive wastes. (U.K.).

  15. Remote maintenance lessons learned on prototypical reprocessing equipment

    International Nuclear Information System (INIS)

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is to develop and demonstrate the technology required to reprocess spent nuclear fuel. The Fuel Recycle Division, over the past 16 years, has undertaken this objective by designing and testing prototypical hardware representing essentially every major equipment item currently included in most fuel reprocessing plant conceptual designs. These designs are based on total remote maintenance to increase plant availability and reduce radiation exposure to plant operators. The designs include modular equipment to facilitate maintainability and the remote manipulation necessary to accomplish maintenance tasks. Prototypic equipment has been installed and tested in a cold mock-up of a reprocessing hot cell, called the remote operations and maintenance demonstration facility. The applied maintenance concept utilizes the dexterity and mobility of bridge-mounted, force-reflecting servomanipulators. Prototypic processing equipment includes a remote disassembly system, a remote shear system, a rotary dissolver, a remote automated sampler system, removable equipment racks to support chemical process equipment items, and the advanced servomanipulators. Each of these systems and a brief description of functions are discussed

  16. The nuclear fuel cycle, From the uranium mine to waste disposal

    International Nuclear Information System (INIS)

    2002-09-01

    Fuel is a material that can be burnt to provide heat. The most familiar fuels are wood, coal, natural gas and oil. By analogy, the uranium used in nuclear power plants is called 'nuclear fuel', because it gives off heat too, although, in this case, the heat is obtained through fission and not combustion. After being used in the reactor, spent nuclear fuel can be reprocessed to extract recyclable energy material, which is why we speak of the nuclear fuel cycle. This cycle includes all the following industrial operations: - uranium mining, - fuel fabrication, - use in the reactor, - reprocessing the fuel unloaded from the reactor, - waste treatment and disposal. 'The nuclear fuel cycle includes an array of industrial operations, from uranium mining to the disposal of radioactive waste'. Per unit or mass (e.g. per kilo), nuclear fuel supplies far more energy than a fossil fuel (coal or oil). When used in a pressurised water reactor, a kilo of uranium generates 10,000 times more energy than a kilo of coal or oil in a conventional power station. Also, the fuel will remain in the reactor for a long time (several years), unlike conventional fuels, which are burnt up quickly. Nuclear fuel also differs from others in that uranium has to undergo many processes between the time it is mined and the time it goes into the reactor. For the sake of simplicity, the following pages will only look at nuclear fuel used in pressurised water reactors (or PWRs), because nuclear power plants consisting of one or more PWRs are the most widely used around the world. (authors)

  17. Reprocessing in Sweden: History and perspective

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Oesterlund, C.G.

    1990-10-01

    Against the background of nuclear power development and installation in Sweden an overview is presented of the parallel domestic development of the reprocessing of spent nuclear fuel. The original selection of the natural uranium - heavy water reactor in the 1950s included spent fuel reprocessing and recycle, and process and plant studies were performed to that end. The switch to light water reactors in the 1960s did not change the planning to recycle; however, the participation in the Eurochemic undertaking, and the delay in the nuclear programme stopped further domestic development work. A number of governmental committee investigations in the 1970s on the radioactive waste issue and, above all, the decision to phase out nuclear power by 2010, after a referendum following the TMI-accident, finally resulted in a decision to plan only for direct disposal of spent nuclear fuel. This policy still prevails. (42 refs.)

  18. Remote maintenance in TOR fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Eymery, R.; Constant, M.; Malterre, G.

    1986-11-01

    The TOR facility which is undergoing commissioning tests has a capacity of 5 T. HM/year which is enough for reprocessing all the Phenix fuel, with an excess capacity which is to be used for other fast reactors fuels. It is the result of enlargement and renovation of the old Marcoule pilot facility. A good load factor is expected through the use of equipment with increased reliability and easy maintenance. TOR will also be used to test new equipment developed for the large breeder fuel reprocessing plant presently in the design stage. The latter objective is specifically important for the parts of the plant involving mechanical equipment which are located in a new building: TOR 1. High reliability and flexibility will be obtained in this building thanks to the attention given to the integrated remote handling system [fr

  19. Development of safety evaluation technology for fire and explosion in reprocessing plant

    International Nuclear Information System (INIS)

    Miura, Akihiko

    2005-01-01

    Based on some lessons learned from the accidents in the reprocessing plant all over the world, Japan Nuclear Cycle Development Institute (JNC) has researched and developed the safety technologies for the reprocessing plants and its related facilities. This paper describes some accidental information around the reprocessing plants and its related research activities in JNC. (author)

  20. Selection of critical group in relation to the release of radionuclides from nuclear spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Ohmomo, Y.

    1980-01-01

    In respect of internal radiation due to the coastal release of radionuclides, survey on marine food consumption is most useful for the selection of critical group. Species of marine organisms they usually eat is fully over 100 in the coastal area of Ibaraki prefecture where the fuel reprocessing plant is located. Though it gives only a spot datum, one day's consumption survey a season is of convenience to obtain cooperation from housewives and is of use to pick up critical organisms and those who eat much of them. However, long-term survey is required to estimate ordinary intake of the critical foods or those who are supposed critical people. One day's consumption survey makes it easy to perform the subsequent long-term one

  1. Explosion risks linked to red oils in the spent fuels reprocessing plants

    International Nuclear Information System (INIS)

    2008-06-01

    This paper presents the risk of explosion associated with reactions between tributyl phosphate (TBP) and its degradation products and nitrates from nitric acid or associated with heavy metals (uranium and plutonium); These reactions may lead to the formation of unstable compounds known as 'red oils'. The feedback explosions linked to the formation of such compounds occurring in spent fuel reprocessing plants round the world, is briefly discussed. The main measures to control these risks, implemented in French factories concerned are also presented. (N.C.)

  2. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  3. Radioactive effluents from nuclear power stations and reprocessing plants in the European Community

    International Nuclear Information System (INIS)

    1978-04-01

    The report presents the available data on radioactive gaseous and liquid effluents discharged by nuclear power stations and nuclear fuel reprocessing plants in the European Community from 1972 to 1976. Discharges are expressed both in absolute terms and relative to the net production of electricity from the fuel. On the basis of the discharges recorded for 1976 the resulting maximum exposure of members of the population is quantified and compared with the dose limits prescribed by Euratom radiological protection standards and with the exposure resulting from natural radioactivity. It is concluded that there is no case in which a discharge could have given rise to an exposure exceeding the relevant prescribed limit. Not only did the possible maximum exposures incurred by individuals leave an appreciable safety margin relative to that limit but, for the vast majority of installations, they were comparable with or were considerably lower than the geographical and temporal variations in exposures resulting from natural radioactivity. Where environmental levels have been detectable the measured results have of course been used but, with few exceptions, the levels have remained less than the very low limits of detection currently possible. In general, where theoretical models are used to evaluate exposure, they are designed to give conservative results and hence it is likely that the true exposures are even less than those calculated

  4. Tritium control by water recycle in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hall, N.E.; Ward, G.N.

    1975-06-01

    A preliminary study was made of the use of water recycle within a reprocessing plant to control the escape of tritium and to consolidate it for disposal. Tritium distribution was evaluated in the leacher, high-level, and low-level systems for seven different flowsheet conditions. Tritium retention efficiency was also evaluated for these flowsheet conditions. Impact of tritiated water recycle on the plant design and operation is assessed. It is concluded that tritium control by water recycle is feasible. Achievement of satisfactory retention efficiencies and economic volumes of solidified tritium waste will require extension of existing technology and development of new technology. Evaluation of potential abnormal conditions indicate that releases from upsets need not be excessive. Some increase in occupational exposure will occur because of the pervasiveness, persistence, and ease of uptake of tritiated water vapor. Incentives for tritium control by water recycle may prove marginal if this increased exposure to plant personnel is significant compared to the small reduction in exposure to the general public. Recommendations are presented for further studies

  5. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  6. Advanced teleoperation in nuclear applications: consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Hamel, W.R.; Feldman, M.J.; Martin, H.L.

    1984-01-01

    A new generation of integrated remote maintenance systems is being developed to meet the needs of future nuclear fuel reprocessing at the Oak Ridge National Laboratory. Development activities cover all aspects of an advanced teleoperated maintenance system with particular emphasis on a new force-reflecting servomanipulator concept. The new manipulator, called the advanced servomanipulator, is microprocessor controlled and is designed to achieve force-reflection performance near that of mechanical master/slave manipulators. The advanced servomanipulator uses a gear-drive transmission which permits modularization for remote maintainability (by other advanced servomanipulators) and increases reliability. Human factors analysis has been used to develop an improved man/machine interface concept based upon colographic displays and menu-driven touch screens. Initial test and evaluation of two advanced servomanipulator slave arms and several other development components have begun. 9 references, 5 figures

  7. Importance of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The following topics are discussed: world energy requirements; energy conservation and the economics of recycle environmental considerations and the timescale of reprocessing; and problems associated with reprocessing. The conclusion is reached that reprocessing is essential to the conservation of the world's energy resources and is an environmentally, and probably an economically, more acceptable option to the ''throw away'' alternative

  8. Fuel reprocessing: Citizens' questions and experts' answers

    International Nuclear Information System (INIS)

    1982-10-01

    In connection with the intention of DWK to erect a fuel reprocessing plant in the Oberpfalz, citizens have asked a great number of questions which are of interest to the general public. They have been collected, grouped into subject categories and answered by experts. (orig./HSCH) [de

  9. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  10. Analyzing the reprocessing decision: plutonium recycle and nuclear proliferation. Final report

    International Nuclear Information System (INIS)

    Heising, C.D.; Connolly, T.J.

    1978-11-01

    The United States decision to defer indefinitely the reprocessing of spent nuclear fuel is examined in this thesis. Bayesian decision analysis is applied to develop a rational framework for the assessment of alternatives. Benefits and costs for each alternative are evaluated and compared in dollar terms to determine the optimal decision. A fuel cycle simulation model is constructed to assess the economic value of reprocessing light water reactor (LWR) spent fuel and recycling plutonium. In addition, a dynamic fuel substitution model is used to estimate the economic effects of the reprocessing decision's influence on the introduction date of the liquid metal fast breeder reactor (LMFBR). The analysis of benefits and costs is extended to include the social costs due to technological risks, such as accident risk, nuclear theft and/or sabotage, and international nuclear proliferation. These social costs are expressed in dollar terms for comparison with the conventional economic values. Results of the analysis indicate that the domestic social costs are less than the economic benefits by more than three orders of magnitude, and that the permit option dominates those of delay or prohibit. An examination of proliferation risk indicates a factor of approximately 7 between cost-benefits. Thus, on the basis of this analysis, it appears that to permit reprocessing is optimal over delaying or prohibiting the technology

  11. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, W.P.; Miraglia, F.J. Jr. (eds.)

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts.

  12. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    International Nuclear Information System (INIS)

    Bishop, W.P.; Miraglia, F.J. Jr.

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts

  13. The thermal oxide reprocessing plant at Sellafield: three years of active operation in the chemical separation plant

    International Nuclear Information System (INIS)

    Philips, C.

    1998-01-01

    The Thermal Oxide Reprocessing Plant at British Nuclear Fuels' Sellafield site started operating in March 1994 with the shearing of its first irradiated fuel. In January 1995 the Chemical Separation part of the plant commenced processing the irradiated fuel feed solution that had been produced in the previous year by the Head End plant. By the Spring of 1998 over 1400 t of irradiated fuel has been reprocessed in Thorp, and the plant is being steadily and successfully ramped up to its normal operating throughput. The performance of the Thorp Chemical Separation Plant has been excellent, with the solvent extraction contactors performing as predicted by the extensive development programme. In particular the uranium-plutonium separation stage, which received intensive development to deal with the effects of the fission product technetium, has given an overall separation performance well in excess of the minimum flowsheet requirement. Decontamination of the uranium and plutonium products from fission products has in general been better than flowsheet requirements and the solvent extraction equipment has operated stably under the automatic controls developed during the R and D programme. Discharges of contaminants to waste streams have generally been in line with, or better than, expectation. This paper compares with flowsheet predictions a range of the key fission product and transuranic decontamination factors achieved in Thorp, shows how waste stream discharges are a small fraction of Sellafield Site discharge limits, demonstrates how uranium - plutonium separation performance has compared with expectation and summarises the overall performance of the Chemical Separation Plant. (author)

  14. Report on the possibilities of long-term storage of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    2001-01-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  15. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.R.

    1987-01-01

    The new Fuel Handling Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both Magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for active commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  16. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.

    1987-01-01

    The new Fuel Handing Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for ''active'' commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  17. Review of Design Data for Safety Assessment of Tokai Reprocessing Plant. Control of hydrogen gas produced by radiolysis of reprocessing solutions at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Omori, E.; Surugaya, N.; Takaya, A.; Nakamura, H.; Maki, A.; Yamanouchi, T.

    1999-10-01

    Radioactive materials in aqueous solution at a nuclear fuel reprocessing plant causes radiolytic generation of several gases including hydrogen. Hydrogen accumulating in equipment can be an explosion hazard. In such plants, though the consideration in the design has been fundamentally made in order to remove the ignition source from the equipment, the hydrogen concentration in the equipment should not exceed the explosion threshold. It is, therefore, desired to keep the hydrogen concentration lower than the explosion threshold by dilution with the air introduced into equipment, from the viewpoint which previously prevents the explosion. This report describes the calculation of hydrogen generation, evaluation of hydrogen concentration under abnormal operation and consideration of possible improvement at Tokai Reprocessing Plant. The amount of hydrogen generation was calculated for each equipment from available data on radiolysis induced by radioactive materials. Taking into consideration for abnormal condition that is single failure of air supply and loss of power supply, the investigation was made on the method for controlling so that the hydrogen concentration may not exceed the explosion threshold. Possible means which can control the concentration of hydrogen gas under the explosion threshold have been also investigated. As the result, it was found that hydrogen concentration of most equipment was kept under the explosion threshold. It was also shown that improvement of the facility was necessary on the equipment in which the concentration of the hydrogen may exceed the explosion threshold. Proposals based on the above results are also given in this report. The above content has been described in 'Examination of the hydrogen produced by the radiolysis' which is a part of 'Reviews of Design Data for Safety Assessment of Tokai Reprocessing Plant' (JNC TN8410 99-002) published in February 1999. This report incorporates the detail evaluation so that operation

  18. Will the world SNF be reprocessed in Russia?

    International Nuclear Information System (INIS)

    Gagarinski, A.

    2000-01-01

    Russia's possibilities in nuclear fuel reprocessing are well known. RT-1 plant with 400 tons/year in the Chelyabinsk region can provide reprocessing of fuel from Russian and Central European WWER-440 reactors, as well as from transport and research reactors. Former military complex Krasnoyarsk-26 with unique underground installations situated in rock galleries, already has an aqueous facility for storage of 6000 tons of spent nuclear fuel (SNF), half-built plant RT-2 for nuclear fuel reprocessing with 1500 tons/year capacity, as well as the projects of dry storage facility for 30000 tons of SNF and of MOX fuel production plant. Russian nuclear specialists understand well, that the economic efficiency of nuclear fuel reprocessing industry is shown only in case of large-scale production, which would require consolidation of the countries, which develop nuclear energy. They also understand, that Russia has all the possibilities to become one of the centers of such a consolidation and to use these possibilities for the benefit of the country. The idea of foreign nuclear fuel reprocessing (for a long time realized for East and Central European countries, which operate Soviet-design reactors) has existed in the specialists' minds, and sometimes has appeared in the mass media. On the other hand, rehabilitation of territories of nuclear fuel cycle enterprises in Russia continues, including the Karachai lake, which contains 120 million Curie of radioactivity. Unfortunately, Russia simply has no money for complete solution of the problems of radiation military legacy. During discussion of the budget for 2000, the Russian Minatom has made a daring step. A real program, how to find money needed for solving the 'radiation legacy' problem, was proposed. With this purpose, it was proposed to permit storage and further reprocessing of other countries' SNF on Russian territory. It is well known, that another countries' SNF is accepted for reprocessing by UK and France, and Russia

  19. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  20. Characterization of airborne plutonium-bearing particles from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1977-11-01

    The elemental compositions, sizes, structures, and 239 Pu contents were determined for 299 plutonium-bearing particles isolated from airborne particles collected at various locations in the exhaust from a nuclear fuel reprocessing facility. These data were compared with data from natural aerosol particles. Most of the collected particles were composed of aggregates of crustal materials. Seven percent of the particles were organic and 3% were metallic, viz., iron, chromium, and nickel. High enrichment factors for titanium, manganese, chromium, nickel, zinc, and copper were evidence of the anthropic nature of some of the particles. The amount of plutonium in most particles was very small (less than one femtocurie of 239 Pu). Plutonium concentrations were determined by the fission track counting method. Only one particle contained sufficient plutonium for detection by electron microprobe analysis. This was a 1-μm-diameter particle containing 73% PuO 2 by weight (estimated to be 170 fCi of 239 Pu) in combination with Fe 2 O 3 and mica. The plutonium-bearing particles were generally larger than natural aerosols. The geometric mean diameter of those collected from the mechanical line exhaust point where plutonium is converted to the metal was larger than that of particles collected from the wet cabinet exhaust (13.7 μm vs. 4.6 μm). Particles from the mechanical line also contained more plutonium per particle than those from the wet cabinets

  1. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  2. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    International Nuclear Information System (INIS)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V.

    2000-01-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  3. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M I; Polyakov, A S; Zakharkin, B S; Smelov, V S; Nenarokomov, E A; Mukhin, I V [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  4. Safeguards implementation in UP3 reprocessing plant

    International Nuclear Information System (INIS)

    Laurent, J.P.; Regnier, J.; Talbourdet, Y.; De Jong, P.

    1991-01-01

    The implementation of safeguards in a large size reprocessing plant is a challenge, considering the high throughput of nuclear material and the sophisticated automation of such facilities. In the case of UP3, a pragmatic and realistic approach has been devised and is applied through an efficient cooperation between the safeguards organizations, the french national authorities and the operator. In essence, they consist in verification of every significant inputs and outputs, in timely analysis by NDA (e.g. solutions of dissolution through an on site k-edge equipment), in monitoring selected parts of the inprocess inventory and in specific containment/surveillance systems for the spent fuel storage ponds and the PuO2 storage. (author)

  5. Concerning results of environmental monitoring around the reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1989-01-01

    The Central Evaluation Expert Group for Environmental radiation Monitoring has been engaged in examinations of plants for and results of the environmental radiation monitoring performed by Power Reactor and Nuclear Fuel Development Corporation around its reprocessing facilities. The present report outlines an examination of the results of monitoring carried out in 1987 (January to December). It is concluded that the methods used for the monitoring and its technical level are satisfactory in meeting the objectives of the monitoring plans. Expept for tritium in seawater, the level of radiations stays within the normal variation determined based on preliminary measurements of the background radiation. The procedure used for the calculation of exposure dose is also satisfactory in meeting the requirements specified in the monitoring plants. It is confirmed that the exposure dose of the residents around the facilities is well below the permissible exposure dose limite specified in law. (Nogami. K.)

  6. Occupational dose at Rokkasho reprocessing plant (RRP)

    International Nuclear Information System (INIS)

    Takashima, F.; Taguchi, R.; Kano, M.; Moriyama, T.; Ogaki, K.; Noda, K.

    2008-01-01

    In Japan, Rokkasho Reprocessing Plant (RRP) is going to start the operation in service as the first large-scale commercial reprocessing plant of spent fuels that has annual reprocessing quantity of 800tU pr in maximum. The occupational external exposure is controlled for the purpose of keeping dose as low as reasonably achievable, and it is monitored by the personal dosimeter. On the other hand, the occupational internal exposure is controlled for the purpose of preventing, and it is monitored by the periodical evaluation of internal dose from the radioactive concentration in air of workplace. The individual doses of radiation workers are less than the dose limits in the statute and our lower management values enough. Dose data will be stored continuously and the rational management method will be examined. (author)

  7. Twenty years of experience in spent fuel shipment from German nuclear power plants - a view of the competent authority

    International Nuclear Information System (INIS)

    Fasten, Ch.; Mueller, U.; Alter, U.

    1994-01-01

    A survey of the transport of spent fuel in and from Germany during the last 20 years is presented. The spent fuel is now transported from the German nuclear power facilities to the reprocessing plants in France and the United Kingdom. In the past, there were also shipments to the former reprocessing plant WAK Karlsruhe (Germany), to the long-term storage facility CLAB (Sweden) and also from the former German Democratic Republic to the USSR. The transport of the spent fuel is carried out in specially built flasks requiring an extensive quality assurance programme. Due to the heavy weight of these packages, the shipments are mostly carried out by rail, but also by road and sea. An overview is given of the following matters: (i) quantities of spent fuel transport, (ii) organisation of transport (iii) licensing matters, and (iv) reported incidents. In addition, an analysis is included of the radiation exposure for normal conditions of transport, especially of the transport workers. Difficulties and hindrances during transport are also reported. (author)

  8. Experience of iodine removal in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Kikuchi, K.; Komori, Y.; Takeda, K.

    1985-01-01

    In the Tokai reprocessing plant about 170 ton of irradiated fuels have been processed since the beginning of hot operations in 1977. There was no effective equipment for iodine removal from the off-gas except for alkaline scrubbers when the plant construction was completed. In order to reduce the iodine discharge to the atmosphere, silver-exchanged zeolite (AgX) filters were installed additionally in 1979 and 1980, and they have been effective. However, those decontamination factors (DFs) were not as high as expected, and increasing the reprocessing amount of spent fuels it became necessary to lower the iodine discharge to the atmosphere. Therefore, other iodine removal equipment is planned to be installed in the plant. Concerning these investigations and development of iodine removal techniques, the iodine concentration of actual off-gases was measured and useful data were obtained

  9. Radiation protection experience during active commissioning of the Thorp reprocessing plant

    International Nuclear Information System (INIS)

    Spour, K.; Hutton, E.

    1996-01-01

    BNFL's Thermal Oxide Reprocessing Plant (Thorp) reprocesses uranium oxide fuel assemblies which have been irradiated in thermal reactors in the UK and overseas. Plans for the plant were first announced in 1974. Application for planning permission was submitted in 1977, and government permission to construct the plant was granted after the Windscale inquiry in 1977. The plant was given the license to start active commissioning in head end in early 1994, and then in chemical plants in late 1994. Presently the whole of the process is being challenged in a planned commissioning strategy which will last into 1996. Thorp is designed to reprocess the spent oxide fuel into uranium trioxide (UO 3 ) and plutonium dioxide (PuO 2 ). The Thorp complex can be essentially broken down into three distinct areas: Thorp receipt and storage provides pond storage for fuel awaiting reprocessing in Thorp. Head end fuel is transferred from receipt and storage into the feed pond where it is monitored to check fissile content, burn up and cooling time. The individual fuel assemblies for LWR fuel, or cans in the case of AGR fuel, are transferred onto the shear elevator and carried up to the shear cave. The fuel is sheared into small lengths to optimize the dissolution of the fuel inside the cladding. The sheared fuel and cladding debris is directed via a chute into one of three dissolvers, each with a nominal 1.8 teU capacity and dissolved in 8M nitric acid for approximately 16 hours. The cladding hulls are retained in a removable basket and sent for encapsulation. Insoluble fission products and fine particles of cladding are removed by centrifugation. Clarified dissolver solution is then accounted for by measurements taken for volume, mass and isotopic composition. Following this, the solution is transferred to buffer storage tarns and fed onto the chemical separation area. The liquor is transferred to the chemical separation area where it undergoes first cycle separation in pulsed columns

  10. Seismic analysis of the Nuclear Fuel Service Reprocessing Plant at West Valley, New York: documentation

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Davito, A.M.

    1977-01-01

    This material was generated as part of a seismic case review of the NFS Reprocessing Plant. This study is documented in UCRL-52266. The material is divided into two parts: mathematical model information, and ultimate load calculations and comparisons

  11. Spent fuel reprocessing and minor actinide partitioning safety related research at the UK National Nuclear Laboratory

    International Nuclear Information System (INIS)

    Carrott, Michael; Flint, Lauren; Gregson, Colin; Griffiths, Tamara; Hodgson, Zara; Maher, Chris; Mason, Chris; McLachlan, Fiona; Orr, Robin; Reilly, Stacey; Rhodes, Chris; Sarsfield, Mark; Sims, Howard; Shepherd, Daniel; Taylor, Robin; Webb, Kevin; Woodall, Sean; Woodhead, David

    2015-01-01

    The development of advanced separation processes for spent nuclear fuel reprocessing and minor actinide recycling is an essential component of international R and D programmes aimed at closing the nuclear fuel cycle around the middle of this century. While both aqueous and pyrochemical processes are under consideration internationally, neither option will gain broad acceptance without significant advances in process safety, waste minimisation, environmental impact and proliferation resistance; at least when compared to current reprocessing technologies. The UK National Nuclear Laboratory (NNL) is developing flowsheets for innovative aqueous separation processes. These include advanced PUREX options (i.e. processes using tributyl phosphate as the extractant for uranium, plutonium and possibly neptunium recovery) and GANEX (grouped actinide extraction) type processes that use diglycolamide based extractants to co-extract all transuranic actinides. At NNL, development of the flowsheets is closely linked to research on process safety, since this is essential for assessing prospects for future industrialisation and deployment. Within this context, NNL is part of European 7. Framework projects 'ASGARD' and 'SACSESS'. Key topics under investigation include: hydrogen generation from aqueous and solvent phases; decomposition of aqueous phase ligands used in separations prior to product finishing and recycle of nitric acid; dissolution of carbide fuels including management of organics generated. Additionally, there is a strong focus on use of predictive process modelling to assess flowsheet sensitivities as well as engineering design and global hazard assessment of these new processes. (authors)

  12. Impact of the Tokai reprocessing plant on the workers and on the surrounding environment

    International Nuclear Information System (INIS)

    Tago, I.

    1996-01-01

    The Tokai reprocessing plant began operation in September 1977 to establish oxide fuel reprocessing technology in Japan. Its designed capacity is about 0.7 metric tons of uranium per day. This report gives an example of the evaluation of the health and environmental aspects of a reprocessing plant. (author)

  13. Modeling of Pu(IV) extraction and HNO3 speciation in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    De-Sio, S.

    2012-01-01

    The PUREX process is a solvent extraction method dedicated to the reprocessing of irradiated nuclear fuel in order to recover pure uranium and plutonium from aqueous solutions of concentrated nitric acid. The tri-n-butylphosphate (TBP) is used as the extractant in the organic phase. The aim of this thesis work was to improve the modeling of liquid-liquid extraction media in nuclear fuel reprocessing. First, Raman and 14 N NMR measurements, coupled with theoretical calculations based on simple solutions theory and BIMSA modeling, were performed in order to get a better understanding of nitric acid dissociation in binary and ternary solutions. Then, Pu(IV) speciation in TBP after extraction from low nitric acid concentrations was investigated by EXAFS and vis-NIR spectroscopies. We were able to show evidence of the extraction of Pu(IV) hydrolyzed species into the organic phase. A new structural study was conducted on An(VI)/TBP and An(IV)/TBP complexes by coupling EXAFS measurements with DFT calculations. Finally, extraction isotherms modeling was performed on the Pu(IV)/HNO 3 /H 2 O/TBP 30%/dodecane system (with Pu at tracer scale) by taking into account deviation from ideal behaviour in both organic and aqueous phases. The best modeling was obtained when considering three plutonium (IV) complexes in the organic phase: Pu(OH) 2 (NO 3 ) 2 (TBP) 2 , Pu(NO 3 ) 4 (TBP) 2 and Pu(NO 3 ) 4 (TBP) 3 . (author) [fr

  14. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  15. Nuclear fuel cycle and its supply industrial system

    Energy Technology Data Exchange (ETDEWEB)

    Takei, M [Japan Energy Economic Research Inst., Tokyo

    1976-04-01

    This paper discusses problems about the supply and costs of nuclear fuel cycle referring to the discussions of IAEA's Advisory Group Meeting. As for natural uranium resources, prospect is given to the demand, supply, and cost trend up to 2000. As for uranium enrichment, the increasing capacity is compared with the projected demand. The comparison of cost characteristics between diffusion and centrifuge plants is presented with respect to plant scale, investment cost, electric power cost, and operation and maintenance cost. The fabrication cost for fuel is analyzed, and it is suggested that some cost down can be expected for the future. As for the mixed oxide fuel fabrication, the capacity in each country and the estimated fabrication costs for PWR, prototype fast breeder reactor and commercial fast breeder reactor are presented. As for reprocessing, the shortage of supply capacity and the needs for more storage capacity are emphasized. The estimated reprocessing cost for a new plant is also presented. Finally, the present status and future trend of fuel storage in each major country are reviewed.

  16. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing of high-temperature gas-cooled reactor fuel containing U-233 and thorium

    International Nuclear Information System (INIS)

    Davis, W. Jr.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1976-05-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model high-temperature gas-cooled reactor (HTGR) fuel reprocessing plant and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist the U. S. Nuclear Regulatory Commission in defining the term as low as reasonably achievable as it applies to this nuclear facility. The base case is representative of conceptual, developing technology of head-end graphite-burning operations and of extensions of solvent-extraction technology of current designs for light-water-reactor (LWR) fuel reprocessing plants. The model plant has an annual capacity of 450 metric tons of heavy metal (MTHM, where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods used in the case studies is discussed

  17. Trivalent lanthanide/actinide separation in the spent nuclear fuel wastes' reprocessing

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. Since the trivalent actinides and lanthanides have similar chemistries, it is rather difficult to separate them from each other. The aim of presented work was to study solvent extraction of Am(III) and Eu(III) in a system containing diethylhemi-BTP (6-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine) and COSAN (protonated bis(chlorodicarbollido)cobalt(III)). The system was chosen by several groups working in the integrated EC research Project EUROPART. Several physicochemical properties of the extraction system were analyzed and discussed

  18. Electrochemical Methods for Reprocessing Defective Fuel Elements and for Decontaminating Equipment