WorldWideScience

Sample records for nuclear spectroscopic quadrupole

  1. Nuclear quadrupole resonance of arsenolite

    International Nuclear Information System (INIS)

    Madarazo, R.

    1988-01-01

    A pulsed Nuclear Quadrupole Resonance (NQR) spectrometer was constructed using imported Matec units. Peripherical components were specially assembled and tested for the implantation of the spin-echo technique in the Laboratorio de Centros de Cor of IFUSP. The R.F. operation range is from 50 to 1 ) and spin-spin (T 2 ) relaxation times were carried out at room temperature in arsenolite. The 75 As NQR frequency measured at room temperature is 116.223 MHz. (author) [pt

  2. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  3. On the theory of nuclear quadrupole oscillations

    International Nuclear Information System (INIS)

    Abrosimov, V.I.; Strutinskij, V.M.

    1978-01-01

    Presented is a deduction and a convinient writing form of the secular equation for nuclear quadrupole oscillations. The deduction is consistent with usual random phase approximation. It is regarded that the oscillations of the nuclear average potential are adiabatic with respect to formation of the Cooper pairs and the collective motion arises as a result of the coherent distortion of the quasiparticle wave functions. The energy gap changes are also taken into account

  4. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  5. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  6. Fast storage of nuclear quadrupole resonance signals

    International Nuclear Information System (INIS)

    Anferov, V.P.; Molchanov, S.V.; Levchun, O.D.

    1988-01-01

    Fast multichannel storage of nuclear quadrupole resonance (NQR) signals is described. Analog-to-digital converter, arithmetic-logical unit, internal memory device (IMD) selection-storage unit and control unit are the storage main units. The storage is based on 43 microcircuits and provides for record and storage of NQR-signals at the contributed operation with Mera-60 microcomputer. Time of analog-to-digital conversion and signal recording into IMD is ∼ 1 mks. Capacity of analog-to-digital converter constitutes 8-10 bits. IMD capacity is 4 K bitsx16. Number of storage channels is 4

  7. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  8. Two qubits in pure nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.

    2002-01-01

    It is shown theoretically that by the use of two radio-frequency fields of the same resonance frequency but with the different phases and directions the degeneracy of the energy spectrum of a spin system with I=3/2 is removed. This leads to four non-degenerate spin states which can be used as a platform for quantum computing. The feasibility of quantum computing based on a pure (without DC magnetic fields) nuclear quadrupole resonance technique is investigated in detail. Various quantum logic gates can be constructed by using different excitation techniques allowing different manipulations with the spin system states. Three realizations of quantum logic gates are considered: the application of an additional magnetic field with the resonance frequency, the amplitude modulation of one of the applied RF fields by the resonance frequency field, and the level-crossing method. It is shown that the probabilities of the resonance transitions depend on the method of excitation and on the direction of the excitation field. Feasibility of quantum computing is demonstrated with the examples of constructing a controlled-NOT logic gate using the resonance excitation technique and SWAP and NOT2 logic gates using the level-crossing method. (author)

  9. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  10. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  11. Critical insights into nuclear collectivity from complementary nuclear spectroscopic methods

    Science.gov (United States)

    Garrett, P. E.; Wood, J. L.; Yates, S. W.

    2018-06-01

    Low-energy collectivity of nuclei has been, and is being, characterized in a critical manner using data from a variety of spectroscopic methods, including Coulomb excitation, β decay, inelastic scattering of charged and uncharged particles, transfer reactions, etc. In addition to level energies and spins, transition multipolarities and intensities, lifetimes, and nuclear moments are available. The totality of information from these probes must be considered in achieving an accurate vision of the excitations in nuclei and determining the applicability of nuclear models. From these data, major changes in our view of low-energy collectivity in nuclei have emerged; most notable is the demise of the long-held view of low-energy quadrupole collectivity near closed shells as due to vibrations about a spherical equilibrium shape. In this contribution, we focus on the basic predictions of the spherical harmonic vibrator limit of the Bohr Hamiltonian. Properties such as B(E2) values, quadrupole moments, E0 strengths, etc are outlined. Using the predicted properties as a guide, evidence is cited for and against the existence of vibrational states, and especially multi-phonon states, in nuclei that are, or historically were considered to be, spherical or have a nearly spherical shape in their ground state. It is found that very few of the nuclei that were identified in the last major survey seeking nearly spherical harmonic vibrators satisfy the more stringent guidelines presented herein. Details of these fundamental shifts in our view of low-energy collectivity in nuclei are presented.

  12. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  13. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1988-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  14. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1991-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections IIA, IIB, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  15. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  16. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  17. Measurement of the ground state spectroscopic quadrupole moments of 191Os and 193Os

    International Nuclear Information System (INIS)

    Ernst, H.; Hagn, E.; Zech, E.

    1979-01-01

    Radioactive 191 Os and 193 Os nuclei have been aligned in an Os single crystal at temperatures down to 4 mK. From the temperature dependence of the γ-anisotropy the quadrupole frequencies vsub(Q) = e 2 qQ/h have been determined as vsub(Q)( 191 OsOs) = -278+-9 MHz and vsub(Q)( 193 OsOs) = -96+-15 MHz. With the known electric field gradient for OsOs of eq = (-4.54+-0.24) x 10 17 V/cm 2 the ground state spectroscopic quadrupole moments are deduced to be Q( 191 Os) = +2.53+-0.16 b and Q( 193 Os) = +0.87+-0.15 b. (orig.)

  18. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  19. Communication: General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules

    Science.gov (United States)

    Yachmenev, Andrey; Küpper, Jochen

    2017-10-01

    A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3). The method extends the general variational approach TROVE [J. Mol. Spectrosc. 245, 126-140 (2007)] by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH143. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2 states and the rovibrational transitions in the ν1, ν3, 2ν4, and ν1 + ν3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation.

  20. Linearised collective Schroedinger equation for nuclear quadrupole surface vibrations

    International Nuclear Information System (INIS)

    Greiner, M.; Heumann, D.; Scheid, W.

    1990-11-01

    The linearisation of the Schroedinger equation for nuclear quadrupole surface vibrations yields a new spin degree of freedom, which is called collective spin and has a value of 3/2. With the introduction of collective spin dependent potentials, this linearised Schroedinger equation is then used for the description of low energy spectra and electromagnetic transition probabilities of some even-odd Xe, Ir and Au nuclei which have a spin 3/2 in their groundstate. (orig.)

  1. A quadrupole mass spectrometer system for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Evans, P.J.

    1987-12-01

    An on-line enrichment monitor for nuclear safeguards-related surveillance of a pilot-scale gas centrifuge plant is described. This monitor utilises a quadrupole mass spectrometer to measure the isotopic composition of UF 6 in the feed and product gas streams. Details of the design and construction are given, and several difficulties are identified and discussed. Finally, the performance of this system is illustrated with typical results

  2. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  3. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  4. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  5. Transistor regenerative spectrometer for 14N nuclear quadrupole resonance study

    International Nuclear Information System (INIS)

    Anferov, V.P.; Mikhal'kov, V.M.

    1981-01-01

    Improvement of the Robinson transducer for investigations of nuclear quadrupole resonance (NQR) in 14 N is described. Amplifier of the suggested transducer is made using p-n field effect transistor and small-noise SHF bipolar transistor. Such a circuit permits to obtain optimal relation between input resistance, low-frequency noises and transconductance which provides uniform gain of the transducer in the frequency range of 0.6-12 MHz and permits to construct a transistor spectrometer of NQR not yielding to a lamp spectrometer in sensitivity [ru

  6. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  7. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    Science.gov (United States)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  8. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kellö, Vladimir [Department of Physical Chemistry, Comenius University, SK-842 15 Bratislava (Slovakia)

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  9. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    Science.gov (United States)

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  11. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  12. Pygmy quadrupole resonance as a manifestation of the nuclear skin

    Energy Technology Data Exchange (ETDEWEB)

    Tsoneva, Nadia [Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2016-07-01

    Recently, a new mode of nuclear excitation called pygmy quadrupole resonance (PQR) was theoretically predicted in the framework of energy-density functional (EDF) theory plus three-phonon quasiparticle-phonon model (QPM) in Sn isotopic chain. It is closely connected with higher order multipole vibrations of nuclear skin induced by the action of the electromagnetic and hadronic external fields. The predictions initiated new experiments using ({sup 17}O,{sup 17}O{sup '}γ), (α,α{sup '}γ) and (γ,γ{sup '}) reactions which were carried out in {sup 124}Sn nucleus. The aim was to probe for the first time experimentally, the possibility of existence of PQR. The detailed analysis of the obtained experimental results in comparison with the EDF+QPM theory indicates clearly the presence of a multitude of discrete low-energy 2{sup +} excitations of neutron type which can be addressed to PQR mode. The independent measurements of B(E2) values with different probes and the theory allow to identify the dominant isoscalar character of these states. Furthermore, newly determined γ-decay branching ratios exclude a statistical origin of the PQR strength. The latter are important to discriminate between PQR and multiphonon excitations.

  13. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  14. Nuclear quadrupole resonance applied for arsenic oxide study

    International Nuclear Information System (INIS)

    Correia, J.A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T 1 ), the spin-spin relaxation time (T 2 ) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180 0 C pulse is applied after a 90 0 C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90 0 C - 180 0 C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author)

  15. Measurement of the sign of the spectroscopic quadrupole moment for the 2$_{1}^{+}$ state in $^{70}$Se no evidence for oblate shape

    CERN Document Server

    Hurst, A M

    2007-01-01

    Using a method whereby molecular and atomic ions are independently selected, an isobarically pure beam of 70Se ions was postaccelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording deexcitation γ rays in the highly segmented MINIBALL γ-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the first 2+ state is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for the first 2+ state in 70Se, reopening the question over whether there are, as reported earlier, deformed oblate shapes near to the ground state in the light selenium isotopes.

  16. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1989-01-01

    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  17. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  18. Nuclear spectroscopic studies. Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs

  19. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  20. Spectroscopic methods for characterization of nuclear fuels

    International Nuclear Information System (INIS)

    Sastry, M.D.

    1999-01-01

    Spectroscopic techniques have contributed immensely in the characterisation and speciation of materials relevant to a variety of applications. These techniques have time tested credentials and continue to expand into newer areas. In the field of nuclear fuel fabrication, atomic spectroscopic methods are used for monitoring the trace metallic constituents in the starting materials and end product, and for monitoring process pick up. The current status of atomic spectroscopic methods for the determination of trace metallic constituents in nuclear fuel materials will be briefly reviewed and new approaches will be described with a special emphasis on inductively coupled plasma techniques and ETV-ICP-AES hyphenated techniques. Special emphasis will also be given in highlighting the importance of chemical separation procedures for the optimum utilization of potential of ICP. The presentation will also include newer techniques like Photo Acoustic Spectroscopy, and Electron Paramagnetic Resonance (EPR) Imaging. PAS results on uranium and plutonium oxides will be described with a reference to the determination of U 4+ /U 6+ concentration in U 3 O 8 . EPR imaging techniques for speciation and their spatial distribution in solids will be described and its potential use for Gd 3+ containing UO 2 pellets (used for flux flattening) will be highlighted. (author)

  1. Nuclear quadrupole interactions in ferroelectric compounds of HF/sup 181/

    Energy Technology Data Exchange (ETDEWEB)

    Kunzler, J V

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO/sub 3/, SnhfO/sub 3/, CaHfO/sub 3/ e SrHfO/sub 3/ have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians per second was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory.

  2. Nuclear data for geophysical spectroscopic logging

    International Nuclear Information System (INIS)

    Schweitzer, J.S.; Hertzog, R.C.; Soran, P.D.

    1987-01-01

    Nuclear geochemical analysis requires the quantitative measurement of elemental concentrations of trace elements, as well as major elements in widely varying concentrations. This requirement places extreme demands on the quality of the spectroscopic measurements, data rates, and relating observed γ-ray intensities to the original elemental concentration. The relationship between γ-ray intensities and elemental concentration is critically dependent on the specific reaction cross sections and their uncertainties. The elements of highest priority for subsurface geochemical analysis are considered with respect to the importance of competing reactions and the neutron energy regions that are most significant. (author)

  3. Energies and transition probabilities from the full solution of nuclear quadrupole-octupole model

    International Nuclear Information System (INIS)

    Strecker, M.; Lenske, H.; Minkov, N.

    2013-01-01

    A collective model of nuclear quadrupole-octupole vibrations and rotations, originally restricted to a coherent interplay between quadrupole and octupole modes, is now developed for application beyond this restriction. The eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in the basis of the analytic solution obtained in the case of the coherent-mode assumption. Within this scheme the yrast alternating-parity band is constructed by the lowest eigenvalues having the appropriate parity at given angular momentum. Additionally we include the calculation of transition probabilities which are fitted with the energies simultaneously. As a result we obtain a unique set of parameters. The obtained model parameters unambiguously determine the shape of the quadrupole-octupole potential. From the resulting wave functions quadrupole deformation expectation values are calculated which are found to be in agreement with experimental values. (author)

  4. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  6. On the theoretical description of nuclear quadrupole coupling in Π states of small molecules

    Czech Academy of Sciences Publication Activity Database

    Fišer, J.; Polák, Rudolf

    2013-01-01

    Roč. 425, NOV 2013 (2013), s. 126-133 ISSN 0301-0104 Institutional support: RVO:61388955 Keywords : Π States * Nuclear quadrupole coupling constant * Electric dipole moment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.028, year: 2013

  7. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    International Nuclear Information System (INIS)

    Kolinko, S.V.; Ponomarev, A.G.

    2016-01-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and “Russian quadruplet” with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  8. Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd

    International Nuclear Information System (INIS)

    Clieves, H.P.; Steudel, A.

    1979-01-01

    The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de

  9. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  10. Nuclear quadrupole deformations and anisotropic angular correlations between K x rays and gamma rays

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1983-01-01

    Anisotropic angular correlation between gamma rays and the K x rays following the K conversion from nuclei with large static deformations has been studied. A complete theoretical expression for 181 Ta, the second known case of this phenomenon, is presented. This case involves several mixed nuclear transitions which result in 62% of the x rays arising from magnetic dipole internal-conversion processes and 38% arising from electric-quadrupole internal-conversion processes

  11. Nuclear quadrupole interaction measurements of 19F* and 22Na* on Graphite

    International Nuclear Information System (INIS)

    Djoko-Surono, Th; Martin, Peter W

    1996-01-01

    Time differential perturbed angular distribution (TDPAD) technique has been used to investigate nuclear quadrupole interactions of 19 F * and 22 Na * in graphite. We concentrated the measurements on pseudo single crystal graphite called Highly Oriented Pyrolytic Graphite for it has an ordered structure in which the c-axes of the microcrystals aligned in a certain direction with the mosaic spread less than 1 o , while the a- and b-axes randomly oriented on a plane perpendicular to the c-axes. Interactions between quadrupole moment of 19 F * and 22 Na * with its surroundings electric field gradient were studied by detecting the γ-rays distribution, W(Θ,t). For 1 9F * we found one static interaction. The corresponding electric field gradient was V zz =3.24(19)x10 22 V/m 2 . In the case of 22 Na * we found no evidence of nuclear quadrupole interaction, however, we were able to conclude that |QV 22 | 19 bV/m 2 . Using theoretical calculation Q=0.06 barn, we find that |V zz | 20 V/m 2 . These results indicate that the value efg depend on two factors, the host crystal and the core electrons. The core electrons contribution to the total efg is considerably large

  12. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    Energy Technology Data Exchange (ETDEWEB)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  13. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  14. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.

  15. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H. E-mail: m.breese@surrey.ac.uk; Grime, G.W.; Linford, W.; Harold, M

    1999-09-02

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations.

  16. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    International Nuclear Information System (INIS)

    Breese, M.B.H.; Grime, G.W.; Linford, W.; Harold, M.

    1999-01-01

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations

  17. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    International Nuclear Information System (INIS)

    Kluepfel, Peter

    2008-01-01

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  18. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  19. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    Science.gov (United States)

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  20. Quadrupole moments of Cd and Zn nuclei: When solid-state, molecular, atomic, and nuclear theory meet

    DEFF Research Database (Denmark)

    Haas, Heinz; Sauer, Stephan P. A.; Hemmingsen, Lars Bo Stegeager

    2017-01-01

    The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd-dimethyl an......The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd...

  1. Nuclear spectroscopic studies in 162Yb

    International Nuclear Information System (INIS)

    Behrens, H.

    1980-01-01

    The decay of the highly excited 162 Yb nuclei formed in the reaction 150 Sm( 16 O,4n) 162 Yb to the ground state was studied using different gamma detectors and an electron spectrometer, a so called mini-orange. The isotope 162 Yb was moreover produced and spectroscoped by the beta-decay of 162 Lu. For the identification of decay cascades, which were passed after the fusion, and for the determination of the multipolarity of the contributing energy transitions a series of experiments took place: The excitation functions and the angular distributions of the emitted gamma radiation was measured, the conversion coefficients of important transitions were determined, and coincidence events between two detectors occasionally were registrated and analyzed. In the beta decay measurement an assignment of gamma transitions to 162 Yb followed due to the lifetime, under which they occured. The found states of 162 Yb upto spins of 22 h/2π and excitation energies above 5 MeV belong to five rotational bands. The yrast band shows a weak backbending. Corresponding to their spins and parities the bands can be reduced to intrinsic excitation of two quasineutrons. The analysis of the beta-decay of 162 Lu, which takes place from three states in 162 Lu, leads to the lowest levels of the gamma-vibrational band and the band head of the beta band. The microscopic interpretation of the rotational bands and the description of the backbending behaviour are as the interpretation of the states involved at the beta decay in agreement with experimental and theoretical results for neighbouring ytterbium isotopes. (orig.) [de

  2. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions

  3. /sup 14/N nuclear quadrupole resonance in ferroelectric sodium nitrite NaNO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S; Singh, K [Defence Science Lab., Delhi (India)

    1974-06-01

    Nuclear quadrupole resonance has been studied in ferroelectric sodium nitrite (NaNO/sub 2/) from 77 K to its phase transition point 437 K. The three rotational frequencies ..omega../sub c/ = 190 cm/sup -1/, ..omega../sub b/ = 120 cm/sup -1/ and ..omega../sub c/ = 227 cm/sup -1/ and their temperature variation when fitted in the Bayer-Kushida theory predict the temperature dependence of nqr frequencies reasonably well. A second order phase transition is found to occur at 180 K which is in confirmity with the one found earlier from thermal expansion and dielectric studies. The shift in resonance frequencies is seen to occur mainly by rotation around the 'c' axis and hence it is inferred that the mechanism of polarization reversal is intimately connected with orientational motion about 'c' axis. (auth)

  4. 14N nuclear quadrupole interaction in Cu(II) doped L-alanine

    International Nuclear Information System (INIS)

    Murgich, J.; Calvo, R.; Oseroff, S.B.; Instituto Venezolano de Investigaciones Cientificas, Caracas. Dept. de Quimica)

    1980-01-01

    The 14 N nuclear quadrupole interaction tensor Psub(N) measured by ENDOR in Cu(II) doped L-alanine is analyzed in terms of the Townes and Daily theory assuming a tetra-hedrally bonded N atom. The results of this analysis are compared with those for the 14 N in pure L-alanine and it is found that the principal directions of the Psub(N) tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped L-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom. (orig.)

  5. Radiation response of hydrated urea evaluated using 14N nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Hintenlang, D.E.

    1992-01-01

    In this paper Nitrogen-14 nuclear quadrupole resonance is utilized to detect radiation-induced changes in urea over the 0- to 300-Gy dose range. The spin-spin relaxation time exhibits a consistent change as a function of delivered dose in hydrated urea under exposure to 60 Co gamma radiation. No changes to the spin-spin relaxation time are observed in urea samples that were not hydrated. The radiation-induced changes are attributed to indirect radiation interactions with the water surrounding the urea molecules and are explained by the formation of subtle changes in the electron bonding configurations surrounding the 14 N nuclei, not major structural rearrangements. These subtle changes may provide additional insight into the effects of ionizing radiation on biological systems

  6. Theoretical investigation of nuclear quadrupole interactions in DNA at first-principles level

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Pink, R. H. [State University of New York at Albany, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R. [State University of New York at Albany, Department of Physics (United States); Nagamine, K. [University of California at Riverside, Department of Physics (United States); Torikai, E. [Yamanashi University, Department of Electrical Engineering (Japan); Saha, H. P.; Chow, Lee [University of Central Florida, Department of Physics (United States); Huang, M. B. [State University of New York at Albany, College of Nanoscale Science and Engineering (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)

    2008-01-15

    We have studied the nuclear quadrupole interactions (NQI) of the {sup 14}N, {sup 17}O and {sup 2}H nuclei in the nucleobases cytosine, adenine, guanine and thymine in the free state as well as when they are bonded to the sugar ring in DNA, simulated through a CH{sub 3} group attached to the nucleobases. The nucleobase uracil, which replaces thymine in RNA, has also been studied. Our results show that there are substantial indirect effects of the bonding with the sugar group in the nucleic acids on the NQI parameters e{sup 2}qQ/h and {eta}. It is hoped that measurements of these NQI parameters in DNA will be available in the future to compare with our predictions. Our results provide the conclusion that for any property dependent on the electronic structures of the nucleic acids, the effects of the bonding between the nucleobases and the nucleic acid backbones have to be included.

  7. Characterisation of nuclear fuel samples by quadrupole and multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wernli, Beath; Guenther-Leopold, Ines; Kobler Waldis, Judith; Kopajtic, Zlatan

    2003-01-01

    The characterisation of nuclear fuel cycle materials for trace and minor metallic constituents is of great interest for the nuclear industry and safeguard officials. The main objective of various international programmes dealing with postirradiation examinations is to improve the knowledge of the inventories of actinides, fission and spallation products in spent nuclear fuels. The low detection limits for a large number of elements combined with the ability to analyse the isotopic composition of the elements have established inductively coupled plasma mass spectrometry (ICP-MS) as a powerful multi-element technique in diverse analytical applications for the characterisation of nuclear materials. Because numerous isobaric overlaps restrict the direct determination of many fission products by mass spectrometry, extensive chemical separations are required for these elements. In order to simplify this sample preparation procedure, a high performance liquid chromatography system (HPLC) was online coupled to the mass spectrometer. Since about 10 years a quadrupole based ICP-MS (Q-ICP-MS) combined with an HPLC is used within the Hot Laboratory of the Paul Scherrer Institut for different applications on nuclear fuel samples. Since May 2003 also a new multi-collector ICP-MS (MC-ICP-MS) is used for the mass spectrometric characterisation of nuclear fuel samples, especially for the precise determination of the isotopic vectors of fission products and actinides. Therefore, two complementary analytical systems are now available in the group of 'Isotope and Wet Analytical Chemistry'. A comparison of the analytical performance of both systems (with and without an online coupled HPLC system) for the determination of the isotopic composition and the elemental concentration of different nuclides in nuclear fuel samples, the advantages and limitations of both techniques, the accuracy and precision of the results and typical applications for both methods will be discussed in the

  8. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    Science.gov (United States)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  9. Spectroscopic Quadrupole Moments in {96,98}Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60.

    Science.gov (United States)

    Clément, E; Zielińska, M; Görgen, A; Korten, W; Péru, S; Libert, J; Goutte, H; Hilaire, S; Bastin, B; Bauer, C; Blazhev, A; Bree, N; Bruyneel, B; Butler, P A; Butterworth, J; Delahaye, P; Dijon, A; Doherty, D T; Ekström, A; Fitzpatrick, C; Fransen, C; Georgiev, G; Gernhäuser, R; Hess, H; Iwanicki, J; Jenkins, D G; Larsen, A C; Ljungvall, J; Lutter, R; Marley, P; Moschner, K; Napiorkowski, P J; Pakarinen, J; Petts, A; Reiter, P; Renstrøm, T; Seidlitz, M; Siebeck, B; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Vermeulen, M; Voulot, D; Warr, N; Wenander, F; Wiens, A; De Witte, H; Wrzosek-Lipska, K

    2016-01-15

    Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

  10. Spectroscopical determination of impurities in nuclear graphite

    International Nuclear Information System (INIS)

    Lordello, A.R.; Tognini, R.P.

    1975-01-01

    A spectrochemical method for the direct determination of B, Cd, Si, Hg, Fe, Mg, Mn, Cr, Ni, Al, Mo, Ti, Sr, Na, Zn, and As in nuclear grade graphite is described. A 9:1 ratio of graphite to copper difluoride is used in the preparation of samples and standards. The excitation is carried out in a d-c at 10 amperes. The copper fluoride used as spectrographic buffer serves to increase the volatilization rate of the impurities and to diminish the differences in the nature of the analytical and calibration samples. The relative standard deviations for the determination of the 16 trace elements, except Sr, Fe, Cd, Al and Si, are in the range of 8 - 20% in their appropriate calibration levels. For the latter five elements they are approximately 20-40%

  11. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and γ-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics

  12. Statistical spectroscopic studies in nuclear structure physics

    International Nuclear Information System (INIS)

    Halemane, T.R.

    1979-01-01

    The spectral distribution theory establishes the centroid and width of the energy spectrum as quantities of fundamental importance and gives credence to a geometry associated with averages of the product of pairs of operators acting within a model space. Utilizing this fact and partitioning the model space according to different group symmetries, simple and physically meaningful expansions are obtained for the model interactions. In the process, a global measure for the goodness of group symmetries is also developed. This procedure could eventually lead to a new way of constructing model interactions for nuclear structure studies. Numerical results for six (ds)-shell interactions and for scalar-isospin, configuration-isospin, space symmetry, supermultiplet and SU(e) x SU(4) group structures are presented. The notion of simultaneous propagation of operator averages in the irreps of two or more groups (not necessarily commuting) is also introduced. The non-energy-weighted sum rule (NEWSR) for electric and magnetic multipole excitations in the (ds)-shell nuclei 20 Ne, 24 Mg, 28 Si, 32 S, and 36 Ar are evaluated. A generally applicable procedure for evaluating the eigenvalue bound to the NEWSR is presented and numerical results obtained for the said excitations and nuclei. Comparisons are made with experimental data and shell-model results. Further, a general theory is given for the linear-energy-weighted sum rule (LEWSR). When the Hamiltonian is one-body, this has a very simple form (expressible in terms of occupancies) and amounts to an extension of the Kurath sum rule to other types of excitations and to arbitrary one-body Hamiltonians. Finally, we develop a statistical approach to perturbation theory and inverse-energy-weighted sum rules, and indicate some applications

  13. Nuclear quadrupole resonance of 93Nb in ternary phases on the bases of Nb3Al compound

    International Nuclear Information System (INIS)

    Matukhin, V.L.; Safin, I.A.; Shamraj, V.F.

    1980-01-01

    Results of investigations into concentration dependences of 93 Nb spectrum parameters of nuclear quadrupole resonance (n.g.r.) (frequencies of n.g.r. transitions, rates of nuclear spin - lattice relaxation R) in triple phases which appear as a result of Nb 3 Al compound alloying with Zr, Ga, Sn, are presented. Nb 3 Al alloying with gallium does not considerably change the R value (R-rate of nuclear spin - lattice relaxation, while alloying with zirconium decreases it to a noticeable extent. It is 30% less in the triple phase than in the Nb 3 Al compound. R alterations, frequency reduction in the 93 Nb n.q.r. spectrum and the decrease of constant of the quadrupole bond point to the alteration of the spatial electron distribution around a niobium atom during alloying [ru

  14. Development of laser spectroscopic technology in nuclear industry

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Heon; Kim, Seong Ho; Cha, Hyung Ki; Lim, Chang Hwan; Song, Kye Seok; Kim, Jung Bok; Rho, Si Pyo; Han, Jae Min; Jeong, Do Yung; Lee, Jong Hoon; Choi, Hwa Lim; Yoo, Byung Duk; Choi, An Sung; Lee, Byung Chul; Kim, Chul Jung

    1992-05-01

    The goal of this project is to carry out the fundamental researches for the selective photoionization process of heavy atoms as well as the development of experimentally related instruments. Main research results carried out in this year are (1) multi-step photoionization spectroscopy of Hg atom by 3-color 3-step ionization scheme, (2) selective photoionization using polarization spectroscopy, (3) design and construction of ion separator chamber, and (4) theoretical study for spectroscopic parameters of mercury. This technology can be applied to several area of nuclear industry such as the utilization of radioactive waste, the development of new materials, high sensitive analysis of heavy atomic elements. (Author)

  15. Vibrationally induced nuclear quadrupole coupling in the v3 = 1 state of 189OsO4

    International Nuclear Information System (INIS)

    Scappini, F.; Kreiner, W.A.; Frye, J.M.; Oka, T.

    1987-01-01

    Electric nuclear quadrupole hyperfine structure arising from a quadrupolar nucleus at the center of tetrahedral molecules, such as 189 OsO 4 , is symmetry forbidden. However, through vibration--rotation distortion a small nuclear quadrupole coupling is induced. The hyperfine structure due to the vibrationally induced eqQ has been measured for a number of P- and R-branch transitions in the ν 3 fundamental of 189 OsO 4 , by using inverse Lamb dip spectroscopy. Microwave modulation sidebands of CO 2 laser lines have been used as the tunable infrared radiation. From the analysis of the observed hyperfine structure patterns, the values of the scalar and tensor coupling constants have been determined to be chi/sup V//sub s/ = -4.103 +- 0.048 MHz and chi/sup V//sub t/ = -3.090 +- 0.059 MHz

  16. Complex on the base of the ISKRA 226.6 personal computer for nuclear quadrupole resonance signal processing

    International Nuclear Information System (INIS)

    Morgunov, V.G.; Kravchenko, Eh.A.

    1988-01-01

    Complex, designed to conduct investigations by means of nuclear quadrupole resonance (NQR) method, which includes radiospectrometer, multichannel spectrum analyzer and ISKRA 226.6 personal computer, is developed. Analog-to-digital converter (ADC) with buffer storage device, interface and microcomputer are used to process NQR-signals. ADS conversion time is no more, than 50 ns, linearity - 1%. Programs on Fourier analysis of NQR-signals and calculation of relaxation times are developed

  17. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  18. Symmetry breaking nuclear quadrupole coupling tensor orientation for cesium-133 nuclei located in a mirror plane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Jin Eun [Dept. of Chemistry (BK21 plus) and Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Kang Yeol [School of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-11-15

    Simultaneous multiple data set fits of all transition peaks of {sup 133}Cs nuclei enabled us to obtain accurate cesium-133 nuclear magnetic resonance (NMR) parameters and Euler angles between the principal axis systems of the chemical shift (CS) and quadrupole coupling (Q) tensors of {sup 133}Cs nuclei in Cs{sub 2}CrO{sub 4} . Although in a previous study of Cs{sub 2}CrO{sub 4} by Power et al. (W. P. Power, S. Mooibroek, R. E. Wasylishen, T. S. Cameron, J. Phys. Chem. 1994, 98, 1552), one central transition was observed for cesium sites 1 and 2 in the {sup 133}Cs NMR spectra and one Euler angle between the CS tensors and Q tensors was obtained as 52° and 7° for cesium sites 1 and 2, respectively, the present single-crystal {sup 133}Cs NMR measurements found two Euler angles (10(2)°, 51.9(1)°, 0°) for site 1 and two central transition peaks for site 2. Three principal components of the CS tensor for Cs1 are oriented along the crystallographic a, b, and c axes, whereas none of the principal components of the Q tensor for Cs1 are oriented along the crystal axes. The principal component V{sub 22} of the Q tensor for Cs1 is tilted 10° from the b axis in the bc plane, and the other two components are not located in the ac plane. Therefore, we have found that the requirement that “the quadrupole coupling tensor for a nucleus located in a mirror plane has one principal axis perpendicular to the mirror plane” cannot be applied to Cs1. On the other hand, δ{sub 11} and V{sub 22} for Cs2 are aligned along the b axis, and the other components of the CS and Q tensors deviate at an angle of 1.4(1)° and 10.1(1)°, respectively, from the a and c axes in the ac plane. A distortion-free powder {sup 133}Cs NMR spectrum of Cs{sub 2}CrO{sub 4} was measured using a solid-state spin echo technique.

  19. The Nuclear Spectroscopic Telescope Array (NuSTAR)

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Boggs, Steve; Christensen, Finn Erland

    2010-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated...... in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried...... on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFC's High Energy Archive Research...

  20. Nuclear quadrupole resonance applied for arsenic oxide study; Estudo do oxido de arsenio atraves de ressonancia quadrupolar nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Correia, J A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T{sub 1}), the spin-spin relaxation time (T{sub 2}) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180{sup 0} C pulse is applied after a 90{sup 0} C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90{sup 0} C - 180{sup 0} C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author).

  1. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  2. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    Science.gov (United States)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  3. Electric quadrupole interactions on /sup 12/B and /sup 12/N implanted in Mg studied by nuclear depolarization due to level mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1977-04-25

    Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.

  4. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 ± 0.01 kHz and 2,347.88 ± 0.08 kHz with associated T 2 * values 780 ± 20 micros and 523 ± 24 micros, respectively. The previously unreported ν - line for urea-d 4 was detected at 2,381 ± 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant χ (3,548.74 ± 0.03 kHz) and the asymmetry parameter η (0.31571 ± 0.00007) for urea-d 4 . The inverse linewidth parameter T 2 * for ν + was measured at 928 ± 23 micros and for ν - at 721 ± 12 micros. Townes and Dailey analysis was performed and urea-d 4 exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T 2 and T 2 * and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T 2 and T 2 * values for ν - and ν - as a function of temperature

  5. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    Science.gov (United States)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  6. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    Science.gov (United States)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  7. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  8. Two-dimensional exchange and nutation exchange nuclear quadrupole resonance spectroscopy

    International Nuclear Information System (INIS)

    Mackowiak, M.; Sinyavsky, N.; Velikite, N.; Nikolaev, D.

    2002-01-01

    A theoretical treatment of the 2D exchange NQR pulse sequence is presented and applied to a quantitative study of exchange processes in molecular crystals. It takes into account the off-resonance irradiation, which critically influences the spin dynamics. The response to the three-pulse sequence of a system of spins I=3/2 in zero applied field, experiencing electric quadrupole couplings, is analysed. The mixing dynamics by exchange and the expected cross-peak intensities as a function of the frequency offset have been derived. The theory is illustrated by a study of the optimization procedure, which is of crucial importance for the detection of the cross- and diagonal-peaks in a 2D-exchange spectrum. The systems investigated are hexachloroethane and tetrachloroethylene. They show threefold and twofold reorientational jumps about the carbon-carbon axis, respectively. A new method of direct determination of rotational angles based on two-dimensional nutation exchange NQR spectroscopy is proposed. The method involves the detection of exchange processes through NQR nutation spectra recorded after the mixing interval. The response of a system of spins I=3/2 to the three-pulse sequence with increasing pulse widths is analyzed. It is shown that the 2D-nutation exchange NQR spectrum exhibits characteristic ridges, which manifest the motional mechanism in a model-independent fashion. The angles through which the molecule rotates can be read directly from elliptical ridges in the 2D spectrum, which are also sensitive to the asymmetry parameter of the electric field gradient tensor. (orig.)

  9. All 36 exactly solvable solutions of eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor with expanded characteristic equation listing

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Lorenz Harry, E-mail: lnz2004@mindspring.com [University of Pittsburgh (United States)

    2012-05-15

    This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter {eta} is an element of (- {infinity}, + {infinity}). These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson's listing of characteristic equations for integer spins out to I = 15, inclusive.

  10. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  11. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  12. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  13. A study of the chlorine nuclear quadrupole resonance frequency spectrum in potassium hexachloro-osmate by Fourier transform methods

    International Nuclear Information System (INIS)

    Mintz, D.J.; Armstrong, R.L.

    1980-01-01

    A study of the chlorine nuclear quadrupole resonance spectrum of K 2 OsCl 6 in the vicinity of the structural phase transition using Fourier transform techniques is reported. At high temperatures a single symmetric line spectrum is observed as expected from the high temperature cubic antifluorite structure. Below T(sub)c = 45 K the two symmetric line spectrum characteristic of a tetragonal distortion is seen. At intermediate temperatures, 45< T<150 K the spectrum consists of a single asymmetric line. A detailed analysis reveals that for the single crystal sample the asymmetric line is composed of two symmetric components, a main line, and a weak satellite shifted - 1.5 kHz relative to the main line. This feature is unaffected by changes in temperature near T(sub)c. It is attributed to the influence of interstitial impurities on neighbouring chlorine ions. For the powder sample, the asymmetry is qualitatively different. A detailed analysis shows that the line is a superposition of three components. In addition to the two components present in the single crystal, a third, broad component develops as the temperature approaches T(sub)c. This feature of the spectrum is the cluster induced order-disorder manifestation of the local dynamics. The most probable reason that this third component is not observed in the single crystal spectrum is because it is too broad due to a difference in the detailed dynamics of two samples. (auth)

  14. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    Science.gov (United States)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  15. Devise for measuring the nuclear quadrupole resonance weak signal relaxation at the ISSh-1-12 spectrometer with the SIGMA digital storage

    International Nuclear Information System (INIS)

    Chernyavskij, V.N.; Konstantinov, G.I.

    1984-01-01

    The device, consisting of an analog memory device and the Karr-Parsell pulse programming device (radio frequency pulse train is 90 deg - tau - 180 deg - 2 tau - 180 deg - 2 tau ..., where tau is the interval between 90 deg - and 180 deg - pulses), is described. The device is destined for measurement of the time T 2 of nuclear quadrupole resonance spin-spin relaxation weak signal with signal-to-noise ratio 0 - 10 4 ), pulse numbers in series are 2-1024, start output signal amplitude >= 22 V, duration is 1 μs. The device may be also used in pulsed nuclear magnetic and electron paramagnetic resonance spectroscopy

  16. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  17. Spectroscopic studies of irradiated glasses: Application in nuclear dosimetry

    International Nuclear Information System (INIS)

    Farah, Khaled

    2010-01-01

    The present work aims to study the effects of ionizing radiation on silicate glasses in order to develop a new dosimetry system simple, precise, stable and inexpensive. Indeed, changes in mechanical properties, optical and paramagnetic glasses when subjected to ionizing radiation. The prediction of long-term behavior, physical aging under irradiation, the glass is paramount. many studies have brought many ways to avoid obscuring glass windows used in nuclear reactors or hot cells and optical devices. Recently, much work has concentrated on the application of the color induced by irradiation for developing a recyclable glass in the glass industry is of great interest economically and environmentally.

  18. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  19. Speciation, in the nuclear fuel cycle by spectroscopic techniques

    International Nuclear Information System (INIS)

    Colette, S.; Plancque, G.; Allain, F.; Lamouroux, C.; Steiner, V.; Amekraz, B.; Moulin, C.

    2000-01-01

    New analytical techniques allowing to perform speciation in the framework of the nuclear fuel cycle are more and more needed. They have to be selective (since matrix encountered are very complex), sensitive (in order to work at representative concentration and below solubility limit), as well as non intrusive (in order to keep the image of the real solution). Among them, laser-based analytical techniques present these advantages together with the possibility to perform remote measurements via fiber optics. Hence, Time-Resolved Laser-Induced Fluorescence (TRLIF) has been used for actinides/lanthanides interaction and speciation studies in inorganic and organic matrices from the reprocessing to waste storage. Moreover, new ion detection methods such as Electro-Spray - Mass Spectrometry (ES-MS) seems promising for speciation studies. Hence, it is the first time that it is possible to directly couple a liquid at atmospheric pressure to a mass detection working at reduced pressure with a soft mode of ionisation that should allow to give informations on chemical species present. Principle, advantages and limitations as well as results obtained with the use of TRLIF and ES-MS on different systems of interest including actinides, lanthanides, fission products in interaction with simple organic molecules to very complex structure will be presented and discussed. (authors)

  20. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  1. Speciation, in the nuclear fuel cycle by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Colette, S.; Plancque, G.; Allain, F.; Lamouroux, C.; Steiner, V.; Amekraz, B.; Moulin, C. [CEA/Saclay, Dept, des Procedes d' Enrichissement (DPE), 91 - Gif-sur-Yvette (France)

    2000-07-01

    New analytical techniques allowing to perform speciation in the framework of the nuclear fuel cycle are more and more needed. They have to be selective (since matrix encountered are very complex), sensitive (in order to work at representative concentration and below solubility limit), as well as non intrusive (in order to keep the image of the real solution). Among them, laser-based analytical techniques present these advantages together with the possibility to perform remote measurements via fiber optics. Hence, Time-Resolved Laser-Induced Fluorescence (TRLIF) has been used for actinides/lanthanides interaction and speciation studies in inorganic and organic matrices from the reprocessing to waste storage. Moreover, new ion detection methods such as Electro-Spray - Mass Spectrometry (ES-MS) seems promising for speciation studies. Hence, it is the first time that it is possible to directly couple a liquid at atmospheric pressure to a mass detection working at reduced pressure with a soft mode of ionisation that should allow to give informations on chemical species present. Principle, advantages and limitations as well as results obtained with the use of TRLIF and ES-MS on different systems of interest including actinides, lanthanides, fission products in interaction with simple organic molecules to very complex structure will be presented and discussed. (authors)

  2. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  3. Evaluating the accuracy of uranium isotope amount ratio measurements performed by a quadrupole and a multi-collector magnetic sector inductively coupled plasma mass spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Pereira de Oliveira, O. Jr.; Sarkis, J.E.S.; Ponzevera, E.; Alonso, A.; De Bolle, W.; Quetel, C.

    2008-01-01

    The n(U 235 )/n(U 238 ) isotope amount ratio in a set of samples was measured using two modern analytical techniques: quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) and multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-ICPMS). The measured ratios were compared to the certified ratios provided by the high accuracy gas source mass spectrometry (GSMS). The components of the uncertainty were identified and their contribution to the combined standard uncertainty was estimated using the recommendations of the ISO-GUM guide. The values of the measurement uncertainty and bias were determined and then compared to the International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials. It appears that only the measurements performed by MC-ICPMS can meet the stringent requirements of international nuclear safeguards. (authors)

  4. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    International Nuclear Information System (INIS)

    Frederick, B.deB.

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of 23 Na holds promise as a non-invasive method of mapping Na + distributions, and for differentiating pools of Na + ions in biological tissues. However, due to NMR relaxation properties of 23 Na in vivo, a large fraction of Na + is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T 2 . Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo 23 Na T 2 values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic 1 H and 23 Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25μs, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form

  5. The nuclear quadrupole interaction of {sup 181}Ta in the intermetallic compound Hf{sub 2}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, N.; Koicki, S.; Cekic, B.; Manasijevic, M.; Koteski, V.; Marjanovic, D. [Institute of Nuclear Sciences VINCA, Laboratory for Nuclear and Plasma Physics, PO Box 522, Belgrade (Yugoslavia)

    1999-01-11

    The time differential perturbed angular correlation technique has been used to measure the electric field gradient at {sup 181}Ta impurities in the intermetallic compound Hf{sub 2}Rh. The results of the measurements show the presence of two independent quadrupole interactions. At room temperature the interaction frequencies are {omega}{sub Q1} = 58 Mrad s{sup -1} and {omega}{sub Q2} = 239 Mrad s{sup -1}. The electric field gradient V{sub 22}, the corresponding asymmetry parameter {eta} and the distribution parameter {delta} exhibit a pronounced temperature dependence from 78 to 1223 K. (author)

  6. Application of nuclear quadrupole resonance relaxometry to study the influence of the environment on the surface of the crystallites of powder

    Energy Technology Data Exchange (ETDEWEB)

    Sinyavsky, Nikolay Ya. [Immanuel Kant Baltic Federal Univ., Kaliningrad (Russian Federation); Kaliningrad State Technical Univ. (Russian Federation); Mershiev, Ivan G.; Kupriyanova, Galina S. [Immanuel Kant Baltic Federal Univ., Kaliningrad (Russian Federation)

    2015-10-01

    The results of the experimental study of the influence of the environment surrounding the surface of the crystallites of a KClO{sub 3} powder on the distribution of the spin-spin and spin-lattice relaxation times for {sup 35}Cl nuclear quadrupole resonance are described. It was found that the distributions of the spin-lattice relaxation times are unimodal and distributions of the spin-spin relaxation times are bimodal for all samples we studied. T{sub 1} - T{sub 2} and T{sub 1ρ} - T{sub 2} correlations by means of the two-dimensional (2D) inverse Laplace transform are obtained. The efficiency of the method for the study of surface phenomena in solids is demonstrated.

  7. Application of nuclear quadrupole resonance relaxometry to study the influence of the environment on the surface of the crystallites of powder

    International Nuclear Information System (INIS)

    Sinyavsky, Nikolay Ya.; Mershiev, Ivan G.; Kupriyanova, Galina S.

    2015-01-01

    The results of the experimental study of the influence of the environment surrounding the surface of the crystallites of a KClO 3 powder on the distribution of the spin-spin and spin-lattice relaxation times for 35 Cl nuclear quadrupole resonance are described. It was found that the distributions of the spin-lattice relaxation times are unimodal and distributions of the spin-spin relaxation times are bimodal for all samples we studied. T 1 - T 2 and T 1ρ - T 2 correlations by means of the two-dimensional (2D) inverse Laplace transform are obtained. The efficiency of the method for the study of surface phenomena in solids is demonstrated.

  8. Development of nuclear fuel. Development of laser spectroscopic technology in nuclear industry

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Kim, Chul Jung

    1991-04-01

    The goal of the project is to establish database of the spectroscopic parameters of heavy atomic elements by using RIS technology. To achieve the maximum efficiency of photoionization processes, several lasers were used and some equipment which need be according to the experimental purposes were self-constructed: that is, a real time TOF mass spectrometer and a frequency stabilizer for a pulsed dye laser were devised. Multistep photoionization experiments of Hg atoms were carried out with these equipments. Also computer code, MCDF, was executed for the calculation of transition probabilities of Hg atoms. (Author)

  9. Quadrupole collectivity in {sup 128}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Boenig, Esther Sabine

    2014-07-07

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of {sup 132}Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2{sup +} state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic {sup 132}Sn, a Coulomb excitation experiment of {sup 128}Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0{sup +}{sub gs} → 2{sup +}{sub 1}), which is a measure of collectivity, and the spectroscopic quadrupole moment Q{sub s}(2{sup +}{sub 1}) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  10. A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Tobin, J.G.

    2009-01-01

    The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials

  11. Phosphorus-31 nuclear magnetic resonance spectroscopic study of the canine pancreas: applications to acute alcoholic pancreatitis

    International Nuclear Information System (INIS)

    Janes, N.; Clemens, J.A.; Glickson, J.D.; Cameron, J.L.

    1988-01-01

    The first nuclear magnetic resonance spectroscopic study of the canine pancreas is described. Both in-vivo, ex-vivo protocols and NMR observables are discussed. The stability of the ex-vivo preparation based on the NMR observables is established for at least four hours. The spectra obtained from the in-vivo and ex-vivo preparations exhibited similar metabolite ratios, further validating the model. Metabolite levels were unchanged by a 50% increase in perfusion rate. Only trace amounts of phosphocreatine were observed either in the intact gland or in extracts. Acute alcoholic pancreatitis was mimicked by free fatty acid infusion. Injury resulted in hyperamylasemia, edema (weight gain), increased hematocrit and perfusion pressure, and depressed levels of high energy phosphates

  12. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  13. Spectroscopic factors with coupled-cluster connecting ab initio nuclear structure to reactions

    International Nuclear Information System (INIS)

    Jensen, Oeyvind

    2011-02-01

    This thesis has two parts. Tools and theory are presented in the first part, and papers with specific applications to nuclear physics are collected in the second part. A synopsis of theoretical foundations and basic techniques for many body quantum physics is presented in the context of a computer implementation of Wick's theorem for the symbolic algebra system SymPy. A pedagogical introduction to the implemented Python module is presented, and non-trivial aspects of the implemented simplification algorithms are discussed. Computer aided manipulations of second quantization expressions relieves practitioners of laborious and error-prone hand calculations necessary for the derivation of programmable equations. Theoretical developments of the Coupled-Cluster method (CCM) at Singles- and-Doubles level (CCSD) for the calculation of spectroscopic factors (SF) and radial overlap functions are presented. Algebraic expressions are derived from novel diagram techniques. CCM is one of the most successful methods for accurate numerical quantum mechanical simulations of medium sized many-body systems studied within Chemistry and Nuclear Physics. The recently developed spherical formulation of CCM is presented and alternative coupling schemes of quantum mechanical angular momentum are discussed in the context of a computer implementation for Racah algebra with SymPy. A pedagogical introduction to this functionality is given and it is used to derive angular momentum coupled expressions for efficient calculation of the spectroscopic factor diagrams. The first research paper presents a calculation of spectroscopic factors with CCSD. Details of the calculation is presented and convergence properties, as well as the dependence on various model parameters are discussed. Interactions with different cut-offs are employed and the dependence of the SF on the interactions are studied. In the second paper we employ the angular momentum coupled SF expressions and the spherical formulation

  14. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  15. Microscopic evidence for magnetic ordering in NdCu3Ru4O12 : 63,65Cu nuclear quadrupole resonance study

    Science.gov (United States)

    Yogi, M.; Niki, H.; Hedo, M.; Komesu, S.; Nakama, T.

    2018-05-01

    We have conducted 63,65Cu nuclear quadrupole resonance (NQR) measurements on A-site ordered perovskite compounds LaCu3Ru4O12 and NdCu3Ru4O12 to investigate their ground state and spin fluctuations. While there is only one Cu site in the crystal structure, multiple NQR resonance lines were observed. This is presumed to be due to the presence of slight distortion and lattice defects in the samples. The nuclear spin-lattice relaxation rate divided by temperature, 1 /T1 T , for LaCu3Ru4O12 showed almost constant value indicating the Fermi-liquid state. A remarkable increase in 1 /T1 T due to spin fluctuations was observed in NdCu3Ru4O12 . Furthermore, an evident magnetic phase transition at TM = 0.6 K was revealed from the distinct peak of 1 /T1 T and the broadening of the NQR spectrum.

  16. Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

    Science.gov (United States)

    Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.

    2018-02-01

    We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.

  17. Spectroscopic and physicochemical measurements for on-line monitoring of used nuclear fuel separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Nee, Ko; Nilsson, M. [Department of Chemical Engineering and Material Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575 (United States); Bryan, S.; Levitskaia, T. [Pacific Northwest National Laboratory, PO BOX 999, Richland, CA 99352 (United States)

    2013-07-01

    Separation processes for used nuclear fuel are often complicated and challenging due to the high constraints in purity of the products and safeguards of the process streams. In order to achieve a safe, secure and efficient separation process, the liquid streams in the separation process require close monitoring. Due to the high radiation environment, sampling of the materials is difficult. Availability of a detection technique that is remote, non-destructive and can avoid time-delay caused by retrieving samples would be beneficial and could minimize the exposure to personnel and provide material accountancy to avoid diversion (non-proliferation). For example, Ultra Violet (UV), Visible (Vis), Near-Infrared (NIR) and Raman spectroscopy that detect and quantify elements present in used nuclear fuel, e.g. lanthanides, actinides and molecules such as nitrate, can be used. In this work, we have carried out NIR and Raman spectroscopy to study aqueous solutions composed of different concentrations of nitric acid, sodium nitrate, and neodymium at varied temperatures. A chemometric model for online monitoring based on the PLS-Toolbox (MATLAB) software has been developed and validated to provide chemical composition of process streams based on spectroscopic data. In conclusion, both of our NIR and Raman spectra were useful for H{sup +} and NO{sub 3} prediction, and only NIR was helpful for the Nd{sup 3+} prediction.

  18. Laser-spectroscopic nuclear-structure studies on radioactive silver and indium isotopes

    International Nuclear Information System (INIS)

    Dinger, U.

    1988-05-01

    Neutron-deficient silver and neutron-rich indium isotopes were studied by collinear laser spectroscopy. The neutron-deficient nuclei 101 , 103 , 104 , 105 , 105m , 106m Ag were produced as evaporation-residual nuclei in heavy-ion fusion reactions at the mass separator of the GSI in Darmstadt. The fourteen studied indium isotopes and isomers with even mass number in the range 112-126 In were produced by 600-MeV-proton induced fission of a uranium carbide target at the ISOLDE separator in Geneva. The mass-separated ion beam was subsequently deviated electrostatically, neutralized in a sodium vapor and superposed with a c w dye laser. A photon counting system detected the resonance fluorescence of the induced transitions. The hyperfine structure and the isotope shift of the 4d 9 5s 2 2 D 5/2 → 4d 10 6p 2 P 3/2 transition (λ=547.7 nm) in silver and the 5p 2 P 1/2,3/2 → 6s 2 s 1/2 transition (λ=410 respectively 451 nm) in indium were measured. While in indium for the analysis of the data earlier work could be referred to, in silver a detailed analysis of the isotope shift and hyperfine structure was performed by means of ab initio calculations and semi-empirical procedures. Thereby the configuration interactions were especially considered. The nuclear moments were discussed in the framework of existing nuclear models regarding nuclear-spectroscopic informations. (orig./HSI) [de

  19. A molecule with small rotational constants containing an atom with a large nuclear quadrupole moment: The microwave spectrum of trans-1-iodoperfluoropropane

    Science.gov (United States)

    Dewberry, C. T.; Grubbs, G. S.; Cooke, S. A.

    2009-09-01

    Using pulsed jet chirped-pulse, and cavity-based Fourier transform microwave spectroscopies over 900 transitions have been recorded for the title molecule in the 1-4 GHz and 8-18 GHz regions. The C,C and C carbon-13 species have been observed in natural abundance allowing a substitution structure for the CCC backbone to be determined. Nearly all the transitions observed were either a-type R branches or b-type Q branches. No c-type transitions were observed consistent with only the trans conformer being present under our experimental conditions. The χaa,χbb,χcc and χab components of the iodine nuclear quadrupole coupling tensor have been determined. Of note, several forbidden, ΔJ±2 transitions, and one ΔJ±3 transition were observed with quite reasonable intensity. These observations have been rationalized through considerations of near degeneracies between energy levels connected via a large χab value (≈1 GHz).

  20. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1992-01-01

    The use of 14 N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14 N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14 N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation

  1. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Iselin, Louis Henry [Univ. of Florida, Gainesville, FL (United States)

    1992-01-01

    The use of 14N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  2. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  3. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    Science.gov (United States)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining

  4. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    International Nuclear Information System (INIS)

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D 2 O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ( 13 C-[ 1 H]) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of [1- 13 C]glucose. Label flux was directed primarily into newly-synthesized 13 C-labeled glycogen. A multiple resonance ( 1 H, 13 C, 31 P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the 13 C-[ 1 H]/ 31 P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed

  5. Centering of quadrupole family

    International Nuclear Information System (INIS)

    Pinayev, Igor

    2007-01-01

    A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed

  6. The smooth cyclotron line in Her X-1 as seen with nuclear spectroscopic telescope array

    Energy Technology Data Exchange (ETDEWEB)

    Fürst, Felix; Grefenstette, Brian W.; Bellm, Eric C.; Harrison, Fiona; Madsen, Kristin K.; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Staubert, Rüdiger; Klochkov, Dmitry [Institut für Astronomie und Astrophysik, Universität Tübingen (IAAT), D-72076 Tübingen (Germany); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse (France); Chenevez, Jerome; Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); William Zhang [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-10

    Her X-1, one of the brightest and best studied X-ray binaries, shows a cyclotron resonant scattering feature (CRSF) near 37 keV. This makes it an ideal target for a detailed study with the Nuclear Spectroscopic Telescope Array (NuSTAR), taking advantage of its excellent hard X-ray spectral resolution. We observed Her X-1 three times, coordinated with Suzaku, during one of the high flux intervals of its 35 day superorbital period. This paper focuses on the shape and evolution of the hard X-ray spectrum. The broadband spectra can be fitted with a power law with a high-energy cutoff, an iron line, and a CRSF. We find that the CRSF has a very smooth and symmetric shape in all observations and at all pulse phases. We compare the residuals of a line with a Gaussian optical-depth profile to a Lorentzian optical-depth profile and find no significant differences, strongly constraining the very smooth shape of the line. Even though the line energy changes dramatically with pulse phase, we find that its smooth shape does not. Additionally, our data show that the continuum only changes marginally between the three observations. These changes can be explained with varying amounts of Thomson scattering in the hot corona of the accretion disk. The average, luminosity-corrected CRSF energy is lower than in past observations and follows a secular decline. The excellent data quality of NuSTAR provides the best constraint on the CRSF energy to date.

  7. Effects of spin vacancies on the correlated spin dynamics in La2Cu1-xZnxO4 from 63Cu nuclear quadrupole resonance relaxation

    International Nuclear Information System (INIS)

    Carretta, P.; Rigamonti, A.; Sala, R.

    1997-01-01

    63 Cu nuclear quadrupole resonance (NQR) relaxation measurements in La 2 CuO 4 doped Zn are used in order to investigate the temperature dependence of the in-plane magnetic correlation length ξ 2D and the effects associated to spin vacancies in two dimensional quantum Heisenberg antiferromagnets (QHAF). The relaxation rates T 1 -1 and T 2 -1 have been related to the static generalized susceptibility χ(q,0) and to the decay rate Γ q of the normal excitations. By using scaling arguments for χ(q,0) and Γ q , the relaxation rates have been expressed in close form in terms of ξ 2D (x,T) and its dependence on temperature and spin doping x thus extracted. The experimental findings are analyzed in light of the renormalized classical (RC) and quantum critical (QC) behaviors predicted for ξ 2D by recent theories for S=1/2 HAF in square lattices. It is first shown that in pure La 2 CuO 4 , ξ 2D is consistent with a RC regime up to about 900 K, with tendency toward the QC regime above. The spin vacancies reduce the Nacute eel temperature according to the law T N (x)∼T N (0)(1 3.5x). From the temperature dependence of 63 Cu NQR relaxation rate T 1 -1 , T 2 -1 and from the composition dependence of T N it is consistently proved that the effect on ξ 2D can be accounted for by the modification of the spin stiffness in a simple dilutionlike model, the system still remaining in the RC regime, at least for T≤900 K. copyright 1997 American Institute of Physics

  8. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  9. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  10. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  11. Ab-initio study of pure sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te systems and of the sup 7 sup 7 Se nuclear quadrupole interaction in tellurium

    CERN Document Server

    Oh, Y K; Cho, H S

    1999-01-01

    Using the Hartree-Fock cluster procedure, we have studied the electric-field gradient tensors at the nuclear sites of sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te in pure sup 1 sup 2 sup 5 Te systems and in tellurium crystalline system's with a sup 7 sup 7 Se impurity. From the results for the pure systems, sup 7 sup 7 Se in selenium and sup 1 sup 2 sup 5 Te in tellurium, using the observed quadrupole moments: Q( sup 7 sup 7 Se) 0.75 +- 0.07 barns and Q( sup 1 sup 2 sup 5 Te) = 0.35 +- 0.04 barns. Comparison is made with earlier values obtained by different methods. Using our calculated values of Q and the results of a study of the field-gradient tensors for sup 7 sup 7 Se in tellurium, the theoretical values of the quadrupole coupling constants are found to agree, within about 7 percent, with experiment. The calculated asymmetry parameters are also found to be in reasonable agreement with the experiment values, although the agreement not as close as in the case of the quadrupole -coupling constants. Directions fo...

  12. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  13. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime

  14. Torques on quadrupoles

    OpenAIRE

    Torres del Castillo, G.F; Méndez Garrido, A

    2006-01-01

    Making use of the fact that a 2l-pole can be represented by means of l vectors of the same magnitude, the torque on a quadrupole in an inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The conditions for rotational equilibrium are also expressed in terms of these vectors. Haciendo uso de que un multipolo de orden 2l puede representarse mediante l vectores de la misma magnitud, la torca sobre un cuadripolo...

  15. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  16. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  17. Nuclear spectroscopic studies. Progress report, June 1, 1980-May 31, 1981

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.

    1981-01-01

    Research in nuclear spectroscopy at University of Tennessee from June 1980 through May 1981 is summarized. Topics covered include: radioactive decay studies; high spin states; inelastic scattering and reactions of heavy ions from deformed nuclei; and nuclear structure theory

  18. p-p minimum-bias dijets and nonjet quadrupole in relation to conjectured collectivity (flows in high-energy nuclear collisions

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2016-01-01

    Full Text Available Recent observations of ridge-like structure in p-p and p-A angular correlations at the RHIC and LHC have been interpreted to imply collective motion in smaller collision systems. It is argued that if correlation structures accepted as manifestations of flow in A-A collisions appear in smaller systems collectivity (flow must extend to the smaller systems. But the argument could be reversed to conclude that such structures appearing in A-A collisions may not imply hydrodynamic flow. I present spectrum, correlation and fluctuation data from RHIC p-p and Au-Au collisions and p-p, p-Pb and Pb-Pb results from the LHC described accurately by a two-component (soft+dijet model of hadron production. I also present evidence for a significant p-p nonjet (NJ quadrupole (v2 component with nch systematics directly related to A-A NJ quadrupole systematics. The combination suggests that soft, dijet and NJ quadrupole com- ponents are distinct phenomena in all cases, inconsistent with hadron production from a common bulk medium exhibiting collective motion (flow.

  19. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  20. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  1. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  2. Progress report on nuclear spectroscopic studies, June 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.

    1978-01-01

    Research progress is summarized for activities of the University of Tennessee department of physics and astronomy in the following areas: (1) in-beam spectroscopy of high-spin state, (2) Coulomb-nuclear interference and inelastic heavy ion scattering (3) Coulomb excitation, nuclear theory, (4) nuclear structure studies with alpha-induced direct reactions, and (5) developmental activities

  3. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    International Nuclear Information System (INIS)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-01-01

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.

  4. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-10-05

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  5. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    Energy Technology Data Exchange (ETDEWEB)

    Mini, S., E-mail: sadasivan.v@gmail.com; Sadasivan, V., E-mail: sadasivan.v@gmail.com [University College, M G Road, Palayam, Thiruvananthapuram 695 034 Kerala (India); Meena, S. S., E-mail: ssingh@barc.gov.in; Bhatt, Pramod, E-mail: ssingh@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  6. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    Science.gov (United States)

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    International Nuclear Information System (INIS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-01-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl 3 Ðœ‡2H 2 O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H 2 O) 2 ] and [Fe(FAHP)Cl 2 (H 2 O) 2

  8. On-line nuclear half life and spectroscopic measurements on mass-separated fission product nuclei

    International Nuclear Information System (INIS)

    McDonald, J.; Fogelberg, B.; Baecklin, A.

    1979-01-01

    A description is given of the methods and equipment employed for nuclear spectroscopy studies of short lived fission product nuclei at the OSIRIS ISOL facility in Studsvik, Sweden. Furthermore a table of new nuclear half-lives measured with this equipment is presented. (author)

  9. Variable Permanent Magnet Quadrupole

    International Nuclear Information System (INIS)

    Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC

    2007-01-01

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments

  10. Quadrupole moment of the superdeformed band in 131Ce

    International Nuclear Information System (INIS)

    He, Y.; Godfrey, M.J.; Jenkins, I.; Kirwan, A.J.; Nolan, P.J.

    1990-01-01

    A mean lifetime measurement has been carried out on the states in the superdeformed band found in 131 Ce using the Doppler shift attenuation method (DSAM). The measured intrinsic nuclear quadrupole moment is Q o approx= 6 eb, assuming constant deformation, which corresponds to a quadrupole deformation β 2 approx= 0.35. This is considerably smaller than the value deduced for 132 Ce. (author)

  11. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)

  12. On quantum quadrupole radiation

    International Nuclear Information System (INIS)

    Fonda, L.; Mankoc-Borstnik, N.

    1981-02-01

    In this paper it is shown that for the electromagnetic decay of a quantum system in a coherent rotational state the total quadrupole radiation is proportional to (d 5 Q/dt 5 )(dQ/dt)sup(*)+c.c. For the radiation flux out of a sphere of large radius a different quantity, closer to the classical expression (d 3 Q/dt 3 ) 2 , is found. (author)

  13. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  14. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  15. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  16. Measurements of quadrupole magnets

    International Nuclear Information System (INIS)

    Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.

    1987-01-01

    Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)

  17. Nuclear spectroscopic studies. Progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1984-01-01

    Progress is reported on nuclear structure and nuclear reaction studies utilizing heavy-ion beams. Projects at the HHIRF, the Brookhaven Tandem Accelerator, and the Nuclear Science Facility at Daresbury, England are described. Studies have been concentrated on: (1) the structure of deformed and transitional nuclei in the angular momentum range from 20 to 40 h by (HI,xn) reactions; (2) the 1- and 2-nucleon transfer reactions between spherical heavy ion projectiles and deformed targets; and (3) the low-energy properties of nuclei far from stability. Theoretical studies are also reported. Publications are listed

  18. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review

    International Nuclear Information System (INIS)

    Silva, Sandra L.; Silva, Artur M.S.; Ribeiro, Jorge C.; Martins, Fernando G.; Da Silva, Francisco A.; Silva, Carlos M.

    2011-01-01

    Graphical abstract: The chromatographic and spectroscopic techniques used to characterize heavy crude oils, although more focused in the nuclear magnetic resonance spectroscopy as the technique of choice, due to its capability to provide great information on the chemical nature of individual types of proton and carbon atoms in different and complex mixtures of crude oils are described. This review is based on 65 references and describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries that want to characterize crude oil fractions and the obtained refined products. Highlights: ► Chromatogrfaphic and spectroscopic techniques used to characterize heavy crude oils have been reviewed. ► This review describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries. ► The progress in the interpretation of the NMR spectra and of different multivariate data analyses and their potential in the identification and characterization of hydrocarbons and their physical and chemical properties have also been reviewed. - Abstract: The state of the art in the characterization of heavy crude oil mixtures is presented. This characterization can be done by different techniques, such as gas chromatography (GC), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Nuclear magnetic resonance spectroscopy is the technique of choice due to its capability to provide information on the chemical nature of individual types of hydrogen and carbon atoms in different and complex mixtures of crude oils. The progress made in the interpretation of the NMR spectra with the development of new NMR techniques and different multivariate data analyses could give relevant

  19. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  20. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  1. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  2. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  3. Atomic and nuclear analytical methods. XRF, Moessbauer, XPS, NAA and ion-beam spectroscopic techniques

    International Nuclear Information System (INIS)

    Verma, H.R.

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories. (orig.)

  4. Sensitivity of (α,α') cross sections to excited-state quadrupole moments

    International Nuclear Information System (INIS)

    Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.

    1977-01-01

    Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2

  5. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.

    1996-05-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model

  6. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.

    1997-01-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics

  7. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  8. Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    DEFF Research Database (Denmark)

    Madsen, K. K.; Harrison, F. A.; Mao, P. H.

    2009-01-01

    function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, di = a/(b + i)c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, dmax. The result is a 10 mirror group design optimized for a flat even energy......The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W....../Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting...

  9. Spectroscopic measurement of 204Pb isotope shift and 205Pb nuclear spin

    International Nuclear Information System (INIS)

    Schonberger, P.

    1984-01-01

    The isotope shift of 204 Pb and the nuclear spin of 1.4 X 10 7 -y 205 Pb was determined from a high-resolution optical measurement of the 6p 23 P 0 -6p7s 3 P 1 0 283.3-nm resonance line. The value of the shift, relative to 208 Pb is -140.2(8) x 10 -3 cm -1 , the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of 205 Pb I = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or long-lived isotope. High resolution optical absorption spectra were obtained with a 25.4 cm diffraction grating in a 9.1 m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of 204 Pb and 207 Pb

  10. Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.

    Science.gov (United States)

    Schonberger, Peter

    The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.

  11. Nuclear spectroscopic studies. Progress report, June 1, 1984-May 31, 1985

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1985-01-01

    During this report period we have led several experiments at HHIRF, two at McMaster University Tandem Laboratory, and plan follow-up experiments to those reported in last years report at the Nuclear Structure Facility at Daresbury, England. Significant advances have been made in the (1) study of the low-energy properties of nuclei far from stability, (2) use of the Spin Spectrometer and internal avalanche detectors to sort out greater details of direct reactions between heavy ions, and (3) understanding the structure of deformed and transitional nuclei at high angular momentum and feeding patterns of the high-spin yrast levels. Theoretical work included application of the cranked shell model to understanding structure at high angular momentum, description of the general features of spectra observed for single-nucleon transfer between heavy ions, and application of Dynamical Symmetries in a fermion space to deduce a general description of nuclear structure over a broad range of states and behavior. Details are given

  12. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  13. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)

    2017-06-10

    Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  14. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    International Nuclear Information System (INIS)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee

    2016-01-01

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO_x ,SO_x and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that "1H and "1"3C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species

  15. Nuclear magnetic resonance spectroscopic and isotopic analysis of carbonized residues from subarctic Canadian prehistoric pottery

    International Nuclear Information System (INIS)

    Sherriff, B.L.; Tisdale, M.A.; Sayer, B.G.; Schwarcz, H.P.; Knyf, M.

    1995-01-01

    Late prehistoric pottery is found in abundance at archaeological sites around Southern Indian Lake. Black residues, found on the two dominant vessel forms, flat plates and round pots, are presumed to be the remains of prehistoric meals. 13 C cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy (CPMAS NMR) and 13 C and 15 N isotopic ratios and C/N ratios are used to reconstruct prehistoric diet and to shed light on possible uses for the plates. Samples of foods were cooked in clay pots, on a wood fire, to simulate the conditions of burning that could have produced the residue. Decomposition of carbohydrates, protein, and fat during cooking is studied with 13 C CPMAS NMR, and the effect of cooking on isotopic and C/N ratios documented. Predominantly fish and fat were cooked in the pots, whereas the residues from plates contain a greater proportion of fat and could have been used as frying pans or possibly as fat-burning lamps placed on the ashes of a wood fire. (Author)

  16. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  17. A portable neutron spectroscope (NSPECT) for detection, imaging and identification of nuclear material

    Science.gov (United States)

    Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard

    2010-08-01

    We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.

  18. Raman and 11B nuclear magnetic resonance spectroscopic studies of alkaline-earth lanthanoborate glasses

    International Nuclear Information System (INIS)

    Brow, R.K.; Tallant, D.R.; Turner, G.L.

    1996-01-01

    Glasses from the RO·La 2 O 3 ·B 2 O 3 (R = Mg, Ca, and Ba) systems have been examined. Glass formation is centered along the metaborate tie line, from La(BO 2 ) 3 to R(BO 2 ) 2 . Glasses generally have transition temperatures >600 C and expansion coefficients between 60 x 10 -7 /C and 100 x 10 -7 /C. Raman and solid-state nuclear magnetic resonance spectroscopies reveal changes in the metaborate network that depend on both the [R]:[La] ratio and the type of alkaline-earth ion. The fraction of tetrahedral sites is generally reduced in alkaline-earth-rich glasses, with magnesium glasses possessing the lowest concentration of B[4]. Raman spectra indicate that, with increasing [R]:[La] ratio, the preferred metaborate anion changes from a double-chain structure associated with crystalline La(BO 2 ) 3 to the single-chain and ring metaborate anions found in crystalline R(BO 2 ) 2 phases. In addition, disproportionation of the metaborate anions leads to the formation of a variety of other species, including pyroborates with terminal oxygens and more-polymerized species, such as diborates, with tetrahedral borons. Such structural changes are related to the ease of glass formation and some of the glass properties

  19. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    International Nuclear Information System (INIS)

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  20. Electric quadrupole interaction in cubic BCC α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)

    2016-07-15

    Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge

  1. Electric quadrupole interaction in cubic BCC α-Fe

    International Nuclear Information System (INIS)

    Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.

    2016-01-01

    Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations

  2. Quadrupole interactions in pionic and muonic tantalum and rhenium

    International Nuclear Information System (INIS)

    Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.

    1981-01-01

    The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)

  3. Nuclear spectroscopic study of the 117In and 77Se using angular correlation technique

    International Nuclear Information System (INIS)

    Zamboni, C.B.

    1981-01-01

    The integral pertubed angular correlation technique has been used to measure the g-factor of the 587 KeV(3/2 - ) state in 117 In. The measurements were made in an external magnetic field of 26 Kg. The 1303-273 KeV gamma cascade in 117 In populated from the beta decay of 117 Cd was utilized for the measurement. The result is g(587 KeV) = -0.233+-0.057. The present result shows the 587 KeV state may not be a simple P 3/2 proton hole state but rather a complex admixture of different configurations. The g-factor of the 249 KeV state in 77 Se has also been measured by the time differential pertubed angular correlation (TDPAC) method in an external magnetic field of 25 Kg. The 755-249 KeV gamma cascade in 77 Se populated from the electron capture decay of 57h 77 Br utilized for the measurement. The g-factor is determined to be g(249 KeV) = 0.486 +- 0.009. In addition the half life of the 249 KeV state in 77 Se has also been measured by the delayed gamma-gamma coincidence method utilizing the gamma cascades 572-249 KeV and 750-249 KeV in 77 Se. The resulting value of the half life is T 1/2 (249 KeV) = (9.56 +- 0.10)ns. The experimental results are discussed in terms of nuclear models applicable for nuclei in this mass region. (author) [pt

  4. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  5. Quadrupole interaction studies of Hg in Sb

    International Nuclear Information System (INIS)

    Soares, J.C.; Krien, K.; Herzog, P.; Folle, H.R.; Freitag, K.; Reuschenbach, F.; Reuschenbach, M.; Trzcinski, R.

    1978-01-01

    Time differential perturbed angular correlation and nuclear orientation studies of the electric quadrupole interaction for Hg in Sb have been performed. The effective field gradients at room temperature and below 0.05K have been derived. These two values are no indication for an anomalous temperature dependence of the effective field gradient for Hg in Sb. The value of the electric field gradient fits well into the systematics for Hg in other hosts. It is shown that the electronic enhancements of the field gradients are correlated to the valence of the impurities and are rather insensitive to the host properties. (orig./HPOE) [de

  6. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  7. Electric quadrupole moments and strong interaction effects in pionic atoms of 165Ho, 175Lu, 176Lu, 179Hf and 181Ta

    International Nuclear Information System (INIS)

    Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.

    1981-05-01

    The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)

  8. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.

    Science.gov (United States)

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

    2012-02-09

    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  9. Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹⁴N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.

    Science.gov (United States)

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Žagar, Veselko

    2014-09-22

    Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable β form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline theobromine theobromine) to π···π stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld surface-based approach. The analysis of local environment of the nitrogen nucleus permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given methylxanthine to A1-A(2A) receptor (target for caffeine in the brain). Although the interactions responsible for linking neighboring methylxanthines molecules in crystals and methylxanthines with targets in the human organism can differ significantly, the knowledge of the topology of interactions provides reliable preliminary information about the nature of this binding.

  10. The quadrupole moment and strong interaction parameters from muonic and pionic X-ray studies of 237Np

    International Nuclear Information System (INIS)

    Laat, C.T.A.M. de; Taal, A.; Duinker, W.; Konijn, J.; Petitjean, C.; Reist, H.W.; Mueller, W.; Commission of the European Communities, Geel

    1987-01-01

    The X-ray spectrum of muonic and pionic 237 Np has been investigated with muons and pions stopped in a NpO 2 target. The nuclear spectroscopic quadrupole moment was determined to be Q=3.886±0.006 b from the splittings of the muonic 5g→4f hyperfine complexes. The B(E2)↓-values for the first and second excited states were evaluated as 3.17±0.08 and 2.77±0.10 e 2 b 2 , respectively. A comparison between the muonic and pionic 5g→4f hyperfine complexes yields the strong interaction parameter for the pionic 4f state. For the first time a change of sign as function of Z for the strong interaction quadrupole shift ε 2 (4f) has been observed. The standard optical model predictions agree reasonably well with the measured strong interaction monopole shift, ε 0 (4f), and width, Γ 0 (4f), while they disagree with the experimental value for ε 2 . A stronger s-wave repulsion in the optical potential could explain this effect. (orig.)

  11. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  12. Nuclear spin phonon relaxation by Raman process in Na{sub 3}H(SO{sub 4}){sub 2} single crystals with the electric-quadrupole-type interaction using {sup 1}H and {sup 23}Na NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ae Ran [Department of Science Education, Jeonju University, Jeonju 560-759, Chonbuk (Korea, Republic of)], E-mail: aeranlim@hanmail.net; Shin, Chang Woo [Solid State Analysis Team, Korea Basic Science Institute, Daegu 702-701 (Korea, Republic of)

    2008-11-30

    Successive phase transitions in a Na{sub 3}H(SO{sub 4}){sub 2} single crystal were found at 296, 513, and 533 K. To investigate the mechanism of the phase transition at 296 K, the {sup 1}H and {sup 23}Na spin-lattice relaxation time and the spin-spin relaxation time of Na{sub 3}H(SO{sub 4}){sub 2} were measured near the phase transition temperature using a FT NMR spectrometer. The spin-lattice relaxation time, T{sub 1}, for {sup 1}H in Na{sub 3}H(SO{sub 4}){sub 2} crystals exhibits a minimum below T{sub C1} (=296 K) indicating the presence of distinct molecular motion governed by the Bloembergen-Purcell-Pound (BPP) theory. Although the results for the {sup 1}H and {sup 23}Na relaxation times provide no evidence of the phase transition at T{sub C1}, the separation of the {sup 23}Na resonance lines changes abruptly at T{sub C1}. The phase transition at 296 K produces a change in the separation of the Na resonance line that is associated with a change in the atomic positions in the vicinity of the Na ions. Also, the nuclear spin-lattice relaxation process in Na{sub 3}H(SO{sub 4}){sub 2} crystals with the electric-quadrupole-type interaction proceed via Raman process. These results are compared with those obtained for other M{sub 3}H(SO{sub 4}){sub 2} (M=K, Rb, and Cs) crystals, which have similar hydrogen-bonded structures.

  13. Experimental investigation of quadrupole virtual photon spectrum

    International Nuclear Information System (INIS)

    Gouffon, P.

    1986-01-01

    To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2 + level at 20.14 MeV in 24 Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d 2 σ/dΩdE was measured 48 0 , 90 0 , 132 0 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author) [pt

  14. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  15. The monopole and quadrupole vibrations of a hot nucleus

    International Nuclear Information System (INIS)

    Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.

    1989-03-01

    An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)

  16. Giant 4p-quadrupole resonances in the Rare Earths

    International Nuclear Information System (INIS)

    Matthew, J.A.D.; Netzer, F.P.; Clark, C.W.; Morar, J.F.

    1987-01-01

    X-ray absorption of Ce obtained by partial secondary yield, is compared with previously obtained electron-energy loss measurements in reflection mode. The absence of a strong feature below 4p 3/2 threshold in photon absorption provides confirmation that the peak in EELS is nondipole in character. Theoretical analysis supports interpretation in terms of a p-f giant quadrupole resonance, a result which broadens the analogy between giant resonances in atomic and nuclear physics

  17. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  18. Sb,123121 nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal FeSb2: Emergence of electronic Griffith phase, magnetism, and metallic behavior

    Science.gov (United States)

    Gippius, A. A.; Zhurenko, S. V.; Hu, R.; Petrovic, C.; Baenitz, M.

    2018-02-01

    Sb,123121 nuclear quadrupole resonance (NQR) was applied to Fe(Sb1-xTex)2 in the low doping regime (x =0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3 d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1 /T1(T ) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb2 with a clear signature of the charge and spin gap formation in 1 /T1(T ) T [˜exp/(Δ kBT ) ] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1 /T1(T ) T ˜T-n˜T-0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ =(Cel/T ) showing a power-law divergence γ (T ) ˜T-m˜(1/T1T ) 1 /2˜T-n /2˜Cel/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1 /T1(T ) T ˜T-0.72 . According to the specific heat divergence a power law with n =2 m =0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1 /T1(T ) T ˜T-3 /4 behavior. Furthermore Te-doped FeSb2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the Sb,123121 NQR spectrum for the 5% sample. This has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb

  19. Nuclear quadrupole resonance spectrometer for chlorine compounds

    International Nuclear Information System (INIS)

    Lasanda, J.

    1976-01-01

    An NQR spectrometer is described based on a superregenerative oscillator for high sensitivity. The application of a Pound-Knight type oscillator using field effect transistors resulted in higher stability of oscillation amplitude in the desired range of 10 to 50 MHz. The use of a current source allowed to set good signal-to-noise ratio independently of the amplitude of oscillations. For synchronizing of both oscillators a balanced modulator was used. (author)

  20. DNMR theory for ND+4ion. Pt. 1. Tunneling effects and first order approximations in quadrupole interaction

    International Nuclear Information System (INIS)

    Blicharski, J.S.; Lalowicz, Z.T.; Sobol, W.

    1978-01-01

    This work presents results of the calculations of shape of deuteron nuclear magnetic resonance for ND + 4 ion. Tunneling effect and quadrupole interaction influence considerably the line shape. (S.B.)

  1. Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40

    Directory of Open Access Journals (Sweden)

    C. Babcock

    2016-09-01

    Full Text Available The spectroscopic quadrupole moments of the odd–even Mn isotopes between N=28 and N=38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE's cooler and buncher (ISCOOL was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1νg9/2 and 2νd5/2 orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N=36 onwards. Specifically, the inclusion of the 2νd5/2 orbital induces an increase in neutron and proton excitations across the reduced gaps at N=40 and Z=28, leading to an increase in deformation above N=36.

  2. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  3. MQXFS1 Quadrupole Fabrication Report

    CERN Document Server

    Ambrosio, G; Bossert, R; Cavanna, E; Cheng, D; Chlachidize, G; Cooley, L D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Hafalia, R; Holik, E F; Izquierdo Bermudez, S; Juchno, M; Krave, S; Marchevsky, M; Muratore, J; Nobrega, F; Pan, H; Perez, J C; Pong, I; Prestemon, S; Ravaioli, E; Sabbi, G L; Santini, C; Schmalzle, J; Schmalzle, J; Stoynev, S; Strauss, T; Vallone, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  4. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  5. Standard test method for nondestructive assay of special nuclear material holdup using Gamma-Ray spectroscopic methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes gamma-ray methods used to nondestructively measure the quantity of 235U, or 239Pu remaining as holdup in nuclear facilities. Holdup occurs in all facilities where nuclear material is processed, in process equipment, in exhaust ventilation systems and in building walls and floors. 1.2 This test method includes information useful for management, planning, selection of equipment, consideration of interferences, measurement program definition, and the utilization of resources (1, 2, 3, 4). 1.3 The measurement of nuclear material hold up in process equipment requires a scientific knowledge of radiation sources and detectors, transmission of radiation, calibration, facility operations and error analysis. It is subject to the constraints of the facility, management, budget, and schedule; plus health and safety requirements; as well as the laws of physics. The measurement process includes defining measurement uncertainties and is sensitive to the form and distribution of the material...

  6. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  7. Simulation of a quadrupole resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kleindienst, Raphael [Helmholtz Zentrum Berlin (Germany)

    2013-07-01

    Modern particle accelerators often rely on superconducting radio frequency (SRF) technology for accelerating cavities. In particular in CW operation, very high quality factors up into the high range are desirable, since one of the main cost drivers of such an accelerator, the cryogenic refrigeration plant, is inversely proportional to Q{sub 0}. Present day superconducting cavities are generally made of solid Niobium. A possibility to increase the quality factor as well as accelerating fields is to use thin film coated cavities. Apart from Niobium thin films, other superconducting materials, such as MgB{sub 2}, NbN and Nb{sub 3}Sn are promising candidates. Measuring and understanding the RF-properties of superconducting thin films, specifically the surface resistance, is needed to drive forward this development. Currently only few facilities exist capable of measuring the surface resistance of thin films samples with a resolution in the nano-ohm range at the operating frequency of typical cavities(e.g. L-band). A dedicated test stand consisting of a quadrupole resonator is therefore being constructed at the Helmholtz Zentrum Berlin. This system is based on the 400 MHz quadrupole resonator at CERN, with the design adapted to 433 MHz (making available the higher harmonic mode at 1.3 GHz) and optimized with respect to resolution and maximum achievable fields using simulation data obtained with CST Microwave Studio as well as ANSYS. The simulated design is being manufactured. An outlook for future physics runs is given.

  8. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism.

    NARCIS (Netherlands)

    Engelke, U.F.H.; Liebrand-van Sambeek, M.L.F.; Jong, J.G.N. de; Leroy, J.G.; Morava, E.; Smeitink, J.A.M.; Wevers, R.A.

    2004-01-01

    BACKGROUND: There is no comprehensive analytical technique to analyze N-acetylated metabolites in urine. Many of these compounds are involved in inborn errors of metabolism. In the present study, we examined the potential of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy as a tool to

  9. Electrostatic quadrupoles for heavy-ion fusion

    International Nuclear Information System (INIS)

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed

  10. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  11. Electric quadrupole moments of {beta}-emitter {sup 21}F and {sup 23}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi; Matsuta, Kensaku; Fukuda, Mitsunori [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others

    1997-03-01

    For the systematic study of nuclear electromagnetic moments, electric quadrupole moments Q of {beta}-emitting nuclei {sup 21}F and {sup 23}Mg have been measured for the first time through combined technique of the polarized nuclear beams and {beta}-NMR technique. From the quadrupole coupling constants of {sup 21}F and {sup 23}Mg in MgF{sub 2} single crystal, the ratios of the Q`s with the known Q were determined as |Q({sup 21}F)|/|Q({sup 19}F{sup *})|=1.001{+-}0.034 and |Q({sup 23}Mg)|/|Q({sup 25}Mg)|=0.571{+-}0.017. (author)

  12. Quadrupole interaction in zinc metal

    International Nuclear Information System (INIS)

    Vetterling, W.T.; Pound, R.V.

    1977-01-01

    To allow measurement of the quadrupole interaction in zinc metal, the enriched ZnO was reduced to zinc metal powder and compressed into a pill of thickness 1.4 gm/cm 2 . Sources were made by diffusing 20 mCi of 67 Ga into sintered copper pills. The transducer was based on a cylinder of PZT-4 with 1 / 2 -inch length and could cover linearly a velocity range of +-100 μ/s at 200 Hz. The multiscalar was a modified Northern model NS600, with a minimum dwell time of 20 μs, and with a 10-count buffer at the input to eliminate deadtime from memory cycling

  13. Design and realisation of a microprogramme for the analysis of nuclear spectroscopic data on the intelligent terminal, H.P.2648A

    International Nuclear Information System (INIS)

    Tendeku, F.K.

    1980-01-01

    A microprogramme has been developed for the analysis of nuclear spectroscopic data on the microprocessor-controlled terminal, H.P. 2648A. The terminal enables data to be processed locally. Many operations normally requiring connection to a computer can be performed on a stand alone basis. The principal aspects of the microprogramme are the graphical display of spectral data, the automatic and manual extraction of peaks, and the determination of peak characteristics. Among the features of the microprogramme are algorithms which enable a rapid graphical display of data in logarithmic and linear scales and in divers modes as well as functions enabling image amplification. The automatic peak searching algorithm represents a modified form of the Mariscotti method. The peak analysis procedure offers two options. The first makes use of the data directly. The second is based on the determination of the parameters of the gaussian function which best fits the data points, using the non-linear least squares principle. The terminal has been successfully interfaced to an IBM 370 computer through a satellite computer using the Parallel Duplex Register module of Hewlett Packard [fr

  14. Some considerations on the restoration of Galilei invariance in the nuclear many-body problem. Pt. I. Mathematical tools, spectral functions and spectroscopic factors of simple bound states

    International Nuclear Information System (INIS)

    Schmid, K.W.

    2001-01-01

    The mathematical tools to restore Galilei invariance in the nuclear many-body problem with the help of projection techniques are presented. For simple oscillator configurations recursion relations for the various elementary contractions are derived. The method is then applied to simple configurations for the ground states of 4 He, 16 O and 40 Ca as well as to the corresponding one-hole and one-particle states. As a first application the spectral functions and spectroscopic factors for the above-mentioned doubly even nuclei are investigated. It turns out that the conventional picture of an uncorrelated system underestimates the single-particle strengths of the hole states from the last occupied shell while that of the higher excited hole states is overestimated considerably. These results are in complete agreement with those derived by Dieperink and de Forest using different methods. Similar effects are seen for the particle states which have not been studied before. All the calculations presented here are performed analytically and thus can be checked explicitly by the interested reader. (orig.)

  15. Raman and X-ray absorption spectroscopic studies of hydrothermally altered alkali-borosilicate nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A., E-mail: davidm@vsl.cua.ed [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States); Buechele, Andrew C.; Viragh, Carol; Pegg, Ian L. [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States)

    2010-04-01

    Raman spectroscopy and X-ray absorption spectroscopy (XAS) are used to characterize structural changes that took place in hydrothermally altered (Na,K)-alumina-borosilicate glasses with different Na/K ratios, formulated as part of a durability study to investigate the behavior of glasses for nuclear waste storage. The hydrothermal experiments, or vapor hydration tests (VHT), were performed on each glass for 3 and 20 days at 200 deg. C to accelerate and approximate long-term alteration processes that may occur in a nuclear waste repository. Results found for both glasses and their VHT altered counterparts show little, if any, structural influence from the different starting Na/K ratios. X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Raman spectroscopy indicate that the altered samples are mostly amorphous with small amounts of analcime-like and leucite-like crystals within 200 mum of the sample surface and contain up to 9.7 wt.% water or OH. The Raman data are nearly identical for the amorphous portions of all altered VHT samples investigated, and indicate that two glass structural changes took place during alteration: one, partial depolymerization of the alumina-borosilicate network, and two, introduction of water or OH. Al and Si XAS data indicate tetrahedral AlO{sub 4} and SiO{sub 4} environments in the original glasses as well as in the altered samples. Small energy shifts of the Si K-edge also show that the altered VHT samples have less polymerized networks than the original glass. Na XAS data indicate expanded Na environments in the VHT samples with longer Na-O distances and more nearest-neighbor oxygen atoms, compared with the original glasses, which may be due to hydrous species introduced into the expanding Na-sites.

  16. Spectroscopic data

    CERN Document Server

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  17. Nuclear quantum shape-phase transitions in odd-mass systems

    Science.gov (United States)

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  18. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    Science.gov (United States)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh

    2018-01-30

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  19. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  20. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  1. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  2. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  3. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  4. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  5. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars

    Science.gov (United States)

    Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.

    2015-01-01

    Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID

  6. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Science.gov (United States)

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  7. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    CERN Document Server

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  8. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  9. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.; Freie Univ. Berlin

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2)=140 ns, Isup(π)=7/2 + isomer in 125 Xe. The g-factor is g=+0.264(10) and the quadrupole coupling constant e 2 Qq/h=122.1(6) MHz at 552 K. The lifetime of the Isup(π)=11/2 + state was measured to be tau=11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-pulse-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q=1.40(15) b yielding an electric field gradient (efg) eq=3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  10. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2) = 140 ns, Isup(π) = 7/2 + isomer in 125 Xe. The g-factor is g = +0.264(10) and the quadrupole coupling constant e 2 Qq/h = 122.1(6) MHz at 552 K. The lifetime of the Isup(π) = 11/2 + state was measured to be tau = 11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-plus-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q = 1.40(15) b yielding an electric field gradient (efg) eq = 3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  11. A Compact, Portable, Reduced-Cost, Gamma Ray Spectroscopic System for Nuclear Verification Final Report CRADA No. TSB-1551-98

    Energy Technology Data Exchange (ETDEWEB)

    Lavietes, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kalkhoran, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The overall goal of this project was to demonstrate a compact gamma-ray spectroscopic system with better energy resolution and lower costs than scintillator-based detector systems for uranium enrichment analysis applications.

  12. The quadrupole moments of Cd and Zn isotopes - an apology

    Science.gov (United States)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  13. Pulsed coherent spectrometer of nuclear magnetic and nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Karnachev, A.S.; Solov'ev, E.E.

    1996-01-01

    The spectrometer intended for studies on solid bodies was created on the basis of the X1-48 device for investigation of amplitude-frequency characteristics with the frequency range of 5-100 MHz, the receiver sensitivity by the signal-noise ratio at the outlet of 12 dB not worse than 0.5 μV and the feed-up capacity up to 80 W. The X1-48 minimal remodeling made it possible to use it in the spectrometer system as a signal feed-up source and measurer of the amplitude-frequency characteristic of the spectrometer receiver tract. 12 refs., 11 figs

  14. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  15. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    International Nuclear Information System (INIS)

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-01-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  16. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  17. Spectroscopic methods

    International Nuclear Information System (INIS)

    Ivanovich, M.; Murray, A.

    1992-01-01

    The principles involved in the interaction of nuclear radiation with matter are described, as are the principles behind methods of radiation detection. Different types of radiation detectors are described and methods of detection such as alpha, beta and gamma spectroscopy, neutron activation analysis are presented. Details are given of measurements of uranium-series disequilibria. (UK)

  18. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  19. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  20. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  1. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  2. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  3. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  4. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  5. Quadrupole oscillations as paradigm of the chaotic motion in nuclei

    International Nuclear Information System (INIS)

    Berezovoj, V.P.; Bolotin, Yu.L.; Gonchar, V.Yu.; Granovsky, M.Ya.

    2003-01-01

    A complete description of classical dynamics, generated by the Hamiltonian of quadrupole nuclear oscillations, is presented. Those peculiarities of quantum dynamics, which can be interpreted as quantum manifestations of classical stochasticity are identified. Semiclassical approximation to an energy spectrum is developed through quantization of the Birkhoff-Gustavson normal form. We show that the type of classical motion is correlated with the structure of the stationary wave functions. Correlations were found both in the coordinate space (the lattice of nodal curves and the distribution of the probability density) and in the Hilbert space associated with the integrable part of the Hamiltonian. Quadrupole oscillations of nuclei were used to investigate the shell structure destruction induced by the increase of nonintegrable perturbation, which models residual nucleon-nucleon interaction. The process of wave packet tunneling through potential barrier is considered for the case of finite motion. We demonstrate that the stringent correlation between the level quasi-crossing and the wave function delocalization, which leads to the resonant tunneling, takes place [ru

  6. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  7. Level spectra, electromagnetic moments and transition rates and spectroscopic factors for odd rhodium isotopes in the Coriolis coupling model

    International Nuclear Information System (INIS)

    Bredbacka, A.; Brenner, M.; Malik, F.B.; Aabo Akademi, Turku

    1989-01-01

    Properties of low-lying positive- and negative-parity states of 97,99,101,103,105,107,109 Rh at low excitation energies have been analyzed in terms of a Coriolis coupling model. The model can account for the general trend of the level schemes for states of both parties. In particular, the 9/2, 7/2, and 5/2 triplet near the ground state, the occurrence of multiple 13/2 and at least one 15/2 and 19/2 state of positive parity are reasonably reproduced by the model. Similarly, 1/2 ground-state spin followed by a (3/2, 5/2) doublet, and one or more 13/2 and 17/2 states of negative parity are adequately understood in terms of the model. The calculated electromagnetic dipole and quadrupole moments and magnetic dipole and electric quadrupole transition rates are in broad agreement with the observed ones. This is achieved without the use of any effective charge. The general trend of observed spectroscopic factors for pick-up reactions is in agreement with the calculated ones. The results are presented as a function of deformation. Because of the sparsity of data on many of these isotopes, no attempt has been made to find the best fit for each isotope individually. Since the model can reasonably reproduce the general trend of level schemes, electromagnetic properties and spectroscopic factors, one may conclude that the Coriolis coupling model provides a good description of the nuclear properties of these isotopes. (orig.)

  8. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  9. Collective Quadrupole Excitations of Transactinide Nuclei

    CERN Document Server

    Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J

    2003-01-01

    The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.

  10. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  11. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  12. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  13. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  14. Quadrupole to BPM offset determination in Indus-2

    International Nuclear Information System (INIS)

    Jena, Saroj; Ghodke, A.D.; Singh, G.

    2009-01-01

    A feasibility of finding the quadrupole to BPM offset using beam based alignment (BBA) technique in Indus-2 has been studied. The measurements of the offsets between BPM and quadrupoles could be performed by using quadratic fitting for the minima of the orbit response w. r. t. changes in the quadrupole strengths. These offsets will be integrated to the orbit data during closed orbit correction. There are 72 quadrupoles and 56 BPMs in Indus-2. However the assessment of Quad-BPM offsets is not feasible in some cases due to non-availability of BPM adjacent to quadrupole and also in some cases because of a large phase advance between quadrupole and nearby BPM. Here single corrector method is used to obtain these offsets and assumed the current of each quadrupole can be varied independently. A graphical user interface (GUI) is developed in MATLAB for the use of BBA in Indus-2. (author)

  15. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain

  16. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  17. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Fermilab; Brookhaven; LBL, Berkeley; Texas A-M

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  18. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  19. The LHC Main Quadrupoles during Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Payn, A; Rossi, L; Schellong, B; Schmidt, P; Simon, F; Schirm, K-M; Todesco, E

    2006-01-01

    By the end of August 2005 about 320 of the 400 main LHC quadrupole magnets have been fabricated and about 220 of them assembled into their cold masses, together with corrector magnets. About 130 of them have been cold tested in their cryostats and most of the quadrupoles exceeded their nominal excitation, i.e. 12,000 A, after no more than two training quenches. During this series fabrication, the quality of the magnets and cold masses was thoroughly monitored by means of warm magnetic field measurements, of strict geometrical checking, and of various electrical verifications. A number of modifications were introduced in order to improve the magnet fabrication, mainly correction of the coil geometry for achieving the specified field quality and measures for avoiding coil insulation problems. Further changes concern the electrical connectivity and insulation of instrumentation, and of the corrector magnets inside the cold masses. The contact resistances for the bus-bar connections to the quench protection diode...

  20. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  1. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  2. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  3. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  4. 15 T And Beyond - Dipoles and Quadrupoles

    International Nuclear Information System (INIS)

    Sabbi, GianLuca

    2008-01-01

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R and D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  5. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  6. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient supperconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  7. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  8. Radio frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  9. Excitation of giant monopole and quadrupole resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.

  10. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  11. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    International Nuclear Information System (INIS)

    Poleshchuk, O. K.; Branchadell, V.; Ritter, R. A.; Fateev, A. V.

    2008-01-01

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  12. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    Energy Technology Data Exchange (ETDEWEB)

    Poleshchuk, O. K., E-mail: poleshch@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation); Branchadell, V. [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Ritter, R. A.; Fateev, A. V. [Tomsk State Pedagogical University (Russian Federation)

    2008-01-15

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  13. NUCORE - A system for nuclear structure calculations with cluster-core models

    International Nuclear Information System (INIS)

    Heras, C.A.; Abecasis, S.M.

    1982-01-01

    Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)

  14. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    Science.gov (United States)

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  15. ITER perspective on fusion reactor diagnostics - A spectroscopic view

    DEFF Research Database (Denmark)

    De Bock, M. F. M.; Barnsley, R.; Bassan, M.

    2016-01-01

    challenges to the development of spectroscopic (but also other) diagnostics. This contribution presents an overview of recent achievements in 4 topical areas: First mirror protection and cleaning, Nuclear confinement, Radiation mitigation strategy for optical and electronic components and Calibration...

  16. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  17. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  18. The reorientation precession technique, REPREC, and the quadrupole moments of /sup 108/ /sup 110/Pd. [Sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, L; Fahlander, C; Edvardson, L O; Thun, J E; Falk, F; Ghumman, B S

    1975-04-01

    The orientation precession technique, REPREC, for measurements of quadrupole moments is described. The application of REPREC to the measurement of the static electric quadrupole moments of the first excited 2/sup +/-states in /sup 108/ /sup 110/Pd is presented. The possibility to measure the matrix product P/sub 4/ = M/sub 02/M/sub 22/,M/sub 02/M/sub 22/ is also discussed. Such measurements are presented for /sup 108/ /sup 110/Pd. The results of these measurements are P/sub 4/O for both /sup 108/Pd and /sup 110/Pd. For /sup 108/Pd the quadrupole moment of the first excited 2/sup +/-state was found to be -.66 +- .18 eb and for /sup 110/Pd -.72 +- .14 eb. Intrinsic nuclear properties for /sup 106 -110/Pd are derived using the sum rules suggested by Kumar.

  19. Reorientation precession measurements on /sup 108/ /sup 110/Pd and the quadrupole moments of their first 2/sup +/ states

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, L; Fahlander, C; Falk, F; Edvardson, L O; Thun, J E; Ghuman, B S [Uppsala Univ. (Sweden). Fysiska Institutionen; Skaali, B [Oslo Univ. (Norway). Fysisk Institutt

    1976-06-28

    The reorientation precession technique, REPREC, for measurements of quadrupole moments is described. The application of REPREC to the measurement of the static electric quadrupole moments of the first excited 2/sup +/ states in /sup 108/ /sup 110/Pd is presented. The possibility to measure the sign of the matrix product P/sub 4/ = M/sub 02/Msub(22')Msub(02')M/sub 22/ is also discussed. Such measurements are presented for /sup 108/ /sup 110/Pd. The results of these measurements are P/sub 4/ < 0 for both /sup 108/Pd and /sup 110/Pd. For /sup 108/Pd the quadrupole moment of the first excited 2/sup +/ state was found to be -0.66+-0.18e.b and for /sup 110/Pd, -0.72+-0.14e.b. Intrinsic nuclear properties for /sup 106 -110/Pd are derived using the sum rules suggested by Kumar.

  20. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  1. Phase-alternated composite π/2 pulses for solid state quadrupole echo NMR spectroscopy

    International Nuclear Information System (INIS)

    Ramamoorthy, A.; Narasimhan, P.T.

    1991-01-01

    Phase-alternated composite π/2 pulses have been constructed for spin I=1 to overcome quadrupole interaction effects in solid state nuclear magnetic resonance(NMR) spectroscopy. Magnus expansion approach is used to design these sequences in a manner similar to the NMR coherent averaging theory. It is inferred that the symmetric phase-alternated composite π/2 pulses reported here are quite successful in producing quadrupole echo free phase distortions. This effectiveness of the present composite pulses is due to the fact that most of them are of shorter durations as compared to the ones reported in literature. In this theoretical procedure, irreducible spherical tensor operator formalism is employed to simplify the complexity involved in the evaluation of Magnus expansion terms. It has been argued in this paper that composite π/2 pulse sequences for this purpose can also be derived from the broadband inversion π pulses which are designed to compensate electric field gradient(efg) inhomogeniety in spin I=1 nuclear quadrupole resonance(NQR) spectroscopy. (author). 28 refs

  2. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  3. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  4. Static quadrupole moment of the Kπ = 14+ isomer in 176W

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Bucurescu, D.; Brandolini, F.; Lenzi, S. M.; Pavan, P.; Rossi Alvarez, C.; Marginean, N.; Medina, N.H.; Ribas, R.V.; De Poli, M.; Napoli, D. R.; Podolyak, Zs.; Ur, C. A.

    2001-01-01

    the projectiles were stopped. The target has been heated at 464 K in a special oven. This temperature was chosen in order to ensure an EFG strength convenient for the observation of the quadrupole interaction pattern on time scale given by the isomeric lifetime. The gamma-rays were detected by Ge detectors of 25% efficiency placed at the angles 0 angle and 90 angle with respect to the beam direction. The 240, 351, 440, and 558 keV gamma-lines of the 176 W yrast band which collects practically all the isomeric decay branches have been analysed. The experimental modulation ratio is presented together with the least-squares fit. A quadrupole frequency ν Q =92(10) MHz has been determined, which corresponds, with the EFG calibration, to a spectroscopic quadrupole moment Q s =6.3(1.4) eb. Assuming the strong coupling scheme, a value of Q 0 7.7(1.8) eb is obtained for the intrinsic quadrupole moment of the 14 + isomer. This value fits very well into the systematics of the ground-state quadrupole moments of W nuclei what indicates that no shape polarization occurs in the multiquasiparticle structure of 176 W. (authors)

  5. NMR study of electric quadrupole interactions in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.; Guimaraes, A.P.

    1984-01-01

    Quadrupole oscillations have been observed with 59 Co pulsed NMR in the intermetallic compound GdCo 2 . From theses oscillations the nuclear electric quadrupoles interaction (EQI) has been studied as a function of temperature in the range 4K-312K. The value measured at 4K, ν sub(Q)=672 +-3 KHz, is the largest so far reported for the cobalt EQI in the RCo 2 intermetallics. The EQI decreases with increasing temperature, reaching 432 +- 10 KHz at 312K. The amplitude of the oscillations tends to decrease with temperature, being also dependent on the easy direction of magnetization of the compound. Thus, above 200K, as the direction of magnetization changes, large oscillations are again visible in the satellite line; the main line shows no oscillations in this range. The observed temperature dependence of the EQI is roughly linear, as found in other transition metal systems. (Author) [pt

  6. Electric quadrupole moments of neutron-rich nuclei {sup 32}Al and {sup 31}Al

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, D., E-mail: kameda@ribf.riken.jp; Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K.; Nagae, D.; Takemura, M.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Yoshimi, A.; Nagatomo, T.; Sugimoto, T. [RIKEN Nishina Center (Japan); Uchida, M.; Arai, T.; Takase, K.; Suda, S.; Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Murata, J.; Kawamura, H. [Rikkyo University, Department of Physics (Japan); Watanabe, H. [Australian National University, Department of Nuclear Physics (Australia); Kobayashi, Y.; Ishihara, M. [RIKEN Nishina Center (Japan)

    2007-11-15

    The electric quadrupole moments for the ground states of {sup 32}Al and {sup 31}Al have been measured by the {beta} ray-detected nuclear quadrupole resonance method. Spin-polarized {sup 32}Al and {sup 31}Al nuclei were obtained from the fragmentation of {sup 40}Ar projectiles at E/A = 95 MeV/nucleon, and were implanted in a single crystal {alpha}-Al{sub 2}O{sub 3} stopper. The measured Q moment of {sup 32}Al, |Q({sup 32}Al)| = 24(2) mb, is in good agreement with a conventional shell-model calculation with a full sd model space and empirical effective charges, while that of {sup 31}Al is considerably smaller than the sd calculations.

  7. What can nuclear physics learn from nuclear moments

    International Nuclear Information System (INIS)

    Faessler, A.

    1981-01-01

    The information which can be obtained from static electric quadrupole and magnetic moments is discussed for some specific examples. A new highly controversial measurement of the g-factor of the 4 + state in 20 Ne is used to show the importance of magnetic moments on the understanding of nuclear structure. If the g-factor of the 4 + state in 20 Ne would indeed be zero which is very unlikely it would change our whole understanding of the sd-shell nuclei. In the second chapter we discuss a possible test of the nature of the anomaly of the moment of inertia in the rare earth nuclei. If it is an alignment of two i(13/2) neutrons along the total angular momentum the g-factor should drop to a very small value for angular momenta near backbending at the beginning of the rare earth region. In section 3 we discuss the change of the sign of the spectroscopic quadrupole moments for the 13/ 2 + isomeric state in the Hg isotopes as an example for a change from strong coupling to decoupling if one fills up the i(13/2) neutron shell. In section 4 we discuss the nature of the 8 + , 10 + and 12 + states in the even mass Hg and Pt isotopes which show an irregular energy spacing. Detailed theoretical calculations indicate that in the Hg isotopes up to mass number A = 196 the 8 + and 10 + states are formed by the partial and full alignment of two h(11/2) proton hole states, while in 198,200Hg the 8 + , 10 + and 12 + states are formed by partial and full alignment of two i(13/2) neutron holes. A recent argument using the energy position of the two quasi particle states claims the those states should be in all Hg isotopes i(13/2) quasi particle states. A measurement of the g-factors of those states could clear up their nature. (orig.)

  8. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  9. Radiative Decay Rates for Electric Dipole, Magnetic Dipole and Electric Quadrupole Transitions in Triply Ionized Thulium (Tm IV

    Directory of Open Access Journals (Sweden)

    Saturnin Enzonga Yoca

    2017-09-01

    Full Text Available A new set of radiative decay parameters (oscillator strengths, transition probabilities for spectral lines in triply ionized thulium (Tm IV has been obtained within the framework of the pseudo-relativistic Hartree-Fock (HFR approach. The effects of configuration interaction and core-polarization have been investigated in detail and the quality of the results has been assessed through a comparison between different HFR physical models. The spectroscopic data listed in the present paper cover electric dipole as well as magnetic dipole and electric quadrupole transitions in a wide range of wavelengths from extreme ultraviolet to near infrared.

  10. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1976-01-01

    A brief administrative review is given of work in the following areas: investigations of the chemical effects accompanying muon capture in atoms and molecules, quadrupole interaction in metal and semimetal systems using perturbed gamma-ray angular correlation, and nuclear structure research using nuclear reaction spectroscopy. Detailed research reports were published in appropriate places; a publication list is included. 2 figures

  11. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  12. LHC interaction region quadrupole cryostat design

    International Nuclear Information System (INIS)

    Nicol, T.H.; Darve, Ch.; Huang, Y.; Page, T.M.

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems

  13. Fe/sup 57/ polarimetry based on quadrupole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gonser, U; Sakai, H; Keune, W [Universitaet des Saarlandes, Saarbruecken (F.R. Germany). Fachbereich Angewandte Physik

    1976-01-01

    A quadrupole Fe/sup 57/ polarimeter consisting of single crystals of LiNbO/sub 3/:Co/sup 57/ as source (polarizer) and of FeCO/sub 3/ (siderite) as absorber (analyzer) is described. The quadrupole interactions of the two materials are nearly equal in magnitude but opposite in sign and in addition the asymmetry parameter eta equal approximately 0.

  14. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  15. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  16. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  17. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  18. Nuclear orientation and nuclear structure

    International Nuclear Information System (INIS)

    Krane, K.S.

    1988-01-01

    The present generation of on-line nuclear orientation facilities promises to revolutionize the gathering of nuclear structure information, especially for the hitherto poorly known and understood nuclei far from stability. Following a brief review of the technological developments that have facilitated these experiments, the nuclear spectroscopic information that can be obtained is summarized. Applications to understanding nuclear structure are reviewed, and challenges for future studies are discussed. (orig.)

  19. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  20. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    Science.gov (United States)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  1. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  2. Isabelle dipole and quadrupole coil configurations

    International Nuclear Information System (INIS)

    Dahl, P.F.; Hahn, H.

    1980-01-01

    The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration

  3. An improved integrally formed radio frequency quadrupole

    Science.gov (United States)

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  4. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  5. RF quadrupole beam dynamics design studies

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stokes, R.H.; Wangler, T.P.

    1979-01-01

    The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz

  6. Commissioning results of the HZB quadrupole resonator

    CERN Document Server

    Kleindienst, Raphael; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    Recent cavity results with niobium have demonstrated the necessity of a good understanding of both the BCS and residual resistance. For a complete picture and comparison with theory, it is essential that one can measure the RF properties as a function of field, temperature, frequency and ambient magnetic field. Standard cavity measurements are limited in their ability to change all parameters freely and in a controlled manner. On the other hand, most sample measurement setups operate at fairly high frequency, where the surface resistance is always BCS dominated. The quadrupole resonator, originally developed at CERN, is ideally suited for characterization of samples at typical cavity RF frequencies. We report on a modified version of the QPR with improved RF figures of merit for high-field operation. Experimental challenges in the commissioning run and alternate designs for simpler sample changes are shown alongside measurement results of a large grain niobium sample.

  7. TOUTATIS: A radio frequency quadrupole code

    Directory of Open Access Journals (Sweden)

    Romuald Duperrier

    2000-12-01

    Full Text Available A cw high power linear accelerator can only work with very low particle losses and structure activation. At low energy, the radio frequency quadrupole (RFQ is an accelerator element that is very sensitive to losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals of cross-checking results and obtaining more reliable dynamics. This paper relates the different numerical methods used in the code. It is time based, using multigrids methods and adaptive mesh for a fine description of the forces without being time consuming. The field is calculated through a Poisson solver and the vanes are fully described, allowing it to properly simulate the coupling gaps and the RFQs extremities. Theoretical and experimental tests are also described and show a good agreement between simulations and reference cases.

  8. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    Science.gov (United States)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  9. Characterization of the ELIMED prototype permanent magnet quadrupole system

    International Nuclear Information System (INIS)

    Russo, A.D.; Schillaci, F.; Romano, F.; Amato, A.; Amico, A.G.; Calanna, A.; Cirrone, G.A.P.; Costa, M.; Cuttone, G.; Amato, C.; Luca, G. De; Gallo, G.; Grmek, A.; Rosa, G. La; Leanza, R.; Pommarel, L.; Flacco, F.A.; Malka, V.; Giove, D.; Maggiore, M.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  10. Characterization of the ELIMED prototype permanent magnet quadrupole system

    Science.gov (United States)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  11. A united phenomenological description of quadrupole excitations in even-even nuclei

    International Nuclear Information System (INIS)

    Lipas, P.O.; Haapakoski, P.; Honkaranta, T.

    1975-05-01

    A phenomenological model is developed for the collective quadrupole properties of all even-even nuclei. Rotational, vibrational, and transitional nuclei are included in the model on an equal footing. A Bohr-type intrinsic Hamiltonian for harmonic quadrupole vibrations about an axially deformed shape is solved exactly. States of good angular momentum are projected out of the intrinsic states, and they are made orthogonal by a Schmidt scheme. The angular-momentum and phonon-number composition of the states is analyzed at various stages; states with K=1 are found spurious. Excitation energies for the ground, β and γ bands are calculated as expectation values of a radically simplified nuclear Hamiltonian in our projected and orthogonalized states. With increasing deformation the calculated energies evolve smoothly from the evenly spaced phonon spectrum to the Bohr-Mottelson rotational-vibrational spectrum according to the scheme of Sheline and Sakai. The basic model contains only two parameters (deformation d and energy scale) to fix the entire quadrupole spectrum of a nucleus. The results are given in the form of graphs suitable for immediate application; numerical results are readily produced by our computer code. The ground bands are fitted comparably to the VMI model, while the β and γ bands are reproduced qualitatively. The nuclei 152 Sm, 152 Gd, and 114 Cd are used as test cases. Quadrupole moments and E2 transition rates are also calculated. Intra-ground-band transition ratios and branching ratios from the β and γ bands are given in terms of the single parameter d. The results are applied to 152 Sm, with fair success. Finally the model to include two more parameters (anisotropy) is extended. The improvement over the basic model is modest in view of added parameters and computational effort. (author)

  12. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  13. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  14. Spectroscopic and first-principles calculation studies of the chemical forms of palladium ion in nitric acid solution for development of disposal of high-level radioactive nuclear wastes

    Science.gov (United States)

    Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun

    2018-04-01

    We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.

  15. The assessment of the long-term evolution of the spent nuclear fuel matrix by kinetic, thermodynamic and spectroscopic studies of uranium minerals

    International Nuclear Information System (INIS)

    Bruno, J.; Casas, I.; Cera, E.; Ewing, R.C.; Finch, R.J.

    1995-01-01

    The long term behavior of spent nuclear fuel is discussed in the light of recent thermodynamic and kinetic data on mineralogical analogues related to the key phases in the oxidative alteration of uraninite. The implications for the safety assessment of a repository of the established oxidative alteration sequence of the spent fuel matrix are illustrated with Pagoda calculations. The application to the kinetic and thermodynamic data to source term calculations indicates that the appearance and duration of the U(VI) oxyhydroxide transient is critical for the stability of the fuel matrix

  16. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  17. Maximum entropy decomposition of quadrupole mass spectra

    International Nuclear Information System (INIS)

    Toussaint, U. von; Dose, V.; Golan, A.

    2004-01-01

    We present an information-theoretic method called generalized maximum entropy (GME) for decomposing mass spectra of gas mixtures from noisy measurements. In this GME approach to the noisy, underdetermined inverse problem, the joint entropies of concentration, cracking, and noise probabilities are maximized subject to the measured data. This provides a robust estimation for the unknown cracking patterns and the concentrations of the contributing molecules. The method is applied to mass spectroscopic data of hydrocarbons, and the estimates are compared with those received from a Bayesian approach. We show that the GME method is efficient and is computationally fast

  18. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  19. Beam-based alignment of C-shaped quadrupole magnets

    International Nuclear Information System (INIS)

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm

  20. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  1. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  2. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  3. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    Science.gov (United States)

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  4. Spectroscopic surveys of LAMOST

    International Nuclear Information System (INIS)

    Zhao Yongheng

    2015-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a new type of reflecting Schmidt telescope, has been designed and produced in China. It marks a breakthrough for large scale spectroscopic survey observation in that both large aperture and wide field of view have been achieved. LAMOST has the highest spectrum acquisition rate, and from October 2011 to June 2014 it has obtained 4.13 million spectra of celestial objects, of which 3.78 million are spectra of stars, with the stellar parameters of 2.20 million stars included. (author)

  5. Nuclear chemistry research and spectroscopy with radioactive sources. Twentieth annual progress report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Fink, R.W.

    1984-01-01

    Research under this continuing DOE contract centers on radioactive decay studies of nuclei far from stability produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). These investigations encompass three aspects of nuclear structure research: nuclear spectroscopic measurements involving detailed γγt, γe - t, and Xγt three-parameter coincidence spectrometry; on-line laser hyperfine structure (hfs) and isotope shift spectroscopy for determining quadrupole moments, nuclear spins, and mean nuclear charge radii; and computer calculations of nuclear model predictions for comparison with the experimental level schemes. The focus of this research program is on odd-mass nuclei in which the odd nucleon probes the core, making possible observation of such phenomena as the onset of abrupt shape changes, the occurrence of shape coexistence, and shell-model intruder states. These phenomena are critical tests of concepts fundamental to an understanding of low-energy nuclear structure, such as nuclear deformations, shell models, collective models, and particle-core couplings

  6. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  7. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  8. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  9. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  10. Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO {sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B., E-mail: b.klobes@fz-juelich.de [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Arinicheva, Y., E-mail: y.arinicheva@fz-juelich.de; Neumeier, S., E-mail: s.neumeier@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Simon, R. E., E-mail: r.simon@fz-juelich.de; Jafari, A., E-mail: a.jafari@fz-juelich.de [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Bosbach, D., E-mail: d.bosbach@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Hermann, R. P., E-mail: hermannrp@ornl.gov [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany)

    2016-12-15

    Hyperfine interactions in europium orthophosphate EuPO{sub 4} were investigated using {sup 151}Eu Mössbauer spectroscopy from 6 to 300 K. The value of the quadrupole splitting and the asymmetry parameter were refined and further substantiated by nuclear forward scattering data obtained at room temperature. The temperature dependence of the relative absorption was modeled with an Eu specific Debye temperature of 221(1) K. Eu partial lattice dynamics were probed by means of nuclear inelastic scattering and the mean force constant, the Lamb-Mössbauer factor, the internal energy, the vibrational entropy, the average phonon group velocity were calculated using the extracted density of phonon states. In general, Eu specific vibrations are characterized by rather small phonon energies and contribute strongly to the total entropy of the system. Although there is no classical Debye like behavior at low vibrational energies, the average phonon group velocity can be reasonably approximated using a linear fit.

  11. Radiation and penetration matrix elements for magnetic quadrupole transitions between Nilsson states in odd nuclei

    International Nuclear Information System (INIS)

    Feresin, A.P.; Guseva, I.S.

    1984-01-01

    Single-particle matrix elements for magnetic quadrupole gamma radiation in odd deformed nuclei, calculated with the aid of Nilsson-potential wave functions, are presented. Also given are the internal conversion penetration matrix elements, calculated in the same manner. The penetration matrix elements are needed to estimate the nuclear penetration parameter, which determines the deviation of experimental internal conversion coefficients from their standard values given in tables. Matrix elements are given for transitions between all pairs of Nilsson single-particle states with ΔN = 1 and ΔK = 0, 1, and 2 for the nuclear shells with 4< or =N< or =7 and for the two deformation values epsilon = 0.2 and 0.3

  12. Theoretical investigation of flute modes in a magnetic quadrupole

    International Nuclear Information System (INIS)

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L 0 for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described

  13. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    International Nuclear Information System (INIS)

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size

  14. Variable-field permanent-magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1994-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use in the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum of 4.3 T by a 90 degree rotation of the outer ring of iron and magnet material

  15. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  16. Mechanical Design of a Second Generation LHC IR Quadrupole

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2003-01-01

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS

  17. Development of LHC-IR model quadrupoles in the US

    CERN Document Server

    Sabbi, G

    2007-01-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 1035 cm-2 s-1 at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb$_{3}$Sn in order to operate at high field and with sufficient temperature margin. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper reports on the development od model quadrupoles and outlines the long-term goals of the program.

  18. Variable-field permanent magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90 degrees rotation of the outer ring of iron and magnet material

  19. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  20. High and ulta-high gradient quadrupole magnets

    International Nuclear Information System (INIS)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%

  1. Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles

    Directory of Open Access Journals (Sweden)

    S. Becker

    2009-10-01

    Full Text Available The application of quadrupole devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to 500  T m^{-1} at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the Mainz Microtron MAMI.

  2. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  3. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    Science.gov (United States)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  4. Quadrupole photoionization of endohedral Xe-C60

    International Nuclear Information System (INIS)

    Govil, Karan; Deshmukh, P C

    2009-01-01

    The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.

  5. Calculation of the quadrupole-lense fringing field

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1978-01-01

    With the aim of decreasing the scattering field effect at electrode edge or quadrupole lens poles with conformal transformations the scattering fields of electric quadrupole lens, two-electrode lens with the electrodes in a hyperbola form, as well as magnetic lens with hyperbolic poles are calculated. For the two-electrode system with kappa=0.1 (kappa - is coefficient, characterizing the rate of field intensity change in the lens) field distortion equals 1.8%. The comparison of experimental data with the calculation data has shown that with a rather high accuracy the scattering field effect in electric and magnetic lenses with hyperbolic poles may be taken into account

  6. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    International Nuclear Information System (INIS)

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  7. Precision electron-gamma spectroscopic studies in 111Cd

    International Nuclear Information System (INIS)

    Sai Vignesh, T.; Chhetri, Premaditya; Vijay Sai, K.; Gowrishankar, R.; Venkataramaniah, K.; Deepa, S.; Rao, Dwarakarani; Kailas, S.

    2011-01-01

    The energy levels of 111 Cd has formerly been considered in terms of the states available to the 63rd neutron which is in the 3s 1/2 sub-shell. Kisslinger and Sorensen have used the pairing plus-quadrupole model to predict the energy levels. In the Coulomb excitation experiment only five levels have been excited. The decay of 111 Ag has been investigated only by few workers, Burmistov and Didorenko, Shevlev et al and Goswamy et al. The previous data on level energies, gamma energies and intensities differ considerably even for intense gamma transitions. There has been no detailed study of the internal conversion spectrum. There have been no multipolarity assignments for some of the transitions. An extensive experimental investigation of the gamma and conversion electron spectra has been undertaken to provide precision spectroscopic information on the low lying levels of 111 Cd from the beta decay of 111 Ag

  8. Quadrupole-octupole coupled states in 112Cd populated in the 111Cd(d ⃗,p ) reaction

    Science.gov (United States)

    Jamieson, D. S.; Garrett, P. E.; Bildstein, V.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2014-11-01

    States in 112Cd have been studied with the 111Cd(d ⃗,p ) 12Cd reaction using 22 MeV polarized deuterons. The protons from the reaction were momentum analyzed with a Q3D magnetic spectrograph, and spectra have been recorded with a position-sensitive detector located on the focal plane. Angular distributions of cross sections and analyzing powers have been constructed for the low-lying negative-parity states observed, including the 3-,4-, and 5- members of the previously assigned quadrupole-octupole quintuplet. The 5- member at 2373-keV possess the second largest spectroscopic strength observed, and is reassigned as having the s1/2⊗h11/2 two-quasineutron configuration as the dominate component of its wave function.

  9. Portable, remotely operated, computer-controlled, quadrupole mass spectrometer for field use

    International Nuclear Information System (INIS)

    Friesen, R.D.; Newton, J.C.; Smith, C.F.

    1982-04-01

    A portable, remote-controlled mass spectrometer was required at the Nevada Test Site to analyze prompt post-event gas from the nuclear cavity in support of the underground testing program. A Balzers QMG-511 quadrupole was chosen for its ability to be interfaced to a DEC LSI-11 computer and to withstand the ground movement caused by this field environment. The inlet system valves, the pumps, the pressure and temperature transducers, and the quadrupole mass spectrometer are controlled by a read-only-memory-based DEC LSI-11/2 with a high-speed microwave link to the control point which is typically 30 miles away. The computer at the control point is a DEC LSI-11/23 running the RSX-11 operating system. The instrument was automated as much as possible because the system is run by inexperienced operators at times. The mass spectrometer has been used on an initial field event with excellent performance. The gas analysis system is described, including automation by a novel computer control method which reduces operator errors and allows dynamic access to the system parameters

  10. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    Directory of Open Access Journals (Sweden)

    M. Spieker

    2016-01-01

    Full Text Available We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR in Sn isotopes, where complementary probes were used. In this study, (α,α′γ and (γ,γ′ experiments were performed on 124Sn. In both reactions, Jπ=2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ,γ′ experiment, while the (α,α′γ experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM. The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR. This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  11. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  12. ISR Superconducting Quadrupole Prototype:preparing the first test

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The photo shows the first prototype quadrupole (still with an adjustable stainless steel shrinking cylinder) being lifted to be inserted in a vertical cryostat for testing. It attained the design field gradient without any quench.The persons are Pierre Rey and Michel Bouvier. See also 7702690X.

  13. Prototype Superconducting Quadrupole for the ISR low-beta insertion

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The picture shows the cold mass of the Quadrupole with its outer aluminium alloy rings pre-compressing the superconducting coils via the magnetic yoke split in 4 parts.The end of the inner vacuum chamber,supporting the 6-pole correction windings, can also be seen as well as the electrical connections. See also photos 7702690X, 7702307.

  14. Quadrupole interactions of Au in Be and lattice location studies

    International Nuclear Information System (INIS)

    Perscheid, B.; Gayer, H.W.; Krien, K.; Freitag, K.

    1978-01-01

    The Moessbauer nucleus 197 Au is used as probe for quadrupole interaction (QI) studies in Be metal. The 77 keV Moessbauer level is populated by the β - decay of 197 Pt and the EC decay of 197 Hg. This fact enabled samples prepared in different ways to be studied. (Auth.)

  15. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  16. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  17. Correction of chromatic abberation in electrostatic lense systems containing quadrupoles

    International Nuclear Information System (INIS)

    Baranova, L.A.; Ul'yanova, N.S.; Yavor, S.Ya.

    1991-01-01

    Possibility of chromatic abberation correction in immersion systems consisting of axysimmetric and quadrupole lenses is shown. Concrete examples are presented. A number of new directions in science and technique, using ion beams are intensively developed presently. When using them accute necessity arises in chromatic abberation correction, while large-scale energy scattering is observed as a rule in such cases

  18. Quadrupole formula for Kaluza-Klein modes in the braneworld

    International Nuclear Information System (INIS)

    Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko

    2005-01-01

    The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources

  19. Optimization of an electrostatic quadrupole doublet focusing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Oday A., E-mail: oah@sc.nahrainuniv.edu.iq [Department of Physics, College of Science, Al-Nahrain University, Baghdad (Iraq); Sise, Omer [Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta (Turkey)

    2017-05-15

    Highlights: • The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. • The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. • The imaging properties of are very sensitive to the lunching angle of the electron-beam. - Abstract: The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. The optical properties as: Magnifications, spot sizes in the image plane and aberration figures were discussed. The results showed that the focusing of the lens was strong in the xy-plane in comparison with the focusing in the xz-plane. The distortion of the image was greater when the image position will be close to the lens in comparison with object position. Also, the imaging properties were very sensitive to the lunching angle of the electron-beam.

  20. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  1. BPM Offset Determination by Sinusoidal Quadrupole K-modulation

    CERN Document Server

    Baer, T; Wenninger, J

    2011-01-01

    To ensure an adequate orbit steering that maximizes the machine aperture, a good knowledge of the BPM measurement offsets is crucial. During this MD, a sinusoidal k-modulation of individually powered quadrupoles was performed to determine the offsets of the nearby BPMs. An accuracy of 10µm for the determination of the absolute beam position is reached.

  2. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  3. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    Science.gov (United States)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  4. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  5. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  6. Nuclear

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  7. Static quadrupole moments of first 2+ states in the 2s1d shell: a review of experiment and theory

    International Nuclear Information System (INIS)

    Spear, R.H.

    1981-01-01

    Available experimental information on the static electric quadrupole moments Q 2 + of the 2 + first excited states of even-mass nuclei in the 2s-1d shell is tabulated and critically reviewed, and adopted values are presented. The results reveal a well defined pattern for the variation of Q 2 + through the shell. Predictions of Q 2 + made from various nuclear models are tabulated and compared with experiment. For each nucleus the quantity and quality of the existing data for Q 2 + , together with the current theoretical significance of the result, are used as criteria to determine whether new experimental work is desirable

  8. Performance of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C; Kangas, Kenneth; Spencer, Cherrill M; Volk, James T

    2005-01-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic centerline and field quality made using an air bearing rotating coil system. The magnetic centerline stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic centerline. Calibration procedures as well as centerline measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  9. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  10. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  11. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented

  12. Development and test of LARP technological quadrupole (TQC) magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  13. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  14. Development and test of LARP technological quadrupole (TQC) magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2006-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented

  15. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    International Nuclear Information System (INIS)

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-01-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence

  16. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  17. Quadrupole deflector of the double Penning trap system MLLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Gartzke, Eva; Kolhinen, Veli; Habs, Dietrich; Neumayr, Juergen; Schuermann, Christian; Szerypo, Jerzy; Thirolf, Peter [Fakultaet fuer Physik, LMU Muenchen, Garching (Germany); Maier-Leibnitz Laboratory, Garching (Germany)

    2009-07-01

    A cylindrical double Penning trap has been installed and successfully commissioned at the Maier-Leibnitz Laboratory in Garching. This trap system has been designed to isobarically purify low energy ion beams and perform highly accurate mass measurements. An electrostatic quadrupole deflector has been designed and installed at the injection line of the Penning trap system enabling a simultaneous use of an online ion beam with reference ions from an offline ion source. Alternatively two offline sources can be used concurrently e.g. an {alpha} recoil sources providing heavy radioactive species (e.g {sup 240}U) together with reference mass ions (which in the future will be e.g. a carbon cluster ion source). The bender has been designed for beam energies up to 1 keV with q/A ratios 1/1-1/250. This presentation shows the technical design and the operating parameters of the quadrupole beam bender and its implementation at the MLLTRAP system.

  18. Optimization on the end-shaping of a quadrupole magnet

    International Nuclear Information System (INIS)

    Kumada, M.; Sasaki, H.; Someya, H.; Sakai, I.

    1983-01-01

    In order to achieve the widest possible aperture of accelerator magnets, end-shaping is a well known method. To do this one has to deal with the three-dimensional fringe field inherent to each geometry. This may be done experimentally by a cut-and-try method or theoretically by a three-dimensional computer code. In any case, considerable time has to be consumed if one wants to get a conclusion which is as general as possible and which is useful in designing magnets. Fringe field optimization on the end-shaping of the conventional quadrupole magnet was done by a cut-and-try method, where a very simple geometry of the end pole was chosen to get a general conclusion. The 'cut-out ratio diagram' given as a conclusion is useful to designers of the conventional quadrupole magnet. (orig.)

  19. The development of compact magnetic quadrupoles for ILSE

    International Nuclear Information System (INIS)

    Faltens, A.; Mukherjee, S.; Brady, V.

    1990-08-01

    Magnetic focussing is selected for the 4 MeV to 10 MeV section of the Induction Linac Systems Experiments (ILSE) to study the transport of magnetically focussed spacecharge-dominated beams and to explore the engineering problems in accurate positioning of the magnetic fields in an array of quadrupoles. A prototype development program for such magnets is currently under way. A compact design was selected to decrease the overall accelerator diameter and its cost. The design evolved from a cosine 2θ current distribution, corrected for end effects. Current-dominated magnets are used in a pulsed mode to allow higher current densities compared to standard dc water-cooled conductors. The POISSON and MAFCO codes were used in the design of the magnets. The construction of the quadrupoles is aimed at achieving location accuracy of the magnetic center to within 1 mil (2.54 x 10 -5 m) of the mechanical center

  20. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  1. Quadrupole moments of wobbling excitations in 163Lu

    International Nuclear Information System (INIS)

    Goergen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Hagemann, G.B.; Sletten, G.; Huebel, H.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of 163 Lu have been measured with the Gammasphere spectrometer using the Doppler-shift attenuation method. The bands have been interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments are extracted for the zero-phonon yrast band and, for the first time, for the one-phonon wobbling band. The very similar results found for the two bands suggest a similar intrinsic structure and support the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the ratio of the interband to the in-band transition strengths remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared

  2. A high gradient quadrupole magnet for the SSC

    International Nuclear Information System (INIS)

    Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.

    1987-01-01

    A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil I.D. is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped space in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coil using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented. The quadrupole magnets proposed for the main SSC rings have a design gradient of 230 T/m. For one proposed 60 degree lattice cell, each 3-m long quad is separated by five 17-m long dipole magnets

  3. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.

  4. Quadrupole deformation and clusterization in nuclei

    International Nuclear Information System (INIS)

    Cseh, J.; Algora, A.; Darai, J.; Hess, P.O.

    2004-01-01

    The investigation of exotic nuclear shapes, e.g. superdeformed and hyperdeformed states (in which the atomic nucleus has a spheroidal shape with ratios of main axes of 2:1 and 3:1, respectively) is one of the most interesting topics in recent nuclear structure studies. The appearance of exotic cluster configurations (or exotic cluster decay) is another issue of utmost interest. The combination of these two problems brings us to an exciting question: what is the interrelation of these two phenomena, i.e. what are the possible clusterizations of nuclear states with exotic shape. Recently we have addressed this question from the angle of both the binary and the ternary clusterizations. We apply methods which can be generalised for more complicated multicluster-configurations in a straightforward way. The basic concept of this work is that when we describe the composition of an atomic nucleus from smaller nuclei (clusters) then we take into account both of the two complementary natural laws, which govern this kind of phenomenon: the energy-minimum principle and the Pauli-exclusion principle. The crucial role of these two rules are obvious: energetically unfavoured systems are not likely to appear, and when the building blocks are fermions, like the nucleons of the atomic nuclei, then they follow the exclusion principle. However, the exact role, or relative importance of these two aspects of clusterization among di rent circumstances are not completely understood yet; the present work is meant to be a contribution to this task. Much attention has been paid to the energetic preference of various cluster-configurations of a nucleus. The methods applied along this line are partly or completely empirical ones, using information of the experimental data. Furthermore, most of these works concentrate on the simplest, i.e. binary clusterizations, especially, when the energetic calculation involves (in addition to the experimental binding energies) intercluster potentials, like

  5. Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    CERN Document Server

    Shepherd, Ben; Collomb, Norbert

    2012-01-01

    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory.

  6. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  7. Reorientation precession measurements of quadrupole moments in 103Rh

    International Nuclear Information System (INIS)

    Gelberg, A.; Herskind, B.; Kalish, R.; Neiman, M.

    1976-01-01

    The quadrupole moments of the 3/2 - and 5/2 - states in 103 Rh have been determined by measuring the precession of the gamma-ray angular distribution following Coulomb excitation; 16 O and 32 S beams have been used. The structure of the negative-parity states in 103 Rh is found to be in agreement with the model of Arima and Iachello. (orig.) [de

  8. Cooperstock's counterexample to the gravitational-radiation quadrupole formula

    International Nuclear Information System (INIS)

    Walker, M.

    1986-01-01

    Cooperstock has recently modified the axially symmetric gravitational two-body problem previously analyzed by himself, Lim, and Hobill by introducing a new assumption, that ''The system undergoes a smooth transition from the static state to free-fall and the motion. . .consists of the two bodies accelerating towards each other while undergoing slow tidal deformation.'' This assumption is inconsistent with his solution of the field equations. The quadrupole formula correctly describes the radiation emitted

  9. Emittance growth from rotated quadrupoles in heavy ion accelerators

    International Nuclear Information System (INIS)

    Barnard, J.J.

    1995-01-01

    We derive a set of moment equations which incorporates linear quadrupolar focusing and space-charge defocusing, in the presence of rotational misalignments of the quadrupoles about the direction of beam propagation. Although the usual beam emittance measured relative to fixed transverse x and y coordinate axes is not constant, a conserved emittance-like quantity has been found. Implications for alignment tolerances in accelerators for heavy-ion inertial fusion are discussed

  10. Behaviour of quadrupole mass spectrometer towards noble gases

    International Nuclear Information System (INIS)

    Hasibullah

    1980-01-01

    This paper describes a quadrupole mass spectrometric set-up for noble gas analysis with its potential application to material accountancy at the input accountability tank of a reprocessing facility. Linear dependence of ion source pressure on the inlet pressure was considered to be practicable criterion for the functionality of the instrument. Short term and long term sensitivity variations have also been discussed. No memory effect was observed under the experimental conditions. (author)

  11. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS

    International Nuclear Information System (INIS)

    CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.

    2004-01-01

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model

  12. Short quadrupole, first at the SC, then at LEAR

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Quadrupoles of this type were built for the beam lines of the 600 MeV Synchro-Cylclotron. Surplus ones were installed in the LEAR injection line. The particularity of these quads is that they are very short and that a special design, resembling the "Lambertson magnet", limits and linearizes their stray field. This was achieved by the iron between the poles extending beyond the poles.

  13. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  14. Longitudinal capture in the radio-frequency-quadrupole structure

    International Nuclear Information System (INIS)

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described

  15. Electrostatic quadrupole array for focusing parallel beams of charged particles

    International Nuclear Information System (INIS)

    Brodowski, J.

    1982-01-01

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators

  16. Design and Measurement of the NSLS II Quadrupole Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  17. Magnetic performance of new Fermilab high gradient quadrupoles

    International Nuclear Information System (INIS)

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2θ coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs

  18. Measurement of the transfer function of the main SPS Quadrupoles

    CERN Document Server

    Dinius, A; Semanaz, P; CERN. Geneva. SPS and LEP Division

    1998-01-01

    During two short MD's we have measured the transfer function (amplitude and phase) of the main quadrupole string QD. By the word string we mean the global effect of power supplies, magnets and the eddy current effects of the vacuum chamber. This paper presents the measurement procedure and the results, which are needed for the design of a real-time feedback system for the betatron tunes ( Qloop).

  19. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  20. Radio-frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  1. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Hart, T. L. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.

  2. Design of the PEP-II Interaction Region Septum Quadrupole

    Science.gov (United States)

    Osborn, J.; Tanabe, J.; Yee, D.; Younger, F.

    1997-05-01

    The PEP-II QF2 magnet is one of the final focus quadrupoles for the Low-Energy Ring (LER) and utilizes a septum aperture to accommodate the adjacent High-Energy Ring (HER) beamline. The LER lattice design specification calls for an extremely high field quality for this magnet. A conventional water-cooled copper coil and laminated steel core design was selected to allow adjustment in the excitation. The close proximity between the LER and HER beamlines and the required integrated quadrupole strength result in a moderately high current density septum design. The QF2 magnets are imbedded in a confined region at each end of the BaBar detector, thus requiring a small magnet core cross section. Pole face windings are included in the QF2 design to buck the skew octupole term induced by the solenoidal fringe field that leaks out of the detector. Back-leg windings are included to buck a small dipole component induced by the lack of perfect quadrupole symmetry in this septum design. 2D pole contour optimization and 3D end chamfers are used to minimize harmonic errors; a separate permanent-magnet Harmonic Corrector Ring compensates for remaining field errors. The design methods and approach, 2D and 3D analyses, and the resulting expected magnet performance are described in this paper.

  3. Quadrupole magnets for IR-FEL at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  4. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  5. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  6. Preparations for an optical access to the lowest nuclear excitation in {sup 229}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The isomeric lowest excited nuclear level of {sup 229}Th has been indirectly measured to be 7.6±0.5 eV (163±11 nm). This low transition energy, compared to energies typically involved in nuclear processes, would allow for the application of laser-spectroscopic methods. Also considering the isomeric lifetime of the excited state (estimated to be 10{sup 3} to 10{sup 4} s), which leads to an extremely sharp linewidth of Δω/ω ∝ 10{sup -20}, the isomer becomes a strong candidate for a nuclear-based frequency standard. In order to directly detect the isomeric ground-state decay and improve the accuracy of its energy as a prerequisite for an all-optical control, {sup 229m}Th is populated via a 2% decay branch in the α decay of {sup 233}U. The Thorium ions are extracted and cooled with the help of a buffer-gas stopping cell and an RFQ-cooler. In order to suppress accompanying α decay chain products other than {sup 229}Th, a quadrupole mass spectrometer (QMS) is used. Following the QMS, the Thorium isomeric decay is expected to be detectable. Internal conversion as well as photonic decay is probed via different detection techniques. Latest results are presented.

  7. Spectroscopic Factors from the Single Neutron Transfer Reaction 111Cd(d,p)112Cd

    Science.gov (United States)

    Jamieson, D. S.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Svensson, C. E.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2013-03-01

    The cadmium isotopes have been cited as excellent examples of vibrational nuclei for decades, with multi-phonon quadrupole, quadrupole-octupole, and mixed-symmetry states proposed. From a variety of experimental studies, a large amount of spectroscopic data has been obtained, recently focused on γ-ray studies. In the present work, the single-particle structure of 112Cd has been investigated using the 111Cd(ěcd, p)112Cd reaction. The investigation was carried out using a 22 MeV beam of polarized deuterons obtained from the Maier-Leibnitz Laboratory at Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 115 levels have been identified up to 4.2 MeV of excitation energy. Spin-parity has been assigned to each analyzed level, and angular distributions for the reaction cross sections and analyzing powers were obtained. Many additional levels have been observed compared with the previous (d,p) study performed with 8 MeV deuterons,1 including strongly populated 5- and 6- states. The former was previously assigned as a member of the quadrupole-octupole quintuplet, based on a strongly enhanced B(E2) value to the 3- state, but is now re-assigned as being predominately s1/2 ⊗ h11/2 configuration.

  8. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    Science.gov (United States)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  9. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  10. Compact quadrupole triplet for the S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, C.; Eichhorn, R.; Enders, J.; Hessler, C.; Poltoratska, Y. [Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Ackermann, W.; Mueller, W.F.O.; Steiner, B.; Weiland, T. [Inst. fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany)

    2007-07-01

    An ultra compact quadrupole triplet for the S-DALINAC Polarized Electron Injector SPIN has been developed. This development is due to limiting spatial restrictions. Each individual quadrupole has a length of 8 mm, affixed by two 2 mm aluminum plates, resulting in a length of only 12 mm per quadrupole. The gaps between each quadrupole are set to 18 mm, therefore the complete triplet has a total length of only 72 mm. The quadrupole design includes a large aperture, suitable for CF 35 beam pipes. As fringe fields reach far info neighboring yokes, the assembly requires simulation by a beam dynamics tool for optimal weighting of the current excitation. Measurement of the magnetic field distribution is compared to numerical values and the quadrupole strength is calculated. (orig.)

  11. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  12. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  13. Stability of the coherent quadrupole oscillations excited by the beam-beam interaction

    International Nuclear Information System (INIS)

    Kamiya, Y.; Chao, A.W.

    1983-10-01

    We study the coherent quadrupole motion in the presence of beam-beam interaction, using a linear approximation to the beam-beam force. The corresponding beam-beam limit is determined by evaluating the eigenvalues of a system of linear equations describing the coherent quadrupole motion. We find that the stability of the quadrupole motions imposes severe limits on the beam current, as is the case for the dipole instability. Preliminary results of this study have appeared elsewhere

  14. Energy Moment Method Applied to Nuclear Quadrupole Splitting of Nuclear Magnetic Resonance Lines

    DEFF Research Database (Denmark)

    Frank, V

    1962-01-01

    Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus interacting with a static magnetic field and a static electric field gradient are derived. Several applications of this method for obtaining the values of the components of the electric field...

  15. Systematic study of muonic atoms in the A = 100 to A = 140 nuclear-mass regions (isotope and isotone shifts) and model-independent precision measurements of ground-state quadrupole moments of odd-A nuclei. Progress report No. 7, October 16, 1981-October 15, 1982

    International Nuclear Information System (INIS)

    Steffen, R.M.

    1982-10-01

    Until June 1982 all muonic x-ray experiments were performed at the Stopped Muon Channel (SMC) in experimental area A of LAMPF. The SMC channel, consisting of 3 bending magnets and 21 quadrupole magnets, is specifically designed for a clean muon beam and incorporates a long path for the decay of the pions. Recently a number of long-time experiments (rare decay modes of the muon, etc.) have been assigned to the SMC and running time for the muonic x-ray experiments has become very precious. For these reasons considerable time was spent in the summer of 1982 to study the feasibility of doing muonic experiments at the abandoned Biomed channel which has been designed for pion-irradiation therapy of cancer patients. Since the length of the Biomed channel is short, the available experimental area is close to the production target, and hence the neutron background in the experimental area is intolerably large (about 50 times larger than in the SMC experimental area). To reduce this background, the muonic x-ray detector and counter telescope arrangement was modified and surrounded by a concrete and steel shielding house of 1.5 feet minimum wall thickness. The dimensions of the house were 10' x 14' x 6' (H). The background was thus reduced to an acceptable level, even though the signal-to-noise ratio is still twice as large as in the SMC. Nevertheless, the Biomed channel is now usable for Muonic x-ray experiments that do not involve the observation of muonic x-rays of less than 0.5 MeV energy. The muonic x-ray experiments on 233 U described in this Progress Report have been performed at the Biomed channel

  16. Progress in the development of superconducting quadrupoles for heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-01-01

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported

  17. The Erez–Rosen metric and the role of the quadrupole on light propagation

    International Nuclear Information System (INIS)

    Bini, Donato; Crosta, Mariateresa; Vecchiato, Alberto; De Felice, Fernando; Geralico, Andrea

    2013-01-01

    The gravitational field of a static body with the quadrupole moment is described by an exact solution found by Erez and Rosen. Here, we investigate the role of the quadrupole in the motion, deflection and lensing of a light ray in the above metric. The standard lensing observables such as image positions and magnification have been explicitly obtained in the weak-field and small-quadrupole limit. In this limit, the spacetime metric appears as the natural generalization to quadrupole corrections of the metric form adopted also in current astrometric models. Hence, the corresponding analytical solution of the inverse ray tracing problem and the consistency with other approaches are also discussed. (paper)

  18. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  19. Progress in the development of superconducting quadrupoles for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  20. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  1. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  2. The retro-cut process: precision reshaping of magnetic quadrupole lens profiles to improve field strength

    International Nuclear Information System (INIS)

    Szymanski, Roland; Jamieson, David N.; Rout, Bibhudutta; Brenn, Ruediger

    2005-01-01

    In the evolution of magnetic quadrupole lens technology for nuclear microprobe systems, the pole profile has seen several improvements that have led to increases in the pole tip field for a given lens current. In a design dating from prior to 1994 the magnetic field strength was compromised by pole tip extensions that allowed significant flux leakage away from the central bore of the lens. There are many similar lenses in use world wide and they have a weaker focusing action compared to more modern designs which omit the pole tip extensions. We demonstrate that these pre-1994 lenses can have a new profile cut into the pole tip using a precision wire cutting machine that does not require the lens to be dismantled and does not compromise the purity of the lens field. We present the results of applying this process to lenses 1 and 4 in the antisymmetric quadruplet nuclear microprobe system at the University of Freiburg. The grid shadow method was used to show lens quality was not compromised by the process and we find that the lens field strength for a given current is increased by 15% when used to focus 2 MeV H + ions in the antisymmetric quadruplet

  3. Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2083426

    The hyperfine structure of the odd-even $^{51−63}$Mn isotopes (N = 26 − 38) were measured using bunched beam collinear laser spectroscopy with the COLLAPS experimental setup at ISOLDE, CERN. The properties of these nuclei were investigated over the course of two experiments. During the first experiment, nuclear spins and magnetic dipole moments were extracted from spectroscopy on manganese atoms. These nuclear properties were then compared to the predictions of two large-scale shell model effective interactions (GXPF1A [1, 2] and LNPS [3]) which use different model spaces. In the case of $^{61,63}$Mn, these results show the increasing importance of neutron excitations across the proposed N = 40 subshell closure, and of proton excitations across the Z = 28 shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. The electric quadrupole moment provides c...

  4. Design and application possibilities of superconducting radio-frequency quadrupoles

    International Nuclear Information System (INIS)

    Schempp, A.; Deitinghoff, H.

    1990-01-01

    In recent experiments, cw surface electric fields in excess of 100 MV/m have been obtained in a superconducting rf quadrupole (SCRFQ) device. In this paper we explore some design and application possibilities of SCRFQs which have been opened by these results. For example, SCRFQs may be able to accelerate higher cw currents than is now possible. Also, highly-modulated SCRFQs could be designed to provide compact, high-longitudinal-gradient devices. Some conceptual designs and applications will be discussed. 15 refs., 2 figs

  5. Transport properties of a discrete helical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R.; Xiu, L.

    1991-01-01

    The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H - beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs

  6. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  7. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer B. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Goodzeit, Carl L. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Ball, Millicent J. [Advanced Magnet Lab, Inc., Melbourne, FL (United States)

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  8. Design of an rf quadrupole for Landau damping

    Science.gov (United States)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  9. Scaling laws for aberrations in magnetic quadrupole lens systems

    International Nuclear Information System (INIS)

    Moses, R.W.; Heighway, E.A.; Christian, R.S.; Dragt, A.J.

    1987-01-01

    A comparison has been made of the third-order (spherical) abberrations in magnetic quadrupole lenses for use in conventional charged particle beam transport systems. An analytical description of the abberrations is presented and this is compared with the results of high order numerical integration. The dependence of the aberration strength on the system geometry and f number is given and a comparison of doublet and triplet systems made. The reduction of the aberrations in both doublet and triplet systems using embedded magnetic octupole lenses is also discussed and analytical predictions are given

  10. Radio-frequency quadrupole: general properties and specific applications

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Hamm, R.W.

    1980-01-01

    The radio-frequency quadrupole (RFQ) linac structure is being developed for the acceleration of low-velocity ions. Recent experimental tests have confirmed its expected performance and have led to an increased interest in a wide range of possible applications. The general properties of RFQ accelerators are reviewed and beam dynamics simulation results are presented for their use in a variety of accelerating systems. These include the low-beta sections of the Fusion Materials Irradiation Test Accelerator, a 200-MHz proton linear accelerator, and a xenon accelerator for heavy ion fusion

  11. A compact quadrupole ion filter for helium detection

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1981-01-01

    A compact quadrupole ion filter was conceived and constructed for optimum performance at the mass four region of the mass spectra. It was primarely designed for geological applications in the measurements of helium of soil-gases. The whole ion filter structure is 15 cm long by 3.5 cm diameter, including ion source and collecting plate. The sensitivity to helium is of the order of 10 - 2 A.torr - 1 measured at a total pressure of 6x10 - 6 torr and resolution 6. The system can be easily adapted to work as a dynamic residual gas analyser for other purposes. (Author) [pt

  12. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  13. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  14. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  15. Tests of high gradient superconducting quadrupole magnets for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Carson, J.; Gourlay, S.; Hanft, R.; Koepke, K.; Mantsch, P.; McInturff, A.D.; Riddiford, A.; Strait, J.

    1989-09-01

    Tests have been completed on three prototype magnets and two production magnets to be used for the Tevatron Dφ/Bφ low- β insertion. These cold iron, two shell quadrupoles are made of 36 strand Rutherford type NbTi superconducting cable. Magnet field gradients well in excess of the design 1.41 T/cm have been achieved at a transfer function of 0.291 T/cm/kA. Quench performance at 4.2 K and 3.7 K and magnetic multipole measurement data are presented and discussed. 9 refs., 4 figs., 4 tabs

  16. Remote alignment of Low beta quadrupoles with micrometric resolution

    CERN Document Server

    Acar, M; Herty, A; Mainaud-Durand, H; Marin, A; Quesnel, J P

    2008-01-01

    Considering their location in a high radiation environment and the alignment tolerancesrequested, the low beta quadrupoles of LHC will be positioned remotely (controlling 5 degrees of freedom), with a displacement resolution of few microns in horizontal and vertical. Stepping motor gearbox assemblies are plugged into the jacks which support the cryomagnets in order to move them to the desired position regarding the quality of the beam collisions in the detectors. This displacement will be monitored in real time by the sensors located on the magnets. This paper describes the positioning strategy implemented as well as the software tools used to manage it.

  17. Measurement of isovector giant quadrupole resonance in 40Ca

    International Nuclear Information System (INIS)

    Sims, D.A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Andersson, B.E.; Hansen, K.; Issaksson, L.; Nilsson, B.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Miller, G.J.

    1997-01-01

    The 40 Ca(γ,n) reaction was measured using tagged photons in the energy range 25-50 MeV. Neutrons were detected using two 9-element, liquid scintillator, neutron detectors placed at angles of 55 deg and 125 deg at flight path of 3.2 m. The absolute cross section was determined relative to that for D (γ,n)p, which was measured using a heavy water target. The forward/backward asymmetry in the 40 Ca (γ, n) cross section, resulting from E1/E2 interference has been used to locate and parametrize the isovector giant quadrupole resonance (IVQR). 6 refs., 2 figs

  18. Novel integrated design framework for radio frequency quadrupoles

    International Nuclear Information System (INIS)

    Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter

    2014-01-01

    A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ

  19. Quadrupole singlet focusing for achromatic parallel-to-parallel devices

    International Nuclear Information System (INIS)

    Brown, K.L.

    1983-01-01

    A first order achromatic magnetic deflection system for use in conjunction with a charged particle accelerator is realized from a stepped gap magnet wherein charged particles propagating through the system are subject to at least two adjacent homogeneous magnetic fields in adjacent regions in traversing one-half of a symmetric trajectory through the system. A quadrupole singlet element Q of adjustable focal length disposed substantially at the entrance plane of such a symmetric system makes possible the coincidence of the waists of the beam in both the vertical (transverse) and (radial) bending planes. (author)

  20. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  1. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    International Nuclear Information System (INIS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.; Kruk, D.; Jakubas, R.

    2016-01-01

    1 H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu 3 Bi 2 I 9 ([Gu = C(NH 2 ) 3 ] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ( 14 N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10 −6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10 −9 s. From the 1 H- 14 N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions

  2. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    Science.gov (United States)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  3. Development of Ultra-sensitive Laser Spectroscopic Analysis Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, H. K.; Kim, D. H.; Song, K. S. (and others)

    2007-04-15

    Laser spectroscopic analysis technology has three distinct merits in detecting various nuclides found in nuclear fields. High selectivity originated from small bandwidth of tunable lasers makes it possible to distinguish various kinds of isotopes and isomers. High intensity of focused laser beam makes it possible to analyze ultratrace amount. Remote delivery of laser beam improves safety of workers who are exposed in dangerous environment. Also it can be applied to remote sensing of environment pollution.

  4. Development of Ultra-sensitive Laser Spectroscopic Analysis Technology

    International Nuclear Information System (INIS)

    Cha, H. K.; Kim, D. H.; Song, K. S.

    2007-04-01

    Laser spectroscopic analysis technology has three distinct merits in detecting various nuclides found in nuclear fields. High selectivity originated from small bandwidth of tunable lasers makes it possible to distinguish various kinds of isotopes and isomers. High intensity of focused laser beam makes it possible to analyze ultratrace amount. Remote delivery of laser beam improves safety of workers who are exposed in dangerous environment. Also it can be applied to remote sensing of environment pollution

  5. New Insight into the Observation of Spectroscopic Strength Reduction in Atomic Nuclei: Implication for the Physical Meaning of Spectroscopic Factors

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.

    2009-01-01

    Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

  6. Evolution of containment facilities for spectroscopic analysis at Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    Hiller, J.M.

    1984-01-01

    The analysis of radioactive material requires much thought concerning getting the job done while still maintaining a safe working environment. A Rockwell Hanford Operations, several stages of evolution in instrumentation for spectroscopic elemental analysis have evolved, reflecting different philosophies respect to shielding and contamination control. Atomic absorption and inductively coupled plasma emission spectroscopic systems have been used for analyzing samples in support of a fission product recovery plant, nuclear waste processing and characterization programs, and U and Pu separation plants. Design thoughts, criticisms, and lessons learned in 20 years of containment for spectroscopic analysis are presented

  7. Evolution of containment facilities for spectroscopic analysis at Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    Hiller, J.M.

    1984-01-01

    The analysis of radioactive material requires much thought concerning getting the job done while still maintaining a safe working environment. At Rockwell Hanford Operations, we have gone through several stages of evolution in instrumentation for spectroscopic elemental analysis, reflecting different philosophies with respect to shielding and contamination control. Atomic absorption and inductively coupled plasma emission spectroscopic systems have been used for analyzing samples in support of a fission product recovery plant, nuclear waste processing and characterization programs, and U and Pu separation plants. Design thoughts, criticisms, and lessons learned in 20 years of containment for spectroscopic analysis are presented. 3 refs., 6 figs., 2 tabs

  8. Quadrupole moments of highly deformed structures in the A ∼ 135 region: Probing the single-particle motion in a rotating potential

    International Nuclear Information System (INIS)

    Laird, R.W.; Riley, M.A.; Brown, T.B.; Pfohl, J.; Sheline, R.K.; Kondev, F.G.; Archer, D.E.; Clark, R.M.; Fallon, P.; Devlin, M.; LaFosse, D.R.; Sarantites, D.G.; Hartley, D.J.; Hibbert, I.M.; O'Brien, N.J.; Wadsworth, R.; Joss, D.T.; Nolan, P.J.; Paul, E.S.; Shepherd, S.L.

    2002-01-01

    The latest generation γ-ray detection system, GAMMASPHERE, coupled with the Microball charged-particle detector, has made possible a new class of nuclear lifetime measurement. For the first time differential lifetime measurements free from common systematic errors for over 15 different nuclei (>30 rotational bands in various isotopes of Ce, Pr, Nd, Pm, and Sm) have been extracted at high spin within a single experiment. This comprehensive study establishes the effective single-particle transition quadrupole moments in the A∼135 light rare-earth region. Detailed comparisons are made with theoretical calculations using the self-consistent cranked mean-field theory which convincingly demonstrates the validity of the additivity of single-particle quadrupole moments in this mass region

  9. Analysis of quadrupole splitting of multiple Fe sites intermixed in Si(111) with Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kawauchi, Taizo, E-mail: kawauchi@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Zhang, Xiaowei [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Fukutani, Katsuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2016-12-01

    The iron silicide has various interesting phases both fundamentally and technologically, which have acquired much attention to date. Iron silicides are often fabricated on a Si substrate by a solid phase epitaxy method, and the initial stage of intermixing of iron atoms with substrate Si is of crucial importance for silicide fabrication, which remains to be clarified. Here, we have investigated the initial stage of the iron-silicide formation before crystallization with Mössbauer spectroscopy suited to characterization of magnetic and chemical properties of {sup 57}Fe atoms in materials. The sample was prepared by deposition of {sup 57}Fe of 1 nm on a Si(111) surface at 450 K. Conventional Mössbauer spectroscopy in the energy domain revealed presence of two iron sites with similar quadrupole splits and isomer shifts, which hampered complete analysis of this system. By combining the time-domain spectroscopy using polarized synchrotron radiation, we have separately analyzed the quadrupole splits and isomer shifts for the two iron sites. By using the theoretical simulation, furthermore, we successfully reproduced the experimentally observed time spectrum of the nuclear resonant scattering on the assumption that iron atoms randomly occupy the substitutional sites for Si at the initial stage of intermixing before crystallization of an iron silicide. - Highlights: • Quadrupole split of Fe in an iron silicide is measured by Mossbauer spectroscopy. • Two components are separately analyzed with time- and energy-domain spectra. • The time spectrum is well reproduced by numerical simulation. • Results indicate that Fe atoms randomly occupy two possible sites in Fe silicide.

  10. Adjustable permanent quadrupoles for the next linear collider

    International Nuclear Information System (INIS)

    Volk, James T.

    2001-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype

  11. Adjustable Permanent Quadrupoles for the Next Linear Collider

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2001-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to - 20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype

  12. Extracting the Omega- electric quadrupole moment from lattice QCD data

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, M.T. Pena

    2011-03-01

    The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].

  13. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  14. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  15. High Reliability Prototype Quadrupole for the Next Linear Collider

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths

  16. Study of Nb3Sn cables for superconducting quadrupoles

    International Nuclear Information System (INIS)

    Otmani, R.

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  17. Transition quadrupole moments in the superdeformed band of 40Ca

    International Nuclear Information System (INIS)

    Chiara, C.J.; Ideguchi, E.; Devlin, M.; LaFosse, D.R.; Lerma, F.; Reviol, W.; Ryu, S.K.; Sarantites, D.G.; Baktash, C.; Galindo-Uribarri, A.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Reiter, P.; Seweryniak, D.; Fallon, P.; Goergen, A.; Macchiavelli, A.O.; Rudolph, D.

    2003-01-01

    The transition quadrupole moments Q t for the superdeformed band in 40 Ca have been determined through thin-target Doppler-shift attenuation analyses. A best-fit value of Q t =1.30±0.05 e b is obtained when a single value is assumed for the entire band. Fitting separate quadrupole moments for in-band transitions decaying from the high-spin states and the presumably admixed low-spin states results in Q t (high)=1.81 -0.26 +0.41 e b and Q t (low)=1.18 -0.05 +0.06 e b, respectively. Q t values extracted for individual transitions in a Doppler-broadened line-shape analysis also indicate smaller Q t values at lower spins. These results are consistent with the interpretation of this band as an eight-particle-eight-hole superdeformed band with a significant admixture of less-collective configurations at low spins

  18. Design of permanent magnet quadrupole for LEHIPA DTL

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2011-01-01

    The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)

  19. The Quadrupole Magnets for the LHC Injection Transfer Lines

    CERN Document Server

    Chertok, I; Churkin, I N; Giesch, Manfred; Golubenko, O B; Kalbreier, Willi; Kouba, G; Mejidzade, V; Mikhailov, S; Steshov, A; Sukhanov, A; Sukhina, B; Schirm, K M; Weisse, E

    2000-01-01

    Two injection transfer lines, each about 2.8 km long, are being built to transfer protons at 450 GeV from the Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC). A total of 180 quadrupole magnets are required; they are produced in the framework of the contribution of the Russian Federation to the construction of the LHC. The classical quadrupoles, built from laminated steel cores and copper coils, have a core length of 1.4 m, an inscribed diameter of 32 mm and a strength of 53.5 T/m at a current of 530 A. The total weight of one magnet is 1.1 ton. For obtaining the required field quality at the small inscribed diameter, great care in the stamping of the laminations and the assembly of quadrants is necessary. Special instruments have been developed to measure, with a precision of some mm, the variations of the pole gaps over the full length of the magnet and correlate them to the obtained field distribution. The design has been developed in a collaboration between BINP and CERN. Fabrication and ...

  20. Measurement of the Spectroscopic Quadrupole Moment for the 2+1 State in 10Be:. Testing AB Initio Calculations

    Science.gov (United States)

    Orce, J. N.; Djongolov, M.; Navratil, P.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Lassen, J.; Meissner, J.; Pearson, C. J.; Li, R.; Milovanovic, L.; Sjue, S. K. L.; Teigelhoefer, A.; Triambak, S.; Williams, S. J.; Falou, H. Al; Drake, T. E.; Andreoiu, C.; Cross, D.; Kshetri, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Wong, J.; Forssen, C.; Hayes, A. B.; Sarazin, F.; Stoyer, M. A.; Wu, C. Y.

    2013-03-01

    The highly efficient and segmented TIGRESS HPGe γ-ray array at TRIUMF has been used to perform a reorientation effect Coulomb excitation study of the 2+1 state at 3.368 MeV in 10Be. This is the first Coulomb excitation measurement that provides information on diagonal matrix elements for such a high lying first excited state from μ-ray data. With the availability of accurate lifetime data, a restriction on the diagonal matrix element is determined. This result is compared to a no core shell model calculation with the CD-Bonn 2000 two nucleon potential.

  1. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  2. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Directory of Open Access Journals (Sweden)

    C. Wraith

    2017-08-01

    Full Text Available Collinear laser spectroscopy was performed on Zn (Z=30 isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni.

  3. Description of surface quadrupole oscillations of heated spherical nuclei in the Brownian-motion approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    The Brownian motion of a quadrupole quantum oscillator is considered as a model of surface quadrupole oscillations of heated spherical nuclei. The integrals of the motion related to energy and angular momentum conservation are constructed and the wave functions are obtained for states with definite values of these integrals of the motion in the phonon representation

  4. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  5. The effect of quadrupole fields on particle confinement in a field-reversed mirror

    International Nuclear Information System (INIS)

    McColl, D.B.; Berk, H.L.; Hammer, J.; Morse, E.C.

    1982-01-01

    A particle simulation code has been modified to simulate particle loss caused by quadrupole magnetic fields on a field-reversed mirror plasma device. Since analytic fields are chosen for the equilibrium, the numerical algorithm is highly accurate for long-time integrations of particle orbits. The resultant particle loss due to the quadrupole fields can be competitive with collisional loss in the device

  6. Rotations as coherent states of SU(6) quadrupole phonons in the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Paar, V [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Rio de Janeiro Univ. (Brazil). Inst. de Fisica)

    1981-06-18

    Analytic expressions for the wavefunctions of the ground-state rotational band for even and odd nuclei are derived in terms of spherical quadrupole phonons truncated at N(max) phonons. For N(max) ..-->.. infinite the Bohr-Mottelson rotational states are generated as an asymptotic gaussian distribution of quadrupole phonons.

  7. CESAR, 2 MeV electron storage ring; construction period; quadrupole.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    One of the 24 quadrupoles. They were made of massive (non-laminated) soft iron, which at the low field-strength (35 G on the pole-tips) presented problems. Later they were fitted with shims on all 4 poles, to correct the quadrupole and sextupole components.

  8. Neutron-proton ratios of collective quadrupole matrix elements in even Fe and Cr isotopes

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    M n /M p ratios are investigated within the QRPA framework for the low-lying quadrupole states and for isoscalar giant quadrupole resonances in 54,56,58 Fe and 50,52,54 Cr. Theoretical results for 2 l ? + states are in good agreement with empirical ones obtained from recent proton and pion inelastic scattering studies. 16 refs.; 3 tabs

  9. Quadrupole moment in the excited 2Psub(1/2) state

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Yakhontov, V.L.

    1984-01-01

    Computation of the quadrupole moment values in the 2Psub(1/2) states of hydrogen and meso-hydrogen is carried out. It is shown that allowance for the hyperfine interaction of the electron with the proton in the first order of perturbation theory results in giant values of the quadrupole moment of the atoms. (author)

  10. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  11. Nuclear spin dominated relaxation of atomic tunneling systems in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Annina

    2016-11-16

    The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.

  12. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Bukhave, Klaus

    2001-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were...... characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether...... + H - H2O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra...

  13. Analysis of transfer reactions: determination of spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  14. High-Energy Gun-Injected Toroidal Quadrupole

    International Nuclear Information System (INIS)

    Hammel, J.E.; Henins, I.; Kewish, R.W. Jr.; Marshall, J.; Sherwood, A.R.

    1971-01-01

    A quadrupole device is being used to investigate the trapping and containment of an energetic gun plasma. The quadrupole is designed to contain a peak density of 5 x 10 13 cm -3 at 2.5 keV within the MHD-stable region. At design field there are 5 gyro-radii for 2. 5-keV protons from the separatrix to the ψ crit . The interior conductors are directly driven with a 0.8-MJ capacitor bank. The current to the coils is fed through a single pair of dipole-guarded conductors to each coil. The coils are also supported from the current feed, The dipole guard is in a force-free configuration with 5 gyro-radii for 2. 5-keV protons from the separatrix (between the dipole and quadrupole fields) to the dipole surface. The dipole is designed so that loss of plasma from the dipole region will be directed away from the interior conductors. This feature is necessary for the prevention of contamination by secondary gas produced by plasma lost at the dipole guard. Experiments at one-half design value of magnetic field have shown that the kilovolt energy gun plasma is trapped by depolarization currents around the coils, and that a very high percentage (>50%) of the gun output can be trapped. The plasma density is measured by a unique Michelson interferometer using CO 2 laser light. The energy of the plasma is derived from magnetic pickup loops placed outside the containment region. The leak caused by the dipole guard Held has been examined by double electric probe measurements. The plasma drift thus inferred is an order of magnitude less than that predicted by a model of Meade's or by calculations by us. This casts doubt upon the validity of any such simple model and emphasizes the necessity of further experimental investigation of the matter. New coils which are being built to operate at full design magnetic field strength will allow a check on the containment time of the device for kilovolt energy plasma. (author)

  15. Universal relation between spectroscopic constants

    Indian Academy of Sciences (India)

    (3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.

  16. The VANDELS ESO spectroscopic survey

    Science.gov (United States)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  17. First Krakow-Berlin workshop on nuclear physics. Slide report

    Energy Technology Data Exchange (ETDEWEB)

    Styczen, J. [comp.] [Institute of Nuclear Physics, Cracow (Poland); Maier, K.H. [comp.] [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1992-12-31

    In this workshop new experimental and theoretical results in nuclear spectroscopy are presented. For several nuclei new data: energy level schemes, electromagnetic transitions, quadrupole moments, and nuclear deformation parameters are presented. New nuclei excitation methods and the new detector for the OSIRIS spectrometer are also discussed.

  18. First Krakow-Berlin workshop on nuclear physics. Slide report

    International Nuclear Information System (INIS)

    Styczen, J.; Maier, K.H.

    1992-01-01

    In this workshop new experimental and theoretical results in nuclear spectroscopy are presented. For several nuclei new data: energy level schemes, electromagnetic transitions, quadrupole moments, and nuclear deformation parameters are presented. New nuclei excitation methods and the new detector for the OSIRIS spectrometer are also discussed

  19. Complementarity between neutron capture and heavy-ion reactions in nuclear structure studies

    International Nuclear Information System (INIS)

    Schult, O.W.B.

    1978-01-01

    The study of the complementarity of certain nuclear reactions in nuclear structure studies includes spectroscopic methods, nuclear rotation and coupling of nucleons to the core, and the de-excitation and structure of high lying states. 23 references

  20. Quadrupole moment of the 7/21- isomer state in 43S. Shell model study of sulfur isotopes around N=28

    International Nuclear Information System (INIS)

    Chevrier, Raphael

    2013-01-01

    The goal of this work consists in providing new insights in the shape coexistence expected in neutron-rich nuclei around the N=28 shell closure. In 43 S, recent experimental data as well as their interpretation in the shell model framework were used to predict the coexistence between a J π =3/2 1 - prolate deformed ground state and a 7/2 1 - rather spherical isomer state. We report on the quadrupole moment measurement Q s of the 7/2 1 - isomer state [E*=320.5(5) keV, T 1/2 =415(3) ns] in 43 S. The TDPAD method was applied on 43 S nuclei produced by the fragmentation of a 48 Ca primary beam at 345 A.MeV, and selected in-flight through the BigRIPS spectrometer at RIKEN (Japan). The measured value, |Q s |=23(3) efm 2 , is in remarkable agreement with that calculated in the shell model framework, although it is significantly larger than that expected for a single-particle state. In order to understand the nature of the correlations responsible for the departure of the isomer state from a pure spherical shape, we report on the results of a shell model study using the modern SDPF-U interaction of the neighbors sulfur isotopes 42,44,46 S. Those calculations allowed to identify a slight triaxial degree of freedom in the structure of these nuclei, although the latter happens to be highly hindered at N=28 in 44 S. Spectroscopic factor calculations show that this slight triaxial degree of freedom also impacts the low-lying structure in 43 S. It allows to better understand the deviation of the spectroscopic quadrupole moment value of the isomer state from the limit case of a pure spherical state. (author) [fr

  1. Mass-spectrometric measurements for nuclear safeguards

    International Nuclear Information System (INIS)

    Carter, J.A.; Smith, D.H.; Walker, R.L.

    1982-01-01

    The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%

  2. Design and fabrication of the BNL radio frequency quadrupole

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1983-01-01

    The Brookhaven National Laboratory polarized H - injection program for the AGS will utilize a Radio Frequency Quadrupole for acceleration between the polarized source and the Alvarez Linac. Although operation will commence with a few μ amperes of H - current, it is anticipated that future polarized H - sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, and removal of heat from the vanes. The cavity design philosophy will be discussed together with the thermodynamics of heat removal from the vane. Details of the fabrication will be presented with a status report

  3. Nb$_{3}$Sn quadrupole magnets for the LHC IR

    CERN Document Server

    Sabbi, G L; Chiesa, L; Coccoli, M; Dietderich, D R; Ferracin, P; Gourlay, S A; Hafalia, R R; Lietzke, A F; McInturff, A D; Scanlan, R M

    2003-01-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 * 10/sup 34/ cm/sup -2/s/sup -1/ at the Large Hadron Collider (LHC). At present, Nb/sub 3/Sn is the only practical conductor which can meet these requirements. Since Nb/sub 3/Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented. (25 refs).

  4. Nb3Sn Quadrupole Magnets for the LHC IR

    International Nuclear Information System (INIS)

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-01-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10 34 cm -2 s -1 at the Large Hadron Collider (LHC). At present, Nb 3 Sn is the only practical conductor which can meet these requirements. Since Nb 3 Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  5. Application of artificial intelligence to triple quadrupole mass spectrometry (TQMS)

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Kehler, T.P.; Kunz, J.C.

    1984-01-01

    At Lawrence Livermore National Laboratory the authors have designed a totally computerized triple quadrupole mass spectrometer with the ultimate goal of using it as a prototype for ''knowledge-based'' instrument control. As an ''intelligent'' instrument, with its computer-based data acquisition and control system, it has the ability to learn and respond quickly. The intelligence is encoded in the system using the representation and rule-based reasoning heuristic techniques of Artificial Intelligence. These techniques are used to encode heuristic knowledge, or the intuition, formal and informal rules, and experiential knowledge that the human expert normally uses to make decisions and arrive at solutions in a specific domain problem. In this specific case, the knowledge the authors are encoding is a tuning procedure for the spectrometer, including heuristics to describe a self-adaptive, feedback control process for real-time optimization or tuning of the data acquisition procedure throughout the entire data collection process

  6. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  7. Design of an rf quadrupole for Landau damping

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-08-01

    Full Text Available The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  8. Dipole and electric quadrupole excitations in 40,48Ca

    International Nuclear Information System (INIS)

    Hartmann, T.; Enders, J.; Mohr, P.; Vogt, K.; Volz, S.; Zilges, A.

    2001-11-01

    Photon scattering experiments have been performed to investigate the structure of the two doubly magic nuclei 40,48 Ca. The method is highly selective to induce low-order multipole transitions i.e., E1, M1, and E2 from the ground state. We determined the energies and spins of excited states and the absolute strengths of the γ-decays in a model independent way. We find the summed electric dipole strengths below 10 MeV to exhaust the energy weighted sum rule (EWSR) by 0.023% and 0.27%, respectively. The summed electric quadrupole strengths are Σ B(E2) ↑ = 332 e 2 fm 4 and 407 e 2 fm 4 for 40 Ca and 48 Ca, respectively. In order to explain the difference in the E1 strengths of the two isotopes several theoretical models are discussed. (orig.)

  9. Upgrading the Lyon cluster ion accelerator by a radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Moser, H.O.; Schempp, A.

    1987-02-01

    The design is presented of an RFQ with variable final energy suitable to post-accelerate cluster ions from the Lyon electrostatic cluster-ion accelerator in the mass ranges from 1 to 25 μ and 1 to 50 μ to kinetic energies of 1.32-2.5 MeV and 2.64-5.0 MeV for cw and pulsed operation, respectively. Furthermore, a beam line is described which matches the electrostatically preaccelerated beam to the RFQ by use of electrostatic quadrupole triplets. When used without RFQ this beam line serves to improve beam parameters on the target, such as the particle flux density or beam divergence. The estimated costs of this project are about DM 345 000.- or FF 1 200 000.- without VAT. (orig.) [de

  10. Manufacturing experience for the LHC inner triplet quadrupole cables

    CERN Document Server

    Scanlan, R M; Bossert, R; Kerby, J S; Ghosh, A K; Boivin, M; Roy, T

    2002-01-01

    The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed. (8 refs).

  11. Cryogenic tests of the first two LHC quadrupole prototypes

    International Nuclear Information System (INIS)

    Genevey, P.; Deregel, J.; Perot, J.; Rifflet, J.M.; Vedrine, P.; Cortella, J.; Le Coroller, A.

    1994-01-01

    Two LHC (Large Hadron Collider) twin aperture quadrupole prototypes were constructed at CEA Saclay (a CERN-CEA collaboration agreement). Their main characteristics are: 3.05 m length, 56 mm coil aperture, 180 mm between the two apertures, 252 T/m nominal gradient at 15060 A. They have been tested and measured in the 1.8 K Saclay test facility in an horizontal cryostat. The magnets are instrumented in order to investigate their behaviour during cool-down, stand-by, powering and current ramping, quenching and warming-up. A summary of the cryogenic, mechanical, pressure and electrical measurements is presented. The quench protection heaters are efficient down to 3000 A. Losses during ramping up and down are reported. (from authors) 5 fig., 11 ref

  12. Does the small CMB quadrupole moment suggest new physics?

    CERN Document Server

    Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien

    2003-01-01

    Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.

  13. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  14. A Cryogenic Test Stand for LHC Quadrupole Magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Huang, Y.; Orris, D.F.; Peterson, T.J.; Rabehl, R.J.

    2004-01-01

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included

  15. A radio frequency quadrupole ion beam buncher for ISOLTRAP

    CERN Document Server

    Bollen, G; Dezfuli, A M G; Henry, S; Herfurth, F; Kellerbauer, A G; Kim, T; Kluge, H J; Kohl, A; Lamour, E; Lunney, M D; Moore, R B; Quint, W; Schwarz, S; Varfalvy, P; Vermeeren, L

    1998-01-01

    ISOLTRAP is a Penning trap spectrometer at the on-line mass separator ISOLDE at CERN for the mass determination of radioisotopes. It consists of three electromagnetic traps in tandem; a Paul trap for ISOLDE beam collection, a Penning trap for cooling and purification and a high-precision Penning trap for the measurement of masses by cyclotron resonance. The Paul trap, which collects radionuclide ions using only electric fields and a noble buffer gas, has been essential for the masses of radionuclides that cannot be surface ionized. The success with this system has led to the present program to increase the collection efficiency by replacing the Paul trap by a radiofrequency quadrupole ion guide operating as a buncher. This system would also provide a DC ISOLDE beam of emittance approaching 1$\\pi$ -mm-mrad. (3 refs).

  16. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  17. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  18. Moessbauer spectroscopic studies of hemoglobin and its isolated subunits

    International Nuclear Information System (INIS)

    Hoy, G.R.; Cook, D.C.; Berger, R.L.; Friedman, F.K.

    1986-01-01

    Samples of 90% enriched 57Fe hemoglobin and its isolated subunits have been prepared. Moessbauer spectroscopic measurements have been made on three such samples. Sample one contained contributions of oxyhemoglobin, deoxyhemoglobin, and carbonmonoxyhemoglobin. This sample was studied from a temperature of 90 K down to 230 mK. Measurements were also made at 4.2 K using a small applied magnetic field of 1.0 T. In general, the measured quadrupole splittings and isomer shifts for each component agreed with previous measurements on single component samples in the literature, and thus demonstrated that chemically enriched hemoglobin has not been altered. The second and third samples were isolated alpha and beta subunits, respectively. We have found measurable Moessbauer spectral differences between the HbO 2 sites in the alpha subunit sample and the beta subunit sample. The measured Moessbauer spectral areas indicate that the iron ion has the largest mean-square displacement at the deoxy Hb sites as compared to that at the oxy- and carbonmonoxy Hb sites. The mean-square displacement at the HbO 2 sites is the smallest

  19. Identification of the one-quadrupole phonon 21,ms+ state of 204Hg

    Directory of Open Access Journals (Sweden)

    R. Stegmann

    2017-07-01

    Full Text Available One-phonon states of vibrational nuclei with mixed proton–neutron symmetry have been observed throughout the nuclear chart besides the mass A≈200 region. Very recently, it has been proposed that the 22+ state of 212Po is of isovector nature. This nucleus has two valence protons and two valence neutrons outside the doubly-magic 208Pb nucleus. The stable isotope 204Hg, featuring two valence-proton and valence-neutron holes, with respect to 208Pb, is the particle-hole mirror of 212Po. In order to compare the properties of low-lying isovector excitations in these particle-hole mirror nuclei, we have studied 204Hg by using the projectile Coulomb-excitation technique. The measured absolute B(M1;22+→21+ strength of 0.20(2μN2 indicates that the 22+ level of 204Hg is at least the main fragment of the 21,ms+ state. For the first time in this mass region, both lowest-lying, one-quadrupole phonon excitations are established together with the complete set of their decay strengths. This allows for a microscopic description of their structures, achieved in the framework of the Quasi-particle Phonon Model.

  20. Role of shape and quadrupole deformation of parents in the cluster emission of rare earth nuclei

    International Nuclear Information System (INIS)

    Girija, K.K.; Joseph, Antony

    2014-01-01

    The nuclear structure effects on α decay and cluster emission are investigated in the case of even–even rare earth nuclei 150–160 Dy, 150–160 Er, 150–160 Yb, 158,162,166–176 Hf, 160,164–178 W and 162,166,170–180 Os. The role of shape and deformation of parent nuclei in the decay rate is studied by taking the Coulomb and proximity potentials as the interacting barrier for the post scission configuration. The quadrupole deformation of parent nuclei causes a slight change in the half-life of α emissions, but it affects the rate of heavy cluster emissions significantly. Prolate deformation of parents enhances cluster emission, while an oblate deformation slows down the decay. Shape and deformation of parent nuclei causes change in the branching ratio also. A prolate deformation increases the branching ratio, whereas an oblate deformation reduces it. Highest branching ratio is predicted at N ∼ 90. (author)