WorldWideScience

Sample records for nuclear regulatory process

  1. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  2. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  3. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.

    2015-09-01

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  4. U.S. Nuclear Regulatory Commission Process for Risk-Informing the Nuclear Waste Arena

    International Nuclear Information System (INIS)

    Leslie, B. W.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is increasing the use of risk insights and information in its regulation of nuclear materials and waste. The objective of this risk-informed regulatory effort is to improve the effectiveness and efficiency of the agency, while maintaining or increasing its focus on safety. The agency's Office of Nuclear Material Safety and Safeguards (NMSS) proposed a five-step process to carry out a framework for increasing the use of risk information and insights in its regulation of nuclear materials and waste. The office is carrying out the five-step process to risk-inform the nuclear materials and waste arenas. NMSS's actions included forming a Risk Task Group and the use of case studies to test and complete screening criteria for identifying candidate regulatory applications amenable for risk-informing. Other actions included involving stakeholders through enhanced public participation, developing safety goals for materials and waste regulatory applications, and establishing a risk training program for staff. Through the case studies, NRC staff found the draft screening criteria to be effective in deciding regulatory areas that may be amenable to an increased use of risk insights. NRC staff also found that risk information may have the potential to reduce regulatory burden and improve staff's efficiency in making decisions, while maintaining safety. Finally, staff found that it would be possible to develop safety goals for the nuclear materials and waste arenas

  5. System engineering in the Nuclear Regulatory Commission licensing process: Program architecture process and structure

    International Nuclear Information System (INIS)

    Romine, D.T.

    1989-01-01

    In October 1987, the U.S. Nuclear Regulatory Commission (NRC) established the Center for Nuclear Waste Regulatory Analyses at Southwest Research Institute in San Antonio, Texas. The overall mission of the center is to provide a sustained level of high-quality research and technical assistance in support of NRC regulatory responsibilities under the Nuclear Waste Policy Act (NWPA). A key part of that mission is to assist the NRC in the development of the program architecture - the systems approach to regulatory analysis for the NRC high-level waste repository licensing process - and the development and implementation of the computer-based Program Architecture Support System (PASS). This paper describes the concept of program architecture, summarizes the process and basic structure of the PASS relational data base, and describes the applications of the system

  6. The role of women in nuclear - attracting public participation in regulatory decision-making process

    Science.gov (United States)

    Mohamad Jais, Azlina; Hassan, Najwa

    2018-01-01

    Public participation is vital in demonstrating transparency and enhancing effectiveness of a nuclear regulatory process. As such, it is necessary for nuclear practitioners to involve the public in key nuclear delivery milestones. This paper specifically discusses challenges faced in attracting public participation throughout the nuclear regulatory decision-making process, and highlights the roles of women in nuclear (WiN) in initiating the said public discourse.

  7. The United States nuclear regulatory commission license renewal process

    International Nuclear Information System (INIS)

    Holian, B.E.

    2009-01-01

    The United States (U.S.) Nuclear Regulatory Commission (NRC) license renewal process establishes the technical and administrative requirements for the renewal of operating power plant licenses. Reactor ope-rating licenses were originally issued for 40 years and are allowed to be renewed. The review process for license renewal applications (L.R.A.) provides continued assurance that the level of safety provided by an applicant's current licensing basis is maintained for the period of extended operation. The license renewal review focuses on passive, long-lived structures and components of the plant that are subject to the effects of aging. The applicant must demonstrate that programs are in place to manage those aging effects. The review also verifies that analyses based on the current operating term have been evaluated and shown to be valid for the period of extended operation. The NRC has renewed the licenses for 52 reactors at 30 plant sites. Each applicant requested, and was granted, an extension of 20 years. Applications to renew the licenses of 20 additional reactors at 13 plant sites are under review. As license renewal is voluntary, the decision to seek license renewal and the timing of the application is made by the licensee. However, the NRC expects that, over time, essentially all U.S. operating reactors will request license renewal. In 2009, the U.S. has 4 plants that enter their 41. year of ope-ration. The U.S. Nuclear Industry has expressed interest in 'life beyond 60', that is, requesting approval of a second renewal period. U.S. regulations allow for subsequent license renewals. The NRC is working with the U.S. Department of Energy (DOE) on research related to light water reactor sustainability. (author)

  8. The role of risk assessment in the nuclear regulatory process

    International Nuclear Information System (INIS)

    Levine, S.

    1979-01-01

    Since the publication of the Reactor Safety Study in the USA, the basic tasks of which are summarised, the use of quantitative risk-assessment techniques for the safety of nuclear power plants has increased considerably. Some of the viewpoints expressed on the use of these techniques are examined, and their limitations are discussed. Areas where risk-assessment techniques are applied by the NRC are listed and some recent examples are discussed. Risk assessment has also been used as a criteria for deciding the topics for the NRC's recommendations for research programs. It is concluded that the major contribution of risk assessment techniques should be in the form of background analyses that will aid decision making and could also significantly affect the scope and content of regulatory reviews. (UK)

  9. Health physics self-assessment and the nuclear regulatory oversight process at a nuclear power plant

    International Nuclear Information System (INIS)

    Schofield, R.S.

    2003-01-01

    The U.S. Nuclear Regulatory Commission has developed improvements in their Nuclear Power Plant inspection, assessment and enforcement practices. The objective of these changes was to link regulatory action with power plant performance through a risk- informed process which is intended to enhance objectivity. One of the Strategic Performance Areas of focus by the U.S. NRC is radiation safety. Two cornerstones, Occupational Radiation Safety and Public Radiation Safety, make up this area. These cornerstones are being evaluated through U.S. NRC Performance Indicators (PI) and baseline site inspections. Key to the U.S. NRC's oversight program is the ability of the licensee to implement a self-assessment program which pro-actively identifies potential problems and develops improvements to enhance management's effectiveness. The Health Physics Self-Assessment Program at San Onofre Nuclear Generating Station (SONGS) identifies radiation protection-related weakness or negative trends. The intended end result is improved performance through rapid problem identification, timely evaluation, corrective action and follow-up effectiveness reviews. A review of the radiation protection oversight process and the SONGS Health Physics Self-Assessment Program will be presented. Lessons learned and management tools, which evaluate workforce and Health Physics (HP) staff performance to improve radiological practices, are discussed. (author)

  10. The role of the US regulatory process in public acceptance of nuclear power

    International Nuclear Information System (INIS)

    Rowden, M.A.

    1977-01-01

    This paper focuses, on NRC's regulatory responsibilities in relation to public acceptance of nuclear power. Since public attitudes in the United States may influence reaction to nuclear power in other nations, it is fair to say that the credibility of our regulatory program has international significance. Stated simply, unless the public is convinced that the regulatory process is effective in assuring safety, safeguarding nuclear facilities and materials, and protecting the environment, the use of nuclear power could be curtailed or even brought to a halt. Not only must the regulatory process be effective, it must at the same time be recognized by the public as being effective. Opinion polls in the United States have shown consistently that a majority of Americans believe it is important to develop nuclear power to help meet our future energy needs. The direction of public concern has shifted from year to year. Most recently, public apprehension has been expressed about the potential hazards of long-term storage of the high-level wastes from spent fuel reprocessing, and about the risks that nuclear materials and facilities may be subject to theft or diversion or sabotage. Uppermost in the public mind is the question whether the regulatory process can cope with these potential threats to public health and safety. The licensing process of the NRC is conducted in full public view. Issues of a generic nature are aired in rulemaking hearings, while each proposal to construct and operate a nuclear power plant or a facility such as fuel reprocessing plant is the subject of public hearings, which are held near the site of the proposed plant. During the last two years, we have noted that some persons who object to nuclear power plants have indicated that they believe that decisions to permit construction of such plants should be made at the State government level, rather than by a Federal agency. As a result, there now are movements to enact State laws and to set up State

  11. Nuclear Regulatory Commission's antitrust review process: an analysis of the impacts

    International Nuclear Information System (INIS)

    1981-06-01

    The Nuclear Regulatory Commission's (NRC) antitrust process is reviewed and its impacts to small systems and applicant systems are studied. This process takes the form of a description of the NRC's antitrust review process as implemented, a generic categorization of potential impacts and individual case-by-case studies of four different utilities

  12. Organization and practices on regulatory review in the licensing process of nuclear power plants in Spain

    International Nuclear Information System (INIS)

    Trueba, P.

    1979-01-01

    The actual organisation, practices and experience of the JEN Nuclear Safety Department on the regulatory review in the licensing process of nuclear power plants in Spain, are presented. Topics to be covered are: The structure, organisation, staff and principal functional areas of the NSD, the academic qualifications and work experience of the NSD personnel, recruiting and training, the conduct of the regulatory review during the licensing process and working procedures, the manpower and coverage of the different technical areas, the principal problems and conclusions. (author)

  13. Evaluation of regulatory processes affecting nuclear power plant early site approval and standardization

    International Nuclear Information System (INIS)

    1983-12-01

    This report presents the results of a survey and evaluation of existing federal, state and local regulatory considerations affecting siting approval of power plants in the United States. Those factors that may impede early site approval of nuclear power plants are identified, and findings related to the removal of these impediments and the general improvement of the approval process are presented. A brief evaluation of standardization of nuclear plant design is also presented

  14. Future nuclear regulatory challenges

    International Nuclear Information System (INIS)

    Royen, J.

    1998-01-01

    In December 1996, the NEA Committee on Nuclear Regulatory Activities concluded that changes resulting from economic deregulation and other recent developments affecting nuclear power programmes have consequences both for licensees and regulatory authorities. A number of potential problems and issues which will present a challenge to nuclear regulatory bodies over the next ten years have been identified in a report just released. (author)

  15. Improving nuclear regulatory effectiveness

    International Nuclear Information System (INIS)

    2001-01-01

    Ensuring that nuclear installations are operated and maintained in such a way that their impact on public health and safety is as low as reasonably practicable has been and will continue to be the cornerstone of nuclear regulation. In the past, nuclear incidents provided the main impetus for regulatory change. Today, economic factors, deregulation, technological advancements, government oversight and the general requirements for openness and accountability are leading regulatory bodies to review their effectiveness. In addition, seeking to enhance the present level of nuclear safety by continuously improving the effectiveness of regulatory bodies is seen as one of the ways to strengthen public confidence in the regulatory systems. This report covers the basic concepts underlying nuclear regulatory effectiveness, advances being made and future requirements. The intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  16. Nuclear Regulatory legislation

    International Nuclear Information System (INIS)

    1984-06-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 97th Congress, 2nd Session, has been prepared by the Office of the Executive Legal Director, U.S. Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document

  17. Conduct of regulatory review and assessment during the licensing process for nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Code of Practice on Governmental Organization for the Regulation of Nuclear Power Plants (IAEA Safety Series No. 50-C-G) and is concerned with the review and assessment by the regulatory body of all information submitted in support of licence applications, in the various phases of the licensing process. The purpose of the Guide is to provide information, recommendations and guidance for the conduct of these activities. The scope of the review and assessment will encompass the safety aspects of siting, construction, commissioning, operation and decommissioning of each nuclear power plant

  18. Improving regulatory effectiveness in federal/state siting actions: water supplies and the nuclear licensing process

    International Nuclear Information System (INIS)

    Davenport, F.S.

    1977-07-01

    The Interstate Conference on Water Problems (ICWP) is a national association of State, intrastate, and interstate officials concerned with water resources administration and related matters. The Conference was established in 1959 as an outgrowth of regional conferences on water problems as recognized in the same year by action of the General Assembly of the States. This report was produced by the Interstate Conference on Water Problems in an effort to provide a compilation and summary of the views of selected States regarding relationships of water supplies to the nuclear power plant licensing process. This publication does not represent the official position of the U.S Water Resources Council, or the U.S. Nuclear Regulatory Commission, nor does it represent the position of any single state or the ICWP

  19. The Canadian Nuclear Safety Commission regulatory process for decommissioning a uranium mining facility

    International Nuclear Information System (INIS)

    Scissons, K.; Schryer, D.M.; Goulden, W.; Natomagan, C.

    2002-01-01

    The Canadian Nuclear Safety Commission (CNSC) regulates uranium mining in Canada. The CNSC regulatory process requires that a licence applicant plan for and commit to future decommissioning before irrevocable decisions are made, and throughout the life of a uranium mine. These requirements include conceptual decommissioning plans and the provision of financial assurances to ensure the availability of funds for decommissioning activities. When an application for decommissioning is submitted to the CNSC, an environmental assessment is required prior to initiating the licensing process. A case study is presented for COGEMA Resources Inc. (COGEMA), who is entering the decommissioning phase with the CNSC for the Cluff Lake uranium mine. As part of the licensing process, CNSC multidisciplinary staff assesses the decommissioning plan, associated costs, and the environmental assessment. When the CNSC is satisfied that all of its requirements are met, a decommissioning licence may be issued. (author)

  20. Transparency of nuclear regulatory activities

    International Nuclear Information System (INIS)

    2007-01-01

    One of the main missions of nuclear regulators is to protect the public, and this cannot be completely achieved without public confidence. The more a regulatory process is transparent, the more such confidence will grow. Despite important cultural differences across countries, a number of common features characterise media and public expectations regarding any activity with an associated risk. A common understanding of transparency and main stakeholders' expectations in the field of nuclear safety were identified during this workshop, together with a number of conditions and practices aimed at improving the transparency of nuclear regulatory activities. These conditions and practices are described herein, and will be of particular interest to all those working in the nuclear regulatory field. Their implementation may, however, differ from one country to another depending on national context. (authors)

  1. Nuclear Regulatory Legislation

    International Nuclear Information System (INIS)

    1989-08-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 100th Congress, 2nd Session, has been prepared by the Office of the General Counsel, US Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document. Persons using this document are placed on notice that it may not be used as an authoritative citation in lieu of the primary legislative sources. Furthermore, while every effort has been made to ensure the completeness and accuracy of this material, neither the United States Government, the Nuclear Regulatory Commission, nor any of their employees makes any expressed or implied warranty or assumes liability for the accuracy or completeness of the material presented in this compilation

  2. Nuclear Regulatory Commission information digest

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  3. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    2005-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants at all times in an acceptably safe manner. In meeting this objective, the regulatory body should strive to ensure that its regulatory decisions are technically sound, consistent from case to case, and timely. In addition, the regulator must be aware that its decisions and the circumstances surrounding those decisions can affect how its stakeholders, such as government policy makers, the industry it regulates, and the public, view it as an effective and credible regulator. In order to maintain the confidence of those stakeholders, the regulator should make sure that its decisions are transparent, have a clear basis in law and regulations, and are seen by impartial observers to be fair to all parties. Based on the work of a Nuclear Energy Agency (NEA) expert group, this report discusses some of the basic principles and criteria that a regulatory body should consider in making decisions and describes the elements of an integrated framework for regulatory decision making. (author)

  4. The nuclear regulatory process in Canada experience and possible future direction

    International Nuclear Information System (INIS)

    Sainsbury, J.D.

    1987-01-01

    The underlying principle in the Canadian licensing process is that the licensee (owner/operatopr) bears the responsibility for safety while the regulatory authority sets safety objectives and audits their achievement. As a consequence, Canadian Regulatory Requirements emphasize numerical safety goals, and minimize specific design or operational rules. This paper traces the evolution of this approach, and indicates direction for the future. (author)

  5. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    Wieland, Patricia; Almeida, Ivan Pedro Salati de

    2011-01-01

    The scientific considerations upon which the nuclear regulations are based provide objective criteria for decisions on nuclear safety matters. However, the decisions that a regulatory agency takes go far beyond granting or not an operating license based on assessment of compliance. It may involve decisions about hiring experts or research, appeals, responses to other government agencies, international agreements, etc.. In all cases, top management of the regulatory agency should hear and decide the best balance between the benefits of regulatory action and undue risks and other associated impacts that may arise, including issues of credibility and reputation. The establishment of a decision framework based on well established principles and criteria ensures performance stability and consistency, preventing individual subjectivity. This article analyzes the challenges to the decision-making by regulatory agencies to ensure coherence and consistency in decisions, even in situations where there is uncertainty, lack of reliable information and even divergence of opinions among experts. The article explores the basic elements for a framework for regulatory decision-making. (author)

  6. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico; Establecimiento del marco regulador nuclear para el proceso de cierre de instalaciones nucleares en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  7. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    Blidaru, Valentin

    2008-01-01

    facilities; - Accident analyses; - Criticality calculations; - Licensing process for TRIGA research reactor; - Application of RESP code for CANDU type power reactors. The main tasks, objectives and methodologies applied by the Regulatory Authority are presented. The main nuclear facilities to which specific regulatory approaches are applied are: - Cernavoda Nuclear Power Plant Unit 1; - Cernavoda NPP Unit 2; - TRIGA Research reactor; - WWR-S research reactor (in conservation); - Specific installations related to the nuclear safety area of licensing, namely; - devices as C-2, C-5, C-6, by the TRIGA research reactor; - criticality aspects relating to transportation and storage of the fresh and spent fuels; - CANDU6 fuel plant; - dry storage facilities for spent fuel. The second half of the paper deals with specific aspects concerning the TRIGA research reactors. There are described the regulatory approaches and the licensing process, it is given a presentation of the configuration of the reactor, the operation of replacing the HEU fuel by LEU fuel, operation and applications of the reactor and finally specific aspects of the licensing process. These aspects concern the following issues: - reactivity accidents; - core interaction; - fuel temperature; prompt negative temperature coefficient. The regulatory approach for further licensing process deals with the following aspects: - nuclear safety documentation assessment for the reactor and each experimental device; - the operational licence to be issued for the whole nuclear unit; - technical nuclear safety documentation to be revised by the licensee and additional safety assessment to be performed for the reactor itself and also for the experimental devices in order to establish the concordance with the design changes (conversion to LEU from HEU fuel, 6 control rods in the reactor control system); - technical limits and conditions to be well established according to the tests conclusions or independent calculations and safety

  8. Nuclear Regulatory Commission Issuances

    International Nuclear Information System (INIS)

    1992-01-01

    This is the thirty-sixth volume of issuances (1-396) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from July 1, 1992-December 31, 1992. Atomic Safety and Licensing Boards are authorized by Section 191 of the Atomic Energy Act of 1954. These Boards, comprised of three members conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. Boards are drawn from the Atomic Safety and Licensing Board Panel, comprised of lawyers, nuclear physicists and engineers, environmentalists, chemists, and economists. The Atomic Energy Commission first established Licensing Boards in 1962 and the Panel in 1967

  9. Nuclear regulatory developments in Canada

    International Nuclear Information System (INIS)

    Binder, M.

    2012-01-01

    This paper from CNSC discusses nuclear regulatory developments in Canada. It starts with the Fukushima accident and the effect on the nuclear sector. It summarises what CNSC has done, what it has learned and their plans going forward. It has made recommendations to IAEA for international enhancements to regulatory procedures. It outline the activities of Canada's nuclear power plants, Canada's uranium projects, deep geological repository and waste management as well as nuclear research in Canada.

  10. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure: A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Wright, Troy L.; O'Brien, Patricia E.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Schlegel, Steven C.

    2010-01-01

    With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy's (DOE) Nuclear Material Protection, Control and Accounting (MPC and A) program to complete its transition of MPC and A responsibility to the Russian Federation, National Nuclear Security Administration (NNSA) management directed its MPC and A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC and A regulatory foundation. This paper describes the systematic process used by DOE's MPC and A Regulatory Development Project (RDP) to develop an effective and sustainable MPC and A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy 'Rosatom,' the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE's project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: (1) Define MPC and A Structural Elements; (2) Analyze the existing regulatory documents using the identified Structural Elements; (3) Validate the analysis with Russian colleagues and define the list of documents to be

  11. Nuclear energy - some regulatory aspects

    International Nuclear Information System (INIS)

    Jennekens, Jon.

    1980-03-01

    The nuclear industry is often perceived by the public as being uniquely hazardous. As a consequence, the demands placed upon a nuclear regulatory agency invariably include sorting out the valid from the invalid. As the public becomes better informed, more time should become available for regulating the industry. The Canadian nuclear safety philosophy relies upon fundamental principle and basic criteria which licensees must show they are meeting at all stages in the development of a nuclear facility. In reactors, the concept of defence in depth involves the use of well-qualified personnel, compliance with national and international engineering codes and standards, the separation of process and safety systems, frequent testing of safety systems, redundancy in monitoring, control and initiation systems, multiple barriers against fission product release, and strict enforcement of compliance measurements. The Atomic Energy Control Board is writing a set of licensing guides to cover the whole nuclear fuel cycle; however, these will not lead to the impsition of a 'design by regulation' approach in Canada. (LL)

  12. The regulatory process, nuclear safety research and the fuel cycle in the United Kingdom

    International Nuclear Information System (INIS)

    Watson, P.

    1996-01-01

    The main legislation governing the safety of nuclear installations in the United Kingdom is the Health and Safety at Work Act 1974 (HSWA) and the associated relevant statutory provisions of the Nuclear Installations Act 1965 (as amended). The HSWA sought to simplify and unify all industrial safety legislation and set in place the Health and Safety Commission (HSC) and its executive arm, the Health and Safety Executive (HSE). The Health and Safety Executive's Nuclear Safety Division (NSD) regulates the nuclear activities on such sites through HM Nuclear Installations Inspectorate (NII). Under the Nuclear Installations Act (NIA) no corporate body may use any site for the purpose of installing or operating any reactor, other than such a reactor comprised in a means of transport, or other prescribed installation unless the operator has been granted a nuclear site licence by the Health and Safety Executive. Nuclear fuel cycle facilities are examples of such prescribed installations. (J.P.N.)

  13. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  14. Creating a comprehensive, efficient, and sustainable nuclear regulatory structure. A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Davis, Gregory E.; Brownell, Lorilee; Wright, Troy L.; Tuttle, John D.; Cunningham, Mitchel E.; O'Brien, Patricia E.

    2006-01-01

    This paper describes the strategies and process used by the U.S. Department of Energy's (DOE) nuclear Material Protection, Control and Accounting (MPC and A) Regulatory Development Project (RDP) to restructure its support for MPC and A regulations in the Russian Federation. The RDP adopted a project management approach to defining, implementing, and managing an effective nuclear regulatory structure. This approach included defining and developing the regulatory documents necessary to provide the Russian Federation with a comprehensive regulatory structure that supports an effective and sustainable MPC and A Program in Russia. This effort began in February 2005, included a series of three multi-agency meetings in April, June, and July, and culminated in August 2005 in a mutually agreed-upon plan to define and populate the nuclear regulatory system in the Russian Federation for non-military, weapons-usable material. This nuclear regulatory system will address all non-military Category I and II nuclear material at the Russian Federal Atomic Energy Agency (Rosatom), the Russian Agency for Industry (Rosprom), and the Federal Agency for Marine and River Transport (FAMRT) facilities; nuclear material in transport and storage; and nuclear material under the oversight of the Federal Environmental, Industrial and Nuclear Supervisory Service of Russia (Rostechnadzor). The Russian and U.S. MPC and A management teams approved the plan, and the DOE National Nuclear Security Administration's (NNSA) NA-255, Office of Infrastructure and Sustainability (ONIS), is providing funding. The Regulatory Development Project is managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's (DOE) NNSA

  15. Nuclear Regulatory Commission issuances

    International Nuclear Information System (INIS)

    1996-03-01

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company's petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director's decision pertaining to the Yankee Nuclear Power Station

  16. Access to the decision-making process: opportunities for public involvement in the facility decommissioning process of the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Cameron, F.X.

    1996-01-01

    This paper discusses recent initiatives taken by the United States Nuclear Regulatory Commission NRC) to effectively involve the public in decommissioning decisions. Initiatives discussed include the Commission's rulemaking to establish the radiological criteria for decommissioning, as well as public involvement methods that have been used on a site-by-site basis. As un example of public involvement, the NRC is currently in the process of developing generic rules on the radiological criteria for the decontamination and decommissioning of NRC-licensed sites. Not only was this proposed rule developed through an extensive and novel approach for public involvement, but it also establishes the basic provisions that will govern public involvement in future NRC decisions on the decommissioning of individual sites. The aim is to provide the public with timely information about all phases of the NRC staff to express concerns and make recommendations. Th NRC recognizes the value and the necessity of effective public involvement in its regulatory activities and has initiated a number of changes to its regulatory program to accomplish this. From the NRC's perspective, it is much easier and less costly to incorporate these mechanisms for public involvement into the regulatory program early in the process, rather than try to add them after considerable public controversy on an action has already been generated. The historical antecedents for initiatives mentioned, as well as 'lessons learned' from prior experience are also discussed. (author)

  17. Nuclear Regulatory Commission 1989 Information Digest

    International Nuclear Information System (INIS)

    1989-03-01

    The Nuclear Regulatory Commission 1989 Information Digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the Commission. This is the first of an annual publication for the general use of the NRC staff and is available to the public. The Digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  18. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  19. Nuclear transport - The regulatory dimension

    International Nuclear Information System (INIS)

    Green, L.

    2002-01-01

    The benefits that the peaceful applications of nuclear energy have brought to society are due in no small part to industry's capacity to transport radioactive materials safely, efficiently and reliably. The nuclear transport industry has a vital role in realising a fundamental objective of the International Atomic Energy Agency (IAEA) as stated in its statute to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. The context in which transports currently take place is complex, and rapidly changing. In many respects transport is being viewed as an integral market issue and not a subsidiary concern. The availability of carriers drives routing decisions and changes in material flows necessitate new approaches to packaging and transport scenarios. Pressures on the transport sector are not without serious consequences; they can cause delays and in some cases cancellation of planned movements. Complex routings and the necessary use of chartered carriers can push up costs and work against cost efficiency. Since the events of 11 September 2001 the security of nuclear transports has contributed an added dimension to how transports take place. Transports of radioactive material have an outstanding safety record, indeed the transport of such materials could be regarded as a model for the transport of other classes of dangerous goods. This safety record is achieved by two inter-related factors. It is due primarily to well founded regulations developed by such key intergovernmental organisations as the IAEA, with the essential contributions of the member states who participate in the implementation of regulations and the review process. It is due also to the professionalism of those in the industry. There is a necessary synergy between the two - between the regulators whose task it is to make and to enforce the rules for safe, efficient and reliable transport and those whose job it is to transport within the rules. It

  20. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, Carole [CEA Marcoule - BP17171 - 30207 Bagnols-Sur-Ceze (France); Leroy, Christine [CEA Cadarache - 13108 Saint Paul-Lez-Durance (France)

    2013-07-01

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the production schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut

  1. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    International Nuclear Information System (INIS)

    Mahe, Carole; Leroy, Christine

    2013-01-01

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the production schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut

  2. Nuclear Regulatory Commission issuances

    International Nuclear Information System (INIS)

    1996-04-01

    This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors' Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services

  3. Nuclear Regulatory Commission issuances

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services.

  4. Categorization and selection of regulatory approaches for nuclear power plants

    International Nuclear Information System (INIS)

    Sugaya, Junko; Harayama, Yuko

    2009-01-01

    Several new regulatory approaches have been introduced to Japanese nuclear safety regulations, in which a prescriptive and deterministic approach had traditionally predominated. However, the options of regulatory approaches that can possibly be applied to nuclear safety regulations as well as the methodology for selecting the options are not systematically defined. In this study, various regulatory approaches for nuclear power plants are categorized as prescriptive or nonprescriptive, outcome-based or process-based, and deterministic or risk-informed. 18 options of regulatory approaches are conceptually developed and the conditions for selecting the appropriate regulatory approaches are identified. Current issues on nuclear regulations regarding responsibilities, transparency, consensus standards and regulatory inspections are examined from the viewpoints of regulatory approaches to verify usefulness of the categorization and selection concept of regulatory approaches. Finally, some of the challenges at the transitional phase of regulatory approaches are discussed. (author)

  5. Nuclear regulatory regime in Lithuania

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    The Law on Nuclear Energy establishes the legal basis for nuclear safety in the Republic of Lithuania. It assigns the responsibility for safety to the operating organization of a nuclear facility and outlines the tasks of the operator and the regulatory authority. According to this Law, the Nuclear Power Safety Inspectorate (VATESI) shall implement state regulation of nuclear safety. Standards and rules, guides and regulations of nuclear safety and radiation protection approved by the Government or by the institutions authorised. It is mandatory for all public and local authorities, enterprises, institutions, organisations, their associations, the officials and other persons whose activities are related to the operation of nuclear facilities, to the use and management of nuclear and radioactive materials therein. Safety guarantee in nuclear energy based on the requirements of the laws and regulations of the Republic of Lithuania, on the requirements of the international treaties to which the Republic of Lithuania is a party, also on the recommendations of the IAEA and other international organisations and authorities

  6. Regulatory framework for nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez Alcaniz, T.; Esteban Barriendos, M.

    1995-01-01

    As the framework of standards and requirements covering each phase of nuclear power plant project and operation developed, plant owners defined their licensing commitments (codes, rules and design requirements) during the project and construction phase before start-up and incorporated regulatory requirements imposed by the regulatory Body during the licensing process prior to operation. This produces a regulatory framework for operating a plant. It includes the Licensing Basis, which is the starting point for analyzing and incorporating new requirements, and for re-evaluation of existing ones. This presentation focuses on the problems of applying this regulatory framework to new operating activities, in particular to new projects, analyzing new requirements, and reconsidering existing ones. Clearly establishing a plant's licensing basis allows all organizations involved in plant operation to apply the requirements in a more rational way. (Author)

  7. A completely new design and regulatory process - A risk-based approach for new nuclear power plants. Annex 17

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2002-01-01

    In the de-regulated electric power market place that is developing in the USA, competition from alternative electric power sources has provided significant downward pressure on the costs of new construction projects. Studies by the Electric Power Research Institute have shown that, in the USA, the capital cost of new nuclear plants must be decreased by at least 35% to 40% relative to the cost of Advanced Light Water Reactors designed in the early 1990s in order to be competitive with capital costs of gas-fired electric power plants. The underlying reasons for the high capital costs estimated for some nuclear plants are (1) long construction times, (2) the high level of 'defense-in-depth' or safety margin, included throughout the design and licensing process, and (3) the use of out-dated design methods and information. Probabilistic Safety Assessments are being used to develop a more accurate assessment of real plant risk and to provide relief if it can be demonstrated that plant equipment is not providing a significant contribution to plant safety. Westinghouse addressed some of these cost drivers in the development of the AP-600 passive plant design. However, because of relatively inexpensive natural gas plant alternative, we need to reduce the costs even further. Therefore, the AP-600 design is now being up-rated to a 1000 MWe design, AP-1000. The development of AP1000 is described in another paper being presented at this meeting. Westinghouse is also managing a project, sponsored by the US Department of Energy, which is aimed at developing an all-new 'risk-based' approach to design and regulation. Methodologies being developed use risk-based information to the extent practical and 'defense-in-depth' only when necessary to address uncertainties in models and equipment performance. Early results, summarized in this paper, include (1) the initial framework for a new design and regulatory process and (2) a sample design analysis which shows that the Emergency Core

  8. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  9. Upgrading nuclear regulatory infrastructure in Armenia

    International Nuclear Information System (INIS)

    Martirosyan, A.; Amirjanyan, A.; Kacenelenbogen, S.

    2010-01-01

    Armenia is contemplating an upgrade to its national power generation capacity to meet replacement and future energy needs. Unit 2 of ANPP is scheduled for shutdown after replacement power generation capacities are in place. A recent alternative energy study indicates viability of the nuclear option to replace this capacity. Some technology-specific proposals are being considered by the Ministry of Energy of Armenia. It is likely that the reactor technology decision will be made in the not too distant future. The existing reactor continues to be operated in the regulatory framework developed in the Soviet Union and adopted in Armenia. Given the interest in the new reactor, Armenia launched a project to review the existing system of regulation and to bring it into harmony with modern practice in preparation for the new reactor project development. The new regulatory framework will be needed as a basis for any potential tendering process. The US NRC and ANRA have agreed to perform a review and update nuclear legislation and the system of regulation in this area. The first step in this process was to develop an action plan for such program. The action plan describes the overall strategy of ANRA to modify existing or develop new processes and requirements, identifies the major Laws that need to be reviewed given practical legal considerations to construct and operate the reactor and Armenia's international obligations under various conventions. This work included review of existing models of regulation in different countries with 'small' nuclear program, including IAEA recommendations as well as existing legislation in Armenia in this area and development of a strategy for the regulatory model development. In addition, the plan to develop requirements for ANRA staffing and training needs to meet its regulatory obligations under the new reactor development process was developed

  10. Regulatory inspection of nuclear facilities and enforcement by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on the inspection of nuclear facilities, regulatory enforcement and related matters. The objective is to provide the regulatory body with a high level of confidence that operators have the processes in place to ensure compliance and that they do comply with legal requirements, including meeting the safety objectives and requirements of the regulatory body. However, in the event of non-compliance, the regulatory body should take appropriate enforcement action. This Safety Guide covers regulatory inspection and enforcement in relation to nuclear facilities such as: enrichment and fuel manufacturing plants; nuclear power plants; other reactors such as research reactors and critical assemblies; spent fuel reprocessing plants; and facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Section 2 sets out the objectives of regulatory inspection and enforcement. Section 3 covers the management of regulatory inspections. Section 4 covers the performance of regulatory inspections, including internal guidance, planning and preparation, methods of inspection and reports of inspections. Section 5 deals with regulatory enforcement actions. Section 6 covers the assessment of regulatory inspections and enforcement activities. The Appendix provides further details on inspection areas for nuclear facilities

  11. Regulatory regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    Main elements of nuclear regulatory regime in general is presented. These elements are: national rules and safety regulations, system of nuclear facility licensing, activities of regulatory body. Regulatory body is needed to specify the national safety regulations, review and assess the safety documentation presented to support license application, make inspections to verify fulfilment of safety regulations and license conditions, monitor the quality of work processes of user organization, and to assess whether these processes provide a high safety level, promote high safety culture, promote maintenance and development of national infrastructure relevant to nuclear safety, etc

  12. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    International Nuclear Information System (INIS)

    2009-03-01

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  13. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  14. Nuclear Regulatory Infrastructure in the Philippines

    International Nuclear Information System (INIS)

    Leonin, Teofilo V. Jr.

    2015-01-01

    Regulating the use of radioactive materials in the Philippines involves the adherence to legislation, regulations, standards and regulatory guides. It is based on a detailed review and assessment of the radiation safety program of owners and users of these materials and associated equipment against safety requirements and on additional verification of the operating practices and procedures. Republic Acts 5207 and 2067, both as amended, are implemented through the regulations which are titled Code of PNRI Regulations or CPRs are developed and issued together with supporting regulatory guides, Bulletins and other documents detailing the safety requirements. These issuance adhere to internationally accepted requirements on radiation protection, and nuclear safety and security, as well as safeguards. Design documents and technical Specifications of important radioactive materials, equipment and components are required to be submitted and reviewed by the PNRI before the issuance of an authorization in the form of a license Verification of adherence to regulations and safety requirements are periodically checked through the implementation of an inspection and enforcement program. The ISO certified regulatory management system of PNRI is documented in a QMS manual that provides guidance on all work processes. It involves systematic planning and evaluation of activities, multiple means of getting feedback on the work processes, and continuous efforts to improve its effectiveness. Efforts are implemented in order to strengthen the transparency openness, independence, technical competence and effectiveness of the regulatory body. (author)

  15. Regulatory aspects for nuclear and radiation applications

    International Nuclear Information System (INIS)

    Duraisamy, S.

    2014-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB was constituted on November 15, 1983 and derives its regulatory power from the rules and notifications promulgated under the Atomic Energy Act, 1962 and the Environment (Protection) Act, 1986. AERB is provided with the necessary powers and mandate to frame safety policies, lay down safety standards and requirements for monitoring and enforcing the safety provisions. AERB follows multi-tier system for its review and assessment, safety monitoring, surveillance and enforcement. While regulating various nuclear and radiation facilities, AERB adopts a graded approach taking into account the hazard potential associated with the facilities being regulated. The regulatory process has been continuous evolving to cater to the new developments in reactor and radiation technologies. The regulatory effectiveness and efficiency of AERB have grown over the last three decades to make it into a robust organization. The radiation protection infrastructure in the country is on a sound footing and is constantly being strengthened based on experience and continued research and development. As one of its mandates AERB prescribes radiation dose limits for the occupational workers and the public, in line with the IAEA Safety Standard and ICRP recommendations. The current dose limits and the radiation safety requirements are more stringent than past. To meet the current safety standards, it is important for the facilities to have state of art radiation monitoring system and programme in place. While recognizing the current system in place, this presentation also highlights certain key radiation protection challenges associated with the implementation of radiation protection standards in the nuclear and radiation facilities especially in the areas of

  16. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Science.gov (United States)

    2010-03-10

    ... the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission March 2, 2010. The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold...

  17. Nuclear regulatory communication with the public: 10 years of progress

    International Nuclear Information System (INIS)

    Gauvain, J.; Jorle, A.; Chanial, L.

    2008-01-01

    The NEA has an acknowledged role to assist its member countries in maintaining and developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy. In this context, the NEA Committee on Nuclear Regulatory Activities (CNRA) provides a forum for senior representatives from nuclear regulatory bodies to exchange information and experience on nuclear regulatory policies and practices in NEA member countries and to review developments which could affect regulatory requirements. Public confidence in government and in risk management structures is important to all developed countries with an open society. The use of nuclear power in a democracy is built upon a certain trust in the political system and the national authorities. To foster and maintain such trust in a period of greater public scrutiny of nuclear activities, a number of nuclear regulatory organisations (NROs) initiated various processes to pro-actively inform the public about their supervision and control of nuclear activities, or when appropriate to involve the public in decision making. In 1998 the question was raised within the CNRA of whether public trust in the regulator might be very different from one country to another, and an activity was started among member countries to exchange experience and best practices and to learn lessons about NRO communication with their publics. Three workshops were organised by the NEA, and a Working Group on Public Communication of Nuclear Regulatory Organisations was set up in 2001. The activities and findings are summarised below. (author)

  18. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2009-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  19. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2008-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  20. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  1. Safeguards inventory and process monitoring regulatory comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cavaluzzi, Jack M. [Texas A & M Univ., College Station, TX (United States); Gibbs, Philip W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-06-27

    Detecting the theft or diversion of the relatively small amount of fissile material needed to make a nuclear weapon given the normal operating capacity of many of today’s running nuclear production facilities is a difficult task. As throughput increases, the ability of the Material Control and Accountability (MC&A) Program to detect the material loss decreases because the statistical measurement uncertainty also increases. The challenge faced is the ability of current accounting, measurement, and material control programs to detect small yet significant losses under some regulatory approaches can decrease to the point where it is extremely low if not practically non-existent at normal operating capacities. Adding concern to this topic is that there are variations among regulatory bodies as far as what is considered a Significant Quantity (SQ). Some research suggests that thresholds should be lower than those found in any current regulation which if adopted would make meeting detection goals even more difficult. This paper reviews and compares the current regulatory requirements for the MA elements related to physical inventory, uncertainty of the Inventory Difference (ID), and Process Monitoring (PM) in the United States Department of Energy (DOE) and Nuclear Regulatory Commission (NRC), Rosatom of the Russian Federation and the Chinese Atomic Energy Agency (CAEA) of China. The comparison looks at how the regulatory requirements for the implementation of various MA elements perform across a range of operating capacities in example facilities.

  2. Nuclear Regulatory Commission: more aggressive leadership needed

    International Nuclear Information System (INIS)

    Staats, E.B.

    1980-01-01

    The Energy Reorganization Act of 1974 which established the Nuclear Regulatory Commission required GAO to evaluate the Commission's performance by January 18, 1980. This report responds to that requirement. GAO concluded that, although improvements have been made, the Commission's nuclear regulatory performance can be characterized best as slow, indecisive, cautious - in a word, complacent. This has largely resulted from a lack of aggressive leadership as evidenced by the Commissioners' failure to establish regulatory goals, control policymaking, and most importantly, clearly define their roles in nuclear regulation

  3. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  4. Annual Report 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2010. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  5. Annual Report 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2011. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  6. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    International Nuclear Information System (INIS)

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository

  7. Nuclear Regulatory Commission Issuances, November 1980

    International Nuclear Information System (INIS)

    1980-11-01

    Contents: Issuances of the Nuclear Regulatory Commission; Issuances of the Atomic Safety and Licensing Appeal Boards; Issuances of the Atomic Safety and Licensing Boards; and Issuances of the Directors Denial

  8. Nuclear Regulatory Commission Issuances, December 1980

    International Nuclear Information System (INIS)

    1980-12-01

    Contents: Issuances of the Nuclear Regulatory Commission; Issuances of the Atomic Safety and Licensing Appeal Boards; Issuances of the Atomic Safety and Licensing Boards; and Issuances of the Directors Denial

  9. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  10. Diagnosis of the Brazilian Nuclear Regulatory body

    International Nuclear Information System (INIS)

    Santos Gomes, Rogerio dos; Magalhaes Ennes Ennes, Edson Carlos

    2008-01-01

    This work has the objective to present the diagnosis of the existing structure in the Brazilian Government to ensure the radioprotection and nuclear safety in the country, being compared the current situation with the conclusions presented in another studies, carried through in last 30 years, with special attention in the existence of the necessary available to support and independence of the national regulatory body for the development of the regulatory inspections activities in the radioprotection and nuclear safety. (author)

  11. Stakeholder involvement activities in Slovakia. NRA's Commitment to Transparent Regulatory Process. Stakeholder Involvement in the French Regulatory Process - From Public Information to Public Participation. Stakeholder involvement in nuclear decision making in the Russian Federation

    International Nuclear Information System (INIS)

    Ziakova, Marta Chairperson; Nuclear Regulatory Authority of the Slovak Republic; Nuclear Regulation Authority - NRA; Ferapontov, Alexey

    2017-01-01

    Session 2 focused on the regulatory perspectives related to stakeholder involvement in the regulatory decision-making process. Presentations provided the audience with information regarding the international and national legal framework implemented in the Slovak Republic, in France, in Japan and in Russia. Examples of stakeholder involvement, as well as some tools used for this purpose, were presented and discussed. The value of consistency and complementarity between international and national requirements was highlighted. Presentations and discussion confirmed the very close tie between the way the stakeholder involvement process is conducted and the public confidence and perception of reliability the regulatory body may gain, or lose. The four presentations confirmed that stakeholder involvement is a key challenge for maintaining regulatory body credibility, independence and legitimacy. All countries confirmed their commitment to trying to make their stakeholder involvement processes as open, visible, transparent and comprehensive as possible. Involvement represents a long and permanent process which requires investment of time, human resources and money, as well as the ability to reach out, to listen, to share, and to take input into account, while keeping in view the goal of delivering decisions that are as rational and objective as possible. Involving stakeholders is more than informing or communicating. The earlier the stakeholders are involved in the decision-making process, the greater the chance of success. If losing credibility is easy, all regulatory bodies agreed on the long process needed to recover it

  12. Nuclear Regulatory Commission Information Digest 1992 edition

    International Nuclear Information System (INIS)

    Olive, K.

    1992-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. This digest is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and industry it regulates. In general, the data cover 1975 through 1991, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed

  13. 78 FR 44165 - Nuclear Regulatory Commission Enforcement Policy

    Science.gov (United States)

    2013-07-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0159] Nuclear Regulatory Commission Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Enforcement policy; request for comment. SUMMARY: The U.S... Policy. In SRM-SECY-12-0047, ``Revisions to the Nuclear Regulatory Commission Enforcement Policy,'' dated...

  14. Annual Report 2013. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across seven parts and eight annexes the activities developed by the organism during 2013. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication has annexes with the following content: regulatory documents; inspections to medical; presentations of publications from ARN staff; measurement and evaluation of the drinking water of Ezeiza; international expert report on the implementation of international standards on radiation protection in the Ezeiza Atomic Center; Code of Ethics of the Nuclear Regulatory Authority.

  15. US Nuclear Regulatory Commission 1983 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The thirteen chapters of this annual report are titled: 1983 highlights/1984 planning; reactor regulation; cleanup at TMI-2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement and emergency preparedness; cooperation with the states; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  16. U.S. Nuclear Regulatory Commission natural analogue research program

    International Nuclear Information System (INIS)

    Kovach, L.A.; Ott, W.R.

    1995-01-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process

  17. Regulatory practices for nuclear power plants in India

    International Nuclear Information System (INIS)

    Bajaj, S.S.

    2013-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB is responsible for the stipulation and enforcement of rules and regulations pertaining to nuclear and radiological safety. This paper describes the regulatory process followed by AERB for ensuring the safety of nuclear power plants (NPPs) during their construction as well as operation. This regulatory process has been continuously evolving to cater to the new developments in reactor technology. Some of the recent initiatives taken by AERB in this direction are briefly described. Today, AERB faces new challenges like simultaneous review of a large number of new projects of diverse designs, a fast growing nuclear power program and functioning of operating plants in a competitive environment. This paper delineates how AERB is gearing up to meet these challenges in an effective manner. (author)

  18. Papers on the nuclear regulatory dilemma

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Freeman, S.D.; Weinberg, A.M.

    1985-10-01

    The four papers contained in this report are titled: (1) From Prescriptive to Performance-Based Regulation of Nuclear Power; (2) Nuclear Regulatory Reform: A Technology-Forcing Approach; (3) Improving the Regulation of Nuclear Power; and (4) Science and Its Limits: The Regulators' Dilemma. These four papers investigate issues relating to the long-term regulation of nuclear energy. They were prepared as part of the Institute for Energy Analysis' project on Nuclear Regulation funded by a grant from the Mellon Foundation and a smaller grant by the MacArthur Foundation. Originally this work was to be supplemented by contributions from the Nuclear Regulatory Commission and from the Department of Energy. These contributions were not forthcoming, and as a result the scope of our investigations was more restricted than we had originally planned

  19. Papers on the nuclear regulatory dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, J.N.; Freeman, S.D.; Weinberg, A.M.

    1985-10-01

    The four papers contained in this report are titled: (1) From Prescriptive to Performance-Based Regulation of Nuclear Power; (2) Nuclear Regulatory Reform: A Technology-Forcing Approach; (3) Improving the Regulation of Nuclear Power; and (4) Science and Its Limits: The Regulators' Dilemma. These four papers investigate issues relating to the long-term regulation of nuclear energy. They were prepared as part of the Institute for Energy Analysis' project on Nuclear Regulation funded by a grant from the Mellon Foundation and a smaller grant by the MacArthur Foundation. Originally this work was to be supplemented by contributions from the Nuclear Regulatory Commission and from the Department of Energy. These contributions were not forthcoming, and as a result the scope of our investigations was more restricted than we had originally planned.

  20. Nuclear regulatory review of licensee self-assessment (LSA)

    International Nuclear Information System (INIS)

    2003-01-01

    Licensee self-assessment (LSA) by nuclear power plant operators is described as all the activities that a licensee performs in order to identify opportunities for improvements. An LSA is part of an organisation's holistic management system, which must include other process elements. Particularly important elements are: a process for choosing which identified potential improvements should be implemented and a process of project management for implementing the improvements chosen. Nuclear regulators expect the licensee to run an effective LSA programme, which reflects the licensee's 'priority to safety'. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of the current regulatory philosophy on and approaches to LSA as performed by licensees. The publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  1. Regulatory issues in the maintenance of Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Castro, E.; Caruso, G.

    1997-01-01

    The influence of maintenance activities upon nuclear safety and their relevance as means to detect and prevent aging make them play an outstanding role among the fields of interest of the Argentine nuclear regulatory body (ENREN). Such interest is reinforced by the fact that the data obtained during maintenance are used - among other - as inputs in the Probabilistic Safety Analyses required for those nuclear power plants. This paper provides a brief description of the original requirements by the regulatory body concerning maintenance, of the factors that led to review the criteria involved in such requirements and of the key items identified during the reviewing process. The latter shall be taken into account in the maintenance regulatory policy, for the consequent issue of new requirements from the utilities and for the eventual publication of a specific regulatory standard. (author)

  2. Nuclear Regulatory Commission issuances, March 1975

    International Nuclear Information System (INIS)

    1975-04-01

    Reactor licensing actions taken by the Nuclear Regulatory Commission, the Atomic Safety and Licensing Appeal Board and the Atomic Safety and Licensing Boards for March 1975 are presented. Action was included for the following reactors: Big Rock Point Nuclear Plant; West Valley Reprocessing Plant; Limerick Generating Station, Units 1 and 2; Midland Plants, Units 1 and 2; Wolf Creek Generating Station, Unit 1; Monticello Nuclear Generating Plant, Unit 1; Douglas Point Nuclear Generating Station, Units 1 and 2; Seabrook Station, Units 1 and 2; Vermont Yankee Nuclear Power Station; and WPPSS Hanford Units 1 and 4. (U.S.)

  3. Nuclear Regulatory Commission: 1981 annual report

    International Nuclear Information System (INIS)

    1981-01-01

    This seventh annual report of the US Nuclear Regulatory Commission covers major actions, events and planning that occurred during fiscal year 1981, with some coverage of later events, where appropriate. Chapters of the report address the agency's various functions or areas of activity: regulating nuclear power plants; evaluating reactor operating experience; licensing nuclear materials and their transportation; safeguarding nuclear plants and materials; managing nuclear wastes; inspection and enforcement; cooperation with state governments; international activities; research and standards development; hearings; decisions and litigation; and administrative and public communications matters. Each chapter presents a detailed review of program accomplishments during the report period, fiscal year 1981

  4. Strengthening Regulatory Competence in a Changing Nuclear Regulatory Environment

    International Nuclear Information System (INIS)

    Illizastigui, P.F.

    2016-01-01

    The paper addresses the approach followed by the Cuban National Center for Nuclear Safety for the management of current and new competences of its regulatory staff with the aim of allowing those staff to effectively fulfill their core regulatory functions. The approach is realized through an Integrated System for Competence Building, which is based on the IAEA recommendations, shown to be effective in ensuring the necessary competence in the relevant areas. In the author’s opinion, competence of the regulatory staff in the area of human and organizational factors is of paramount importance and needs to be further strengthened in order to be able to assess safety performance at the facilities and detect early signs of deteriorating safety performance. The former is defined by the author as the core regulatory function “Analysis” which covers the entire spectrum of assessment tasks carried out by the regulatory staff to: a) detect declining safety performance, b) diagnose latent weaknesses (root causes) and c) make effective safety culture interventions. The author suggests that competence associated with the fulfillment of the analysis function is distinctly identified and dealt with separately in the current system of managing regulatory competence. (author)

  5. Nuclear Regulatory Commission Information Digest: 1993 edition

    International Nuclear Information System (INIS)

    1993-03-01

    The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the U.S. Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. The digest, published annually, is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1992, with exceptions noted. Information on generating capacity and average capacity factor for operating U.S. commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed. Comments and/or suggestions on the data presented are welcomed and should be directed to Karen Olive, United States Nuclear Regulatory Commission, Office of the Controller, Division of Budget and Analysis, Washington, D.C. 20555. For detailed and complete information about tables and figures, refer to the source publications

  6. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    facilities is examined using the employees' individual doses, the collective doses, and the results of emission and environmental radiation control. Summaries are also included for the regulation of the storage of spent nuclear fuel and the processing and storage of reactor waste. For the Olkiluoto 3 plant unit currently under construction, the report includes descriptions of the regulation of design, construction, manufacturing, installation and implementation preparations, as well as regulation of the operations of organisations participating in the construction project. The nuclear safety indicator system is used to examine the efficiency and effects of the regulatory activities targeted at nuclear power plants. Appendices to the report include detailed data and conclusions related to the indicators (Appendix 1) and any significant operational events (Appendix 3). The chapter concerning the regulation of the final disposal project for spent nuclear fuel describes the preparations for the final disposal project and the related regulatory activities. In addition, the oversight of the design and construction of the research facilities (Onkalo) under construction in Olkiluoto, as well as the assessment and oversight of the research, development and design work being carried out to further specify the safety case for final disposal are included in the report. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. Oversight of the nuclear test ban is also covered by the report. In addition to actual safety regulation, the report describes the enforcement of the regulatory oversight of nuclear facilities, regulatory indicators and the development of regulation, as well as safety research, emergency preparedness, communications and STUK's participation in international nuclear safety

  7. Nuclear Regulatory Commission Information Digest, 1991 edition

    International Nuclear Information System (INIS)

    Olive, K.L.

    1991-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs

  8. Regulatory aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Caoui, A.

    1988-01-01

    The legislative systems used in different countries insist on requiring the license of the nuclear installations exploitation and on providing a nuclear safety report. For obtaining this license, the operators have to consider all situations of functioning (normal, incidental and accidental) to make workers and the public secure. The licensing procedures depend on the juridical and administrative systems of the country. Usually, protection of people against ionzing radiation is the responsibility of the ministry of health and the ministry of industry. In general, the regulations avoid to fix a definite technical standards by reason of technological development. An emergency plan is normally designed in the stage of the installation project planification. This plan contains the instructions and advices to give to populations in case of accident. The main lesson learnt from the nuclear accidents that happened is to enlarge the international cooperation in the nuclear safety field. 4 refs. (author)

  9. Communication planning by the nuclear regulatory body

    International Nuclear Information System (INIS)

    2002-01-01

    The national regulatory body, whose primary mission is to exercise regulatory control over nuclear facilities and the use of radiation sources, but not to promote their use, may be the most credible source of neutral, balanced and accurate information about issues relating to nuclear and radiation safety. It is therefore important for a regulatory body to establish and exercise an effective communication programme to acquaint the public with its oversight functions, capabilities and effectiveness. If the regulatory body is to maintain credibility and to deal promptly and effectively with nuclear or radiological accidents and any other events that may give rise to significant public concerns, and is to communicate clearly and effectively with the public, it must have adequate resources, including experts in nuclear safety. And if maintaining public confidence in the authorities and avoiding unnecessary concerns are among its principal objectives, it must be able to communicate understandably and truthfully about the known extent of any accident, the actions taken in response to it and its implications. In the past, psychological effects as a result of certain severe nuclear and radiological accidents have been compounded by a lack of candour with the public on the part of the authorities and an absence of an appropriate programme of public information. This publication describes good practices and gives practical examples of how the regulatory body can establish a systematic and structured programme for enhancing effective communication with various parties and under various circumstances. The report presupposes an adequate national infrastructure, including an independent regulatory body with sufficient authority and resources to discharge its responsibilities for the regulation of safety. This Safety Report covers the elements of a regulatory body's programme for communication with various audiences and under the different circumstances that may be encountered

  10. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  11. The Romanian nuclear regulatory body as a nuclear communicator

    International Nuclear Information System (INIS)

    Cluculescu, Cristina

    2000-01-01

    A comprehensive nuclear law environment could be a relevant tool to promote greater confidence in the nuclear energy. Romania has had laws in place governing the regulation of nuclear activities since 1974, which remained in force throughout and subsequent to the national constitutional changes. Up to December 1996, the CNCAN activities were based on Law No. 61/1974 for the development of the nuclear activities in Romania and Law No. 61982 on the quality assurance of the nuclear facilities and nuclear power plants. The Nuclear Safety legislation has been enacted in November 1974 (Law No. 61/1974) and it followed as closely as possible (for that time) the US Atomic Energy Act of 1954, as amended subsequently. The Romanian nuclear regulatory body, called National Commission for Nuclear Activities Control (CNCAN) is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and for the licensing of nuclear facilities. An important issue of CNCAN is to provide the correct and reasoning information to the public. The most important topics focused on nuclear activities for the interest of mass media in Romania are: Radioactive waste management; The cost and benefit of nuclear energy compared by conventional energy; The conditions for transportation of radioactive materials; The consequences of a suppositional nuclear accidents; The safety in operation for nuclear installations. The information provided to press and public by regulatory body is clearly and well structured. The target is to clearly explain to mass media and the public should understand very well the difference between the meaning of a nuclear accident, nuclear incident or nuclear event. CNCAN monitories and surveys the operation in safe conditions the nuclear facilities and plants, the protection against nuclear radiation of the professionally exposed personnel, of the population, of the environment and the material goods. It is also

  12. Transfer of Canadian nuclear regulatory technology

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1985-10-01

    This paper discusses the Canadian approach to the regulation of nuclear power reactors, and its possible application to CANDU reactors in other countries. It describes the programs which are in place to transfer information on licensing matters to egulatory agencies in other countries, and to offer training on nuclear safety regulation as it is practised in Canada. Experience to date in the transfer of regulatory technology is discussed. 5 refs

  13. Technical Memory 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The technical memory 2010 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety presented in journals, technical reports, congress or meetings of these subjects by the ARN personnel during 2010. In this edition the documents are presented on: environmental protection; safety transport of radioactive materials; regulations; licensing of medical installations; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; radioactive waste management [es

  14. Nuclear Regulatory Authority Act, 2015 (Act 895)

    International Nuclear Information System (INIS)

    2015-04-01

    An Act to establish a Nuclear Regulatory Authority in Ghana. This Act provides for the regulation and management of activities and practices for the peaceful use of nuclear material or energy, and to provide for the protection of persons and the environment against the harmful effects of radiation; and to ensure the effective implementation of the country’s international obligations and for related matters. This Act replaced the Radiation Protection Instrument, of 1993 (LI 1559).

  15. Technical Memory 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The technical memory 2011 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety presented in journals, technical reports, congress or meetings of these subjects by the ARN personnel during 2011. In this edition the documents are presented on: environmental protection; safety transport of radioactive materials; regulations; licensing of medical installations; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; radioactive waste management [es

  16. Activities relating to PSA in the regulatory process

    International Nuclear Information System (INIS)

    Campbell, J.F.; Grint, G.C.

    1994-01-01

    In addition to the IAEA activities concerning the use of PSA in the regulatory process there are two other international initiatives in this area by the European Commission and the OECD's Committee for Nuclear Regulatory Authorities (CRNA). The paper gives a brief outline of these activities as well as introducing an update on the regulatory use of PSA in the UK. 3 refs, 3 tabs

  17. The Safety Culture of an Effective Nuclear Regulatory Body

    International Nuclear Information System (INIS)

    Carlsson, Lennart; Bernard, Benoit; Lojk, Robert; Koskinen, Kaisa; Rigail, Anne-Cecile; Stoppa, Gisela; Lorand, Ferenc; Aoki, Masahiro; Fujita, Kenichi; Takada, Hiroko; Kurasaki, Takaaki; Choi, Young Sung; Smit, Martin; Bogdanova, Tatiana; Sapozhnikov, Alexander; Smetnik, Alexander; Cid Campo, Rafael; Axelsson, Lars; Carlsson, Lennart; Edland, Anne; Ryser, Cornelia; Cohen, Miriam; Ficks, Ben; Valentin, Andrea; Nicic, Adriana; Lorin, Aurelie; Nezuka, Takayoshi; Creswell, Len

    2016-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that activities related to the peaceful use of nuclear energy are carried out in a safe manner within their respective countries. In order to effectively achieve this objective, the nuclear regulatory body requires specific characteristics, one of which is a healthy safety culture. This regulatory guidance report describes five principles that support the safety culture of an effective nuclear regulatory body. These principles concern leadership for safety, individual responsibility and accountability, co-operation and open communication, a holistic approach, and continuous improvement, learning and self-assessment. The report also addresses some of the challenges to a regulatory body's safety culture that must be recognised, understood and overcome. It provides a unique resource to countries with existing, mature regulators and can be used for benchmarking as well as for training and developing staff. It will also be useful for new entrant countries in the process of developing and maintaining an effective nuclear safety regulator. (authors)

  18. Nuclear Regulatory Commission Issuances, September 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Contents include: Issuances of the Nuclear Regulatory Commission--Commonwealth Edison Company (Dresden Nuclear Power Station, Unit 1), Consolidated Edison Company of New York (Indian Point, Unit 2), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit 1), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Power Authority of the State of New York (Indian Point, Unit 3), Texas Utilities Generating Company, et al. (Comanche Peak Steam Electric Station, Units 1 and 2); Issuances of Atomic Safety and Licensing Appeal Boards--Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Philadelphia Electric Company, et al. (Peach Bottom Atomic Power Statin, Units 2 and 3), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Statin, Unit No. 2), Public Service Electric and Gas Company (Hope Creek Generating Station, Units 1 and 2), The Toledo Edison Company, et al. (Davis-Besse Nuclear Power Station, Units 2 and 3); Issuances of the Atomic Safety Licensing Boards--Cleveland Electric Illuminating Company, et al. (Perry Nuclear Power Plant, Units 1 and 2), Commonwealth Edison Company (Dresden Station, Units 2 and 3), Houston Lighting and Power Company (Allens Creek Nuclear Generating Station, Unit 1), Southern California Edison Company, et al. (San Onofre Nuclear Generating Station, Units 2 and 3), Texas Utilities Generating Company, et al. (Comanche Peak Steam Electric Station, Units 1 and 2), Texas Utilities Generating Company, et al

  19. Nuclear regulatory legislation: 102d Congress

    International Nuclear Information System (INIS)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  20. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  1. Nuclear regulatory legislation, 102d Congress

    International Nuclear Information System (INIS)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  2. Nuclear regulatory legislation, 101st Congress

    International Nuclear Information System (INIS)

    1991-06-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 101st Congress, 2nd Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended: Energy Reorganization Act of 1974, as amended; Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statues and treaties on export licensing, nuclear non-proliferation, and environmental protection

  3. Technical Memory 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The technical memory 2008 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety, and presented in journals, technical reports, congress or meetings of these specialties by personnel of the mentioned institution during 2008. In this edition the documents are presented on: environmental protection; transport of radioactive materials; regulations; research reactors and nuclear power plants; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; physical dosimetry; knowledge management; radioactive waste management. [es

  4. Quality manual. Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    2006-03-01

    This quality manual of the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. Basic characteristics of the UJD, Quality manual operative control, and Quality management system (QMS) are described. Management responsibility, Processes realization, Measurement, analysis (assessment) and improvement of the quality management system, Cancellation provision as well as abbreviations used in the Quality Manual are presented.

  5. Federal/State cooperation in the licensing of a nuclear power project. A joint licensing process between the US Nuclear Regulatory Commission and the Washington State Energy Facility Site Evaluation Council

    International Nuclear Information System (INIS)

    1984-05-01

    This report summarizes and documents a joint environmental review and licensing process established between the US Nuclear Regulatory Commission (NRC) and the Washington State Energy Facility Site Evaluation Council (EFSEC) in 1980-1983 for the Skagit/Hanford Nuclear Project (S/HNP). It documents the agreements made between the agencies to prepare a joint environmental impact statement responsive to the requirements of the National Environmental Policy Act of 1969 (NEPA) and the Washington State Environmental Policy Act. These agreements also established protocol to conduct joint public evidentiary hearings on matters of mutual jurisdiction, thereby reducing the duplication of effort and increasing the efficiency of the use of resources of federal and state governments and other entities involved in the process. This report may provide guidance and rationale to licensing bodies that may wish to adopt some of the procedures discussed in the report in the event that they become involved in the licensing of a nuclear power plant project. The history of the S/HNP and of the agreement processes are discussed. Discussions are provided on implementing the joint review process. A separate section is included which presents independent evaluations of the process by the applicant, NRC, and EFSEC

  6. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. DOE responses to comments from U.S. Nuclear Regulatory Commission and Colorado Department of Public Health and Environment

    International Nuclear Information System (INIS)

    1998-01-01

    This report contains responses by the US Department of Energy to comments from the US Nuclear Regulatory Commission and the Colorado Department of Public Health and Environment on the Naturita remedial action plan. This was done in an attempt to clarify information. The site is an inactive uranium processing site at Naturita, Colorado

  7. Regulatory challenges in using nuclear operating experience

    International Nuclear Information System (INIS)

    2006-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants in an acceptably safe manner at all times. Learning from experience has been a key element in meeting this objective. It is therefore very important for nuclear power plant operators to have an active programme for collecting, analysing and acting on the lessons of operating experience that could affect the safety of their plants. NEA experts have noted that almost all of the recent, significant events reported at international meetings have occurred earlier in one form or another. Counteractions are usually well-known, but information does not always seem to reach end users, or corrective action programmes are not always rigorously applied. Thus, one of the challenges that needs to be met in order to maintain good operational safety performance is to ensure that operating experience is promptly reported to established reporting systems, preferably international in order to benefit from a larger base of experience, and that the lessons from operating experience are actually used to promote safety. This report focuses on how regulatory bodies can ensure that operating experience is used effectively to promote the safety of nuclear power plants. While directed at nuclear power plants, the principles in this report may apply to other nuclear facilities as well. (author)

  8. Nuclear Regulatory Commission Issuances, August 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Contents include: Issuances of the Nuclear Regulatory Commission--Metropolitan Edison Company (Three Mile Island Nuclear Station, Unit No. 1), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit 1), Westinghouse Electric Corp. (Export of LEU to the Philippines); Issuances of Atomic Safety and Licensing Appeal Boards--Duke Power Company (Amendment to Materials License SNM-1773--Transportation of Spent Fuel from Oconee Nuclear Station for Storage at McGuire Nuclear Station); Issuances of the Atomic Safety Licensing Boards--Commonwealth Edison Company (Byron Station, Units 1 and 2), Dairyland Power Cooperative (La Crosse Boiling Water Reactor, Operating License and Show Cause), Florida Power and Light Company (St. Lucie Plant, Unit No. 2), Florida Power and Light Company (Turkey Point Nuclear Generating, Units 3 and 4), Metropolitan Edison Company (Three Mile Island Nuclear Station, Unit 1) Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), The Regents of the University of California (UCLA Research Reactor), The Toledo Edison Company, et al. (Davis-Besse Nuclear Power Station, Units 2 and 3: Terminiation of Proceedings); Issuances of the Directors Denial--Florida Power and Light Company

  9. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2016 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  10. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2013

    International Nuclear Information System (INIS)

    2014-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2013 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Nuclear Materials in SR; (5) Building Authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public communication; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) (12) Abbreviations.

  11. Nuclear energy's future: lifting the regulatory cloud

    International Nuclear Information System (INIS)

    Walske, C.

    1983-01-01

    Nuclear energy provides 13% of US and 10% of world electricity, with an exemplary safety record and less insult to the environment than any other power source. Walske argues that nuclear power is 15% cheaper than coal despite the high capital and regulatory costs, but regulatory delays in the construction and licensing periods have increased 70% to 10 to 14 years, more than twice the lead time in France and Japan. The long lead time exaggerates the difficulty in forecasting demand, and allows interruptions for fundamental design changes after construction has begun. Walske outlines new legislation for site pre-approval, plant standardization, combined construction and operating licenses, and hybrid procedures for public hearings that would make regulation less uncertain

  12. Regulatory oversight on nuclear safety in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T-T. [Atomic Energy Council, New Taipei City, Taiwan (China)

    2014-07-01

    Taiwan is a densely populated island and over 98% of its energy is imported, 16.5% of which is nuclear, in the form of materials and services. Ensuring that the most stringent nuclear safety standards are met therefore remains a priority for the government and the operator, Taiwan power Company (Taipower). There are eight nuclear power reactors in Taiwan, six of which are in operation and two are under construction. The first began operating nearly 40 years ago. For the time being the issue of whether to decommission or extend life of the operating units is also being discussed and has no conclusion yet. Nuclear energy has been a hot issue in debate over the past decades in Taiwan. Construction of Lungmen nuclear power plant, site selection of a final low-level waste disposal facility, installation of spent fuel dry storage facilities and safety of the currently operating nuclear power reactors are the issues that all Taiwanese are concerned most. In order to ensure the safety of nuclear power plant, the Atomic Energy Council (AEC) has implemented rigorous regulatory work over the past decades. After the Fukushima accident, AEC has conducted a reassessment program to re-evaluate all nuclear power plants in Taiwan, and asked Taipower to follow the technical guidelines, which ENSREG has utilized to implement stress test over nuclear power plants in Europe. In addition, AEC has invited two expert teams from OECD/NEA and ENSREG to conduct peer reviews of Taiwan's stress test national report in 2013. My presentation will focus on activities regulating safety of nuclear power programs. These will cover (A) policy of nuclear power regulation in Taiwan, (B)challenges of the Lungmen Plant, (C) post-Fukushima safety re-assessment, and (D)radioactive waste management. (author)

  13. IAEA Mission Concludes Peer Review of Slovenia's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an eight-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety at the Slovenian Nuclear Safety Administration (SNSA). The team reviewed measures taken to address the recommendations and suggestions made during an earlier Integrated Regulatory Review Service (IRRS) mission conducted in 2011. The IRRS team said in its preliminary findings that Slovenia had made significant progress since the review in 2011. The team identified a good practice in the country's nuclear regulatory system additional to those identified in 2011 and made new recommendations and suggestions to SNSA and the Government to strengthen the effectiveness of the country's regulatory framework in line with IAEA Safety Standards. ''By hosting a follow-up mission, Slovenia demonstrated its commitment to enhance its regulatory programmes, including by implementing the recommendations of the 2011 mission,'' said Petr Krs, mission leader and Vice Chairman of the Czech Republic's State Office for Nuclear Safety. SNSA's Director, Andrej Stritar, welcomed the progress noted by the team, while also emphasizing that the mission highlighted important future nuclear safety challenges for Slovenia. The five-member review team, comprising experts from Belgium, the Czech Republic, France and Romania, as well as four IAEA staff members, conducted the mission at the request of the Slovenian Government from 9 to 16 September 2014. The main observations of the IRRS Review team included the following: SNSA has made significant progress in addressing the findings of the 2011 IRRS mission and has demonstrated commitment to effective implementation of the IRRS programme; The economic situation in Slovenia might in the short and long term affect SNSA's ability to maintain its capacity and competence; and A radioactive waste disposal project is stalled and the licensing

  14. Methodology for the Systematic Assessment of the Regulatory Competence Needs (SARCoN) for Regulatory Bodies of Nuclear Installations

    International Nuclear Information System (INIS)

    2015-03-01

    A regulatory body’s competence is dependent, among other things, on the competence of its staff. A necessary, but not sufficient, condition for a regulatory body to be competent is that its staff can perform the tasks related to the functions of the regulatory body. In 2001, the IAEA published TECDOC 1254, Training the Staff of the Regulatory Body for Nuclear Facilities: A Competency Framework, which examines the manner in which the recognized regulatory functions of a nuclear regulatory body results in competence needs. Using the internationally recognized systematic approach to training, TECDOC 1254 provides a framework for regulatory bodies for managing training and developing, and maintaining the competence of its staff. It has been successfully used by many regulatory bodies all over the world, including States embarking on a nuclear power programme. The IAEA has also introduced a methodology and an assessment tool — Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) — which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2013, the IAEA published Safety Reports Series No. 79, Managing Regulatory Body Competence, which provides generic guidance based on IAEA safety requirements in the development of a competence management system within a regulatory body’s integrated management system. An appendix in the Safety Report deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an embarking State’s regulatory system. This publication provides guidance for the analysis of required and existing competences to identify those required by the regulatory body to perform its functions and therefore associated needs for acquiring competences. Hence, it is equally applicable to the needs of States embarking on nuclear power

  15. Services of the Nuclear Regulatory Authority Library

    International Nuclear Information System (INIS)

    Carregado, M.A.; Wallingre, G.V.

    2011-01-01

    Full text; The main of this work is to present the services and activities of the ARN (Autoridad Regulatoria Nuclear) Library to potential users from the biological dosimetry area in the framework of the intercomparison Meeting of the Latin American Biological Dosimetry Network held in Buenos Aires from October 27-30 of 2008. It makes a short chronology of the library; the services offered to each type of users and the tasks related to technical and international cooperation with other organizations such as: the terminology Committee of IRAM (Instituto Argentino de Normalizacion y Certificacion); the input of national literature to the INIS Database of the IAEA; the retrospective digitalisation, indexing and bibliographic description of institutional publications to be submitted to the repository of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations and the participation in nuclear information networks. Finally it shown some relevant data from the internal statistics. (authors)

  16. Nuclear Regulatory Commission issuances, May 1993

    International Nuclear Information System (INIS)

    1993-05-01

    This report contains the issuances received during the specified period (May 1993) from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM). The summaries and headnotes preceding the opinions reported herein are not deemed a part of these opinions or have any independent legal significance. Contents of this document include an Issuance of the Nuclear Regulatory Commission with respect to the Sacramento Municipal Utility District and Issuances of Directors' Decisions concerning the Interstate Nuclear Service Corporation; Niagara Mohawk Power Corporation; and Texas Utilities Electric Company, et al. and All Nuclear Power Plants with Thermo-Lag Fire Barriers

  17. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2015 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  18. Overview of maintenance principles and regulatory supervision of maintenance activities at nuclear power plants in Slovakia

    International Nuclear Information System (INIS)

    Rohar, S.; Cepcek, S.

    1997-01-01

    The maintenance represents one of the most important tools to ensure safe and reliable operation of nuclear power plants. The emphasis of Nuclear Regulatory Authority of the Slovak Republic to the maintenance issue is expressed by requirements in the regulations. The current practice of maintenance management in operated nuclear power plants in Slovak Republic is presented. Main aspects of maintenance, as maintenance programme, organization of maintenance, responsibilities for maintenance are described. Activities of nuclear regulatory authority in maintenance process are presented too. (author)

  19. Quantitative safety goals for the regulatory process

    International Nuclear Information System (INIS)

    Joksimovic, V.; O'Donnell, L.F.

    1981-01-01

    The paper offers a brief summary of the current regulatory background in the USA, emphasizing nuclear, related to the establishment of quantitative safety goals as a way to respond to the key issue of 'how safe is safe enough'. General Atomic has taken a leading role in advocating the use of probabilistic risk assessment techniques in the regulatory process. This has led to understanding of the importance of quantitative safety goals. The approach developed by GA is discussed in the paper. It is centred around definition of quantitative safety regions. The regions were termed: design basis, safety margin or design capability and safety research. The design basis region is bounded by the frequency of 10 -4 /reactor-year and consequences of no identifiable public injury. 10 -4 /reactor-year is associated with the total projected lifetime of a commercial US nuclear power programme. Events which have a 50% chance of happening are included in the design basis region. In the safety margin region, which extends below the design basis region, protection is provided against some events whose probability of not happening during the expected course of the US nuclear power programme is within the range of 50 to 90%. Setting the lower mean frequency to this region of 10 -5 /reactor-year is equivalent to offering 90% assurance that an accident of given severity will not happen. Rare events with a mean frequency below 10 -5 can be predicted to occur. However, accidents predicted to have a probability of less than 10 -6 are 99% certain not to happen at all, and are thus not anticipated to affect public health and safety. The area between 10 -5 and 10 -6 defines the frequency portion of the safety research region. Safety goals associated with individual risk to a maximum-exposed member of public, general societal risk and property risk are proposed in the paper

  20. Decommissioning of Australian nuclear facilities - a regulatory perspective

    International Nuclear Information System (INIS)

    Diamond, T.V.; Mabbott, P.E.; Lawrence, B.R.

    2000-01-01

    Decommissioning has been a key political, economic and technical issue for the nuclear industry in recent years as older nuclear facilities have been retired. The management of decommissioning is an important part of nuclear safety as the potential exists for occupational exposures that are several times those expected during normal operation. It involves pre-planning and preparatory measures, procedures and instructions, technical and safety assessments, technology for handling large volumes of radioactive material, cost analyses, and a complex decision process. A challenge for the Commonwealth Government regulatory body, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), is to allow the Commonwealth entities that operate nuclear facilities ample freedom to address the above, at the same time ensuring that international best practice is invoked to ensure safety. Accordingly, ARPANSA has prepared a regulatory guideline, first drafted by the Nuclear Safety Bureau in March 1997, that documents the process and the criteria that it uses when assessing an application from an operating organisation for a decommissioning licence. Copyright (2000) Australasian Radiation Protection Society Inc

  1. Nuclear Regulatory Commission Issuances, May 81

    International Nuclear Information System (INIS)

    1981-05-01

    Contents: Issuances of the Nuclear Regulatory Commission--Consolidated Edison Company of New York, Inc. (Indian Point, Unit No. 2), Power Authority of the State of New York (Indian Point, No. 3 Nuclear Power Plant), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Statement of Policy on Conduct of Licensing Proceedings, Uranium Mill Licensing Requirements; Issuances of Atomic Safety and Licensing Appeal Boards--Houston Lighting and Power Company, et al. (South Texas Project, Units 1 and 2), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit No. 2), Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc. (Susquehanna Steam Electric Station, Units 1 and 2), Philadelphia Electric Company et al. (Peach Bottom Atomic Power Station, Units 2 and 3), Public Service Electric and Gas Company (Hope Creek Generating Station, Units 1 and 2); Issuances of the Atomic Safety and Licensing Boards--Duke Power Company (William B. McGuire Nuclear Station, Units 1 and 2), Florida Light and Power Company (Turkey Point Nuclear Generating, Units 3 and 4), Illinois Power Company, et al. (Clinton Power Station, Units 1 and 2), Sacramento Municipal Utility District (Rancho Seco Nuclear Generating Station); Issuances of the Directors Denial--Commonwealth Edison Company (Byron Station, Units 1 and 2), Consolidated Edison Company of New York, Inc. (Indian Point Unit No. 2), Gulf States Utilities Company (River Bend Station Units 1 and 2), Petition to Suspend All Operating Licenses for Pressurized Water Reactors (River Bend Station Units 1 and 2), Portland General Electric Company (Trojan Nuclear

  2. State Office for Nuclear Safety - New Regulatory Body in Croatia

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Valcic, I.; Cizmek, A.

    2006-01-01

    The Act on Nuclear Safety was adopted by the Croatian Parliament on 15 October 2003, and it is published in the Official Gazette No. 173/03. This Act regulates safety and protective measures for using nuclear materials and specified equipment and performing nuclear activities, and establishes the State Office for Nuclear Safety. Provisions of this Act apply on nuclear activities, nuclear materials and specified equipment. Also, by accession to international conventions and agreements, Croatia took the responsibility of implementing the provisions of those international treaties. In the process of European and international integrations, Croatia has to make harmonization with European and international standards also in the field of nuclear safety. The State Office for Nuclear Safety as an independent regulatory authority started its work on 1st June 2005 by taking over responsibility for activities relating to nuclear safety and cooperation with the International Atomic Energy Agency from the Ministry of the Economy, Labour and Entrepreneurship. In this paper responsibilities, organization and projects of the State Office for Nuclear Safety will be presented, with the accent on development of regulations and international cooperation. (author)

  3. 1992 Nuclear Regulatory Commission Annual Report

    International Nuclear Information System (INIS)

    1993-01-01

    This is the 18th annual report of the US Nuclear Regulatory Commission (NRC), covering events and activities occurring in fiscal year 1992 (the year ending September 30, 1992), with some treatment of events from the last quarter of calendar year 1992. The NRC was created by enactment in the Congress of the Energy Reorganization Act of 1974. It is an independent agency of the Federal Government. The five NRC Commissioners are nominated by the President and confirmed by the United States Senate. The Chairman of the Commission is appointed by the President from among the Commissioners confirmed

  4. IAEA Mission Concludes Peer Review of Pakistan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    An international team of senior nuclear safety experts today concluded a nine-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for the safety of operating nuclear power plants in the United States of America (USA). The Integrated Regulatory Review Service (IRRS) mission was a follow-up to the IRRS mission to the US Nuclear Regulatory Commission (NRC) that was conducted in 2010, with the key additional aim of reviewing whether the response of the US regulatory regime to the implications of the accident at TEPCO's Fukushima Daiichi Plant had been timely and effective. The mission team concluded that the recommendations and suggestions made by the 2010 IRRS mission have been taken into account systematically under the NRC's subsequent action plan, with significant progress in many areas and many improvements carried out. One of two recommendations and 19 out of 20 suggestions made by the 2010 IRRS mission have been effectively addressed and can therefore be considered closed. The outstanding recommendation relates to the NRC's review of its Management System, which is in the process of being finalised. The IRRS team also found that the NRC acted promptly and effectively after the Fukushima accident in the interests of public health and safety, and that the report of its Near-Term Task Force represents a sound and ample basis for taking into account the lessons learned from the accident

  5. US Nuclear Regulatory Commission annual report, 1985. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The decisions and actions of the Nuclear Regulatory Commission (NRC) during fiscal year 1985 are reported. Areas covered include reactor regulation, cleanup at Three Mile Island, analysis and evaluation of operational experience, nuclear materials, waste management, safeguards, inspection, enforcement, quality assurance, emergency preparedness, and nuclear regulatory research. Also, cooperation with the states, international programs, proceedings and litigation, and management are discussed

  6. Video image processing for nuclear safeguards

    International Nuclear Information System (INIS)

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  7. Accountability feedback assessments for improving efficiency of nuclear regulatory institutions

    International Nuclear Information System (INIS)

    Lavarenne, Jean; Shwageraus, Eugene; Weightman, Michael

    2016-01-01

    The Fukushima-Daiichi Accident demonstrated the need of assessing and strengthening institutions involved in nuclear safety, including the accountability of regulators. There are a few problems hindering the path towards a greater understanding of accountability systems, the ensemble of mechanisms holding to account the nuclear regulator on behalf of the public. There is no consensus on what it should deliver and no systematic assessment method exists. This article proposes a method of assessing institutions based on defence in depth concepts and inspired from risk-assessment techniques used for nuclear safety. As a first step in testing the proposal, it presents a simple Monte-Carlo simulation, illustrating some of the workings of the method of assessment and demonstrating the kind of results it will be able to supply. This on-going work will assist policy-makers take better informed decisions about the size, structure and organisation of a nuclear regulator and the cost-effective funding of its accountability system. It will assist in striking a balance between efficiency and resilience of regulatory decision-making processes. It will also promote the involvement of stakeholders and allow them to have a more meaningful impact on regulatory decisions, thereby enhancing the robustness of the regulatory system and potentially trust and confidence. - Highlights: •A general introduction to regulatory accountability is given. •A definition of an effective accountability system is proposed. •A method to assess accountability systems is proposed. •A simplified simulation of a regulatory system demonstrates the method’s capabilities.

  8. Regulatory challenges in using nuclear operating experience

    International Nuclear Information System (INIS)

    2006-01-01

    There can be no doubt that the systematic evaluation of operating experience by the operator and the regulator is essential for continued safe operation of nuclear power plants. Recent concerns have been voiced that the operating experience information and insights are not being used effectively to promote safety. If these concerns foreshadow a real trend in OECD countries toward complacency in reporting and analysing operating events and taking corrective actions, then past experience suggests that similar or even more serious events will recur. This report discusses how the regulator can take actions to assure that operators have effective programmes to collect and analyse operating experience and, just as important, for taking steps to follow up with actions to prevent the events and conditions from recurring. These regulatory actions include special inspections of an operator operating experience programme and discussion with senior plant managers to emphasize the importance of having an effective operating experience programme. In addition to overseeing the operator programmes, the regulator has the broader responsibility for assuring that industry-wide trends, both national and international are monitored. To meet these responsibilities, the regulatory body must have its own operating experience programme, and this report discusses the important attributes of such regulatory programmes. It is especially important for the regulator to have the capability for assessing the full scope of operating experience issues, including those that may not be included in an operator operating experience programme, such as new research results, international operating experience, and broad industry trend information. (author)

  9. Application of Resource Portfolio Concept in Nuclear Regulatory Infrastructure Support

    International Nuclear Information System (INIS)

    Lee, Y. E.; Ha, J. T.; Chang, H. S.; Kam, S. C.; Ryu, Y. H.

    2010-01-01

    As the new entrants in the global nuclear construction market are increasing and the establishment of an effective and sustainable regulatory infrastructure becomes more important, they have requested international assistance from the international nuclear communities with mature nuclear regulatory programmes. It needs to optimize the use of limited resources from regulatory organization providing support to regulatory infrastructure of new comers. This paper suggests the resource portfolio concept like a GE/Mckinsey Matrix used in business management and tries to apply it to the current needs considered in the regulatory support program in Korea as the case study

  10. The role of effective communications in Nuclear Regulatory Commission licensing

    International Nuclear Information System (INIS)

    Counsil, W.G.

    1991-01-01

    Communications are essential to the licensing and general regulatory program of the Nuclear Regulatory Commission. This paper attempts to identify and address certain aspects of, and approaches to, maintaining effective and efficient communications. It considers, from the perspective of the high-level radioactive waste repository program, both internal communication within the DOE itself and external communication with the Nuclear Regulatory Commission and interested parties. Many of the points presented are based on lessons learned from electric utility experience with nuclear plants

  11. First update to the US Nuclear Regulatory Commission's regulatory strategy for the high-level waste repository program

    International Nuclear Information System (INIS)

    Johnson, R.L.; Linehan, J.J.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) staff has updated its initial regulatory strategy for the High-Level Waste Repository Licensing Program. The update describes changes to the initial strategy and summarizes progress and future activities. This paper summarizes the first update of the regulatory strategy. In general the overall strategy of identifying and reducing uncertainties is unchanged. Identifying regulatory and institutional uncertainties is essentially complete, and therefore, the current and future emphasis is on reducing those regulatory and institutional uncertainties identified to date. The NRC staff has improved the methods of reducing regulatory uncertainties by (1) enhancing the technical basis preparation process for potential rulemakings and guidance and (2) designing a new guidance document, called a staff position, for clarifying regulatory uncertainties. For guiding the US DOE's reduction of technical uncertainties, the NRC staff will give more emphasis to prelicense application reviews and less emphasis on preparing staff technical positions

  12. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  13. Regulatory considerations for extending the life of nuclear plants

    International Nuclear Information System (INIS)

    Feinroth, H.; Rowden, M.

    1987-01-01

    This study provides the nuclear industry with its first systematic evaluation of the regulatory implications of nuclear plant life extension. The report recommends courses of action that might be followed by the industry and its regulators to ensure the development of a process that is both reasonable and predictable. The study holds that ''license renewal should be a reaffirmation of the ongoing and continuous process of hardware renewal that is already an integral part of every nuclear power plant's operating program.'' The report's findings can be used by the new AIF Subcommittee on License Renewal, by other industry groups, and by individual licensees in making constructive recommendations to NRC for the development of a workable license renewal policy. No such policy now exists, and the establishment of one is preferable to allowing the consideration of life extension matters on a case-by-case basis

  14. Future nuclear regulatory challenges. A report by the NEA Committee on Nuclear Regulatory Activities

    International Nuclear Information System (INIS)

    1998-01-01

    Future challenges are considered that may arise from technical, socio-economic and political issues; organizational, management and human aspects; and international issues. The perceived challenges have been grouped into four categories, each covered by a chapter. Technical issues are addressed that many present regulatory challenges in the future: ageing nuclear power plants. External changes to industry are considered next that have an effect on regulators, privatization, cost reduction consequences, commercialization etc. It is followed by the impacts of internal changes: organizational, managerial, human-resources, licensing, staff training etc. Finally, international issues are discussed with potential regulatory impact. (R.P.)

  15. Development of digital library system on regulatory documents for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, K. H.; Kim, K. J.; Yoon, Y. H.; Kim, M. W.; Lee, J. I.

    2001-01-01

    The main objective of this study is to establish nuclear regulatory document retrieval system based on internet. With the advancement of internet and information processing technology, information management patterns are going through a new paradigm. Getting along the current of the time, it is general tendency to transfer paper-type documents into electronic-type documents through document scanning and indexing. This system consists of nuclear regulatory documents, nuclear safety documents, digital library, and information system with index and full text

  16. Technical Support Organization Knowledge Management for Nuclear Regulatory Support

    International Nuclear Information System (INIS)

    Kohut, P.; Ramsey, J.; Katsenelenbogen, S.

    2016-01-01

    Full text: Knowledge management awareness has increased through the nuclear industrial and regulatory community leading to better understanding of the handling of critical information. Utilizing, managing and regulating the application of nuclear power require an extensive system of expertise and associated research through established organizations. The long term maintenance of the specific expertise is only viable by using scientific knowledge management principles all through the national nuclear infrastructure involving regulatory, industrial, academic and other research institutions. National governments in countries operating or planning to establish nuclear facilities have instituted regulatory regimes on the use of nuclear materials and facilities to insure a high level of operational safety. (author

  17. Regulatory issues for nuclear power plant life management

    International Nuclear Information System (INIS)

    Roe, J.

    2000-01-01

    The workshop of 26-27 june 2000, on nuclear power Plant LIfe Management (PLIM), also included working groups in which major issues facing PLIM activities for nuclear power plants were identified and discussed. The second group was on Regulation. The Regulatory Working Group will attempt to identify some of the more pertinent issues affecting nuclear plant regulation in a changing PLIM environment, to identify some possible actions to be taken to address these issues, and to identify some of the parties responsible for taking these actions. Some preliminary regulatory issues are noted below. This is not intended to be a comprehensive list of such issues but rather is intended to stimulate discussion among the experts attending this Workshop. One of the concerns in the regulatory arena is how the structural integrity of the plants can be assured for an extended lifetime. Technological advances directed toward the following are likely to be important factors in the regulatory process of life extension. - Preventive and corrective maintenance (e.g., water chemistry control, pressure vessel annealing, and replacement of core internals). - Ageing and degradation mechanisms and evaluation (e.g., embrittlement, wear, corrosion/erosion, fatigue, and stress corrosion). - Monitoring, surveillance, and inspection (e.g., fatigue monitoring and non-destructive testing). - Optimisation of maintenance (e.g., using risk-based analysis). On the business side, there is concern about technical support by manufacturers, fuel companies, and construction companies. Maintaining a strong technical base and skilled workers in a potentially declining environment is another concern in the regulatory community. Waste management and decommissioning remain significant issue regarding PLIM. These issues affect all three areas of concern - technology, business, and regulation. It is against this background, that the issues put forth in this paper are presented. The objective of presenting these

  18. Nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R [Kernforschungsanlage Juelich G.m.b.H. (F.R. Germany). Inst. fuer Reaktorentwicklung

    1976-05-01

    It is anticipated that the coupled utilization of coal and nuclear energy will achieve great importance in the future, the coal serving mainly as raw material and nuclear energy more as primary energy. Prerequisite for this development is the availability of high-temperature reactors, the state of development of which is described here. Raw materials for coupled use with nuclear process heat are petroleum, natural gas, coal, lignite, and water. Steam reformers heated by nuclear process heat, which are suitable for numerous processes, are expected to find wide application. The article describes several individual methods, all based on the transport of gas in pipelines, which could be utilized for the long distance transport of 'nuclear energy'.

  19. KWOC [Key-Word-Out-of-Context] Index of US Nuclear Regulatory Commission Regulatory Guide Series

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-04-01

    To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE ''KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series

  20. An overview of the licensing approach of the South African nuclear regulatory authority

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Hill, T.F.; Henderson, N.R.; Keenan, N.H.; Metcalf, P.E.; Mysenkov, A.

    1997-01-01

    This paper describes the approach adopted by the South African Nuclear Regulatory Authority, the Council for Nuclear Safety (CNS) in licensing nuclear installations in South Africa. An introduction to the current South African legislation and the CNS philosophy pertaining to the licensing of nuclear installations is discussed. A typical process for granting a nuclear licence is then presented. The risk assessment process, which is used to verify compliance with the fundamental safety standards and to establish licensing requirements for a specific nuclear installation, is discussed. Based on the outcome of this assessment process, conditions of licence are set down. The generic content of a nuclear licence and mechanisms to ensure ongoing compliance with the risk criteria are presented. The regulatory process discussed in this paper, based on such a fundamental approach, may be adapted to any type of nuclear installation taking into account plant specific designs and characteristics. (author)

  1. Knowledge management in the Argentine Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Chahab, Martin

    2006-01-01

    In 2006, the Argentine Nuclear Regulatory Authority has initiated a regulatory knowledge management process to face the loss of knowledge resulting from retiring experts, the generation gap, and the existing need to train new human resources. A number of projects have been started together with the technical assistance of the National Public Administration Institute to preserve knowledge and render it explicit for the coming generations. These projects include 'The History of the Expert's Learning Process' in which the majority of the most critical experts have been interviewed so far. The results of this project help envision a training structure and prospective projects. An Internet Site has also been created on the Intranet in order to render knowledge explicit and facilitate the tools for knowledge management initiatives. Furthermore, ARN's knowledge map project has also been started. (author) [es

  2. Treatment of differing professional opinions in the regulatory review process

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1978-01-01

    The Nuclear Regulatory Commission is an independent body whose purpose is to assure that civilian nuclear activities are consistent with the public health and safety and environmental protection. To this effect, Congress has vested it with the necessary control powers. The question here is how to reconcile diverging opinions expressed within NRC by executives and technicians during the enquiry pocedure for licensing of nuclear installations. The diversity of professional viewpoints should be viewed as a positive factor strengthening the regulatory process and should therefore be maintained. However, decisions must be made; therefore some viewpoints will not prevail but that should not be construed as a signal that the internal discussion process is condemned. NRC staff are entitled to express their views and not subjected to professional and administrative sanctions for doing so. (NEA) [fr

  3. Assessing the effectiveness of nuclear regulatory system in India

    International Nuclear Information System (INIS)

    Gandhia, Sonal; Choi, Kwang Sik

    2012-01-01

    The Fukushima accident brought up the issue of regulatory effectiveness in the fore. One of the causes of the accident has been attributed to the problems in effectiveness of the Japanese regulatory system. Regulatory reform is underway in Japan and in other countries many efforts have also been made to improve the effectiveness and independence of the regulatory bodies. It is important that the regulatory bodies make self-assessment of their weaknesses and strengths, to achieve the ultimate regulatory goal of assuring acceptable level of nuclear safety. In this paper an assessment has been done for the effectiveness of Indian nuclear regulatory system as implemented by the Atomic Energy Regulatory board (AERB). A number of good practices of AERB have been found and some areas have been identified where improvements are necessary

  4. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  5. 77 FR 34379 - Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory...

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD06-6-000] Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold a joint meeting...

  6. Regulatory Oversight of Safety Culture in Nuclear Installations

    International Nuclear Information System (INIS)

    2013-03-01

    Experience across the international nuclear industry and in other technical fields over the past few decades has demonstrated the importance of a healthy safety culture in maintaining the safety of workers, the public and the environment. Both regulators and the nuclear industry recognize the need for licensees to develop a strong safety culture in order to support successful and sustainable nuclear safety performance. Progress over recent years can be observed in the rapid development of approaches to overseeing licensees' safety culture. This publication follows on and complements earlier publications on safety culture, from the publication Safety Culture (Safety Series No. 75-INSAG-4 (1991)), published after the Chernobyl accident, to the more recently published Safety Requirements on The Management System for Facilities and Activities (IAEA Safety Standards Series No. GS-R-3 (2006)), which states that the management system is to be used to promote and support a strong safety culture. A number of attempts have been made at both the international and national levels to establish practical approaches to regulatory oversight of safety culture. During 2010 and 2011, two projects were conducted by the IAEA under the scope of the Safe Nuclear Energy - Regional Excellence Programme within the Norwegian Cooperation Programme with Bulgaria and Romania. These projects were implemented at the Bulgarian and Romanian regulatory bodies. They encompassed the development of a specific process to oversee licensees' safety culture, and involved 30 experts from 17 countries and 22 organizations. The IAEA continues to support Member States in the area of safety culture through its projects on safety management and capacity building. This publication addresses the basics of regulatory oversight of safety culture, describes the approaches currently implemented at several regulatory bodies around the world and, based on these examples, proposes a path to developing such a process

  7. Responsibilities of nuclear regulatory authority and overview of nuclear safety regulations in Slovakia

    International Nuclear Information System (INIS)

    Misak, J.

    1996-01-01

    The paper describes the organizational structure of the Nuclear Regulatory Authority of the Slovak Republic, its rights and duties, the status of nuclear legislation with emphasis on nuclear activities completely or partially covered, and licensing procedures

  8. Canada's regulatory framework: The Canadian Nuclear Safety Commission's regulatory framework

    International Nuclear Information System (INIS)

    Howard, D.

    2011-01-01

    non-proliferation of nuclear weapons and nuclear explosive devices; dissemination of scientific, technical and regulatory information concerning the activities of CNSC, and the effects on the environment, on the health and safety of persons, of the development, production, possession, transport and use of nuclear substances. The prime responsibility for safety including the management of low- and intermediate-level radioactive waste rests with the licensee in possession of the nuclear material. While neither the NSCA nor its associated regulations define radioactive waste, Regulatory Policy P-290, Managing Radioactive Waste, asserts that radioactive waste is any liquid, gaseous or solid material that contains a nuclear substance, as defined in section 2 of the NSCA and for which the owner of the material foresees no further use and the owner had declared as waste. By definition, a radioactive waste may contain non-radioactive constituents. Radioactive waste is therefore regulated in the same manner as all other materials that contain a nuclear substance. The generation of radioactive waste cannot be prevented entirely but it should be kept to the minimum practicable as an essential objective of radioactive waste management. This objective is in line with CNSC Regulatory Policy P-290. Waste minimization relates to both volume and activity and to both the waste generated by an initial undertaking and the secondary waste resulting from the management of radioactive waste. The chemical characteristics of the waste should also be controlled at source in order to facilitate subsequent processing. As part of the CNSC's effort to improve and modernize its Regulatory Framework, the CNSC is considering several upgrades to the Framework. The CNSC as part of its licensing framework introduced Safety and Control Areas. One of the Safety and Control Areas is waste management. To address the SCA of waste management, the CNSC will be implementing a requirement that each licensee

  9. Safety Culture Implementation in Indonesian Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.; Dewanto, P.

    2016-01-01

    The Indonesia Nuclear Energy Act no. 10 of 1997 clearly stated that Nuclear Energy Regulatory Agency (BAPETEN) is the Nuclear Regulatory Body. This is the legal basis of BAPETEN to perform regulatory functions on the use of nuclear energy in Indonesia, including regulation, authorisation, inspection and enforcement. The Independent regulatory functions are stipulated in Article 4 and Article 14 of the Nuclear Energy Act no. 10 (1997) which require the government to establish regulatory body that is reporting directly to the president and has responsibility to control of the use of nuclear energy. BAPETEN has been start fully its functioning on January 4, 1999. In it roles as a regulatory body, the main aspect that continues and always to be developed is the safety culture. One of the objectives of regulatory functions is “to increase legal awareness of nuclear energy of the user to develop safety culture” (Article 15, point d), while in the elucidation of article 15 it is stipulated that “safety culture is that of characteristics and attitudes in organizations and individual that emphasise the importance of safety”.

  10. Nuclear Regulatory Commission issuances, January 1997. Volume 45, Number 1

    International Nuclear Information System (INIS)

    1997-01-01

    This book contains issuances of the Atomic Safety and Licensing Board, Nuclear Regulatory Commission and Director's Decision for January 1997. The issuances concern Sequoyah Fuels Corporation and General Atomics Gore, Oklahoma Site decontamination and decommissioning funding; Louisiana Energy Services, Claiborne Enrichment Center denies appeal to review emergency planning; General Public Utilities Nuclear Corporation, Oyster Creek Nuclear Generating station, challenges to technical specifications concerning spent fuel pool; and Consumers Power Company, Palisades Nuclear Plant dry cask storage of spent nuclear fuel

  11. Improving nuclear regulation. Compilation of Nea regulatory guidance booklets

    International Nuclear Information System (INIS)

    2009-01-01

    A common theme throughout the series of NEA regulatory guidance reports, or 'green booklets', is the premise that the fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are operated at all times and later decommissioned in an acceptably safe manner. In meeting this objective the regulator must keep in mind that it is the operator that has responsibility for safely operating a nuclear facility; the role of the regulator is to oversee the operator's activities as related to assuming that responsibility. For the first time, the full series of these reports have been brought together in one edition. As such, it is intended to serve as a knowledge management tool both for current regulators and the younger generation of nuclear experts entering the regulatory field. While the audience for this publication is primarily nuclear regulators, the information and ideas may also be of interest to nuclear operators, other nuclear industry organisations and the general public. (author)

  12. Regulatory control, nuclear safety regulation and waste management in Spain

    International Nuclear Information System (INIS)

    Martin, A.

    2000-01-01

    This article presents the challenges that faces the spanish regulatory authority. The deregulation of electricity industry imposes severe changes in nuclear power economics and forces nuclear power to compete with other sources of electricity. A pressure is perceived for regulatory effectiveness primarily since the cost of regulation is a component of the cost of the product. This effectiveness gain in regulatory control will be reached through systematic strategic analysis, formulation and implementation. The regulatory aspects of plant life extension and of waste management are examined

  13. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 1999

    International Nuclear Information System (INIS)

    Seliga, M.

    2000-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 1999 is presented. These activities are reported under the headings: (1) Foreword; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of safety at nuclear installations; (4) Safety analyses; (5) Nuclear materials; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Conclusions; (13) Appendices: Economic and personnel data; Abbreviations; The International nuclear event scales - INES

  14. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2000

    International Nuclear Information System (INIS)

    Seliga, M.

    2001-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2000 is presented. These activities are reported under the headings: (1) Foreword and organisation structure; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of nuclear installations; (5) Safety analyses; (6) Nuclear materials and physical protection of nuclear installations; (7) Radioactive waste; (8) Quality assurance; (9) Personnel qualification and training; (10) Emergency preparedness; (11) International co-operation; (12) Public information; (13) Personnel and economic data of the UJD; (14) Conclusion; (15) Attachments: Abbreviations; Radiation safety

  15. Nuclear regulatory organisations: Learning from stakeholders to enhance communication

    International Nuclear Information System (INIS)

    Lorin, Aurelie

    2015-01-01

    Since its creation 15 years ago, the NEA Committee on Nuclear Regulatory Activities (CNRA) Working Group on Public Communication of Nuclear Regulatory Organisations (WGPC) has been addressing a broad range of communication issues, with two reports recently issued on Nuclear Regulatory Organisations, the Internet and Social Media: The What, How and Why of Their Use as Communication Tools and on Nuclear Regulatory Organisations and Communication Strategies. After the Fukushima Daiichi nuclear power plant accident in 2011, nuclear regulatory organisations around the world reaffirmed the need to strengthen stakeholder outreach and communication, and to create more robust avenues for stakeholder involvement in regulatory matters. The WGPC proposed a means for stakeholders to play a more active role in the group by holding one-day workshops in conjunction with regular meetings. These workshops offer a platform for stakeholder exchange with communication experts from nuclear regulatory organisations (NROs). The objective is to stimulate co-operation and improve communication by better understanding stakeholder perceptions, needs and expectations, and by discussing how to use traditional and social media more effectively. While nuclear regulatory organisations may have a common willingness to improve their communication methods and to build constructive relationships with stakeholders, every country has its own practices and cultural background, and thus its own challenges. Following the first workshop in Paris, which brought together European stakeholders, and the second in North America, the NEA is now organising a third workshop in Asia (Japan) to be held in April 2016. This third workshop will enable the NEA to gather stakeholder views from a third continent. A report on the workshops' findings will be issued after the completion of this third workshop, thus giving a broader idea of how to improve the overall communication methods of nuclear regulatory

  16. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  17. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  18. Regulatory control of maintenance activities in Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Calvo, J.C.; Caruso, G.

    2000-01-01

    The main maintenance objective is to assure that the safety features of structures, components and systems of nuclear power plants are kept as designed. Therefore, there is a direct relationship between safety and maintenance. Owing to the above mentioned, maintenance activities are considered a relevant regulatory issue for the Argentine Nuclear Regulatory Authority (ARN). This paper describes the regulatory control to maintenance activities of Argentine nuclear power plants. It also addresses essential elements for maintenance control, routine inspections, special inspections during planned outages, audits and license conditions and requirements. (author)

  19. Regulatory challenges facing the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Lyman, Edwin S.

    2007-01-01

    In January 2006 the Department of Energy (DOE) announced the creation of the Global Nuclear Energy Partnership (GNEP), an ambitious plan to reshape the nuclear energy production sector both in the United States and worldwide. If fully realized in the United States, GNEP would entail the construction of a large number of sodium-cooled fast reactors utilizing actinide-based fuels, multiple commercial-scale reprocessing plants for both light-water and fast reactors, and fast reactor fuel fabrication plants. It appears likely that the first commercial-scale GNEP facilities, as well as a future full-scale GNEP complex, would fall under the licensing jurisdiction of the Nuclear Regulatory Commission (NRC). This will be a challenging endeavor for the NRC, primarily because the proposed GNEP facilities will in large part be based on novel and untested designs and processes that have not been developed on a commercial scale. In order to effectively regulate the GNEP complex, the NRC will have to quickly address the many technical and policy questions that will arise in any GNEP licensing scheme. This paper identifies some difficult issues that will be encountered in GNEP licensing by examining the potential implications of NRC's current policies and regulatory requirements, and analyzing the impacts of some emerging post-9/11 security issues. (author)

  20. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha-Vinh, Phuong

    1975-01-01

    Broad definition of the scope of enabling legislation, identification of branches of laws involved in the licensing and regulatory control, overview of some typical licensing practices and provisions, some specific legislative or regulatory requirements including financial security to over nuclear liability. (HP) [de

  1. Nuclear regulatory challenges arising from competition in electricity markets

    International Nuclear Information System (INIS)

    2001-01-01

    In recent years a world-wide trend has been developing to introduce competition in electricity markets. As market competition unfolds, it produces a wide range of safety challenges for nuclear power plant operators and regulators. Nuclear regulators must be aware of the potential safety challenges produced and consider whether new regulatory response strategies are warranted. This report describes many of these challenges, their implications and possible regulatory response strategies. The intended audience is primarily nuclear safety regulators, although government authorities, nuclear power plant operators and the general public may also be interested. (author)

  2. Safety and regulatory requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Kumar, S.V.; Bhardwaj, S.A.

    2000-01-01

    A pre-requisite for a nuclear power program in any country is well established national safety and regulatory requirements. These have evolved for nuclear power plants in India with participation of the regulatory body, utility, research and development (R and D) organizations and educational institutions. Prevailing international practices provided a useful base to develop those applicable to specific system designs for nuclear power plants in India. Their effectiveness has been demonstrated in planned activities of building up the nuclear power program as well as with unplanned activities, like those due to safety related incidents etc. (author)

  3. Building Nuclear Safety and Security Culture Within Regulatory Body

    International Nuclear Information System (INIS)

    Huda, K.

    2016-01-01

    To achieve a higher level of nuclear safety and security, it needs to develop the safety and security culture not only in the facility but also in the regulatory body. The regulatory body, especially needs to develop the safety and security culture within the organization, because it has a function to promote and oversee the culture in the facilities. In this sense, the regulatory body should become a role model. Development of the nuclear safety and security culture should be started by properly understanding its concept and awakening the awareness of individual and organization on the importance of nuclear safety and security. For effectiveness of the culture development in the regulatory body, the following steps are suggested to be taken: setting up of the regulatory requirements, self-assessment, independent assessment review, communication with the licensee, oversight of management system implementation, and integration with regulatory activities. The paper discusses those steps in the framework of development of nuclear safety and security culture in the regulatory body, as well as some important elements in building of the culture in the nuclear facilities. (author)

  4. Experience Transformed into Nuclear Regulatory Improvements in Russia

    International Nuclear Information System (INIS)

    Sapozhnikov, A.

    2016-01-01

    The third International Conference on Effective Nuclear Regulatory Systems (Canada, 2013) identified the main action items that should be addressed, implemented and followed up. The key technical and organizational areas important to strengthening reactor and spent fuel safety have been determined as following: • Regulatory lessons learned and actions taken (since the accident at the Fukushima Daiichi NPP); • Waste management and spent fuel safety; • Emergency management; • Emerging programmes; • Human and organizational factors, safety and security culture. Over time many activities based on results of the IAEA Integrated Regulatory Review Service in the Russian Federation, 2019, and post-mission, 2013, have been implemented. At present there is progress for the national action plan on nuclear safety, preparation and conducting of long term spent fuel management, complementary reviews for nuclear facilities other than Nuclear Power Plants, emergency exercises with the regulatory body participation, improving communication, development of national regulations and improvement of regulatory system in the whole. The regulatory body ensures assistance in development of national regulatory infrastructure, safety culture to the countries planning to construct Russian design facilities (NPPs, RRs). The report outlines the results and future actions to improve nuclear regulation based on systematic approach to safety and particularly reflects the specificity of taking measures for the research reactors. (author)

  5. Regulatory Regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    A leading internationally agreed principle is that the prime responsibility for nuclear safety rests with each user of nuclear energy. A proper regulatory regime is needed to ensure that this responsibility is met. In the first place it provides a verification that all relevant safety issues are understood and taken into account in the practical measures by the users but it is equally important that the regulatory regime supports the users in their strive to achieve an adequate level of safety (author)

  6. South African Regulatory Framework for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Mbebe, B.Z.

    2012-01-01

    The paper presents the regulatory approach to plant life management (PLiM) adopted by the National Nuclear Regulator (NNR) in South Africa, the licensing basis and regulatory requirements for Koeberg Nuclear Power Station (KNPS),operational programmes ensuring continued safe operation, issues related to the ageing of the plant, and the requirements for spent fuel as well as radioactive waste management. The paper will further present insights from the Periodic Safety Review (PSR) and Long Term Asset Management. (author)

  7. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2003

    International Nuclear Information System (INIS)

    Seliga, M.

    2004-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2003 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Radiation safety

  8. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting Biotechnology Regulatory Policy Processes in Southeast Asia. Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and ...

  9. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  10. Cooperation of technical support organizations of state nuclear regulatory committee of Ukraine in sip safety regulation

    International Nuclear Information System (INIS)

    Bikov, V.O.; Kyilochits'ka, T.P.; Bogorins'kij, P.; Vasil'chenko, V.M.; Kondrat'jev, S.M.; Smishlyajeva, S.P.; Troter, D.

    2002-01-01

    The main task of the technical support in the Shelter Implementation Plan (SIP) licensing process consists in Technical Evaluation of SIP projects and documents submitted by the Licensee to State Nuclear Regulatory Committee to substantiate the safety of Shelter-related work. The goal of this task is to evaluate the submitted materials whether they meet the requirements of nuclear and radiation safety

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Luxembourg

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General; 2. Mining; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency measures); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. General Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister of Labour; Other Ministers competent); 2. Advisory bodies (Higher Health Council)

  12. Implementation of safety goals in NRC's regulatory process

    International Nuclear Information System (INIS)

    Murley, T.E.

    1985-01-01

    In May 1983 the Nuclear Regulatory Commission issued a policy statement on Safety Goals For Nuclear Power Plant Operation. The Commission at the same time judged that a two-year evaluation period was necessary to judge the effectiveness of the goals and design objectives, and directed the staff to develop information and understanding as to how to further define and use the design objectives and the cost-benefit guidelines. In carrying out the Commission's mandate, the staff framed three major questions to be addressed during the safety goal evaluation period. These three questions are: 1) to what extent is it practical to use safety goals in the regulatory process. 2) Should the quantitative design objectives be modified or supplemented. If so, how. 3) How should the safety goals be implemented at the end of the evaluation period. The staff's conclusions are discussed

  13. Review of NRC Regulatory processes and functions

    International Nuclear Information System (INIS)

    1980-01-01

    The Advisory Committee on Reactor Safeguards (ACRS) has spent much time over many years observing and examining the NRC licensing process. The Committee is, consequently, in a position to comment on the situation, and it believes this review will be helpful to those examining the regulatory process by discussing how it works, where it is weak, and the opportunities for improvement. The Committee's review may also help put current proposals and discussions in perspective

  14. Lessons Learned and Regulatory Countermeasures of Nuclear Safety Issues Last Year

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    Competitiveness of nuclear as the electric resource in terms of the least cost and the carbon abatement has been debated. Some institutions insist that the radioactive wastes management cost, nuclear accident cost and cheap shale gas would make the nuclear energy less competitive, while others still address the ability of nuclear energy as economical and low-carbon electric resource. This situation reminds that ensuring nuclear safety is the most important prerequisite to use of nuclear energy. Therefore, this paper will compare the different views on future nuclear competitiveness discussed right after the Fukushima accident and summarize the lessons learned and regulatory countermeasures from nuclear safety issues last year. Korea has improved the effectiveness of safety regulation up to now and still has been making efforts on further enhancing nuclear safety. The outcomes of these efforts have resulted in a high level of safety in Korean NPPs and contributing largely to the global nuclear safety through sharing and exchanging the information and knowledge of our nuclear experiences. However, now we are faced with the new challenges such as decreasing the public. Additionally, public criticism of the regulatory activities demands more clear regulatory guides and transparent process. Recently, new president announced the 'Priority to Safety and Public Trust' as the precondition to utilize the nuclear energy. We will continue to make much more efforts for the improvement of the quality of regulatory activities and effectiveness of regulatory decision making process than we have done so far. Competence through effective capacity building would be a helpful pathway to build up the public trust and ensure the acceptable level of nuclear safety. We are set to prepare the action items to be taken in the near future for improving the technical competency and transparency as the essential components of the national safety and will make efforts to implement them

  15. Decision-making behavior of experts at nuclear power plants. Regulatory focus influence on cognitive heuristics

    International Nuclear Information System (INIS)

    Beck, Johannes

    2015-09-01

    The goal of this research project was to examine factors, on the basis of regulatory focus theory and the heuristics and biases approach, that influence decision-making processes of experts at nuclear power plants. Findings show that this group applies anchoring (heuristic) when evaluating conjunctive and disjunctive events and that they maintain a constant regulatory focus characteristic. No influence of the experts' characteristic regulatory focus on cognitive heuristics could be established. Theoretical and practical consequences on decision-making behavior of experts are presented. Finally, a method for measuring the use of heuristics especially in the nuclear industry is discussed.

  16. Knowledge Management Implementation In Indonesia Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.

    2016-01-01

    Full text: Indonesian Nuclear Energy Regulatory Agency (BAPETEN) acquires the task and function to control the safety, security and safeguards in the field of nuclear energy through the development of legislation, licensing services, inspection and enforcement. Which is supported by review and assessment, emergency preparedness. Knowledge Management (KM) is importance for BAPETEN to achieve the Regulatory body effectiveness and product innovation. The Chairman of BAPETEN has set policies statement for KM implementation. To implement a knowledge management program, BAPETEN creates KM guidelines that includes blueprint and roadmap KM programme based on a KM readiness survey. The KM readiness survey involves 20% of staff who represent each unit and discussions with the senior manager of BAPETEN, and the result of readiness survey produce 13 KM BAPETEN initiatives strategic. After the initiative strategic has been obtained, BAPETEN creates the Roadmap of BAPETEN Knowledge Management for 2015–2019 programme for KM People with the activity sozialization of KM Guidebook, workshop SMART knowledge worker, nurture Community of practices (COP) and develop social network analysis (SNE). KM Process with activity focus group discussion, KM Readyness survey, KM Statement, KM Bapeten Guidebook, knowledge mapping, knowledge harvesting. KM Technology with activity develop knowledge system or portal, e-learning. (author

  17. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  18. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  19. Regulatory Risk Management of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    George, Glenn R.

    2002-01-01

    Regulatory risk reflects both the likelihood of adverse outcomes during regulatory interactions and the severity of those outcomes. In the arena of advanced nuclear power plant licensing and construction, such adverse outcomes may include, for example, required design changes and construction delays. These, in turn, could significantly affect the economics of the plant and the generation portfolio in which it will operate. In this paper, the author addresses these issues through the lens of risk management. The paper considers various tools and techniques of regulatory risk management, including design diversity and hedging strategies. The effectiveness of alternate approaches is weighed and recommendations are made in several regulatory contexts. (author)

  20. Risk acceptance criteria of the Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Felizia, Eduardo R.

    2005-01-01

    This report describes some of the regulatory and control functions legally conferred upon the Argentine Nuclear Regulatory Authority concerning radiological risks, as well as a critical analysis of the radiological risk acceptance criteria contained in the Argentine regulatory system. A summary of the application of regulatory standards AR 3.1.3. - 'Radiological criteria related to accidents in nuclear power reactors' and AR 4.1.3. - 'Radiological criteria related to accidents in research reactors' to concrete cases is made, while the favourable and unfavourable aspects of the risk acceptance criteria are discussed. The conclusion is that the Argentine regulatory system contains adequate radiological risk acceptance criteria, that the latter are consistent with the radiological protection principles applicable to man and that, for the moment, there is no need to perform any modifications that would broaden the conceptual framework on which such criteria are based. (author) [es

  1. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Iceland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health and Social Security; Icelandic Radiation Protection Institute)

  4. United States Nuclear Regulatory Commission staff practice and procedure digest

    International Nuclear Information System (INIS)

    1990-03-01

    This document contains procedures for review by US Nuclear Regulatory Commission for reviewing and deciding on matters pertaining to nuclear power plant licensing. Also, contained within the document are decisions the Commission has made between July 1972 to September 1989. (F.S.D.)

  5. Nuclear knowledge management system in the regulatory activity

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Klevtsov, A.L.; Kravchenko, N.A.

    2010-01-01

    Important issues on collection, storage and spread of knowledge among organisation dealing with the use of nuclear technologies, role of close cooperation between enterprises and organizations in developing knowledge management, general requirements for creating a nuclear knowledge management system are considered. Recommendations and the main mechanisms are identified to create the knowledge management system in technical support organizations of the regulatory authority.

  6. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  7. IAEA Mission Concludes Peer Review of Jordan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an 11-day International Atomic Energy Agency (IAEA) Integrated Regulatory Review Service (IRRS) mission to review the regulatory framework for nuclear and radiation safety in Jordan. The mission team said in its preliminary findings that Jordan's nuclear regulator, the Energy and Minerals Regulatory Commission (EMRC), faces challenges because it is a relatively new body that handles a high workload while also working to recruit, train and keep competent staff. The team also noted that a recent merger provided the regulator with more of the resources it needs to perform its duty. The team made recommendations and suggestions to the regulatory body and the Government to help them strengthen the effectiveness of Jordan's regulatory framework and functions in line with IAEA Safety Standards. The main observations of the IRRS Review team comprised the following: The regulatory body, founded in 2007 and merged with other regulators in April 2014 to form EMRC, faces large challenges in terms of its regulatory workload, management system building and staff recruitment and training; The new EMRC structure and revision of the radiation and nuclear safety law represents an important opportunity to strengthen Jordan's radiation and nuclear safety infrastructure; The Government has shown commitment to radiation and nuclear safety through measures including becoming party to international conventions. It could further demonstrate its commitment by adopting a formal national policy and strategy for safety that defines the role of the Minister of Energy in relation to EMRC and protects the independence of regulatory decision-making

  8. Nuclear safety and security culture - an integrated approach to regulatory oversight

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea Ercau, C.

    2013-01-01

    The paper presents the development and implementation of regulatory guidelines for the oversight of safety and security culture within licensees organizations. CNCAN (the National Commission for Nuclear Activities of Romania) has used the International Atomic Energy Agency (IAEA) attributes for a strong safety culture as the basis for its regulatory guidelines providing support to the reviewers and inspectors for recognizing and gathering information relevant to safety culture. These guidelines are in process of being extended to address also security culture, based on the IAEA Nuclear Security Series No. 7 document Nuclear Security Culture: Implementing Guide. Recognizing that safety and security cultures coexist and need to reinforce each other because they share the common objective of limiting risk and that similar regulatory review and inspection processes are in place for nuclear security oversight, an integrated approach is considered justified, moreover since the common elements of these cultures outweigh the differences. (authors)

  9. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    International Nuclear Information System (INIS)

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director's Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director's Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant

  10. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act

  11. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director`s Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director`s Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant.

  12. US Nuclear Regulatory Commission, 1984 annual report. Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    This is the 10th annual report of the US Nuclear Regulatory Commission (NRC). This report covers the major activities, events, decisions and planning that took place during fiscal year 1984 (October 1983 through September 1984) within the NRC or involving the NRC. Information is presented concerning 1984 highlights and planning for 1985; reactor regulation; cleanup at Three Mile Island Unit 2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement, quality assurance, and emergency preparedness; cooperation with the States; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  13. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act.

  14. Competencies Setup for Nuclear Regulatory Staff in Thailand

    International Nuclear Information System (INIS)

    Pingish, Panupong; Siripirom, Lopchai; Nakkaew, Pongpan; Manuwong, Theerapatt; Wongsamarn, Vichian

    2010-01-01

    Competencies setup for regulatory bodies oversee a research reactor and nuclear power reactors in Thailand, concentrating on staff development in areas of review and assessment, inspection and enforcement, authorization, and development of regulations and guides. The regulatory body in Thailand is the Bureau of Nuclear Safety Regulation (BNSR) which belongs to the Office of Atoms for Peace (OAP). The BNSR is divided into 4 groups according to the International Atomic Energy Agency (IAEA). These groups are the nuclear safety administration group, nuclear safety technical support group, nuclear safety assessment and licensing group, and the nuclear installations inspection group. Each group is divided into senior and junior positions. The competencies model was used for implementation of staff qualification, career planning and professional progression by BNSR. Competencies are related to knowledge, skills and attitudes (KSAs) needed to perform their job. A key issue is obtaining competencies for the regulatory bodies. The systematic approach to training (SAT) has been used in several countries for improvement regulator performance. The SAT contains 5 steps, including analysis, design, development, implementation and evaluation, to achieve competencies. The SAT provides a logical progression from the identification of competencies required to perform a job to the design, development and implementation of training using the competencies model. In the first step, BNSR performs an operating analysis of training needs assessment (TNA) by using gap analysis technique, as suggested by IAEA. Individual regulatory bodies address the gap using appropriate training program, after comparing the actual and desired competency profiles to determine the gap. This paper examines competencies setup for regulatory staff of BNSR as a result of gaps analysis to establish a scheme for design characteristics of regulatory staff and training courses, thereby enhancing the regulatory

  15. IAEA Mission Concludes Peer Review of Viet Nam's Radiation and Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded a 10-day International Atomic Energy Agency (IAEA) mission to review how Viet Nam's regulatory framework for nuclear and radiation safety has incorporated recommendations and suggestions from an earlier review, conducted in 2009. The Integrated Regulatory Review Service (IRRS) follow-up mission, requested by the Viet Nam Agency for Radiation and Nuclear Safety (VARANS), also reviewed the development of the regulatory safety infrastructure to support Viet Nam's nuclear power programme. The eight-member team comprised senior regulatory experts from Canada, France, Pakistan, Slovenia, United Arab Emirates and the United States of America, as well as three IAEA staff members. The IRRS team said in its preliminary assessment that Viet Nam had made progress since 2009, but that some key recommendations still needed to be addressed. Particular strengths identified by the team included: The commitment of VARANS staff to develop legislation and regulations in the field of nuclear and radiation safety; VARANS' efforts to implement practices that are in line with IAEA Safety Standards and internationally recognized good practices; A willingness to receive feedback regarding the efforts to establish and implement a regulation programme; and Progress made in developing the regulatory framework to support the introduction of nuclear power. The team identified the following areas as high-priority steps to further strengthen radiation and nuclear safety in Viet Nam: The effective independence of the regulatory decision-making process needs to be urgently addressed; Additional resources are needed to regulate existing radiation facilities and activities, as well as the country's research reactor; Efforts to increase the capacity of VARANS to regulate the developing nuclear power programme should continue; The draft Master Plan for the Development of Nuclear Power Infrastructure should be finalized

  16. Nuclear waste processing

    International Nuclear Information System (INIS)

    Nienhuys, K.; Noordegraaf, D.

    1977-04-01

    This report is composed with a view to the discussions around the selection of a site in F.R.Germany near the Netherlands' border for a fuel reprocessing plant. Most of the scientific data available are placed side by side, especially those which are contradictory in order to promote better judgement of affairs before governmental decisions are made. The report comprises a brief introduction to nuclear power plants, fuel cycle, radioactive materials and their properties. Next the transportation of wastes from the nuclear power plants to the reprocessing plants is dealt with more extensively, including the processing and the effluents of as well as the experiences with operational reprocessing plants. The hazards from manipulation of radioactive materials accidents and theft are outlined in each case, followed by a problem discussion. The appendix illustrates the German concept of 'industrial park for after-treatment and disposal'

  17. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  18. Romanian regulatory requirements on nuclear field specific education needs

    International Nuclear Information System (INIS)

    Biro, L.; Velicu, O.

    2004-01-01

    This work is intended as a general presentation of the educational system and research field, with reference to nuclear sciences, and the legal system, with reference to requirements established by the regulatory body for the professional qualification and periodic training of personnel involved in different activities in the nuclear field. Thus, part 2 and 3 of the work present only public information regarding the education in nuclear sciences and nuclear research in Romania; in part 4 the CNCAN requirements for the personnel training, specific to nuclear activities are slightly detailed; part 5 consists of few words about the public information activities in Romania; and part 6 tries to draw a conclusion. (authors)

  19. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2004

    International Nuclear Information System (INIS)

    Seliga, M.

    2005-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2004 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear power plants; (3.1) Assessment and inspection of other nuclear installations; (3.2) Safety analyses; (4) Nuclear materials and physical protection of nuclear installations; (5) Radioactive waste; (6) Quality assurance; (7) Personnel qualification and training; (8) Emergency preparedness; (9) International co-operation; (10) Public information; (11) Personnel and economy data; Appendix: Abbreviations; INES

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities. Japan

    International Nuclear Information System (INIS)

    2017-01-01

    The NEA has updated, in coordination with the Permanent Delegation of Japan to the OECD, the report on the Regulatory and Institutional Framework for Nuclear Activities in Japan. This country report provides comprehensive information on the regulatory and institutional framework governing nuclear activities in Japan. It provides a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. Content: I - General Regulatory Regime: Introduction; Mining regime; Radioactive substances and equipment; Nuclear installations (Reactor Regulation, Emergency response); Trade in nuclear materials and equipment; Radiological protection; Radioactive waste management; Nuclear safeguards and nuclear security; Transport; Nuclear third party liability. II - Institutional Framework: Regulatory and supervisory authorities (Cabinet Office, Nuclear Regulation Authority (NRA), Ministry of Economy, Trade and Industry (METI), The Agency for Natural Resources and Energy (ANRE), Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Ministry of Education, Culture, Sports, Science and Technology (MEXT)); Advisory bodies (Atomic Energy Commission (AEC), Reactor Safety Examination Committee, Nuclear Fuel Safety Examination Committee, Radiation Council, Other advisory bodies); Public and semi-public agencies (Japan Atomic Energy Agency (JAEA), National Institutes for Quantum and Radiological Science and Technology (QST), Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), Nuclear Waste Management Organisation (NUMO))

  1. Directions in U. S. nuclear regulatory policy

    International Nuclear Information System (INIS)

    Rogers, Kenneth C.

    1991-01-01

    The future of nuclear power is optimistic, but only if we each learn from our past mistakes - and from each other's past mistakes and take corrective actions. Only if we apply the highest standard of performance to every nuclear activity. I believe meetings such as this are an important forum for exchanging information that can result in improved standards of performance throughout the world.

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    International Nuclear Information System (INIS)

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  3. Major nuclear safety and regulatory issues in Korea

    International Nuclear Information System (INIS)

    Chang, Soon Heung

    2004-01-01

    Recently the value of nuclear energy is being re-considered due to the increase of oil price, the lack of energy supply, and the competition with renewable energy source. In Unites States, Europe, and East Asia, the prospects for continuous nuclear energy development or the policy for retaining nuclear energy have been announced. According to the nuclear energy promotion plan in Korea, there are 19 operating nuclear plants currently and more 7 plants will be constructed in the future. Until now, qualitative as well as quantitative growth is remarkable. Korean nuclear power plants achieved world-best level of capacity factor. However, because of the various nuclear industrial activities, we have a lot of regulatory issues for operating plants, building new plants, and other nuclear related facilities such as research reactors or radioactive waste storage facility. In this article, important regulatory issues which are emerging in Korea will be reviewed and the approaches to solve the issues including public acceptance will be presented. Especially, I will go into detail of two special case studies: The one is the thermal sleeve separation incident in Younggwang nuclear units 5 and 6 whose outage lasts about 80 days and 90 days respectively, which is not common in worldwide nuclear history. The other is about consensus meeting of Korea nuclear energy policy which was managed by a non-governmental organization. (author)

  4. Regulatory control of nuclear safety in Finland. Annual report 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-08-01

    The report describes regulatory control of the use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in Finland in 1997. Nuclear regulatory control ascertained that the operation of Finnish NPPs was in compliance with the conditions set out in operating licences and current regulations. In addition to NPP normal operation, STUK oversaw projects at the plant units relating to power uprating and safety improvements. STUK prepared statements for the Ministry of Trade and Industry about the applications for renewing the operating licenses of Loviisa and Olkiluoto NPPs. The most important items of supervision in nuclear waste management were studies relating to the final disposal of spent fuel from NPPs and the review of the licence application for a repository for low- and intermediate-level reactor waste from Loviisa NPP. Preparation of general safety regulations for the final disposal of spent nuclear fuel, to be published in the form of a Council of State Decision, was started. By safeguards control, the use of nuclear materials was verified to be in compliance with current regulations and that the whereabouts of every batch of nuclear material were always known. Nuclear material safeguards were stepped up to prevent illicit trafficking of nuclear materials and other radioactive materials. In co-operation with the Ministry for Foreign Affairs and the Institute of Seismology (University of Helsinki), preparations were undertaken to implement the Comprehensive Nuclear Test Ban Treaty (CTBT). For enforcement of the Treaty and as part of the international regulatory approach, STUK is currently developing laboratory analyses relating to airborne radioactivity measurements. The focus of co-operation funded by external sources was as follows: improvement of the safety of Kola and Leningrad NPPs, improvement of nuclear waste management in North-West Russia, development of the organizations of nuclear safety authorities in Eastern Europe and development

  5. The nuclear regulatory challenge of judging safety back fits

    International Nuclear Information System (INIS)

    2002-01-01

    The economic pressures of electricity market competition have led nuclear power plant operators to seek ways to increase electricity production and to reduce operating costs at their plants. Corresponding pressures on the regulatory bodies include operator demand to reduce regulatory burdens perceived as unnecessary and general resistance to consider safety back-fits sought by the regulator. The purpose of this report is to describe potential situations giving rise to safety back-fit questions and to discuss regulatory approaches for judging the back-fits. The intended audience for this report is primarily nuclear regulators, although the information and ideas may also be of interest to nuclear operating organisations, other industry organisations and the general public. (author)

  6. A review of NRC regulatory processes and functions

    International Nuclear Information System (INIS)

    1981-05-01

    A reexamination by the ACRS of the Regulatory Process has been made. Objectives were to provide in a single source, ACRS' understanding of the Regulatory Process and to point out perceived weaknesses and to make appropriate recommendations for change

  7. Deliberations on nuclear safety regulatory system in a changing industrial environment

    International Nuclear Information System (INIS)

    Kim, H.J.

    2001-01-01

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries that restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for a regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power. (author)

  8. Status of nuclear regulatory research and its future perspectives

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  9. 75 FR 63725 - Nuclear Energy Institute; Consideration of Petition in the Rulemaking Process

    Science.gov (United States)

    2010-10-18

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 70 [Docket No. PRM-70-8; NRC-2009-0184] Nuclear Energy Institute; Consideration of Petition in the Rulemaking Process AGENCY: Nuclear Regulatory Commission. ACTION... Commission (NRC) will consider five of the issues raised in a petition submitted by the Nuclear Energy...

  10. Modeling Dynamic Regulatory Processes in Stroke

    Science.gov (United States)

    McDermott, Jason E.; Jarman, Kenneth; Taylor, Ronald; Lancaster, Mary; Shankaran, Harish; Vartanian, Keri B.; Stevens, Susan L.; Stenzel-Poore, Mary P.; Sanfilippo, Antonio

    2012-01-01

    The ability to examine the behavior of biological systems in silico has the potential to greatly accelerate the pace of discovery in diseases, such as stroke, where in vivo analysis is time intensive and costly. In this paper we describe an approach for in silico examination of responses of the blood transcriptome to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) from the data relating these functional clusters to each other in terms of their regulatory influence on one another. Dynamic models were developed by coupling these ODEs into a model that simulates the expression of regulated functional clusters. By changing the magnitude of gene expression in the initial input state it was possible to assess the behavior of the networks through time under varying conditions since the dynamic model only requires an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. We discuss the implications of our models on neuroprotection in stroke, explore the limitations of the approach, and report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different neuroprotective paradigms. PMID:23071432

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Finland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Trade and Industry - KTM; Ministry of Social Affairs and Health; Ministry of the Interior; Ministry of the Environment; Ministry of Foreign Affairs); 2. Advisory bodies (Advisory Committee on Nuclear Energy; Advisory Committee on Nuclear Safety); 3. Public and semi-public agencies (Finnish Radiation and Nuclear Safety Authority - STUK; State Nuclear Waste Management Fund)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  14. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2001

    International Nuclear Information System (INIS)

    Seliga, M.

    2002-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste (RAW); (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; (13) Conclusion; (14) Appendix: Abbreviations; Radiation safety

  15. Crisis Communication of Nuclear Regulatory Organisations: Towards global thinking

    International Nuclear Information System (INIS)

    Martell, Meritxell; Menendez, Susan; Calvo, Marina

    2013-01-01

    The OECD Nuclear Energy Agency (NEA) Committee on Nuclear Regulatory Activities (CNRA) Working Group on Public Communication of Nuclear Regulatory Organisations (WGPC) organised the workshop 'Crisis communication: facing the challenges' on 9-10 May 2012 in Madrid to address the international dimension of the communicative responses to crises by assessing the experience of Nuclear Regulatory Organisations of the NEA member countries and their stakeholders. The CNRA/WGPC also prepared in 2011, before the Fukushima-Daiichi nuclear accident occurred, a Road Map for Crisis Communication of Nuclear Regulatory Organisations which focused only on national aspects. This 'road map' had not considered the international dimension. CNRA mandated the WGPC to expand the Road Map so as to conclude the follow-up activity on crisis communication. The objective of the present document is to firstly, identify the key messages which can be extracted from three surveys carried out among the WGPC members after Fukushima-Daiichi's accident (Appendices II, III and IV), and incorporate them into the Road Map for Crisis Communication. Secondly, the good practices on public communication of NROs, which were presented during the OECD/NEA Workshop on Crisis Communication: Facing the Challenges, are reported. Following the structure of the road map for public communication responses during crisis included in the NEA report entitled 'Road Map for Crisis Communication of Nuclear Regulatory Organisations - National aspects', the good practices on communication before, during and after a crisis are provided. Overall, the emphasis of this report is on the international aspects of crisis communication, rather than the national dimension. (authors)

  16. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  17. Structural radioactive waste from 'retubing/refurbishment' of Embalse nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Alvarez, Daniela E.; Lee Gonzales, Horacio M.; Medici, Marcela A.; Piumetti, Elsa H.

    2009-01-01

    Unlike the building of a new nuclear reactor, the 'retubing / refurbishment' of nuclear reactors that have been in operation for many years, involves the replacement of components in a radioactive environment. This requires a carefully planned radiation protection program to ensure protection of workers, the public and the environment as well as a radioactive waste management program for those radioactive waste generated during the process, which go beyond those generated during the normal operation and maintenance of the plant. Nucleoelectrica Argentina Sociedad Anonima (NA-SA) is scheduled to conduct the Life Extension Process of Embalse Nuclear Power Plant (CNE) which essentially consist of 'retubing / refurbishment' of the installation. The Nuclear Regulatory Authority (ARN) will then have an important activity related to the above process. In particular, this paper will describe some points of interest related to the generation and management of radioactive waste during the 'retubing / refurbishment' of the CNE, from the regulatory point of view. (author)

  18. Annual Report 2007. Nuclear Regulatory Authority; Informe Anual 2007. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  19. Annual Report 2008. Nuclear Regulatory Authority; Informe Anual 2008. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  20. Annual Report 2009. Nuclear Regulatory Authority; Informe Anual 2009. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  1. Regulatory aspects of radiation protection in Indian nuclear plants

    International Nuclear Information System (INIS)

    Chander, Vipin; Pawar, S.K.; Duraisamy, S.

    2012-01-01

    Atomic Energy Act of 1962 covers the radiation safety aspects in the development, control and use of atomic energy. To carry out certain regulatory and safety functions under this act, Atomic Energy Regulatory Board (AERB) was constituted in November 15, 1983. Operating Nuclear Power Plants (NPPs) account for about 60% of occupational collective dose and about 65% of the number of radiation workers in the nuclear fuel cycle facilities. Therefore radiation protection aspects in NPPs are of prime importance. In 1970s and 1980s the high radiation exposures in NPPs was an issue with TAPS-1 and 2 reaching annual collective dose of 50 Person-Sv. In response to this, AERB constituted an expert committee to investigate the possibility of reducing collective doses in NPPs in 1988. Subsequently the recommendations of this committee were implemented in all NPPs. In 1990, International Commission on Radiological Protection (ICRP) recommended a downward revision of occupational dose limit to 20 mSv/yr from the earlier limit of 50 mSv/yr. Regulatory body endorsed these recommendations and gradually brought down the annual dose limits from 40 mSv in 1991 to 30 mSv in 1994 with the limit of 100 mSv averaged over a five year period in line with ICRP recommendations. Over the years, the regulatory body has put in place a sound regulatory frame work and mechanism to ensure adequate protection of occupational workers, members of public and environment due to operation of NPPs. Vast experiences in the field of radiation protection vis-à-vis stringent regulatory requirements such as review of exposure cases and special regulatory inspections during Biennial Shut Down (BSD) has helped in downward trends in occupational and public doses. This paper highlights the role of regulatory body in controlling the radiation doses to both occupational workers and members of public in the NPPs through a three-tier review system. The regulatory oversight, inspections and reviews has resulted in

  2. Improving nuclear regulation. NEA regulatory guidance booklets volumes 1-14

    International Nuclear Information System (INIS)

    2011-01-01

    A common theme throughout the series of NEA regulatory guidance reports, or 'green booklets', is the premise that the fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are continuously maintained and operated in an acceptably safe manner. In meeting this objective the regulator must bear in mind that it is the operator that has responsibility for safely operating the nuclear facility; the role of the regulator is to assess and to provide assurance regarding the operator's activities in terms of assuming that responsibility. The full series of these reports was brought together in one edition for the first time in 2009 and was widely found to be a useful resource. This second edition comprises 14 volumes, including the latest on The Nuclear Regulator's Role in Assessing Licensee Oversight of Vendor and Other Contracted Services. The reports address various challenges that could apply throughout the lifetime of a nuclear facility, including design, siting, manufacturing, construction, commissioning, operation, maintenance and decommissioning. The compilation is intended to serve as a knowledge management tool both for current regulators and the new nuclear professionals and organisations entering the regulatory field. Contents: Executive Summary; Regulatory Challenges: 1. The Role of the Nuclear Regulator in Promoting and Evaluating Safety Culture; 2. Regulatory Response Strategies for Safety Culture Problems; 3. Nuclear Regulatory Challenges Related to Human Performance; 4. Regulatory Challenges in Using Nuclear Operating Experience; 5. Nuclear Regulatory Review of Licensee Self-assessment (LSA); 6. Nuclear Regulatory Challenges Arising from Competition in Electricity Markets; 7. The Nuclear Regulatory Challenge of Judging Safety Back-fits; 8. The Regulatory Challenges of Decommissioning Nuclear Reactors; 9. The Nuclear Regulator's Role in Assessing Licensee Oversight of Vendor and Other Contracted Services

  3. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2002

    International Nuclear Information System (INIS)

    Seliga, M.

    2003-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2002 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Special Enclosure: 10. Years of the Nuclear Regulation Authority of the Slovak Republic. An independent and professional state regulatory authority supervising the nuclear safety is one of prerequisites of the safe operation of nuclear installations in each country. In the Slovak Republic this role has been fulfilled by the Nuclear Regulatory Authority (UJD) since 1993. The main mission of UJD set down by the law is to guarantee for the Slovak citizens as well as for international society that the nuclear power on the territory of the Slovak Republic will be used exclusively for peaceful purposes and that the Slovak nuclear installations are designed, constructed, operated and decommissioned in compliance with relevant legal documents. The mission of UJD is also to tender the operation of nuclear installations so that their operation would not jeopardise the nuclear power plant staff or public and would not cause detrimental effects to the environment or property. UJD prepares laws or comments to the laws and issues decrees in the area of its competencies, issues authorisations for operators of nuclear facilities, reviews and evaluates the safety documentation of nuclear installations, performs the inspections at nuclear installations comparing whether the legal requirements are fulfilled and whether the real status of nuclear installations and their operation is or not in compliance with

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Australia

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Bilateral safeguards agreements; International Atomic Energy Agency Safeguards Agreement; The South Pacific Nuclear Free Zone Treaty Act; The Comprehensive Nuclear Test-Ban Treaty Act; The Nuclear Non-Proliferation (Safeguards) Act); 9. Transport; 10. Nuclear third party liability; II) - Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Health and Ageing; Minister for Foreign Affairs; Minister for the Environment, Heritage and the Arts; Minister for, Resources, Energy and Tourism); 2. Advisory bodies (Radiation Health and Safety Advisory Council; Advisory Committees); 3. Public and semi-public agencies (Australian Radiation Protection and Nuclear Safety Agency (ARPANSA); Australian Safeguards and Non-Proliferation Office; Australian Nuclear Science and Technology Organisation (ANSTO); Supervising Scientist)

  5. International certification of nuclear power reactors design. A proposal from the U.S. NRC (Nuclear Regulatory Commission)

    International Nuclear Information System (INIS)

    Felizia, Eduardo R.

    2006-01-01

    The proposal foundations of the Nuclear Regulatory Commission Board Chairman are briefly described, which were enunciated at a meeting on Fourth Generation Reactors (Washington, March 2005). This proposal is analyzed mainly from the point of view of its consequences in third countries buyers of nuclear technology. The analysis is complemented by descriptions of the current process of the NRC design certification and of Third and Fourth Generation Reactors. (author) [es

  6. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    1996-01-01

    This study is part of a series of analytical studies on nuclear legislation in OECD Member countries, prepared with the co-operation of the countries concerned. Each study has been organised on the basis of a standardised format for all countries, thus facilitating the comparison of information. The studies are intended to be updated periodically, taking into account modifications to the nuclear legislation in each country. This is the first update to the 1995 Edition. Unfortunately, due to the constraints of the OECD Publications Service, it covers only those legislative and institutional changes which, in our view, are of the greatest significance for our readers. Thus, you will find new chapters on Finland, Greece, Italy, Japan, Mexico, the Netherlands, Portugal and the United States. Changes to the nuclear legislation and institutions of the remaining countries will be incorporated into the next Update which is expected to be published at the end of 1997. (author)

  7. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction (Licensing system; Offences, compliance and enforcement; Regulatory documents; Other relevant legislation); 2. Mining regime; 3. Nuclear substances and radiation devices; 4. Nuclear facilities; 5. Trade in nuclear materials and equipment (Exports, Other imports); 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Governor in council; Minister of natural resources; Other Ministerial authorities; Canadian Nuclear Safety Commission - CNSC); 2. Public and semi-public agencies (National Research Council - NRC; Natural Sciences and Engineering Research Council; Atomic Energy of Canada Ltd. - AECL)

  9. Nuclear Regulatory Commission probabilistic risk assessment implementation program: A status report

    International Nuclear Information System (INIS)

    Rubin, M.P.; Caruso, M.A.

    1996-01-01

    The US Nuclear Regulatory Commission (NRC) is undertaking a number of activities intended to increase the consideration of risk significance in its decision processes and the effective use of risk-based technologies in its regulatory activities. Although the NRC is moving toward risk-informed regulation throughout its areas of responsibilities, this paper focuses primarily on those issues associated with reactor regulation. As the NRC completed significant milestones in its development of probabilistic risk assessment (PRA) methodology and gained considerable experience in the limited application of risk assessment to selected regulatory activities, it became evident that a much broader use of risk informed approaches offered advantages to both the NRC and the US commercial nuclear industry. This desire to enhance the use of risk assessment is driven by the clear belief that application of PRA methods will result in direct improvements in nuclear power plant operational safety from the perspective of both the regulator and the plant operator. The NRC believed that an overall policy on the use of PRA methods in nuclear regulatory activities should be established so that the many potential applications of PRA could be implemented in a consistent and predictable manner that would promote regulatory stability and efficiency. This paper describes the key activities that the NRC has undertaken to implement the initial stages of an integrated risk-informed regulatory framework

  10. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  11. Creating a National Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Way, R.

    2010-01-01

    For a number of reasons, countries throughout the world are now considering the development of new nuclear power programs. Whether it is to meet increased power requirements, lack of indigenous resources or environmental concerns, these countries are looking at nuclear power as a solution to their increasing energy needs. Such an undertaking will require a concerted effort by national industrial firms and several branches of government. This paper will look the various phases that encompass the development of a nuclear power program from the perspective of the human resources development. In short it will consider the following issues: Planning a Human Resource Development strategy; Establishing organization, roles and responsibilities; Establishing an Human Resource Development vision, mission, goals and objectives; Collecting and evaluating data for an HRD needs and resource assessment; Conducting a Human Resource Development needs and resource assessment; Determining short-, medium-, and long-term needs; Developing an implementation plan to address education, training, recruitment, retention and knowledge management; Establishing systems that monitor, evaluate and anticipate HRD needs as the nuclear program evolves; Funding and financing short- and long-term Human Resource Development efforts

  12. Regulatory practices and safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The International Symposium on Regulatory Practices and Safety Standards for Nuclear Power Plants was jointly organized by the International Atomic Energy Agency (IAEA), for Nuclear Energy Agency of the OECD and the Government of the Federal Republic of Germany with the objective of providing an international forum for the exchange of information on regulatory practices and safety standards for nuclear power plants. The Symposium was held in Munich, Federal Republic of Germany, from 7 to 10 November 1988. It was attended by 201 experts from some 32 Member States and 4 international organizations. Fifty-one papers from 19 Member States and 2 international organizations were presented and discussed in 5 technical sessions covering the following subjects: National Regulatory Practices and Safety Standards (14 papers); Implementation of Regulatory Practices - Technical Issues (8 papers); Implementation of Regulatory Practices - Operational Aspects (8 papers); Developments and Trends in Safety Standards and Practices (11 papers); International Aspects (10 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. Regulatory inspection of nuclear power plants in NEA member countries

    International Nuclear Information System (INIS)

    Gronow, W.S.; Ilani, O.

    1977-01-01

    The increasing use of nuclear power and public interest in the safety controls led to the proposal by the sub-Committe on Licensing of the NEA Committee on the Safety of Nuclear Installations for a specialist meeting on regulatory inspection practices. This report which was prepared at the request of the sub-Committee to assist in the exchange of views and experience at the meeting reviews the response to a questionnaire on the systems employed, the scope and objectives and the effort involved in regulatory inspection throughout all stages of the life of a nuclear power plant. Other aspects of regulatory inspection activities are discussed including documentation, procedures for changes in technical specification and modifications to plant, powers and duties of regulatory inspection personnel and actions to be taken in the event of an accident or emergency. The report concludes with some comments on those aspects of regulatory inspection practices where further information and an exchange of experience might prove to be beneficial to Member countries. (author)

  14. Regulatory Inspection of Nuclear Power Plants in NEA Member Countries

    International Nuclear Information System (INIS)

    1978-01-01

    Based on the replies to a questionnaire, this report gives a description and comparative evaluation of the regulatory inspection activities in several NEA Member countries. The questionnaire which was circulated to all Member countries requested details on the organisation, system, scope and objectives of nuclear regulatory inspection and the effort required throughout all stages of the life of a nuclear plant including the use of independent bodies or consultants. Additional information was requested on the documentation concerned with regulatory inspections, incident and accident reporting procedures, and the duties, powers and bases for recruitment of regulatory personnel with the object of covering all related aspects. However, because of the differences in national practices and perhaps in the interpretation of the questionnaire, it proved to be extremely difficult to make an evaluation and comparison of inspection activities and effort involved in these Member countries. This report, which includes a section on the nuclear power programme in Member countries, should therefore only be regarded as an initial review but it provides a useful contribution to the exchange of experience and views on regulatory inspection practices

  15. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  16. Quality management of the nuclear regulatory body. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    2001-09-01

    This report is the outcome of the ninth series of peer discussions on regulatory practices entitled Nuclear Regulatory Body Quality Management, held in March and May 2001, and which involved the participation of senior nuclear regulators from 23 IAEA Member States. This report conveys the essence of two peer group discussions and highlights some good practices identified by the participating senior regulators. The objective of the discussions was to share experiences of regulatory bodies in implementing QM systems in their own work so as to ensure that the regulatory control over the licensees is effective and efficient and is commensurate with the mandate assigned by their governments. The shared experiences and good practices presented in the report, however, do not necessarily reflect the views of and good practices endorsed by the governments of the nominating Member States, the organizations to which the regulators belong, or the IAEA. The report sets down the peer group's experience in developing, implementing and evaluating QM within their regulatory bodies and identifies points to bear in mind when introducing such a system. This report is structured so that it covers the subject matter under the main headings of: application of quality management to regulatory work; development and implementation of quality management; assessment and improvement of performance; and good practices

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Mexico

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Nuclear terrorism; II. Institutional Framework - The federal government: 1. Regulatory and supervisory authorities (Ministry of Energy; Ministry of Health; Ministry of Labour and Social Security; Ministry of the Environment and Natural Resources; Ministry of Communications and Transport); 2. Public and semi-public agencies: (National Nuclear Safety and Safeguards Commission; National Nuclear Research Institute)

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovenia

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Safeguards for nuclear material; 7. Radiation protection; 8. Radioactive waste management; 9. Nuclear security; 10. Transport; 11. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Slovenian Nuclear Safety Administration - SNSA; Slovenian Radiation Protection Administration - SRPA); 2. Advisory bodies; 3. Public and semi-public agencies; 4. Technical support organisations - approved experts

  19. Nuclear facilities and environment - an overview of regulatory aspects

    International Nuclear Information System (INIS)

    Chande, S.K.

    2007-01-01

    The Department of Atomic Energy (DAE) operates the entire range of nuclear fuel cycle facilities in the country. The radioactive wastes generated in these facilities have to be disposed into the environment without any adverse effect. In doing so, utmost care is taken to ensure the highest level of safety to the environment, the general public and the occupational workers. Atomic Energy Regulatory Board (AERB) is entrusted with the responsibility of protecting workers, public and environment against undue hazards from ionising radiations. To achieve this objective, AERB exercises regulatory control on the disposal of radioactive wastes from nuclear facilities. The disposal of radioactive effluents into the environment is governed by the Atomic Energy (Safe Disposal of Radioactive Wastes) Rules, 1987. The regulatory aspects with respect to disposal of radioactive wastes are discussed in this paper. (author)

  20. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  1. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances.

  2. US Nuclear Regulatory Commission organization charts and functional statements

    International Nuclear Information System (INIS)

    1997-01-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed

  3. Nuclear Regulatory Commission issuances: August 1994. Volume 40, Number 2

    International Nuclear Information System (INIS)

    1994-08-01

    This report contains the collected issuances of the US Nuclear Regulatory Commission for the month of August, 1994. The report includes issuances of the Commission, the Atomic Safety and Licensing Boards, and the Directors' Decisions. Some of the entities involved include Gulf States Utility company, Sequoyah Fuels Corporation and General Atomics, Georgia Power Company, and Arizona Public Service Company

  4. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances

  5. US Nuclear Regulatory Commission organization charts and functional statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  6. Key regulatory challenges for future nuclear power plants

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2001-01-01

    Key regulatory challenges for future nuclear power plants are concerned with fuel and cladding materials taken to higher burnup and operated at higher temperatures. Particular challenges are related to reduction in waste toxicity, understanding and control of coolant corrosion, qualification of fuel particles, new maintenance practices

  7. Regulatory oversight of maintenance activities at nuclear power plants

    International Nuclear Information System (INIS)

    Pape, M.

    1997-01-01

    Regulation of nuclear safety in the UK is based on monitoring of compliance with licence conditions. This paper discusses legislation aspects, license conditions, license requirements for maintenance and maintenance activities in the UK. It also addresses the regulator utility interaction, the regulatory inspection of maintenance and the trends in maintenance. (author)

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovak Republic

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances and Equipment; 4. Nuclear Installations (Licensing and Inspection, including Nuclear Safety; Emergency Response); 5. Trade in Nuclear Materials and Equipment; 6. Radiological Protection; 7. Radioactive Waste Management; 8. Non-proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Nuclear Regulatory Authority of the Slovak Republic - UJD; Ministry of Health; Ministry of the Environment; Ministry of the Interior; Ministry of Economy; Ministry of Labour and National Labour Inspectorate); 2. Public and Semi-Public Agencies

  9. Nuclear security recommendations on nuclear and other radioactive material out of regulatory control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this publication is to provide guidance to States in strengthening their nuclear security regimes, and thereby contributing to an effective global nuclear security framework, by providing: - Recommendations to States and their competent authorities on the establishment or improvement of the capabilities of their nuclear security regimes, for carrying out effective strategies to deter, detect and respond to a criminal act, or an unauthorized act, with nuclear security implications, involving nuclear or other radioactive material that is out of regulatory control; - Recommendations to States in support of international cooperation aimed at ensuring that any nuclear or other radioactive material that is out of regulatory control, whether originating from within the State or from outside that State, is placed under regulatory control and the alleged offenders are, as appropriate, prosecuted or extradited

  10. US Nuclear Regulatory Commission region IV

    International Nuclear Information System (INIS)

    Vanderburch, C.

    1996-01-01

    The NRC has established a policy to provide for the timely through and systematic inspection of significant operational events at nuclear power plants. This includes the use of an Augmented Inspection Team to determine the causes, conditions, and circumstances relevant to an event and to communicate its findings and conclusions to NRC management. In accordance with NRC Inspection Manual Chapter 0325. The Region IV Regional Administrator dispatched an Augmented Inspection Team to the Wolf Creek Nuclear Generating Station to review the circumstances surrounding a manual reactor trip on January 30, 1996, with the failure of five control rods to fully insert into the core, a failure of the turbine-driven auxiliary feedwater pump, and the subsequent loss of one train of the essential service water system

  11. The public information aspects of nuclear regulatory inspection in the United States

    International Nuclear Information System (INIS)

    Volgenau, E.

    1977-01-01

    The public information aspects of the regulation of nuclear power present a unique set of problems. Not only must the regulators communicate often complex technical information to the public, they must also assure the public, the press and the legislative bodies of the adequacy of the regulatory process and the safety of power plant operations. The United States Nuclear Regulatory Commission (NRC), recognizing the importance of a continuing, open dialogue with the public, has placed particular emphasis on informing the public of its operations. NRC's experiences have been both good and bad. On balance, however, the NRC believes it is following the best course by conducting its operations openly and candidly. (author)

  12. Regulatory control of nuclear safety in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final disposal facility for

  13. Regulatory control of nuclear safety in Finland. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Japan

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Cabinet Office; Minister of Economy, Trade and Industry - METI; Minister of Land, Infrastructure and Transport - MLIT; Minister of Education, Culture, Sports, Science and Technology - MEXT); 2. Advisory bodies (Atomic Energy Commission - AEC; Nuclear Safety Commission - NSC; Radiation Council; Special Committee on Energy Policy; Other advisory bodies); 3. Public and Semi-Public Agencies (Japan Atomic Energy Agency - JAEA)

  15. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Norway

    International Nuclear Information System (INIS)

    2001-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment (Trade governed by nuclear energy legislation; Trade governed by radiation protection legislation; Trade governed by export/import control legislation); 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Ministerial Level (Ministry of Health and Social Affairs; Ministry of Trade and Industry; Ministry of Foreign Affairs; Other Ministries); B. Subsidiary Level: (The Norwegian Radiation Protection Authority - NRPA; The Norwegian Nuclear Emergency Organisation); 2. Public and Semi-Public Agencies - Institute for Energy Technology - IFE

  16. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    International Nuclear Information System (INIS)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  17. Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  18. Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  19. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  20. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  1. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    International Nuclear Information System (INIS)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  2. PNRA Process for Utilizing Experience Feedback for Enhancing Nuclear Safety

    International Nuclear Information System (INIS)

    Shah, Z.H.

    2016-01-01

    One of the elements essential for any organization to become a learning organization is to learn from its own and others experience. The importance of utilizing experience feedback for enhancing operational safety is highlighted in nuclear industry again and again and this has resulted in establishment of several national and international forums. In addition, IAEA action plan on nuclear safety issued after Fukushima accident further highlighted the importance of experience sharing among nuclear community to enhance global nuclear safety regime. PNRA utilizes operating experience feedback gathered through different sources in order to improve its regulatory processes. During the review of licensing submissions, special emphasis is given to utilize the lessons learnt from experience feedback relating to nuclear industry within and outside the country. This emphasis has gradually resulted in various safety improvements in the facilities and processes. Accordingly, PNRA has developed a systematic process of evaluation of international operating experience feedback with the aim to create safety conscious approach. This process includes collecting information from different international forums such as IAEA, regulatory bodies of other countries and useful feedback of past accidents followed by its screening, evaluation and suggesting recommendations both for PNRA and its licensees. As a result of this process, several improvements concerning regulatory inspection plans of PNRA as well as in regulatory decision making and operational practices of licensees have been highlighted. This paper will present PNRA approach for utilizing experience feedback in its regulatory processes for enhancing / improving nuclear safety. (author)

  3. International Nuclear Safety Experts Conclude IAEA Peer Review of Korea's Regulatory System

    International Nuclear Information System (INIS)

    2011-01-01

    organizational change management are needed; Regulations and guides should be developed for decommissioning and management of spent fuel. Regulations should be changed to require a quality assurance plan for the licensing of research and test reactors; and Enhancements to the licensing process are needed to clarify and strengthen the safety information in license amendments and assessment reports. Background The IRRS mission to the Republic of Korea was conducted from 10 to 22 July, mainly in Daejeon. The team also visited several nuclear installations, including a nuclear power plant, a research reactor and the country's emergency response centres. The IRRS team reviewed the following regulatory areas: the government's responsibilities and functions in the nuclear safety regime; the responsibilities and functions of the regulatory body and its management system; the activities of the regulatory body including authorizations; review and assessment; inspection and enforcement processes; and the development of regulations and guides. Team experts came from 14 different countries: Canada, China, the Czech Republic, Finland, France, Hungary, Mexico, Slovakia, Slovenia, Sweden, Switzerland, the United Kingdom, United Arab Emirates and the United States. About IRRS Missions IRRS missions are designed to strengthen and enhance the effectiveness of the national nuclear regulatory infrastructure of States, whilst recognizing the ultimate responsibility of each State to ensure safety in this area. This is done through consideration of both regulatory, technical and policy issues, with comparisons against IAEA safety standards and, where appropriate, good practices elsewhere. (IAEA)

  4. Reform of the regulatory process for commercial nuclear powerplants. Hearings before the Subcommittee on Nuclear Regulation of the Committee on Environment and Public Works, United States Senate, Ninety-Ninth Congress, Second Session on S. 1235, S. 2291, S. 2471, June 17 and 18, 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Two days of hearings held to consider three bills which would reform nuclear power plant regulation stressed the fact that there has been no resolution of many of the problems identified after the Three Mile Island accident. Principal witnesses were Nunzio Palladino and other members and former members of the Nuclear Regulatory Commission (NRC) and representatives of electric utilities, public utility commissions, citizen groups, and the legal profession. One aspect of current procedures which is not working is meetings held in compliance with sunshine laws. At issue was the process of collegial decision making and whether a structure with a single administrator would better sever the public. NRC commissioners concur that collegial decision making is less efficient, but oppose S. 2291's proposal for an independent Nuclear Safety Board. The tests of S. 1235, S. 2291, and S. 2471 accompany the recorded testimony

  5. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2012

    International Nuclear Information System (INIS)

    2013-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2012 is presented. These activities are reported under the headings: Foreword; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Stress tests on the nuclear power plants; (5) Nuclear Materials in SR; (6) Building Authority; (7) Emergency planning and preparedness; (8) International activities; (9) Public communication; (10) Nuclear Regulatory Authority of the Slovak Republic; (11) Attachments; (12) Abbreviations used.

  6. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  7. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties

  8. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties.

  9. International conference on strengthening of nuclear safety in Eastern Europe. Armenian Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Nersesyan, V.

    1999-01-01

    The status of the Armenian Nuclear Regulatory Authority (ANRA) are described in detail with its main task and responsibilities concerning regulations and surveillance of nuclear and radiation safety. The following issues are presented: nuclear legislation; inspection activities; licensing of significant safety related modifications and modernization of NPPs; incidents at NPPs; personnel training; emergency planning; surveillance of nuclear materials; radioactive waste management; and plan of the ANRA perspective development

  10. New nuclear plant design and licensing process

    International Nuclear Information System (INIS)

    Luangdilok, W.

    1996-01-01

    This paper describes latest developments in the nuclear power reactor technology with emphasis on three areas: (1) the US technology of advanced passive light water reactors (AP600 and S BWR), (2) regulatory processes that certify their safety, and (3) current engineering concerns. The goal is to provide and insight of how the government's regulatory agency guarantees public safety by looking into how new passive safety features were designed and tested by vendors and how they were re-evaluated and retested by the US NRC. The paper then discusses the US 1989 nuclear licensing reform (10 CFR Part 52) whose objectives are to promote the standardization of nuclear power plants and provide for the early and definitive resolution of site and design issues before plants are built. The new licensing process avoids the unpredictability nd escalated construction cost under the old licensing process. Finally, the paper summarizes engineering concerns found in current light water reactors that may not go away in the new design. The concerns are related the material and water chemistry technology in dealing with corrosion problems in water-cooled nuclear reactor systems (PWRs and BWRs). These engineering concerns include core shroud cracking (BWRs), jet pump hold-down beam cracking (BWRs), steam generator tube stress corrosion cracking (PWR)

  11. Internal communication within the Slovak Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    2000-01-01

    One of the primary objectives of the Slovak Nuclear Regulatory Authority (UJD) Public Relations Program is to make available to the public full and complete information on UJD activities to assist the public in making informed judgments regarding UJD activities. The primary means of keeping the public informed about the regulatory activities and programs of the UJD is through the news media. A central state administration body, the UJD provides on request within its province in particular information on operational safety of nuclear energy installations independently of those responsible for the nuclear programme, thereby allowing the public and the media to control data and information on nuclear installations. A major element of providing information is the demonstration that the area of nuclear energy uses has its binding rules in the Slovak Republic and the observance thereof is controlled by the state through an independent institution - UJD. As early as 1995 were laid on the UJD the foundations of the concept of broadly keeping the public informed on UJD activity and the safety of nuclear installations by opening the UJD Information Centre. Information Centre provides by its activity communications with the public and mass media, which is instrumental in creating in the public a favourable picture of the independent state nuclear regulation. Internal and external communications are equally important

  12. Regulatory control of nuclear safety in Finland. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of

  13. Regulatory control of nuclear safety in Finland. Annual report 1998

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of Kola and

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Netherlands

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Fissionable materials, ores, radioactive materials and equipment (Fissionable materials and ores; Radioactive materials and equipment); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection (Protection of workers; Protection of the public; Protection of individuals undergoing medical exposure); 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Housing, Spatial Planning and the Environment; Minister for Economic Affairs; Minister for Social Affairs and Employment; Minister for Health, Welfare and Sports; Minister for Finance; Minister for Foreign Affairs); 2. Advisory body - Health Council of the Netherlands; 3. Public and semi-public agencies (Nuclear Research and Consultancy Group - NRG; Central Organisation for Radioactive Waste - COVRA)

  15. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Spain

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trading in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Safeguards and non-proliferation; Physical protection); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Industry, Tourism and Trade - MITYC; Ministry of the Interior - MIR; Ministry of Economy and the Exchequer - MEH; Ministry of the Environment and Rural and Marine Affairs - MARM); 2. Public and semi-public agencies (Nuclear Safety Council - CSN; Centre for Energy-related, Environmental and Technological Research - CIEMAT; National Energy Commission - CNE; 3. Public capital companies (Enusa Industrias Avanzadas, s.a. - ENUSA; Empresa Nacional de Residuos Radiactivos, s.a. - ENRESA)

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Portugal

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Health; Minister of Science, Technology and Higher Education; Ministry of Economy and Innovation; Ministry of Environment and Territorial Planning; Other authorities); 2. Advisory bodies (Independent Commission for Radiological Protection and Nuclear Safety - CIPRSN; National Radiation Protection Commission - CNPCR; National Commission for Radiological Emergencies - CNER; Other advisory bodies); 3. Public and semi-public agencies

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Hungary

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Atomic Energy Co-ordination Council; Hungarian Atomic Energy Authority - HAEA; Minister for Health; Minister for Local Government and Regional Development and Minister for Justice and Law Enforcement; Minister for Agriculture and Rural Development; Minister for Economy and Transport; Minister of Environment Protection and Water Management; Minister for Defence; Minister for Education; President of the Hungarian Mining and Geological Authority; Governmental Co-ordination Committee); 2. Advisory bodies (Scientific Board); 3. Public and semi-public agencies (Institute for Electric Power Research - VEIKI; Atomic Energy Research Institute - AEKI; Institute of Isotopes; Department of Physical Chemistry of the University of Pannon; Hungarian Power Companies Ltd - MVM Zrt.)

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Denmark

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister for the Environment/Minister of Transport and Energy; Minister of Justice; Minister of Defence; National Board of Health; Emergency Management Agency); 2. Advisory bodies (The Danish Ministry of Energy, Supply and Climate and the Danish Energy Agency); 3. Public and semi-public agencies (Risoe National Laboratory)

  19. Improvements of the Regulatory Framework for Nuclear Installations in the Areas of Human and Organizational Factors and Safety Culture

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea, C.

    2016-01-01

    The paper presents the development of regulatory requirements in the area of human and organizational factors taking account of the lessons learned from major accidents in the nuclear industry and in particular of the factors that contributed to the Fukushima Daiichi accident and the improvement of the regulatory oversight of nuclear safety culture. New requirements have been elaborated by the National Commission for Nuclear Activities Control (CNCAN) on the nuclear safety policy of licencees for nuclear installations, on independent nuclear safety oversight, on safety conscious work environment and on the assessment of nuclear safety culture. The regulatory process for the oversight of nuclear safety culture within licencees’ organizations operating nuclear installations and the associated procedure and guidelines, based on the IAEA Safety Standards, have been developed in 2010-2011. CNCAN has used the 37 IAEA attributes for a strong safety culture, grouped into five areas corresponding to safety culture characteristics, as the basis for its regulatory guidelines providing support to the reviewers and inspectors, in their routine activities, for recognising and gathering information relevant to safety culture. The safety culture oversight process, procedure and guidelines are in process of being reviewed and revised to improve their effectiveness and to align with the current international practices, using lessons learned from the Fukushima Daiichi accident. Starting with July 2014, Romania has a National Strategy for Nuclear Safety and Security, which includes strategic objectives, associated directions for action and concrete actions for promoting nuclear safety culture in all the organizations in the nuclear sector. The progress with the implementation of this strategy with regard to nuclear safety culture is described in the paper. CNCAN started to define its own organizational culture model and identifying the elements that promote and support safety

  20. Regulatory trends and practices related to nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Cantor, R.A.

    1984-01-01

    In the next several decades, the electric utility industry will be faced with the retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this paper is to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers

  1. Security programs for Category I or II nuclear material or certain nuclear facilities. Regulatory guide G-274

    International Nuclear Information System (INIS)

    2003-03-01

    The purpose of this regulatory guide is to help applicants for a Canadian Nuclear Safety Commission (CNSC) licence in respect of Category I or II nuclear material - other than a licence to transport - , or a nuclear facility consisting of a nuclear reactor that may exceed 10 MW thermal power during normal operation, prepare and submit the security information to be included with the application, pursuant to the Nuclear Safety and Control Act (NSCA). Category I and II nuclear material are defined in Appendix B to this guide. This guide describes: the security information that should typically be included with the application for any licence referred to above; how the security information may be organized and presented in a separate document (hereinafter 'the security program description'), in order to assist CNSC review and processing of the application; and, the administrative procedures to be followed when preparing, submitting or revising the security program description. (author)

  2. Inspection and enforcement by the regulatory body for nuclear power plants. A safety guide. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this Safety Guide is to provide guidance on fulfilling the requirements for inspection and enforcement by the regulatory body, as set out in the Code on the Safety of Nuclear Power Plants; Governmental Organization. This Safety Guide deals with the responsibilities of the regulatory body, the organization of inspection programmes, the inspection resources of the regulatory body, methods of inspection, requirements on the applicant/licensee in regard to regulatory inspection, inspection reports, and regulatory action and enforcement. It is recognized that many of the provisions of this Safety Guide may be applicable to the regulations of other nuclear facilities and related activities including research reactors, fuel processing and manufacturing plants, irradiated fuel processing plants and radioactive waste management facilities. This Safety Guide does not deal specifically with the functions of a regulatory body responsible for such matters; however, the guidance presented here may be applied as appropriate to these activities. 11 refs, 1 fig

  3. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    International Nuclear Information System (INIS)

    Murphy, E.L.; Sullivan, E.J.

    1997-01-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with

  4. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  5. The bibliographical documentation in the Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Carregado, M.A.

    1998-01-01

    Full text: The presentation of the following work serves to display the recourses which the Information Center (I.C.) - Ezeiza Sector of the Nuclear Regulatory Authority of the Argentine Republic possesses. These recourses help the investigation and application of the regulatory subject as well as the scientific technical community, which uses the information about radiation protection and nuclear safety. Periodical publications, reports, books, standards, etc., are specified quantitatively in detail. Mainly, the automated means are emphasized in order to get to safe ways of information. Data bases in CD-ROM are also enumerated. These are now essential in order to track down the expert information on each theme. The most outstanding ones among these data bases are: INIS, Nuclear Science Abstracts, Nuclear Regulatory Library, Medline and Poltox. Some recourses for obtaining important documents are mentioned, e.g.: The British Library, HMSO and NTIS, as well as addresses of institutions, catalogues of publication on Internet, etc., which allow an easy access to the bibliography required. An evaluation of periodical publications by the Information Center is carried out, as well as information about users connected to the request of bibliographical searches and documents. (author) [es

  6. IAEA Mission Concludes Peer Review of UK's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Senior international nuclear safety and radiation protection experts today concluded a ten-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in the United Kingdom (UK). The Integrated Regulatory Review Service (IRRS) mission team said in its preliminary findings that the UK had made considerable progress since reviews in 2006 and 2009. It also identified good practices in the country's nuclear regulatory system. In addition to following up previous missions, a key objective was to review the effectiveness of the role of the Office of Nuclear Regulation (ONR), the UK's nuclear regulator, in ensuring the safety of radioactive waste management and decommissioning, occupational radiation protection, and public and environmental exposures, including emergency planning and response. The mission also considered the response of the UK's regulatory regime to the implications of the Fukushima Daichi accident had been timely and effective. Recommendations and suggestions were made to the ONR and the Government aimed at strengthening the effectiveness of the country's regulatory framework and functions in line with IAEA Safety Standards, the control of radioactive discharges and environmental monitoring. 'The staff of ONR is clearly dedicated to their mission to secure the protection of people and society from the hazards of the nuclear industry. I am confident that ONR will use the results of this mission to further enhance their regulatory programs', said Bill Borchardt, mission leader and former Executive Director of the United States Nuclear Regulatory Commission (NRC). 'The staff were open and cooperative in their discussions; they provided the fullest practicable assistance, and accepted advice from the Team for continuous improvement in their regulatory work'. ONR's Chief Executive, John Jenkins, said that the full report of the IRRS mission will enhance regulatory effectiveness in the UK

  7. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Turkey

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Prime Minister; Ministry of Energy and Natural Resources; Ministry of Health; Ministry of the Environment and Forestry); 2. Public and semi-public agencies (Turkish Atomic Energy Authority - TAEK; General Directorate for Mineral Research and Exploration - MTA; ETI Mine Works General Management; Turkish Electric Generation and Transmission Corporation - TEAS; Turkish Electricity Distribution Corporation - TEDAS)

  8. Experts Complete IAEA Follow-up Review of Spanish Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    areas of inspection and public communication as a consequence of the lessons learned in 2008 from the event at the Asco Nuclear Power Plant; CSN's interactions at the highest level with licensees to discuss strategic planning and their investments in safety and human resources; and The establishment of formal frameworks for cooperation between the CSN and several governmental organizations, such as the Ministry of Health and the Ministry of Interior in the areas of radiation protection and security. Carmen Martinez Ten, President of CSN, said, 'I am proud that Spain is among the first countries to have received a full- scope IRRS mission and a follow-up. CSN has benefitted from the IRRS mission using the contribution from senior regulators which has resulted and will continue in further improvements in our regulatory framework.' The IRRS team also made recommendations and suggestions to further strengthen Spain's regulatory body, including: CSN should establish a formal policy on how to use technical advisory bodies for technical regulatory decisions; CSN should continue to work with relevant bodies to prepare for the disposal of spent fuel and high-level waste, taking into account the progress being made in the siting of a storage facility; and CSN should continue to work with relevant competent authorities and other bodies on regulatory aspects of security. Denis Flory, IAEA Deputy Director General for Nuclear Safety and Security, said, 'This mission is a clear example of the value of regulatory bodies participating in a senior peer review process offered by IAEA. A particularly important feature of these IRRS follow-up missions is to assess the effective implementation of the recommendations made. This mission to Spain also demonstrates clearly the mutual interest of IRRS missions: they encourage improvements in the host countries and serve as valuable sources of information for the reviewers themselves and for other regulatory bodies.' (IAEA)

  9. Regulatory requirements for nuclear power plant site selection in Malaysia-a review.

    Science.gov (United States)

    Basri, N A; Hashim, S; Ramli, A T; Bradley, D A; Hamzah, K

    2016-12-01

    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.

  10. Evolution of nuclear security regulatory activities in Brazil

    International Nuclear Information System (INIS)

    Mello, Luiz A. de; Monteiro Filho, Joselio S.; Belem, Lilia M.J.; Torres, Luiz F.B.

    2009-01-01

    The changing of the world scenario in the last 15 years has increased worldwide the concerns about overall security and, as a consequence, about the nuclear and radioactive material as well as their associated facilities. Considering the new situation, in February 2004, the Brazilian National Nuclear Energy Commission (CNEN), decided to create the Nuclear Security Office. This Office is under the Coordination of Nuclear Safeguards and Security, in the Directorate for Safety, Security and Safeguards (Regulatory Directorate). Before that, security regulation issues were dealt in a decentralized manner, within that Directorate, by different licensing groups in specific areas (power reactors, fuel cycle facilities, radioactive facilities, transport of nuclear material, etc.). This decision was made in order to allow a coordinated approach on the subject, to strengthen the regulation in nuclear/radioactive security, and to provide support to management in the definition of institutional security policies. The CNEN Security Office develops its work based in the CNEN Physical Protection Regulation for Nuclear Operational Units - NE-2.01, 1996, the Convention on the Physical Protection of Nuclear Material and the IAEA Nuclear Security Series . This paper aims at presenting the activities developed and the achievements obtained by this new CNEN office, as well as identifying the issues and directions for future efforts. (author)

  11. Regulatory system for control of nuclear facilities in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2005-01-01

    All human activities have associated risks. Nuclear programme is no exception. The Bangladesh Atomic Energy Commission (BAEC), constituted in February 1973 through the promulgation of the Presidential order 15 of 1973. Functions of BAEC include research and development in peaceful application of atomic energy, generation of electricity and promotion of international relations congenial to implementation of its programmes and projects. In 1993 the Government of Bangladesh promulgated the law on Nuclear Safety and Radiation Control. Considering the human resources, expertise and facilities needed for implementation of the provisions of the NSRC law, BAEC was entrusted with the responsibility to enforce it. The responsibilities of the BAEC cover nuclear and radiological safety within the installations of BAEC and radiological safety in the manifold applications of radioisotopes and radiation sources within the country. An adequate and competent infrastructure has been built to cater to the diverse nuclear and radiation protection requirements of all nuclear facilities in Bangladesh, arising at different stages from site selection to day-to-day operation. In addition, periodic inspections of the nuclear facilities are carried out. The licensing and regulatory inspection systems for controlling of nuclear installations and radiation sources are established. The paper describes the legal provisions, responsibilities and organization of BAEC with special emphasis on nuclear safety and radiation protection of nuclear facilities in Bangladesh. (author)

  12. Communications in the Nuclear Regulatory Authority of the Slovakia

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    1998-01-01

    Full text: The Nuclear Regulatory Authority of the Slovak Republic (UJD SR) as the state authority provides information related to its competence, namely information on safety operation of nuclear installations, independently from nuclear operators and it enables the public and media to examine information on nuclear facilities. The important aspect is proving that the nuclear energy in the Slovak Republic is due to obligatory rules acceptable and its operation is regulated by the State through the independent institution - UJD SR. UJD SR considers the whole area of public relations as essential component of its activity. UJD SR intends to serve the public true, systematic, qualified, understandable and independent information regarding nuclear safety of nuclear power plants, as well as regarding methods and results of UJD SR work. Communication on reactor incidents or more broadly on operational events at nuclear power plants represents a substantial part of public information- Generally, public information is considered as significant contribution to creation of confidence into the regulatory work. A communication programme must be tested in practice. Our communication programme is regularly evaluated in emergency exercises held at the UJD SR. Inviting journalists to participate in or observe the exercises has intensified this, or by having staff members simulate the mass media and the public. The communication means, tools and channels developed and enhanced during the recent years has increased the UJD SR's functional capability to carry out its information policy. However, communication cannot achieve its goals unless the receiver is willing to accept the message. If the receiver is suspicious about the sender's intentions, good communication is almost impossible. Maintaining the trust with the media and the public as well as increasing radiation and nuclear safety knowledge in the society is therefore essential. UJD SR communication and information activities

  13. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    International Nuclear Information System (INIS)

    Mao, Grace; Brody, James P.

    2007-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s -1 . We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase

  14. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  15. United States Nuclear Regulatory Commission staff practice and procedure digest

    International Nuclear Information System (INIS)

    1991-02-01

    This Revision 9 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1990 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 9 replaces in part earlier editions and revisions and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1990. This edition of the Digest was prepared by attorneys from Aspen Systems Corporation pursuant to Contract number 18-89-346. Persons using this Digest are placed on notice that it may not be used as an authoritative citation in support of any position before the Commission or any of its adjudicatory tribunals. Persons using this Digest are also placed on notice that it is intended for use only as an initial research tool, that it may, and likely does, contain errors, including errors in analysis and interpretation of decisions, and that the user should not rely on the Digest analyses and interpretations but must read, analyze and rely on the user's own analysis of the actual Commission, Appeal Board and Licensing Board decisions cited. Further, neither the United States, the Nuclear Regulatory Commission, Aspen Systems Corporation, nor any of their employees makes any expressed or implied warranty or assumes liability or responsibility for the accuracy, completeness or usefulness of any material presented in the Digest. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on general matters. Where appropriate, particular decisions are indexed under more than one heading. (JF)

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Ireland

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection (Radiation protection standards; Emergency response); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for the Environment, Heritage and Local Government; Minister for Agriculture and Food; Minister for Communications, Marine and Natural Resources; Minister for Finance; Minister for Health and Children; Minister for Defence); 2. Public and semi-public agencies (Radiological Protection Institute of Ireland; Food Safety Authority of Ireland)

  17. Studies of nuclear processes

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1993-01-01

    Results for the period 1 Sep 92 through 31 Aug 93 are presented in nearly a hundred brief papers, some of which present new but preliminary data. Activities reported may be grouped as follows: Fundamental symmetries in the nucleus (parity-mixing measurements, time reversal invariance measurements, signatures of quantum chaos in nuclei), Internucleon reactions (neutron -- proton interactions, the neutron -- neutron scattering length, reactions between deuterons and very light nuclei), Dynamics of very light nuclei (measurements of D states of very light nuclei by transfer reactions, nuclear reactions between very light nuclei, radiative capture reactions with polarized sources), The many-nucleon problem (nuclear astrophysics, high-spin spectroscopy and superdeformation, the nuclear mean field: Dispersive relations and nucleon scattering, configuration mixing in 56 Co and 46 Sc using (d,α) reactions, radiative capture studies, high energy resolution resonance studies at 100--400 keV, nuclear data evaluation for A=3--20), Nuclear instruments and methods (FN tandem accelerator operation, KN accelerator operation and maintenance, atomic beam polarized ion source, development of techniques for determining the concentration of SF 6 in the accelerator insulating gas mixture, production of beams and targets, detector systems, updating of TeX, Psprint, and associated programs on the VAX cluster), and Educational Activities

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Sweden

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects (The Environmental Code, Environmental impact statement, Permit under the Environmental Code)); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability (The Nuclear Liability Act; Chernobyl legislation); II. Institutional Framework: 1. Ministries with responsibilities concerning nuclear activities (Ministry of the Environment; Ministry of Enterprise, Energy and Communications; Ministry of Justice; Ministry of Foreign Affairs); 2. Swedish Radiation Safety Authority

  19. A regulatory view of nuclear containment on UK licensed sites

    International Nuclear Information System (INIS)

    Bradford, P.M.; McNair, I.J.

    1997-01-01

    Members of the UK regulatory body, HM Nuclear Installations Inspectorate (NII) have previously presented conference papers and official reports which have dealt separately with either reactor applications or chemical plant applications. The objective of this paper is to draw together a brief overview of the role of containment in protecting against potential radiological and related hazards, and to describe the factors which influence the NII's assessment of containment safety cases. It draws upon the NII's experience of regulating many types of nuclear facility, from those designed in the late 1940s through to the modern plants, such as Sizewell 'B' and THORP. The paper reviews the legislative and regulatory background within which the facilities exist and are operated. Finally, the paper reviews recent, ongoing and planned research in the field of containment, which has been designed to behave under challenge. (author)

  20. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  1. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  2. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the ? field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  3. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  4. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Russian Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  5. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  6. Modeling nuclear processes by Simulink

    International Nuclear Information System (INIS)

    Rashid, Nahrul Khair Alang Md

    2015-01-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples

  7. Upgrading Atucha 1 nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Caruso, G.

    1998-01-01

    Atucha 1 nuclear power plant has unique design and its commercial operation started in 1974. The upgrading decisions, the basis for an upgrading program and its status of implementation are presented. Regulatory decisions derived from the performance-based approach have the advantage that they enable balancing of the overall plant risk and identifying at different plant levels the areas where improvements are necessary. (author)

  8. Regulatory requirement of the Juragua nuclear Power Plant PSA

    International Nuclear Information System (INIS)

    Valhuerdi Debesa, C.

    1996-01-01

    Probabilistic Safety Assessment has proved to be a powerful tool for improving the knowledge of the safety insides of Nuclear Power Plants and increasing the efficiency of the safety measures adopted by both operators and regulators. In this paper the regulatory approach adopted in Cuba with regard to the PSA , the scope of the requirement and the basis and proposal of this decision are presented

  9. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-05-01

    Legislation and regulations giving birth to the Atomic Energy Control Board (AECB) are outlined, as well as current licencing procedures. The AECB bases its health and safety criteria on ICRP recommendations. R and D is funded to aid regulatory activity. Licencing activities cover uranium resource management, uranium mining and milling, nuclear generating stations, heavy water plants, and radioactive waste management. Safeguards, physical security, and international controls are also concerns of the AECB. (E.C.B.)

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Switzerland

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Nuclear fuels; Radioactive substances and equipment generating ionising radiation); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Environmental protection; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Council; Federal Assembly; Federal Department of the Environment, Transport, Energy and Communications - DETEC; Federal Office of Energy - SFOE; Swiss Federal Nuclear Safety Inspectorate - IFSN; Federal Department of Home Affairs - FDHA; Federal Office of Public Health - FOPH; State Secretariat for Education and Research - SER; Other authorities); 2. Advisory bodies (Swiss Federal Nuclear Safety Commission - KNS; Federal Commission for Radiological Protection and Monitoring of the Radioactivity in the Environment; Federal Emergency Organisation on Radioactivity); 3. Public and semi-public agencies (Paul-Scherrer Institute - PSI; Fund for the decommissioning of nuclear installations and for the waste disposal; National Co-operative for the

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Belgium

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Nuclear facilities (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response; Decommissioning); 4. Trade in nuclear materials and equipment; 5. Radiological protection; 6. Radioactive waste management; 7. Non-proliferation of nuclear weapons and physical protection of nuclear material (International aspects; National control and security measures); 8. Transport; 9. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Agency for Nuclear Control - FANC; Federal Public Service for Home Affairs; Federal Public Service for Economy, SME's, Self-Employed and Energy; Federal Public Service for Employment, Labour and Social Dialogue; Federal Public Service for Defence; Federal Public Service for Foreign Affairs, Foreign Trade and Development Co-operation; Federal Public Planning Service for Science Policy); 2. Advisory bodies (Scientific Council for Ionizing Radiation of the Federal Agency for Nuclear Control; Superior Health Council; Superior Council for Safety, Hygiene and Enhancement of Workplaces; Advisory Committee for the Non-Proliferation of Nuclear Weapons; Commission for Electricity and Gas Regulation - CREG)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Italy

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment (General provisions; Patents); 6. Radiation Protection (Protection of workers; Protection of the public; Protection of the environment); 7. Radioactive Waste Management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Interdepartmental Committee for Economic Planning; Nuclear Safety Agency; Prime Minister; Minister for Economic Development; Minister for Labour and Social Security; Minister for Health; Minister for the Environment; Minister for the Interior; Minister for Transport and Navigation; Minister for Foreign Trade (now incorporated in Ministry for Economic Development); Minister for Education; Treasury Minister; Minister for Universities and for Scientific and Technical Research; Minister for Foreign Affairs; State Advocate General); 2. Advisory bodies (Inter-ministerial Council for Consultation and Co-ordination; Coordinating Committee for Radiation Protection of Workers and the Public; Regional and Provincial Commissions for Public Health Protection

  13. A Review on the Regulatory Strategy of Human Factors Engineering Consideration in Pakistan Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sohail, Sabir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Seong Nam [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the legal and regulatory infrastructure available in Pakistan for HFE requirements is assessed, and the methodology for strengthening of legal infrastructure is presented. The regulatory strategy on evaluation of HFE consideration should provide reviewers with guidance on review process. Therefore, the suggested methodology is based on preparation of guidance documents such as checklist, working procedures, S and Gs etc.; incorporation of PRM elements in regulatory system; and finally the development of PRM implementation criteria. Altogether, the scheme provide the enhancement in regulatory infrastructure and also the effective and efficient review process. The Three Mile Island (TMI) accident brought the general consensus among the nuclear community on the integration of human factors engineering (HFE) principles in all phases of nuclear power. This notion has further strengthened after the recent Fukushima nuclear accident. Much effort has been put over to incorporate the lesson learned and continuous technical evolution on HFE to device different standards. The total of 174 ergonomics standards are alone identified by Dul et al. (2004) published by International Organization for Standardization (ISO) and the European Committee for Standardization (CEN) and number of standards and HFE guidelines (S and Gs) are also published by organizations like Institute for Electrical and Electronics Engineering (IEEE), International Electrotechnical Commission (IEC), International Atomic Energy Agency (IAEA), United States Nuclear Regulatory Commission (USNRC), etc. The ambition of effective review on HFE integration in nuclear facility might be accomplished through the development of methodology for systematic implementation of S and Gs. Such kind of methodology would also be beneficial for strengthening the regulatory framework and practices for countries new in the nuclear arena and with small scale nuclear program. The objective of paper is to review the

  14. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  15. Safety experts complete second IAEA regulatory review of UK nuclear regulator

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Nuclear safety experts today concluded a 10-day mission to peer-review the UK Nuclear Regulator: Health and Safety Executive (HSE), Nuclear Directorate (ND). At the request of the UK Government, the International Atomic Energy Agency assembled a team of ten high-level regulatory experts from eight nations to conduct the Integrated Regulatory Review Service (IRRS) mission. The mission was the second of three planned IRRS missions for the United Kingdom. The first was held in March 2006 to begin a process to assess the nation's readiness to regulate and license new reactor designs, considered as a result of the Energy Policy review initiated by the British Prime Minister and the Secretary of State for Trade and Industry (DTI) in 2005. The IRRS team leader Mr. William Borchardt, Executive Director of Operations from the US Nuclear Regulatory Commission, stated, ''The IAEA IRRS serves an important role in both benchmarking against its safety standards and in promoting dialogue between nuclear safety regulators from around the world.'' During the 2nd mission the IRRS the team reviewed HSE/ND progress since the first IRRS mission and recent regulatory developments, the regulation of operating power plants and fuel cycle facilities, the inspection and enforcement programme for nuclear power plants and fuel cycle facilities, and the emergency preparedness and response programme. The IAEA found that HSE/ND has made significant progress toward improving its effectiveness in regulating existing nuclear power plants and in preparing to license new nuclear reactors designs. Many of the findings identified in the 2006 report had been fully addressed and therefore could be considered closed, the others are being addressed in accordance with a comprehensive action plan. IRRS team members visited the Heysham 1 Nuclear Power Plant near Lancaster, the Sellafield site at Cumbria and the Strategic Control Centre at Hutton, and they met senior managers from HSE and a UK

  16. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  17. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  18. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  19. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  20. Considerations about the impact of the Convention on Nuclear Safety on the regulatory action of the CNEN in Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Camargo, Claudio; Pontedeiro, Auro

    1995-01-01

    Preliminary discussion is conducted about the impact of the terms of the Convention on Nuclear safety, adopted by Diplomatic Conference in September 1994 in the International Atomic Energy Agency, on the regulatory action of Brazilian Nuclear Regulatory Body - CNEN. Following the Convention articles structure, the paper emphasizes technical aspects of the nuclear safety standards adopted in the licensing process of Brazilian Nuclear Power Plants. The recent experience in the issuance of Angra-1 NPP Permanent Operation Authorization is used to demonstrate that current safety standards in Brazil are in compliance with the international compromises and in agreement with what is expected by the so called Safety Culture. (author). 9 refs

  1. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0203] Ultimate Heat Sink for Nuclear Power Plants; Draft... (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and...

  2. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Austria

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime - General Outline: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II) - Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Federal Authorities - Bund (The Federal Chancellery; The Federal Minister for Women's Affairs and Consumer Protection; The Federal Minister of the Interior; The Federal Minister for Economic Affairs; The Federal Minister of Finance; The Federal Minister of Labour, Health and Social Affairs; The Federal Minister of Science and Transport; The Federal Minister of Justice; The Federal Minister for the Environment; The Federal Minister for Foreign Affairs) B. Regional Authorities - Laender; C. District Authorities - Bezirksverwaltungsbehorden; 2. Advisory Bodies (Forum for Nuclear Questions, Radiation Protection Commission - SSK); 3. Public and Semi-Public Agencies (The Seibersdorf Austrian Research Centre; The Graz Nuclear Institute; The Nuclear Institute of the Austrian Universities; The Institute of Risk Research, University of Vienna)

  4. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-01-01

    The mining of pitchblende for the extraction of radium some four decades ago resulted in a largely unwanted by-product, uranium, which set the stage for Canada to be one of the first countires in the world to embark upon a nuclear energy program. From this somewhat unusual beginning, the Canadian program expanded beyond mining of uranium-bearing ores to include extensive research and development in the field of radio-isotope applications, research and power reactors, nuclear-fuel conversion and fabrication facilities, heavy-water production plants and facilities for the management of radioactive wastes. As in the case of any major technological development, nuclear energy poses certain risks on the part of those directly engaged in the industry and on the part of the general public. What characterizes these risks is not so much their physical nature as the absence of long-term experience and the confidence resulting from it. The early development of regulatory controls in the nuclear field in Canada was very much influenced by security considerations but subsequently evolved to include radiological protection and safety requirements commensurate with the expanding application of nuclear energy to a wide spectrum of peaceful uses. A review of Canadian nuclear regulatory experience will reveal that the risks posed by the peaceful uses of nuclear energy can be controlled in such a manner as to ensure a high level of safety. Recent events and development have shown however that emphasis on the risks associated with low-probability, high-consequence events must not be allowed to mask the importance of health and safety measures covering the entire fuel cycle

  5. International nuclear safety experts conclude IAEA peer review of China's regulatory system

    International Nuclear Information System (INIS)

    2010-01-01

    , industrial and medical radioactive sources and the nuclear and radiation accident emergency centre. The IRRS team reviewed the following regulatory areas: the government's responsibilities and functions in the nuclear safety regime; the responsibilities and functions of the regulatory body and its management system; the activities of the regulatory body including authorizations; review and assessment; inspection and enforcement processes; and the development of regulations and guides. The IAEA's IRRS coordinator Gustavo Caruso said, ''This mission was a big challenge for the Agency because of the significant expansion of China's nuclear programme in the context of the nation's current regulatory activities.'' The IRRS team identified particular strengths in the Chinese regulatory system, including: - Leadership's expression of a high-level commitment to nuclear safety and its regulation; - The cultural environment that turns such commitment into practical activities; - The extensive use of IAEA Safety Standards in the development of China's legislative framework; and - At a more detailed level, the system of registering a cadre of high level nuclear safety engineers. The safety leadership in China has been seen in many areas and levels, the Government, regulatory body and utilities, providing confidence in the effectiveness of the Chinese safety regulatory system and the future safety of the vast expanding nuclear industry. The IRRS team also made recommendations to improve the overall performance of China's regulatory system. Examples include: - Nuclear safety-related legislation and policies should be further enhanced for all nuclear activities, including radioactive waste management; - Regulatory bodies should be provided with greater flexibility and resources, both financial and human, to keep pace with the China's nuclear development programme; - As part of its strategy to achieve high standards of safety during a period of rapid growth, greater capability to access

  6. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  7. Regulatory Endorsement Activities for ASME Nuclear Codes and Standards

    International Nuclear Information System (INIS)

    West, Raymond A.

    2006-01-01

    The ASME Board on Nuclear Codes and Standards (BNCS) has formed a Task Group on Regulatory Endorsement (TG-RE) that is currently in discussions with the United States Nuclear Regulatory Commission (NRC) to look at suggestions and recommendations that can be used to help with the endorsement of new and revised ASME Nuclear Codes and Standards (NC and S). With the coming of new reactors in the USA in the very near future we need to look at both the regulations and all the ASME NC and S to determine where we need to make changes to support these new plants. At the same time it is important that we maintain our operating plants while addressing ageing management needs of our existing reactors. This is going to take new thinking, time, resources, and money. For all this to take place the regulations and requirements that we use must be clear concise and necessary for safety and to that end both the NRC and ASME are working together to make this happen. Because of the influence that the USA has in the world in dealing with these issues, this paper is written to inform the international nuclear engineering community about the issues and what actions are being addressed under this effort. (author)

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United Kingdom

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Department of Trade and Industry - DTI; Secretary of State for Environment, Food and Rural Affairs and the Secretary of State for Health; Secretary of State for Transport; Secretary of State for Education); 2. Advisory Bodies (Medical Research Council - MRC; Nuclear Safety Advisory Committee; Radioactive Waste Management Advisory Committee); 3. Public and Semi-Public Agencies (United Kingdom Atomic Energy Authority - UKAEA; Health and Safety Commission and Executive - HSC/HSE; National Radiological Protection Board - NRPB; Environment Agencies; British Nuclear Fuels plc. - BNFL; Amersham International plc.; The National Nuclear Corporation Ltd. - NNC; United Kingdom Nirex Ltd.; Magnox Electric plc.; British Energy Generation Ltd.; Scottish Electricity Generator Companies; British Energy Generation Ltd.; Regional Electricity Companies in England and Wales)

  9. EU Activities for Training and Tutoring of Nuclear Regulatory Authorities and Technical Support Organisations Outside EU

    International Nuclear Information System (INIS)

    Pauwels, Henri; Daures, Pascal; Stockmann, Ynte

    2014-01-01

    Aim of Training and Tutoring Projects: Transfer of European Union nuclear safety regulatory experience and best practices. The following courses are listed: Courses in Nuclear Safety Regulation, Licensing and Enforcement; Nuclear Safety Assessment and Inspection

  10. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.

  11. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  12. Transportation of nuclear material in France: regulatory and technical aspects

    International Nuclear Information System (INIS)

    Flory, D.; Renard, C.

    1995-01-01

    Legislative and regulatory documentation define responsibilities in the field of security and physical protection for transportation of nuclear material. Any transportation activity has to conform to an advance authorization regime delivered by the Ministry of Industry. Responsibility for physical protection of nuclear material rests with the carrier under control of the public authority. Penalties reinforce this administrative regime. Operational responsibility for management and control of transport operations has been entrusted by the ministry to the operational transport unit (Echelon Operationnel des Transports - EOT) of IPSN (Institute for Nuclear Protection and Safety). To guarantee en efficient protection of transport operations, the various following means are provided for: -specialized transport means; - devices for real time tracking of road vehicles; - administrative authorization and declaration procedures; -intervention capacities in case of sabotage... This set of technical means and administrative measures is completed by the existence of a body of inspectors who may control every step of the operations. (authors). 3 tabs

  13. U.S. Nuclear Regulatory Commission human factors program plan

    International Nuclear Information System (INIS)

    1986-04-01

    The purpose of the U.S. Nuclear Regulatory Commission (NRC) Human Factors Program Plan is to ensure that proper consideration is given to human factors in the design and operation of nuclear facilities. This revised plan addresses human factors issues related to the operation of nuclear power plants (NPPs). The three issues of concern are (1) the activities planned to provide the technical bases to resolve the remaining tasks related to human factors as described in NUREG-0660, The NRC Action Plan Developed as a Result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements; (2) the need to address the additional human factors efforts that were identified during implementation of the Action Plan; and (3) the actual fulfillment of those developmental activities specified in Revision 1 of this plan. The plan represents a systematic approach for addressing high priority human factors concerns important to NPP safety in FY 1986 through 1987

  14. A regulatory view of the seismic assessment of existing nuclear structures in the United Kingdom

    International Nuclear Information System (INIS)

    Inkester, J.E.

    2001-01-01

    The paper describes the background to the seismic assessment of existing nuclear structures in the United Kingdom. Nuclear installations in this country were not designed specifically to resist earthquakes until the nineteen-seventies, although older plants were robustly constructed. The seismic capability of these older installations is now being evaluated as part of the periodic safety reviews which nuclear licensees are required to carry out. The regulatory requirements which set the framework for these studies are explained. The licensees' processes of hazard appraisal and examination of the response of the structure are briefly summarized. Regulatory views on some of the criteria used to judge the adequacy of safety are discussed. Finally the paper provides some comments on future initiatives and possible areas of development. (author)

  15. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  16. Safety Experts Complete IAEA Nuclear Regulatory Review of the United States

    International Nuclear Information System (INIS)

    2010-01-01

    nuclear regulators. Such missions also help to build mutual confidence between States in the field of nuclear regulation.'' The IRRS team identified several strengths in the U.S. regulatory system, including: The achievement of a mature safety regulation system that meets its clearly defined strategic goals, organizational values, and the NRC's principles of good regulation; A transparent licensing process that accepts input from public citizens and environmental reviews, and ensures that key documents are publicly available; and A high level of human resource development, due to rigorous staff training at all levels and efforts to ensure long-term knowledge management. The IRRS team also made suggestions to improve the overall performance of the U.S. regulatory system. Examples include: The NRC should consider increasing its effort to use IAEA safety standards in its own regulations; The NRC should develop a fully integrated management system that will coordinate a number of programs and processes that are currently not fully integrated; and The NRC should incorporate lessons learned by the practice of other nations using licensee-conducted periodic safety reviews as a way to improve the NRC's assessment process. IAEA Deputy Director General Denis Flory said, ''I have been impressed by the worldwide interest and international participation in the IAEA's IRRS program. I appreciate the U.S. willingness to invite this mission and demonstrate the value of this service for all nations.'' General information about the Integrated Regulatory Review Service (IRRS) and previous missions can be found on the IAEA website. (IAEA)

  17. Enhancement of Nuclear Safety in Korea: A Regulatory Perspective

    International Nuclear Information System (INIS)

    Chung, K.Y.

    2016-01-01

    In the aftermath of Fukushima Daiichi accident in 2011 Korean regulatory body immediately performed special inspections on nuclear power plants (NPPs) and a research reactor in Korea, and issued an enforcement order for the licensees to implement fifty Fukushima action items to address the safety issues identified by the inspections. Subsequently, the licensees have established the implementation plans for resolution of the action items. By the implementation of the action items, the possibility of severe accident due to the extreme hazards has been greatly reduced and the capabilities to mitigate the severe accident, should it occur, have been upgraded. To improve the consistency and predictability of the regulation on severe accidents, Nuclear Safety and Security Commission (NSSC) the regulatory body in Korea, is revising the regulatory framework for severe accidents. The new framework will require the licensee to enhance the capabilities for prevention and mitigation of severe accidents in view of the defence in depth principle, to assess the radiological effects from the severe accidents, and to improve current accident management procedures and guidelines necessary for the prevention and mitigation of severe accidents. This rulemaking also considers the safety principles provided by the IAEA Vienna Declaration in 2015, which require new NPPs to prevent large radioactive releases. (author)

  18. Innovative training techniques in the Canadian nuclear regulatory environment

    International Nuclear Information System (INIS)

    Martin, D.J.

    1996-01-01

    One of the contributors to the safety of nuclear installations is properly-trained personnel. This applies equally to the staff of a regulatory agency, as they are charged with the task of evaluating the safety of installations and operations involving radioactive materials. In 1990, the nuclear regulatory agency of Canada, the Atomic Energy Control Board, set up a Training Center to train AECB staff and to provide assistance to foreign regulatory agencies who had asked for such assistance. In setting up the Training Centre, the authors considered factors which adversely affect the efficacy of training courses. The technical content must, of course, be of sufficiently high quality, but there are other, significant factors which are independent of the content: consider a presentation in which the lecturer shows a slide which is unreadable from the back of the room. The training value of this slide is zero, even though the content may be sound. Pursuing this thought, they decided to examine the mechanics of presentations and the form of training materials, with a view to optimizing their effectiveness in training. The results of this examination were that they decided to use three technologies as the basis for production of training, support and presentation materials. This paper briefly describes these technologies and their advantages. The technologies are: desktop publishing, video and multimedia

  19. Sustaining Nuclear Safety: Upholding the Core Regulatory Values

    International Nuclear Information System (INIS)

    Kumar, S.

    2016-01-01

    Nuclear Energy and management of safety therein, has a somewhat distinct streak in that from its early days it has had the privilege of being shaped and supervised by the eminent scientists and engineers, in fact it owes its very origin to them. This unique engagement has resulted in culmination of the several safety elements like defence-in-depth in the form of multiple safety layers, redundancy, diversity and physical separation of components, protection against single failures as well as common cause failures right at the beginning of designing a nuclear reactor. The fundamental principles followed by regulators across the globe have many similarities such as, creation of an organization which has a conflict-free primary responsibility of safety supervision, laying down the safety criteria and requirements for the respective industry and developing and using various tools and regulatory methodology to ensure adherence to the laid down regulatory requirements. Yet the regulatory regimes in different States have evolved differently and therefore, has certain attributes which are unique to these and confer on them their identity.

  20. An international comparison of regulatory organizations and licensing procedures for new nuclear power plants

    International Nuclear Information System (INIS)

    Bredimas, Alexandre; Nuttall, William J.

    2008-01-01

    This paper considers measures needed to license new nuclear power plants efficiently. We base our analysis on international standards and a comparison of the national regulatory and licensing framework in seven countries (Canada, France, Germany, Japan, Switzerland, the UK and the USA). We split the review into the organization of regulatory responsibilities and the licensing process. We propose a set of considerations that should be incorporated into national solutions. While conscious of the different cultural fundamentals of each region, we hope this paper will help fuel an emerging debate on this highly topical issue

  1. Activities of Nuclear Regulatory Authority and safety of nuclear facilities in the Slovak Republic in 1993

    International Nuclear Information System (INIS)

    1994-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1993 is presented. These activities are reported under the headings: (1) Introduction; (2) Regulatory activities at nuclear power plants units in operation; (2.1) Nuclear power plant SEP-EBO V-1; (4) Selected operation events and safety assessment in NPP SEP-EBO V-1; (2.2) Safety assessment of NPP SEP-EBO V-2; (3) Results of regulatory activities at the decommissioning of NPP A-1; (4) Regulatory activities at units under construction SEP-EMO - NPP Mochovce; (5) Further regulatory activities. (5.1) Preparation of designated personnel; (5.2) Inspection and accountancy of nuclear material; (5.3) Security provisions; (5.4) Accounted items and double use items; (5.5) Problem of radioactive wastes; (6.1) International co-operation activities of NRA; (6.2) Emergency planning; (6.3) International activities for quality enhancement of national supervision; (7) Conclusion [sk

  2. Comparative study of Malaysian and Philippine regulatory infrastructures on radiation and nuclear safety with international standards

    International Nuclear Information System (INIS)

    Cayabo, Lynette B.

    2013-06-01

    This study presents the results of the critical reviews, analysis, and comparison of the regulatory infrastructures for radiation and nuclear safety of Malaysis and the Philippines usi ng the IAEA safety requirements, GSR Part 1, G overnment, Legal and Regulatory Framework for Safety'' as the main basis and in part, the GSR Part 3, R adiation Protection and Safety of Radiation Sources: International Basic Safety Standards . The scope of the comparison includes the elements of the relevant legislations, the regulatory system and processes including the core functions of the regulatory body (authorization, review and assessment, inspection and enforcement, development of regulations and guides); and the staffing and training of regulatory body. The respective availabe data of the Malaysian and Philippine regulatory infrastructures and current practices were gathered and analyzed. Recommendations to fill the gaps and strengthen the existing regulatory infrastructure of each country was given using as bases relevant IAEA safety guides. Based on the analysis made, the main findings are: the legislations of both countries do not contain al the elements of teh national policy and strategy for safety as well as those of teh framework for safety in GR Part I. Among the provision that need to be included in the legislations are: emergency planning and response; decommissioning of facilities safe management of radioactive wastes and spent fuel; competence for safety; and technical sevices. Provisions on coordination of different authorities with safety responsibilities within the regulatory framework for safety as well as liaison with advisory bodies and support organizations need to be enhanced. The Philippines needs to establish an independent regulatory body, ie. separate from organizations charged with promotion of nuclear technologies and responsible for facilitiesand activities. Graded approach on the system of notification and authorization by registration and

  3. 75 FR 54917 - Criteria for Nominating Materials Licensees for the U.S. Nuclear Regulatory Commission's Agency...

    Science.gov (United States)

    2010-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0294] Criteria for Nominating Materials Licensees for the U.S. Nuclear Regulatory Commission's Agency Action Review Meeting AGENCY: Nuclear Regulatory Commission. ACTION: Request for comment. SUMMARY: It is the policy of the U.S. Nuclear Regulatory Commission...

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United States

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Special nuclear material; Source material; By-product material; Agreement state programmes); 4. Nuclear installations (Initial licensing; Operation and inspection, including nuclear safety; Operating licence renewal; Decommissioning; Emergency response); 5. Radiological protection (Protection of workers; Protection of the public); 6. Radioactive waste management (High-level waste; Low-level waste; Disposal at sea; Uranium mill tailings; Formerly Utilized Sites Remedial Action Program - FUSRAP); 7. Non-proliferation and exports (Exports of source material, special nuclear material, production or utilisation facilities and sensitive nuclear technology; Exports of components; Exports of by-product material; Exports and imports of radiation sources; Conduct resulting in the termination of exports or economic assistance; Subsequent arrangements; Technology exports; Information and restricted data); 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Nuclear Regulatory Commission - NRC; Department of Energy - DOE; Department of Labor - DOL; Department of Transportation - DOT; Environmental Protection Agency - EPA); 2. Public and semi-public agencies: A. Cabinet-level departments (Department of

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - France

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General (The French nuclear power programme and its main players; French nuclear law); 2. Mining Regime; 3. Radioactive Substances and Nuclear Equipment (Regulatory diversity; Radioactive sources; Medical activities); 4. Trade in Nuclear Materials and Equipment (Basic nuclear installations - INB; Tax on basic nuclear installations, Additional taxes, Funding nuclear costs; Installations classified for environmental protection purposes (ICPE) using radioactive substances; Nuclear pressure equipment - ESPN; Defence-related nuclear installations and activities - IANID; Emergency plans); 5. Trade in Nuclear Materials and Equipment (General provisions; Patents); 6. Radiation protection (Protection of the public; Protection of workers; Radiation protection inspectors; Labour inspectors; Protection of individuals in a radiological emergency); 7. Radioactive Waste Management (General regulations; Radioactive waste regulations; Discharge of effluents); 8. Non-proliferation and physical protection (Materials not used for the nuclear deterrent; Materials used for the nuclear deterrent); 9. Transport (Licensing and notification regime: Transport of radioactive materials, Transport of nuclear materials, Transport of radioactive substances between member states of the European Union; Methods of transport: Land transport, Sea transport, Air transport, Transport by post); 10

  6. Nuclear process heat

    International Nuclear Information System (INIS)

    Barnert, H.; Hohn, H.; Schad, M.; Schwarz, D.; Singh, J.

    1993-01-01

    In a system for the application of high temperature heat from the HTR one must distinguish between the current generation and the use of process heat. In this respect it is important that the current can be generated by dual purpose power plants. The process heat is used as sensible heat, vaporisation heat and as chemical energy at the chemical conversion for the conversion of raw materials, the refinement of fossil primary energy carriers and finally circuit processes for the fission of water. These processes supply the market for heat, fuels, motor fuels and basic materials. Fifteen examples of HTR heat processes from various projects and programmes are presented in form of energy balances, however in a rather short way. (orig./DG) [de

  7. International Expert Team Concludes IAEA Peer Review of Bulgaria's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: An international team of senior nuclear safety and radiation protection experts today concluded a 12-day mission to review the regulatory framework for nuclear and radiation safety in Bulgaria. The Integrated Regulatory Review Service (IRRS) mission, conducted at the request of the Government of Bulgaria, identified a series of good practices and made recommendations to help enhance the overall performance of the regulatory system. IRRS missions, which were initiated in 2006, are peer reviews based on the IAEA Safety Standards; they are not inspections or audits. ''Bulgaria has a clear national policy and strategy for safety, which are well in line with international standards and practices and contribute to a high level of nuclear safety,'' said Mission Team Leader Marta Ziakova, Chairperson of the Nuclear Regulatory Authority of the Slovak Republic. The mission team, which conducted the review from 8 to 19 April, was made up of 16 senior regulatory experts from 16 nations, and six IAEA staff. ''The results of the IRRS mission will be valuable for the future development and reinforcement of the Bulgarian Nuclear Safety Agency (BNRA). The use of international standards and good practices helps to improve global harmonization in all areas of nuclear safety and radiation protection,'' said Sergey Tzotchev, Chairman of the BNRA. Among the main observations in its preliminary report, the IRRS mission team found that BNRA operates as an independent regulatory body and conducts its regulatory processes in an open and transparent manner. In line with the IAEA Action Plan on Nuclear Safety, the mission reviewed the regulatory implications for Bulgaria of the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station in Japan. It found that the BNRA's response to the lessons learned from that accident was both prompt and effective. Strengths and good practices identified by the IRRS team include the following: A no-blame policy is enshrined in law for

  8. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  9. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2008-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on

  10. Tritium : health risks, regulatory issues and the nuclear future

    International Nuclear Information System (INIS)

    Chambers, D. B.; Garva, A.

    2010-10-01

    The refurbishment of existing reactors and proposed new build reactors in Canada has resulted in increased public opposition to nuclear power. This opposition has been fuelled by information provided to local groups by highly motivated national and international anti-nuclear groups who foster overstated and often incorrect views on the risks of low doses of radiation. Over the past several years, there has been increased scientific and public interest in the risks of low exposures to tritium. Scientific aspects which have received considerable attention include amongst others, behaviour in the environment, the possibility of increasing the relative biological effectiveness for tritium, the importance of organically bound tritium, and tritium dosimetry. In Canada at least, the perception of harm from exposures to low levels of tritium has been enhanced in the public mind by a proposal in one Province to lower the drinking water standard for tritium from 7,000 Bq/L to 20 Bq/L, which certain non-governmental organizations use to suggest the risks have been greatly underestimated in the past. Actually regulatory environment, the approval of local public of often a requirement for licensing a nuclear facility and thus it is important to ensure that correct information is not only available but available in a technically correct but easily understood form. This paper reviews the currently available scientific information on the risks from exposure to tritium and provides a context of the implications for regulatory actions and communications with the public. (Author)

  11. Improving regulatory effectiveness in Federal/State siting actions: Federal/State regulatory permitting actions in selected nuclear power station licensing cases

    International Nuclear Information System (INIS)

    Baroff, J.

    1977-06-01

    The Federal/State regulatory permitting actions in 12 case histories of nuclear power station licensing in nine different states are documented. General observations regarding Federal/State siting roles in the siting process are included. Eleven of the case histories are illustrated with a logic network that gives the actions of the utilities in addition to the Federal/State permits

  12. International Nuclear and Radiation Safety Experts Conclude IAEA Peer Review of Slovenia's Regulatory System

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of senior nuclear safety experts today concluded a 10-day mission to review the regulatory framework for nuclear and radiation safety in Slovenia. The team identified good practices and gave advice on areas for future improvements. The IAEA has conveyed the team's main conclusions to the Government of Slovenia and a final report will be submitted by the end of 2011. At the request of the Slovenian Government, the IAEA assembled a team of 10 senior regulatory experts from nine nations to conduct the Integrated Regulatory Review Service (IRRS) mission involving the Slovenian Nuclear Safety Administration (SNSA). The mission is a peer review based on the IAEA Safety Standards. Andrej Stritar, Director of Slovenian Nuclear Safety Administration, stressed ''how important it is for a small country like Slovenia to tightly follow international standards in the area of nuclear safety.'' He also expressed his gratitude to the IAEA, and the countries from which team members came, for their support and for their intensive work during the last ten days. Mission Team Leader Colin Patchett, Deputy Chief Inspector from the UK's Office for Nuclear Regulation commended ''the Slovenian authorities for their commitment to nuclear and radiation safety regulation and for sharing their experience.'' The IRRS team reviewed Slovenia's current regulatory framework and all SNSA-regulated facilities and activities, as well as the regulatory implications of the TEPCO Fukushima Daiichi accident. The IRRS team identified particular strengths in the Slovenian regulatory system, including: Through its legal framework, the Slovenian government has appointed SNSA to regulate its nuclear safety program and SNSA has in place an effective process for carrying out this responsibility; and Slovenia's response to the accident at the TEPCO Fukushima Daiichi power plant has been prompt and effective. Communications with the public, development of actions for improvement

  13. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  14. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  15. Assessment of factors that affect the effectiveness of regulatory bodies: an application to the nuclear area

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    2005-09-01

    This work examines the main factors that affect the effectiveness of the non-economic regulatory process and establishes a model to propose actions to improve the regulation and the role of the regulatory body. The Soft Systems Methodology (SSM) is used and some tools for analysis, derived from the expectations of the stake holders, are added to the methodology. The stake holders taken into account are the public, the licensees, the supervisory bodies, other regulatory bodies, international organizations, concerned groups, and the regulatory body staff. The proposed actions aim to gradually change the organization, and the adopted methodology sees the organizational evolution as a continuum. Some elements of the Theory of Complexity are compared to the SSM concepts in order to validate the evolutionary approach. The model is applied to the specific case of,the nuclear regulation and the Brazilian regulatory body. Situations perceived as 'problem situations' are listed and some actions are proposed for improvement, including the establishment of performance indicators for effectiveness in nuclear regulation. (author)

  16. Nuclear Regulatory Commission Issuances: February 1995. Volume 41, Number 2

    International Nuclear Information System (INIS)

    1995-02-01

    This book contains an issuance of the Nuclear Regulatory Commission and a Director's Decision. The issuance concerns consideration by the Commission of appeals from both the Initial Decision and a Reconsideration Order issued by the Presiding Officer involving two materials license amendment applications filed by the University of Missouri. The Director's Decision from the Office of Enforcement denies petitions filed by Northeast Utilities employees requesting that accelerated enforcement action be taken against Northeast Utilities for activities concerned with NU's fitness-for-duty program

  17. Indexes to Nuclear Regulatory Commission issuances, July--September 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This digest and index lists the Nuclear Regulatory Commission (NRC) issuances for July to September 1997. Issuances are from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors' Decisions, and the Decisions on Petitions for Rulemaking. There are five sections to this index: (1) case name index, (2) headers and digests, (3) legal citations index, (4) subject index, and (5) facility index. The digest provides a brief narrative of the issue, including the resolution of the issue and any legal references used for resolution

  18. Multistep processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    The theories of nuclear reactions are reviewed with particular attention to the recent work on multistep processes. The evidence for compound nucleus and direct interaction reactions is described together with the results of comparisons between theories and experimental data. These theories have now proved inadequate, and there is evidence for multistep processes that take place after the initial direct stage but long before the attainment of the statistical equilibrium characteristic of compound nucleus processes. The theories of these reactions are described and it is shown how they can account for the experimental data and thus give a comprehensive understanding of nuclear reactions. (author)

  19. Methodology for value/impact assessment of nuclear regulatory research programs

    International Nuclear Information System (INIS)

    Carlson, D.D.

    1978-12-01

    A methodology for conducting a value/impact assessment of research programs has been developed to provide the Nuclear Regulatory Commission (NRC) an improved capability for allocating resources for confirmatory research. This report presents a seven-step evaluation process and applies it to selected units of research. The methodology is intended to provide insight into the technical merits of the programs, one dimension of the complex problem of resource allocation for confirmatory research

  20. Assuring Competency in Nuclear Power Plants: Regulatory Policy and Practice

    International Nuclear Information System (INIS)

    Durbin, Nancy E.; Melber, Barbara

    2004-06-01

    This report provides descriptive and comparative information on competency regulation and oversight in selected countries and identifies issues concerning competency. Interviews with competency experts in five countries: Sweden, Finland, Spain, Canada, and the United Kingdom were conducted and analyzed. The report provides a summary and comparison of the regulations used in these five countries. Regulations and policies in four areas are discussed: Licensing, certification and approvals; Educational qualifications; Training; Experience. Methods and tools used by regulators in the five countries are discussed with regard to how regulators: Assure that licensees determine the competencies needed for the safe operation of nuclear facilities and fill positions with competent staff; Oversee training and examinations in the areas of operations, engineering and maintenance; Assure competence of contractors; Oversee work group performance; Assure competency of managers; Assure competency of other personnel; Assure competency when modifications and other changes occur. Competency experts identified the following as the biggest challenges in regulating competency: The continued availability of qualified personnel; Determining appropriate criteria for competency and assuring those criteria are met. Determining whether licensees have adequately identified and met training needs, especially evaluating systematic approaches to training (SAT); Overseeing contractors. The following issues related to competency are discussed in the report: The sufficiency of qualified personnel; The evaluation of personnel requirements (determining appropriate criteria for competency and assuring those criteria are met); The effects of major organizational changes, including downsizing; Assurance of competency of contractors; International competency issues; The historical and current focus on technical and hardware issues over human factors issues; Selected examples illustrate regulatory

  1. Regulatory Activities on Civil Nuclear Safety Equipment in China

    International Nuclear Information System (INIS)

    Gaoshang, Lu; Choi, Kwang Sik

    2011-01-01

    It is stipulated in IAEA Fundamental Safety Principles (SF1) that the fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. The fundamental safety objective applies for all facilities and activities and for all stages over the lifetime of a facility or radiation source, including planning, sitting, design, manufacturing, construction, commissioning and operation, as well as decommissioning and closure. So, according to the requirement, the related activities such as design, manufacturing, installation and non-destructive test that conducted on civil nuclear equipment should be well controlled by the vendors, the owner of the nuclear power plants and the regulatory body. To insure the quality of those equipment, Chinese government had taken a series of measures to regulate the related activities on them

  2. WWER nuclear waste management regulatory experience in Finland

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2000-01-01

    About 30% of all electricity produced in Finland is generated by nuclear power. Four reactors, with a total capacity of 2 656 MW e (net), are currently in operation. At Loviisa, there are two 488 MW e WWER units (recently upgraded 440-units) and at Olkiluoto two 840 MW e BWR units. At the Loviisa plant conditioning, storage and final disposal of low-and intermediate-level wastes from reactor operation will take place at the NPP sites. Intermediate level ion exchange resins and evaporation concentrates are currently stored in tanks. However, a license application for constructing a solidification plant based on cementation is currently under STUKs regulatory review. The construction of the final repository for I/LLW at the Loviisa site was started in 1993 and the Government granted the operating license in 1998. The nuclear legislation requires disposal of spent fuel into the Finnish bedrock. (Authors)

  3. International Expert Team Concludes IAEA Peer Review of Poland's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2013-01-01

    the development of the nuclear power programme; and PAA's proactive approach to coordination with Poland's Office of Technical Inspection. The IRRS team made several recommendations and suggestions for PAA as it grows in the next few years, facing challenges and increasing demands as its nuclear power programme expands. To position PAA to address its growth, additional responsibilities, and the retirement of many senior managers, and to maintain its strong focus on safety for currently regulated facilities and activities, the IRRS team advised PAA to: Establish and frequently review that there is a clear link between PAA's organizational goals and objectives, and resource planning, such as staffing and strategies for external support; Consider strengthening and documenting PAA's management system; and Develop and strengthen internal guidance to document authorization processes, review, assessment and inspection procedures. In its preliminary report, the IAEA team's main conclusions have been conveyed to PAA. A final report will be submitted to the Government of Poland in about three months. PAA has informed the team that the final report will be made publicly available. The IAEA encourages nations to invite a follow-up IRRS mission about two years after the mission has been completed. Background The team reviewed the legal and regulatory framework for nuclear safety and addressed all facilities regulated by PAA. This was the 46th IRRS mission conducted by the IAEA. About IRRS Missions IRRS missions are designed to strengthen and enhance the effectiveness of the national nuclear regulatory infrastructure of States, while recognizing the ultimate responsibility of each State to ensure safety in this area. This is done through consideration of regulatory, technical and policy issues, with comparisons against IAEA safety standards and, where appropriate, good practices elsewhere. (IAEA)

  4. 77 FR 33253 - Regulatory Guide 8.24, Revision 2, Health Physics Surveys During Enriched Uranium-235 Processing...

    Science.gov (United States)

    2012-06-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0115] Regulatory Guide 8.24, Revision 2, Health Physics..., ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication'' was issued with a... specifically with the following aspects of an acceptable occupational health physics program that are closely...

  5. Common Practices of Transparency in the Nuclear Regulatory Organizations

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Hah, Yeon Hee; Oh, Kju Myeng

    2010-01-01

    Along with greater access to information, particularly through the Internet, there is the increasing demand of the public for transparency, particularly in matters and decisions affecting their lives. The public demands to know more about Nuclear Regulatory Organization's (NROs) and their activities resulting in more interactions with the public to help make nuclear safety activities more understandable and transparent. As a general concept, 'transparency' means literally that something can be seen through. The definition tells us that it is, more actively, to provide the public with factual information about our activities, and to respond promptly to 'the public's right to know' about the information acquired by NROs. NROs around the world recognize the importance of openness and transparency to the success of their programs to protect public health and safety. All agree that good practice in transparency and being proactive with information help to protect against perceptions of secrecy and to instil public confidence and accountability in what they do. On the other hand, NROs face many challenges in their quest to be open and transparent with their stakeholders. government, nuclear operators, NGOs, media, our colleagues, and particularly with the general public. The most frequently identified challenge was striking the right balance between openness and security-related considerations with many responders citing the need to protect proprietary information whilst still accommodating the public's desire to be well informed. Other challenges include deciding how much transparency is needed to satisfy the public and how information, that is often highly technical and complex, can be presented in a meaningful way through the use of clear and simple language. In this paper, we summarize the survey results done by WGPC on relevant practices of NRO's flux of work concerning public communication matters. By comprehensively searching the international status, we may have

  6. AEC Regulatory view of the reliability of air cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Zavadoski, R.W.

    1975-01-01

    Air cleaning systems in nuclear facilities can be divided into three categories: ventilation exhaust systems, containment atmosphere cleanup systems, and process offgas systems. These systems have been the subject of numerous reports, regulatory guides, discussions, and meetings. Some of the analyses have been critical of the operation and design of these air cleaning systems--in particular, the engineered safety features containment atmosphere cleanup systems. Although for the most part the criticism is applicable, and recognizing that there are a number of unresolved issues pertaining to gaseous waste management systems, there are data to show that air cleaning systems in use in nuclear facilities are performing their intended function. (U.S.)

  7. Preparation of the Regulatory Infrastructure for the New Nuclear Build

    International Nuclear Information System (INIS)

    Cimesa, Sinisa; Persic, Andreja; Vrankar, Leopold; Stritar, Andrej

    2011-01-01

    Slovenia is seriously considering building a new nuclear power plant. The Slovenian Nuclear Safety Administration (SNSA) is very much aware of the complexity of such a project as well as of the fact that at the moment the SNSA does not have sufficient resources for licensing and overseeing the design, construction and operation of the possible new plant. Likewise, the question arises whether technical support organizations which support SNSA in supervising the existing Krsko nuclear power plant have sufficient capacity. Therefore SNSA established a special project team with the task to prepare the Administration for the possible start of the new nuclear build. In the beginning of 2009, the project team prepared the analysis of licensing process, which is basically an overview of spatial planning, construction and nuclear safety regulation processes. The purpose of the review of the whole process, from spatial planning to the issuance of the operating license, was to identify phases which will require most effort. The next step was to set the strategy for the review process as well as to analyze and establish the basis for resource demands needed for SNSA's and other stakeholders involvements and decision making in the process. This will enable SNSA to establish a qualified and effective infrastructure for a possible new nuclear build. (authors)

  8. A study on the influence of the regulatory requirements of a nuclear facility during decommissioning activities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Park, Kook Nam; Hong, Yun Jeong; Park, Jang Jin; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The preliminary decommissioning plan should be written with various chapters such as a radiological characterization, a decommissioning strategy and methods, a design for decommissioning usability, a safety evaluation, decontamination and dismantling activities, radioactive waste management, an environmental effect evaluation, and fire protection. The process requirements of the decommissioning project and the technical requirements and technical criteria should comply with regulatory requirements when dismantling of a nuclear facility. The requirements related to safety in the dismantling of a nuclear facility refer to the IAEA safety serious. The present paper indicates that a decommissioning design and plan, dismantling activities, and a decommissioning project will be influenced by the decommissioning regulatory requirements when dismantling of a nuclear facility. We hereby paved the way to find the effect of the regulatory requirements on the decommissioning of a whole area from the decommissioning strategy to the radioactive waste treatment when dismantling a nuclear facility. The decommissioning requirements have a unique feature in terms of a horizontal relationship as well as a vertical relationship from the regulation requirements to the decommissioning technical requirements. The decommissioning requirements management will be conducted through research that can recognize a multiple relationship in the next stage.

  9. Regulatory challenges related to the licensing of a new nuclear power plant

    International Nuclear Information System (INIS)

    Maris, M.

    2010-01-01

    Assuring the safety and security of nuclear power plants is recognized world-wide as a challenge for all stakeholders. Particular attention goes to plants planned to be built in countries with not sufficiently developed industrial and regulatory infrastructure and experience. A construction and commissioning project, which is usually an international undertaking, gives opportunities to all national stakeholders to develop further their organisations and competences. In the present paper the duties of a regulatory body are recalled as well as the human resources and competences needed for the licensing of a new nuclear power plant. The regulatory body and its technical safety organization(s) should be strengthened and the international cooperation should contribute to this in a systematic and coordinated way. In particular, the donor country should support the necessary development of the regulatory competences and of an effective safety assessment process supporting the national licensing process. Appropriate support can be provided by the International Atomic Energy Agency (IAEA) and through other bi-lateral or multi-lateral programmes

  10. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  11. Strengthening of the nuclear safety regulatory body. Field evaluation review

    International Nuclear Information System (INIS)

    1996-10-01

    As a result of a request from the Preparation Committee of the Nuclear Regulatory Authority (NRA) in 1992, and as recommended by the CEC/RAMG (Commission of European Communities/Regulatory Assistance Management Group) and the Agency mission in July 1993 to the Slovak Republic, the project SLR/9/005 was approved in 1993 as a model project for the period 1994-1996. Current budge is $401,340 and disbursements to date amount to $312,873. The project time schedule has been extended to 1997. The major conclusions of this evaluation are as follows: The project responded to an urgent national need, as well as to a statutory mandate of the Agency, and was adequately co-ordinated with other international assistance programmes to NRA. The project was designed as a structured programme of assistance by means of expert missions, scientific visits and a limited amount of equipment, acting upon several key areas of NRA regulatory responsibilities. Agency assistance was provided in a timely manner. A high concentration of expert missions was noticed at the initial stages of the project, which posed some managements problems. This was corrected to some extent in the course of implementation. Additionally, some overlapping of expert mission recommendations suggests that improvements are needed in the design of such missions. The exposure to international regulatory practice and expertise has resulted in substantial developments of NRA, both in organizational and operational terms. The project can claim to have contributed to NRA having gained governmental and international confidence. NRA's role in the safety assessment of Bohunice V1 reconstruction, as well as in Bohunice V2 safety review, Bohunice A1 decommissioning and in informing the public, also points at the success achieved by the project. The institutional and financial support of the Government contributed decisively to the project achievements. (author). Figs, tabs

  12. Nuclear reactor decommissioning: an analysis of the regulatory environments

    International Nuclear Information System (INIS)

    Cantor, R.

    1986-08-01

    In the next several decades, the electric utility industry will be faced withthe retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this study was to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers. To identify significant trends and practices among regulatory bodies and utilities, a reviw of these factors was undertaken at various levels in the regulatory hierarchy. The technical policies were examined in reference to their treatment of allowed technical modes, restoration of the plant site including any specific recognition of the residual radioactivity levels, and planning requirements. The financial policies were examined for specification of acceptable financing arrangements, mechanisms which adjust for changes in the important parameters used to establish the fund, tax and rate-base treatments of the payments to and earnings on the fund, and whether or not escalation and/or discounting were considered in the estimates of decommissioning costs. The attitudes of regulators toward financial risk, the tax treatment of the decommissioning fund, and the time distribution of the technical mode were found to have the greatest effect on the discounted revenue requirements. Under plausible assumptions, the cost of a highly restricted environment is about seven times that of the minimum revenue requirement environment for the plants that must be decommissioned in the next three decades

  13. The reform of the Moldovan nuclear and radiological regulatory infrastructure

    International Nuclear Information System (INIS)

    Buzdugan, Artur

    2008-01-01

    Establishment of an independent and efficient regulatory body was recognized as a high level state priority in the last years. On May 11, 2006, the Parliament approved the new Law 111-XVI 'On safe deployment of nuclear and radiological activities'. According to the Law, there is being established a single regulatory body - National Agency for Regulation of Nuclear and Radiological Activities (further 'Regulator') and replaced those four domestic domestic regulatory bodies, being earlier in force. On february 28, 2007, the government has approved its Regulation and structure. The Regulator is established under the Ministry of Ecology and Natural Resources, but having the necessary financial and decision independence, The Director General of the Regulator is appointed by the Prime-Minister upon the recommendation of the respective Minister. The Regulator is responsible for the authorization, review and assessment on regulation, norms, inspection and enforcement. The mains kinds of activities with ionizing radiation sources are subjects of authorization by licensing of registration. The authorizations are issued if the user respects fully the conditions of legal norms forwarded by the Regulator. Authorizations are delivered under the form of license or certificates of registration, respective for I-III or IV-V categories of used ionizing radiation sources. For the first time, it is introduced in practice the categorization of radioactive sources, based on IAEA recommendations. Certificates of registration are issued by the Regulator, contrary to the licenses, which are issued or revoked by the Chamber of Licensing, on the base of the Regulator written notification. All services of the Regulator are free of charge. The Inspectorate is established as the subdivision of the Regulator. It is subordinated directly to the Director General of the Regulator, who is the Main State Inspector from the office. The inspectors have the right to perform inspections independent or

  14. Environmental planning and the siting of nuclear facilities: the integration of water, air, coastal, and comprehensive planning into the nuclear siting process. Improving regulatory effectiveness in federal/state siting actions

    International Nuclear Information System (INIS)

    Noble, J.B.; Epting, J.T.; Blumm, M.C.; Ackerman, S.; Laist, D.W.

    1977-02-01

    The National Environmental Policy Act, the Coastal Zone Management Act, the Federal Water Pollution Control Act, the Clean Air Act Amendments, and the Housing and Urban 701 Comprehensive Planning Assistance Program are discussed in relation to the planning and siting of nuclear facilities

  15. Reactor safety: a discussion by officials of the Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Anders, W.A.; Rusche, B.C.; Stello, V. Jr.; Minogue, R.B.

    1976-01-01

    William A. Anders, Chairman of the Nuclear Regulatory Commission (NRC), and several senior officials spoke to the Joint Committee on Atomic Energy on the subject of nuclear safety, improvements in reactor plant safety, and quality assurance. The NRC, during its first year of organization, has developed new initiatives to improve safety and safeguards regulations. Anders stressed that NRC is not stifling internal discussion of opposing views, that it has been honest with the public, and that operating reactors are meeting rigorous safety standards. Other speakers discussed comparative safety of old and new reactors. Backfitting of older plants with new features is done when substantial safety protection can be added, but detuning an integrated system is not done indiscriminately. Officials of NRC do not agree with former General Electric employees, who testified that the regulatory procedure is inadequate. Safety improvements since August 28, 1962 and outlines of the review process are included in the Appendixes

  16. 77 FR 70846 - Regulatory Guide 1.182, “Assessing and Managing Risk Before Maintenance Activities at Nuclear...

    Science.gov (United States)

    2012-11-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0285] Regulatory Guide 1.182, ``Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... withdrawing Regulatory Guide (RG)1.182, Revision (Rev.) 0, ``Assessing and Managing Risk Before Maintenance...

  17. BN-350 nuclear power plant. Regulatory aspects of decommissioning

    International Nuclear Information System (INIS)

    Shiganakov, S.; Zhantikin, T.; Kim, A.

    2002-01-01

    Full text: The BN-350 reactor is a fast breeder reactor using liquid sodium as a coolant [1]. This reactor was commissioned in 1973 and operated for its design life of 20 years. Thereafter, it was operated on the basis of annual licenses, and the final shutdown was initially planned in 2003. In 1999, however, the Government of the Republic of Kazakhstan adopted Decree on the Decommissioning of BN-350 Reactor. This Decree establishes the conception of the reactor plant decommissioning. The conception envisages three stages of decommissioning. The first stage of decommissioning aims at putting the installation into a state of long term safe enclosure. The main goal is an achievement of nuclear-and radiation-safe condition and industrial safety level. The completion criteria for the stage are as follows: spent fuel is removed and placed in long term storage; radioactive liquid metal coolant is drained from the reactor and processed; liquid and solid radioactive wastes are reprocessed and long-term stored; systems and equipment, that are decommissioned at the moment of reactor safe store, are disassembled; radiation monitoring of the reactor building and environment is provided. The completion criteria of the second stage are as follows: 50 years is up; a decision about beginning of works by realization of dismantling and burial design is accepted. The goal of the third stage is partial or total dismantling of equipment, buildings and structure and burial. Since the decision on the decommissioning of BN-350 Reactor Facility was accepted before end of scheduled service life (2003), to this moment 'The Decommissioning Plan' (which in Kazakhstan is called 'Design of BN-350 reactor Decommission') was not worked out. For realization of the Governmental Decree and for determination of activities by the reactor safety provision and for preparation of its decommission for the period till Design approval the following documents were developed: 1. Special Technical Requirements

  18. Legislative framework and regulatory requirements for the introduction of nuclear power

    International Nuclear Information System (INIS)

    Ha-Vinh, Phuong

    1975-01-01

    The adoption of appropriate legislation is to be considered as a prerequisite to the introduction of nuclear power in view of the issues that need to be regulated. Preparatory steps should be started at the earliest stage in conjunction with the planning of nuclear power projects. The primary objectives of a licensing scheme are to ensure safety, public health and environmental protection as well as financial protection for third parties in case of nuclear incident. For licensing purposes, a legislative framework and regulatory determinations are required. Within such a framework and pursuant to such regulatory determinations, the elaboration of safety standards, rules, guides and enforcement procedures is to be considered of paramount importance. To this end a number of international recommendations and advisory material prepared by the IAEA provide useful guidance. A licensing process would normally be split into several stages relating to site approval, construction permit, pre-operational tests, and operating licence, each stage being subject to safety assessments and reviews as determined by regulations. Financial protection against nuclear damage has also to be insured. A special regime of nuclear liability has been established by international conventions, based on the principle of strict liability of the operator of a nuclear installation. As a result of such channelling of liability to him, his liability is limited in amount and time. This liability system has the dual purpose of ensuring appropriate protection for potential victims and of relieving the nuclear industry from unlimited liability risks, which would impede practical applications of atomic energy. For the elaboration of nuclear legislation and specialized regulations the Agency's advisory services have proved to be of help to countries embarking on a nuclear power programme. (author)

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Germany

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Definitions; Licensing requirements); 4. Nuclear installations (Licensing regime; Protection of the environment against radiation effects; Emergency response; Surveillance of installations and activities); 5. Trade in nuclear materials and equipment; 6. Radiation protection (General; Principal elements of the Radiation Protection Ordinance; Additional radiation protection norms); 7. Radioactive waste management (Atomic Energy Act 2002; Radiation Protection Ordinance; International obligations); 8. Non-proliferation and physical protection (Non-proliferation regime; Physical protection regime); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities: Federal authorities (Federal Minister for the Environment, Nature Conservation and Nuclear Safety, Federal Minister for Education and Research, Federal Minister of Finance, Federal Minister of Transport, Building and Urban Affairs, Federal Minister for Economy and Technology, Federal Minister of Defence, Federal Office for Radiation Protection - BfS, Federal Office of Economics and Export Control); Authorities of the Laender; 2. Advisory bodies (Reactor Safety Commission - RSK; Radiation Protection Commission - SSK; Disposal Commission - ESK; Nuclear Technology

  20. Regulatory process and effects on public acceptance

    International Nuclear Information System (INIS)

    Zangger, C.

    1977-01-01

    In Switzerland four Federal laws are involved in controlling nuclear energy. Two of them are applied on the Federal level and entail a single Federal licensing procedure (peaceful uses of atomic energy; protection of nature and landscape). The other two laws are applied on the cantonal level and entail two different cantonal licensing procedures (protection of waters; industry, crafts and trade). Even though these four laws together cover all aspects of the protection of man, the environment and the countryside, nevertheless: - the legal situation and the overall licensing system are complex; they are unintelligible to the man in the street and offer a lawyer numerous possibilities for bringing in appeals; - decisions affecting the three licensing procedures are taken at different levels; and - the nuclear law contains a clause obliging the Federal authorities to treat information on the nuclear aspects of projects confidentially. Although this state of affairs has not appreciably influenced acceptance by the population living near the two operating power plants and the two that are under construction, it has led, in the case of two of the five new projects, to consistently mounting opposition on the part of the local population, opposition which in some cases has reached a very high pitch. In 1975, there was one case where the site was occupied for several months, a violation of the law. Similarly, the opposition which was latent in the rest of Switzerland until two years ago has reached the stage of initiatives: petitions on nuclear energy have been filed in some cantons, and a ''Federal popular initiative to safeguard the people's rights and safety during the construction and operation of atomic facilities'' has been launched. Since the four laws covering nuclear power plants were adopted on the Federal level, it would seem that the cantonal initiatives lack a legal basis. On the other hand the Federal initiative, which demands in particular that powers of

  1. Self-assessment of the Nuclear Regulatory Authority of the Slovak Republic and a subsequent partner IAEA IRRS mission

    International Nuclear Information System (INIS)

    Husarcek, Jan

    2012-01-01

    A self-assessment exercise performed by the Nuclear Regulatory Authority of the Slovak Republic based on the IAEA Integrated Regulatory Review Service (IRRS) methodology, and the follow-up IAEA mission are described. The self-assessment methodology is outlined. The purpose, scope, area, content and process of the self-assessment are explained. The work done, the summary results of the IAEA IRRS mission, and proposed improvements are described. (orig.)

  2. Nuclear Regulatory Commission issuances, April 1995. Volume 41, Number 4

    International Nuclear Information System (INIS)

    1995-04-01

    This book contains issuances of the Nuclear Regulatory Commission and of the Atomic Safety and Licensing Boards, and an issuance of the Director's decision. The issuances concern a petition filed by Dr. James E Bauer seeking interlocutory Commission review of the Atomic Safety and Licensing Board's order imposing several restrictions on Dr. Bauer; a denial of an Interveners' Petition for Review addressing the application of Babcock and Wilcox for a renewal of its Special Nuclear Materials License; granting a motion for a protective order, by Sequoyah Fuel Corporation and General Atomics, limiting the use of the protected information to those individuals participating in the litigation and for the purposes of the litigation only; granting a Petitioner's petition for leave to intervene and request for a hearing concerning Georgia Institute of Technology (Georgia Tech Research Reactor) renewal of a facility license; and a denial of a petition filed by Mr. Ted Dougherty requesting a shutdown of the San Onofre Nuclear Generating Station based on concerns regarding the vulnerability of the plant to earthquakes and defensibility of the plant to a terrorist threat

  3. Nuclear Regulatory Commission issuances, April 1995. Volume 41, Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This book contains issuances of the Nuclear Regulatory Commission and of the Atomic Safety and Licensing Boards, and an issuance of the Director`s decision. The issuances concern a petition filed by Dr. James E Bauer seeking interlocutory Commission review of the Atomic Safety and Licensing Board`s order imposing several restrictions on Dr. Bauer; a denial of an Interveners` Petition for Review addressing the application of Babcock and Wilcox for a renewal of its Special Nuclear Materials License; granting a motion for a protective order, by Sequoyah Fuel Corporation and General Atomics, limiting the use of the protected information to those individuals participating in the litigation and for the purposes of the litigation only; granting a Petitioner`s petition for leave to intervene and request for a hearing concerning Georgia Institute of Technology (Georgia Tech Research Reactor) renewal of a facility license; and a denial of a petition filed by Mr. Ted Dougherty requesting a shutdown of the San Onofre Nuclear Generating Station based on concerns regarding the vulnerability of the plant to earthquakes and defensibility of the plant to a terrorist threat.

  4. IAEA Team Concludes Peer Review of Sweden's Nuclear Regulatory Framework, 17 February 2012, Stockholm, Sweden

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of senior nuclear safety and radiation protection experts today concluded a 12-day mission to review the regulatory framework for nuclear and radiation safety in Sweden. The Integrated Regulatory Review Service (IRRS) mission, which was conducted at the request of Sweden, noted good practices in the country's nuclear regulatory system and also made recommendations and suggestions for the Swedish Radiation Safety Authority (SSM) and the government. These are aimed at strengthening the effectiveness of the country's regulatory framework and functions in line with IAEA Safety Standards. ''Throughout the mission, the IRRS team received full cooperation from SSM staff in its review of Sweden's regulatory, technical and policy issues,'' said Georg Schwarz, mission leader and Deputy Director General of the Swiss nuclear regulator (ENSI). 'The staff were open and candid in their discussions and provided the fullest practicable assistance', he commented. The main observations of the IRRS Review team included the following: SSM operates as an independent regulator in an open and transparent manner with well-organized regulatory processes; SSM is receptive to feedback and strives to maintain a culture of continuous learning; and Following the TEPCO Fukushima Daiichi accident, SSM responded promptly to public demand for information and communicated effectively with the national government, the public and other interested parties. Good practices identified by the IRRS team included, though they are not limited to, the following: The consolidation of the two previous national regulatory authorities into SSM was successful; Overall, SSM's management system is comprehensive and contributes to staff efficiency and effectiveness; The nuclear power plant refurbishment programme as required by SSM enhanced safety; and Sweden's regulatory framework for high-level waste disposal is comprehensive and technically sound. The IRRS Review team identified

  5. Standardization of nuclear power plants in the United States: recent regulatory developments

    International Nuclear Information System (INIS)

    Cowan, B.Z.; Tourtellotte, J.R.

    1992-01-01

    On April 18, 1989, the United States (U.S.) Nuclear Regulatory Commission (NRC) amended the regulations governing the process for licensing nuclear power plants in the United States to provide for issuance of early site permits, standard design certifications and combined construction permits and operating licenses for nuclear power reactors. The new regulations are designed to achieve early resolution of licensing issues and facilitate standardization of nuclear power plants in the United States. The program for design standardization is central to efforts mounted by the U.S. government and industry to ensure that there will be a next generation of nuclear power facilities in the U.S. The most significant changes are provisions for certification of standard designs and for issuance prior to start of construction of combined licenses which incorporate a construction permit and an operating license with conditions. Such certifications and combined licenses must contain tests, inspections and analyses, and acceptance criteria, which are necessary and sufficient to provide reasonable assurance that the facility has been constructed and will operate in accordance with the combined license. A number of significant implementation issues have arisen. In addition a major court case brought by several anti-nuclear groups is pending, challenging NRC authority to issue combined licenses. It is the goal of the U.S. nuclear industry to have the first of the next generation of standardized nuclear power plants ordered, licensed, constructed and on-line by the year 2000. (author)

  6. Spanish regulatory experience in the decommissioning program of Vandellos 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Revilla, J.L.

    2003-01-01

    Nuclear facilities are subject to a system of prior authorization by the competent authorities before they come into service and to subsequent regulation and control during their operating life. All the facilities that stop operating, for technical or financial reasons or because they are compelled to, remain subject to this regulatory control system as long as the competent authorities consider that their residual radioactivity represents a potential source of radiological hazard to the individuals affected or entails an unacceptable environmental risk. The decommissioning of nuclear facilities is the final stage of their life cycle. This stage is part of a general strategy of environmental restoration, which must necessarily be followed after the suspension of certain industrial activities that have to some extent affected the environment. In Spain the decommissioning of facilities is considered a further step or stage of their life cycle in which, in principle, the whole regulatory framework in force during the previous stages of their life - siting, construction, operation, etc. - remains applicable. The law setting up the Spanish Nuclear Safety Council (CSN) states that one of its functions is to issue reports to the Ministry of Economy in advance of the resolutions adopted by that Ministry on the granting of licences for the decommissioning of nuclear and radioactive facilities. However, the old regulations on nuclear and radioactive facilities, in force up to the end of 1999, included no specific references that might serve as a regulatory framework for licensing the decommissioning process of such facilities. All facility decommissioning projects initiated in Spain up to that date, including Vandellos 1 Nuclear Power Plant Decommissioning Plan, were licensed according to an approach worked out specifically for each one. (authors)

  7. Regulatory Aspects for Site Selection for Radiological and Nuclear Installations

    International Nuclear Information System (INIS)

    Sirag, N.M.

    2016-01-01

    The purpose of this research is to check in one of the considerations necessary for any new nuclear facility. A previous study that was conducted using a questionnaire reported that general admission to the public, aesthetic considerations, and characteristics associated with the site are able to adequately accept the existence of new nuclear facilities. The findings of this research revealed that public involvement in the process of site selection and in the design of nuclear power plants, an understanding of their point of view is an important aspect of a participatory approach. An important factor for any new nuclear program is to improve confidence in the energy choices in the future. A survey was conducted on 1304 adults to, to get the main goal. The study concluded showed that the prevalence of culture of safety reflected on the public acceptance of the site, especially if it takes into account the aesthetic and environmental considerations.

  8. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  9. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  10. Development of Checklist for Self-Assessment of Regulatory Capture in Nuclear Safety Regulation

    International Nuclear Information System (INIS)

    Choi, K. S.; Lee, Y. E.; Chang, H. S.; Jung, S. J.

    2011-01-01

    Regulatory body performs its mission on behalf of the general public. As for nuclear industries, the public delegates the authority to the regulatory body for monitoring the safety in nuclear facilities and for ensuring that it is maintained in the socially and globally acceptable level. However, when the situation that a regulatory body behaves in the interests of industries happens, not working primarily for protecting public health and safety on behalf of the public, it is charged that regulatory body acts as an encouragement for industries which produce negative externalities such as radiation risk or radiation hazards. In this case, the regulatory body is called as 'Captured' or it is called that 'Regulatory Capture' happened. Regulatory capture is important as it may cause regulatory failure, one form of government failure, which is very serious phenomenon: severe nuclear accident at Fukushima nuclear power plants recently occurred in March, 2011. This paper aims to introduce the concept of regulatory capture into nuclear industry field through the literature survey, and suggest the sample checklist developed for self-assessment on the degree of regulatory capture within regulatory body

  11. Nuclear Regulatory Commission issuances: Volume 39, Number 6

    International Nuclear Information System (INIS)

    1994-06-01

    This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM). Issuances of the Nuclear Regulatory Commission include: (1) Advanced Medical Systems, Inc.; (2) Henry Allen, Diane Marrone, and Susan Settino; and (3) Westinghouse Electric Corporation. Issuances of the Atomic Safety and Licensing Boards include: (1) Sequoyah Fuels Corporation and General Atomics Corporation and (2) Umetco Minerals Corporation. Issuances of Director's Decisions include: (1) Advanced Medical Systems, Inc., and (2) Boston Edison Company and all boiling water reactors. The summaries and headnotes preceding the opinions reported herein are not to be deemed a part of those opinions or have any independent legal significance

  12. Nuclear Regulatory Commission staff approaches to improving the integration of regulatory guidance documents and prelicensing reviews

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1994-01-01

    The Nuclear Regulatory Commission staff is conducting numerous activities to improve the integration of its regulatory guidance documents (i.e., License Application Review Plan (LARP) and open-quotes Format and Content for the License Application for the High-Level Waste repositoryclose quotes (FCRG)) and pre-license application (LA) reviews. Those activities related to the regulatory guidance documents consist of: (1) developing an hierarchy of example evaluation findings for LARP; (2) identifying LARP review plan interfaces; (3) conducting an integration review of LARP review strategies; (4) correlating LARP to the ongoing technical program; and (5) revising the FCRG. Some of the more important strategies the staff is using to improve the integration of pre-LA reviews with the LA review include: (1) use of the draft LARP to guide the staff's pre-LA reviews; (2) focus detailed pre-LA reviews on key technical uncertainties; (3) identify and track concerns with DOE's program; and (4) use results of pre-LA reviews in LA reviews. The purpose of this paper is to describe these ongoing activities and strategies and discuss some of the new work that is planned to be included in LARP Revision 1 and the final FCRG, which are scheduled to be issued in late 1994. These activities reflect both the importance the staff has placed on integration and the staff's approach to improving integration in these areas. The staff anticipates that the results of these activities, when incorporated in the FCRG, LARP, and pre-LA reviews, will improve its guidance for DOE's ongoing site characterization program and LA annotated outline development

  13. Nuclear Regulatory Commission and its role in environmental standards

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1976-01-01

    The NRC and its predecessors in the Atomic Energy Commission represent considerable experience in environmental standards setting. The Atomic Energy Act of 1954, the 1970 Supreme Court decision on Federal pre-emption of radiation standards, the Calvert Cliffs decision of 1971, the Energy Reorganization Act of 1974, and the Appendix I ''as low as reasonably achievable'' decision of 1975, to name a few of our landmarks, are representative of the scars and the achievements of being in a role of national leadership in radiation protection. The NRC, through a variety of legislative authorities, administrative regulations, regulatory guides, and national consensus standards regulates the commercial applications of nuclear energy. The purposes of regulation are the protection of the environment, public health and safety, and national security. To understand NRC's responsibilities relative to those of other Federal and state agencies concerned with environmental protection, we will briefly review the legislative authorities which underlie our regulatory program. Then we will examine the intent or the spirit of that program as embodied in our system of regulations, guides, and standards. Finally we will speak to what's happening today and what we see in the future for environmental standards

  14. Emergency management in nuclear power plants: a regulatory view

    International Nuclear Information System (INIS)

    Shukla, Vikas; Chander, Vipin; Vijayan, P.; Nair, P.S.; Krishnamurthy, P.R.

    2011-01-01

    The nuclear power plants in India adopts a high level of defence in depth concept in design and operates at highest degree of safety, however the possibility of nuclear accidents cannot be ruled out. The safety and regulatory review of Nuclear Power Plants (NPPs) in India are carried out by Atomic Energy Regulatory Board (AERB). Section 33 of Atomic Energy (Radiation Protection) Rules-2004 provides the basic requirements of emergency preparedness aspects for a nuclear facility. Prior to the issuance of a license for the operation of NPPs, AERB ensures that the site specific emergency response manuals are in place and tested. The emergency response plan includes the emergency response organization, their responsibilities, the detailed scheme of emergency preparedness, response, facilities, equipments, coordination and support of various organizations and other technical aspects. These emergency preparedness plans are tested at periodic interval to check the overall effectiveness. The plant and site emergency exercise is handled by the plant authorities as per the site emergency plan. The events with off-site consequences are handled by the district authorities according to the off-site emergency plan. In off-site emergency exercises, observers from AERB and other associated organizations participate. Observations of the participants are discussed in the feedback session of the exercise for their disposition. This paper reviews the current level of emergency planning and preparedness, statistics of emergency exercises conducted and their salient findings. The paper highlights improvement in the emergency management programme over the years including development of advance technical support systems. The major challenges in off-site emergency management programme such as industrial growth and increase in population within the sterilized zone, frequent transfer of district officials and the floating population around the NPPs are outlined. The areas for improvement in

  15. Conformance to Regulatory Guide 1.97, Arkansas Nuclear One, Unit No. 1

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-08-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 1 of Arkansas Nuclear One and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  16. Virtual private networks application in Nuclear Regulatory Authority of Argentina

    International Nuclear Information System (INIS)

    Glidewell, Donnie D.; Smartt, Heidi A.; Caskey, Susan A.; Bonino, Anibal D.; Perez, Adrian C.; Pardo, German R.; Vigile, Rodolfo S.; Krimer, Mario

    2004-01-01

    As the result of the existence of several regional delegations all over the country, a requirement was made to conform a secure data interchange structure. This would make possible the interconnection of these facilities and their communication with the Autoridad Regulatoria Nuclear (ARN) headquarters. The records these parts exchange are often of classified nature, including sensitive data by the local safeguards inspectors. On the other hand, the establishment of this network should simplify the access of authorized nuclear and radioactive materials users to the ARN databases, from remote sites and with significant trust levels. These requirements called for a network that should be not only private but also secure, providing data centralization and integrity assurance with a strict user control. The first proposal was to implement a point to point link between the installations. This proposal was deemed as economically not viable, and it had the disadvantage of not being easily reconfigurable. The availability of new technologies, and the accomplishment of the Action Sheet 11 under an agreement between Argentine Nuclear Regulatory Authority and the United States Department of Energy (DOE), opened a new path towards the resolution of this problem. By application of updated tunneling security protocols it was possible to project a manageable and secure network through the use of Virtual Private Networking (VPN) hardware. A first trial installation of this technology was implemented between ARN headquarters at Buenos Aires and the Southern Region Office at Bariloche, Argentina. This private net is at the moment under test, and it is planned to expand to more sites in this country, reaching for example to nuclear power plants. The Bariloche installation had some interesting peculiarities. The solutions proposed to them revealed to be very useful during the development of the network expansion plans, as they showed how to adapt the VPN technical requisites to the

  17. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  18. U.S. Nuclear Regulatory Commission nuclear safety assistance to the CEE and NIS countries

    International Nuclear Information System (INIS)

    Blaha, J.

    2001-01-01

    NRC participates in bilateral and multilateral efforts to strengthen the regulatory authorities of countries in which Soviet design NPPs are operated. Countries involved are the New Independent States of the Soviet Union (Armenia, Kazakhstan, Russia and Ukraine) and of Central and Eastern Europe (Bulgaria, Czech Republic, Hungary, Lithuania and Slovak Republic). NRC's goal is to see that its counterparts receive the basic tools, knowledge and understanding needed to exercise effective regulatory oversight, consistent with internationally accepted norms and standards. The bilateral assistance started in 1991. $44 mill. are provided to the countries. The multilateral activities NRC participates in include: H-7 Nuclear Safety Working Group, EBRD - Administered Nuclear Safety Account and Chernobyl Sarcophagus Fund and IAEA

  19. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment.... SUMMARY: The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), in cooperation with the Electric Power Research Institute (EPRI), will hold a joint workshop on the Treatment of...

  20. 76 FR 61402 - Draft Nuclear Regulatory Commission Fiscal Year 2012-2016 Strategic Plan

    Science.gov (United States)

    2011-10-04

    ...-2016 Strategic Plan AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment... comment on draft NUREG-1614, Volume 5. ``U.S. Nuclear Regulatory Commission, FY 2012-2016 Strategic Plan,'' dated September 2011. The NRC's draft FY 2012-2016 strategic plan describes the agency's mission and...

  1. 77 FR 15142 - Updated Nuclear Regulatory Commission Fiscal Years 2008-2013 Strategic Plan

    Science.gov (United States)

    2012-03-14

    ... 2008-2013 Strategic Plan AGENCY: Nuclear Regulatory Commission. ACTION: Strategic plan. SUMMARY: The U...-1614, Volume 5, ``U.S. Nuclear Regulatory Commission, Fiscal Years [FY] 2008-2013 Strategic Plan,'' dated February 2012. The updated FY 2008-2013 strategic plan describes the agency's mission and...

  2. Comparison of ISO 9000 and recent software life cycle standards to nuclear regulatory review guidance

    International Nuclear Information System (INIS)

    Preckshot, G.G.; Scott, J.A.

    1998-01-01

    Lawrence Livermore National Laboratory is assisting the Nuclear Regulatory Commission with the assessment of certain quality and software life cycle standards to determine whether additional guidance for the U.S. nuclear regulatory context should be derived from the standards. This report describes the nature of the standards and compares the guidance of the standards to that of the recently updated Standard Review Plan

  3. Regulatory and administrative requirements for practice of nuclear medicine in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    1998-01-01

    In order to ensure safety of the patients, staff and public in the practice of nuclear medicine, including in-vivo diagnostic investigations, radionuclide therapy and in research using unsealed radioactive substances a number of administrative and regulatory procedures are adopted. The salient features of regulatory and administrative requirements for practice of nuclear medicine in India are discussed

  4. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-07-29

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  5. Status of the PSA use in the Czech regulatory process

    International Nuclear Information System (INIS)

    Dusek, J.

    1994-01-01

    A review of previous probabilistic safety assessment (PSA) activities initiated by regulatory body and preparation of the preliminary PSA study and final PSA study (released in January 1994) for the nuclear power plant Dukovany with WWER-440 type 213 reactor is described. A brief information about the NPP Temelin (with WWER-1000) PSA Study, shutdown and PSA risk monitor current activities for the NPP Dukovany, next PSA activities in 1994 and about planned PSA activities in future is attached. (author). 21 refs

  6. Regulatory Body Safety Culture in Non-nuclear HROs: Lessons for Nuclear Regulators

    International Nuclear Information System (INIS)

    Fleming, M.; Bowers, K.

    2016-01-01

    Regulator safety culture is a relatively new area of investigation, even though deficiencies in regulatory oversight have been identified in a number of public inquiries (e.g., Piper Alpha, Deep Water Horizon). More recently the IAEA report into the Fukushima disaster specifically identified the need for regulatory bodies to have a positive safety culture. While there are clear parallels between duty holder safety culture and regulator safety culture there are also likely to be differences. To date they have been no published studies investigating regulator safety culture. In order to develop a framework to understand regulator safety culture we conducted a literature review and interviewed safety culture subject matter experts from a range of HRO domains (e.g., offshore oil and gas). There was general consensus among participants that regulatory safety culture was an important topic that was worthy of further investigation. That there was general agreement that regulatory safety culture was multi-dimensional and that some of the elements of existing safety culture models applied to regulator culture (e.g., learning and leadership). The participants also identified unique dimensions of regulator safety culture including commitment to high standards and ethics, transparency and perceived role of the regulator. In this paper we will present the results of the interviews and present a model of regulator safety culture. This model will be contrasted with models being used in the nuclear industry. Implications for assessing regulatory safety culture will be discussed. (author)

  7. CNCAN Knowledge Management Process and Tools in Support of Sustainable Development of Regulatory Competences

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea, C.; Oprisescu, M.; Liutiev, C.; Ghinea, P.

    2016-01-01

    Full text: The paper presents the knowledge management process and the knowledge management portal developed by CNCAN, in the framework of the Regional Excellence Project on Regulatory Capacity Building in Nuclear and Radiological Safety, Emergency Preparedness and Response in Romania. The activities of this project started in 2014. The general process for knowledge management is presented, together with its sub-processes: identification of the necessary knowledge; identification of the risk of knowledge loss; acquisition and/or creation of knowledge; knowledge retention (capture, collect, store and organize knowledge); knowledge utilization; review of the effectiveness of the knowledge management process; identification of opportunities for improving the knowledge management process. The paper also presents a set of indicators of the effectiveness of the knowledge management process and the artifacts, espoused values and basic assumptions supporting an effective knowledge management process. The necessary knowledge has been identified using the IAEA recommendations on managing regulatory body competence and the SARCoN methodology. The knowledge management process has been developed based on the IAEA publications on knowledge management in the nuclear industry and in regulatory bodies. The implementation of the process and the development of the portal are ongoing, with more than 20% of the staff using the portal. (author

  8. Nuclear Regulatory Commission issuances. Volume 44, Number 2

    International Nuclear Information System (INIS)

    1996-08-01

    This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors' Decisions (DD), and the Decision on Petitions for Rulemaking (DPRM). The topics of this publication include the dismissal of a suit brought against Georgia Power Company in the transfer of Vogtle Electric Generating Plant, units 1 and 2 to Southern Nuclear; and denial of a petition to review the entire licensing process for Watts Bar Nuclear Plant, Unit 1 operated by the Tennessee Valley Authority

  9. Introduction of regulatory guide on cyber security of L and C systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kang, Y.; Jeong, C. H.; Kim, D. I.

    2008-01-01

    In the case of unauthorized individuals, systems and entities or process threatening the instrumentation and control systems of nuclear facilities using the intrinsic vulnerabilities of digital based technologies, those systems may lose their own required functions. The loss of required functions of the systems can seriously affect the safety of nuclear facilities. Consequently, digital instrumentation and control systems, which perform functions important to safety, should be designed and operated to respond to cyber threats capitalizing on the vulnerabilities of digital based technologies. To make it possible, the developers and licensees of nuclear facilities should perform appropriate cyber security activities throughout the whole life cycle of digital instrumentation and control systems. Under the goal of securing the safety of nuclear facilities, this paper presents the regulatory on cyber security activities to remove the cyber threats that exploit the vulnerabilities of digital instrumentation and control systems and to mitigate the effect of such threats. Presented regulatory guide includes establishing the cyber security policy and plan, analyzing and classifying the cyber threats and cyber security assessment of digital instrumentation and control systems. (authors)

  10. Leak testing United States Nuclear Regulatory Commission type b packaging

    International Nuclear Information System (INIS)

    Lacy, K.A.

    1995-01-01

    The Waste Isolation Pilot Plant (WTPP) is a one of its kind research and development facility operated by the Department of Energy, Carlsbad Area Office. Located in southeastern New Mexico, the WTPP is designed to demonstrate the safe, permanent disposal of transuranic (TRU) radioactive nuclear waste, accumulated from 40 years of nuclear weapons production. Before the waste can be disposed of, it must first be safely transported from generator storage sites to the WIPP. To accomplish this, the TRUPACT-II was designed and fabricated. This double containment, non-vented waste packaging successfully completed a rigorous testing program, and in 1989 received a Certificate of Compliance (C of C) from the Nuclear Regulatory Commission (NRC). Currently, the TRUPACT-II is in use at Idaho National Engineering Laboratory to transport waste on site for characterization. The DOE/CAO is responsible for maintaining the TRUPACT-II C of C. The C of C requires performance of nondestructive examination (NDE), e.g., visual testing (VT), dimensional inspections, Liquid Dye Penetrant testing (PT), and Helium Leak Detection (HLD). The Waste Isolation Division (WID) uses HLD for verification of the containment integrity. The following HLD tests are performed on annual basis or when required, i.e. repairs or component replacement: (1) fabrication verification leak tests on both the outer containment vessel (OCV) and the inner containment vessel (ICV); (2) assembly verification leak tests on the OCV and ICV upper main o-rings; and (3) assembly verification leak tests on the OCV and the ICV vent port plugs. These tests are addressed in detail as part of this presentation

  11. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  12. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    The treatment of radioactive wastes is necessary taking into account the potential hazard of radioactive substances to human health and surrounding environment. The choice of appropriate technology depends on capital and operational costs, wastes amount and their characteristics, appointed targets of the process, e.g. the values of decontamination factors and volume reduction coefficients. The conventional technologies applied for radioactive waste processing, such as precipitation coupled with sedimentation, ion exchange and evaporation have many drawbacks. These include high energy consumption and formation of secondary wastes, e.g. the sludge from sediment tanks, spent ion exchange adsorbents and regeneration solutions. There are also many limitations of such processes, i.e. foaming and drop entrainment in evaporators, loses of solvents and production of secondary wastes in solvent extraction or bed clogging in ion exchange columns. Membrane processes as the newest achievement of the process engineering can successfully supersede many non-effective, out-of-date methods. But in some instances they can also complement these methods whilst improving the parameters of effluents and purification economy. This monograph presents own research data on the application of recent achievements in the area of membrane processes for solving selected problems in nuclear technology. Relatively big space was devoted to the use of membrane processing of low and intermediate radioactive liquid wastes because of numerous applications of these processes in nuclear centres over the world and also because of the interests of the author that was reflected by her recent research projects and activity. This work presents a review on the membrane methods recently introduced into the nuclear technology against the background of the other, commonly applied separation techniques, with indications of the possibilities and prospects for their further developments. Particular attention was paid

  13. Review of decision methodologies for evaluating regulatory actions affecting public health and safety. [Nuclear industry site selection

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.; McDonald, C.L.; Schilling, A.H.

    1976-12-01

    This report examines several aspects of the problems and choices facing the governmental decision maker who must take regulatory actions with multiple decision objectives and attributes. Particular attention is given to the problems facing the U.S. Nuclear Regulatory Commission (NRC) and to the decision attribute of chief concern to NRC, the protection of human health and safety, with emphasis on nuclear power plants. The study was undertaken to provide background information for NRC to use in refining its process of value/impact assessment of proposed regulatory actions. The principal conclusion is that approaches to rationally consider the value and impact of proposed regulatory actions are available. These approaches can potentially improve the decision-making process and enable the agency to better explain and defend its decisions. They also permit consistent examination of the impacts, effects of uncertainty and sensitivity to various assumptions of the alternatives being considered. Finally, these approaches can help to assure that affected parties are heard and that technical information is used appropriately and to the extent possible. The principal aspects of the regulatory decision problem covered in the report are: the legal setting for regulatory decisions which affect human health and safety, elements of the decision-making process, conceptual approaches to decision making, current approaches to decision making in several Federal agencies, and the determination of acceptable risk levels.

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Republic of Korea

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection) (Protection of workers; Protection of the public); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Education, Science and Technology, including the Nuclear Energy Bureau; Minister of Knowledge Economy); 2. Advisory bodies (Atomic Energy Commission; Atomic Energy Safety Commission); 3. Public and semi-public agencies (Korean Atomic Energy Research Institute - KAERI; Korean Institute for Nuclear Safety - KINS; Korean Electric Power Company - KEPCO; Korean Hydro and Nuclear Power - KHNP)

  15. Key Regulatory Issues for Digital Instrumentation and Control Systems at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2008-01-01

    To help reduce the uncertainty associated with application of digital instrumentation and controls (I and C) technology in nuclear power plants, the Nuclear Regulatory Commission (NRC) has issued six Interim Staff Guidance (ISG) documents that address the current regulatory positions on what are considered the significant digital I and C issues. These six documents address the following topics: Cyber Security, Diversity and Defense-in-Depth, Risk Informed Digital I and C Regulation, Communication issues, Human Factors and the Digital I and C Licensing Process (currently issued as Draft). After allowing for further refinement based on additional technical insight gathered by NRC staff through near-term research and detailed review of relevant experience, it is expected that updated positions ultimately will be incorporated into regulatory guides and staff review procedures. This paper presents an overview of the guidance provided by the NRC-issued ISGs on key technology considerations (i.e., the first five documents above) for safety-related digital I and C systems.

  16. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  17. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  18. Challenges in Strengthening Regulatory Infrastructure in a Non-Nuclear Country

    International Nuclear Information System (INIS)

    Bosnjak, J.

    2016-01-01

    The State Regulatory Agency for Radiation and Nuclear Safety (SRARNS) is established as the effectively independent regulatory body for radiation and nuclear safety based on the Law on Radiation and Nuclear Safety in Bosnia and Herzegovina promulgated in November 2007. After its complete reorganization in the last few years, the regulatory system is compatible with relevant IAEA Safety Standards and Guides for safety and security of radioactive sources. The paper gives an overview of the new regulatory framework in Bosnia and Herzegovina, with special focus on challenges faced by Bosnia and Herzegovina, which are actually typical challenges for regulator in small non-nuclear country in strengthening regulatory infrastructure in regulating radiation sources and radioactive waste. (author)

  19. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  20. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  1. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha Vinh Phuong

    1977-01-01

    General remarks on objectives and scope of enabling legislation, on the regulatory body and on the IAEA activities and assistance in regulatory matters e.g. the IAEA Safety Guides which are in preparation. (HP) [de

  2. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.

    1983-10-01

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  3. CEQ regulations called peril to nuclear licensing process

    International Nuclear Information System (INIS)

    O'Neill, J.V.

    1979-01-01

    Court challenges are expected over regulations of the Council on Environmental Quality (CEQ) that were designed to improve nuclear-licensing decisions, but that have actually changed the meanings of National Environmental Policy Act (NEPA) regulations. The legal implications of these changes could, unless resolved, make the licensing process for nuclear facilities even more uncertain. Agency comments are thought to be critical, although the CEQ has declined to release them, and some question the Council's legality. The Nuclear Regulatory Commission faults the CEQ regulations for revising existing law, being inconsistent with the responsibilities of an independent regulatory body, and extending the CEQ's authority beyond the role assigned by NEPA and the President's Executive Order

  4. Regulatory challenges for independent organization and licensing procedures for Egypt first nuclear power program

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2012-01-01

    In March 2010 the Government of Egypt issued an Ordinance creating an independent regulatory body the Egypt Nuclear and Radiological Regulatory Authority (NRRA) reporting directly to the Prime Minister and responsible for matters dealing with protection of the radiation worker, public and environment from the harmful effects of ionizing radiation. A little more than 2 years have elapsed since this date. Some of the challenges faced by NRRA to its regulatory independence are given below. This paper will discuss the major challenges relating to Egyptian nuclear power program and specially the regulatory effectiveness and licensing procedures compared to international comparison.

  5. Risk Assessment Review Group report to the U.S. Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Lewis, H.W.; Budnitz, R.J.; Kouts, H.J.C.; Loewenstein, W.B.; Rowe, W.D.; von Hippel, F.; Zachariasen, F.

    1978-09-01

    The Risk Assessment Review Group was organized by the U.S. Nuclear Regulatory Commission on July 1, 1977, with four elements to its charter: clarify the achievements and limitations of WASH-1400, the ''Rasmussen Report''; assess the peer comments thereon, and responses to those comments; study the present state of such risk assessment methodology; and recommend to the Commission how (and whether) such methodology can be used in the regulatory and licensing process. Areas of study include: risk assessment methodologies; statistical issues; completeness; the data base; and the WASH-1400 assessment of the damage to human health from radiation after a postulated accident. Specific items discussed include: Browns Ferry; common cause failure; human factors; format and scrutability; the peer review process; earthquakes; risk perception; allegations by UCS concerning WASH-1400 treatment of quality assurance and quality control; current role of probabilistic methods in the regulatory process; acts of violence; ATWS; influence of design defects in quality assurance failures; and calculation of population doses from given releases of radionuclides

  6. Evaluation and processing of nuclear data

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1981-01-01

    The role a nuclear data evaluator plays in obtaining evaluated nuclear data, needed for applications, from measured nuclear data is surveyed. Specific evaluation objectives, problems, and procedures are discussed. The use of nuclear systematics to complement nuclear experiment and theory is described. Using the Evaluated Nuclear Data File (ENDF) as an example the formatting, checking, and processing of nuclear data is discussed as well as the testing of evaluated nuclear data in the calculation of integral benchmark experiments. Other important topics such as the Probability Table Method and interrelation between differential and integral data are also discussed. (author)

  7. Evaluation and processing of nuclear data

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1980-01-01

    The role a nuclear data evaluator plays in obtaining evaluated nuclear data, needed for applications, from measured nuclear data is surveyed. Specific evaluation objectives, problems, and procedures are discussed. The use of nuclear systematics to complement nuclear experiment and theory is described. With the Evaluated Nuclear Data File (ENDF) as an example, the formatting, checking, and processing of nuclear data are discussed as well as the testing of evaluated nuclear data in the calculation of integral benchmark experiments. Other important topics such as the Probability Table Method and interrelation between differential and integral data are also discussed. 25 figures

  8. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  9. Provincial nuclear regulatory authority?: The case of the province of Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo; Ocana, F.; Scoles, R.

    1999-01-01

    The evolution of social and political events in the province of Cordoba after the Law 8157 of 1992, that establishes the provincial nuclear policy, are analysed as well as the recent sanction and veto of the Law 8775, which creates the provincial Nuclear Regulatory Authority. The authors conclude that is necessary and convenient to enforce provincial nuclear regulations and controls

  10. The functions and organization of the regulatory authority for nuclear energy in Turkey

    International Nuclear Information System (INIS)

    Aybers, Nejat

    1979-01-01

    Following a description of the legislative and regulatory provisions governing nuclear activities in Turkey, this paper analyses the licensing system for nuclear installations. Special emphasis is placed on the problems of setting up a nuclear power plant project in a developing country and on the need for codes of practice on safe design and operation of such plants at the national level. (NEA) [fr

  11. NRC [Nuclear Regulatory Commission] safety research in support of regulation, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report, the third in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1987. The goal of this office is to ensure that research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  12. Regulatory aspect of nuclear application and radioactive waste management in Indonesia

    International Nuclear Information System (INIS)

    Mohammad Ridwan

    2002-01-01

    Experience over more than 56 years in the field of nuclear application has shown that such technology is generally safely used. Nevertheless, there have been instances, when safety systems have been circumvented and serious radiological accident have occurred, and have resulted with fatal consequences. During the last 56 years, such radiological accidents, in total, caused 101 person dead, and it is very interesting to note that this figure is more than double the dead caused by nuclear accident as the result of nuclear fuel failure, such as in nuclear power plant, in submarine or in enrichment plant, which has only 47 fatalities. The article 8 of the convention on nuclear safety, stipulates inter alia that the contracting party shall established a regulatory body separated from the promotional or the executing organization of nuclear energy. Indonesia is not operating any nuclear power. At present, it is only operating three research reactors, and some laboratories connected with this reactor, such as one nuclear fuel fabrication plant for research reactors, one experimental fuel fabrication plant for nuclear power, one isotope production facility, radiometalurgy laboratory and some other research facilities. However, in anticipation of the expansion of nuclear programme in Indonesia, and looking into the various accident in the nuclear application, the Indonesian Government has, since April 10, 1997, enacted the new act, Act No. 10/1997 on Nuclear Energy. The new Act addresses several key requirements for the successful conduct of Indonesia nuclear programme, including the establishment of both the Executing Body responsible for nuclear research and development, mining and processing nuclear fuels and materials, production of radio-isotopes and management of radioactive wastes and the independent Nuclear Energy Control Board, which has the power to regulate, to license and to inspect all facets of any activity utilizing nuclear energy. It also sets out the basic

  13. NRC [Nuclear Regulatory Commission] perspective of software QA [quality assurance] in the nuclear history

    International Nuclear Information System (INIS)

    Weiss, S.H.

    1988-01-01

    Computer technology has been a part of the nuclear industry since its inception. However, it is only recently that computers have been integrated into reactor operations. During the early history of commercial nuclear power in the United States, the US Nuclear Regulatory Commission (NRC) discouraged the use of digital computers for real-time control and monitoring of nuclear power plant operation. At the time, this position was justified since software engineering was in its infancy, and horror stories on computer crashes were plentiful. Since the advent of microprocessors and inexpensive computer memories, significant advances have been made in fault-tolerant computer architecture that have resulted in highly reliable, durable computer systems. The NRC's requirement for safety parameter display system (SPDS) stemmed form the results of studies and investigations conducted on the Three Mile Island Unit 2 (TMI-2) accident. An NRC contractor has prepared a handbook of software QA techniques applicable to the nuclear industry, published as NUREG/CR-4640 in August 1987. Currently, the NRC is considering development of an inspection program covering software QA. Future efforts may address verification and validation as applied to expert systems and artificial intelligence programs

  14. U.S. Department of Energy & Nuclear Regulatory Commission Advanced Fuel Cycle Research & Development Seminar Series FY 2007 & 2008

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2008-08-01

    In fiscal year 2007, the Advanced Burner Reactor project initiated an educational seminar series for the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) personnel on various aspects of fast reactor fuel cycle closure technologies. This important work was initiated to inform DOE and NRC personnel on initial details of sodium-cooled fast reactor, separations, waste form, and safeguard technologies being considered for the Advanced Fuel Cycle Research and Development program, and to learn the important lesson from the licensing process for the Clinch River Breeder Reactor Plant that educating the NRC staff early in the regulatory process is very important and critical to a project success.

  15. Changes to Regulatory Systems for more Efficient Nuclear Energy Deployment: An Industry Viewpoint

    International Nuclear Information System (INIS)

    Pelin, H.

    2016-01-01

    Nuclear energy is required to play a much larger role in the energy mix in most credible energy scenarios that address climate change (680 GW additional capacity by 2050 according to IEA, 1000 GW according to World Nuclear Association). To reach these ambitious targets, a concerted effort will be required involving industry, governments and regulators. Changes to regulatory systems and processes – including licensing (design, site, operation), export control, security and waste - is one important area that can stimulate faster and more cost effective development of nuclear capacity. In the past, regulators were mainly concerned with authorizing a limited number of reactors from a limited number of designs under a national standard. Today regulators need resources to assess a wider range of designs, while each licensee needs to complete a thorough safety assessment even if the design has been assessed and approved elsewhere. These developments are the inevitable consequence of globalization and competition within the industry. This paper examines the current state of nuclear regulation in relation to the main attributes of good regulation as defined by the OECD. It further looks at ongoing efforts among regulators to share experience or harmonize requirements, such as within MDEP, or to agree common safety levels, such as in WENRA, in order to reach common positions and improve their regulatory approaches. Finally, it will assess the work of industry to demonstrate the benefits – both in terms of efficiency as well as safety – of harmonised regulations notably through the activities of the World Nuclear Association/CORDEL Working Group. (author)

  16. Bioattractors: dynamical systems theory and the evolution of regulatory processes

    Science.gov (United States)

    Jaeger, Johannes; Monk, Nick

    2014-01-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  17. Proceedings of the specialists' meeting on regulatory inspection practices in nuclear power plants

    International Nuclear Information System (INIS)

    1977-01-01

    The sessions and contributions of this conference are dealing with: the general problems of regulatory inspection of nuclear power plants and overall national practices (in Canada, France, Germany, Italy, Spain, the United States), specific problems and practical experience of regulatory inspection during site study, evaluation, design, manufacturing and construction of nuclear plants (in Finland, Germany, Spain, Sweden, Great-Britain, United States), quality insurance issues, pressure component regulations, specific problems and practical experience of regulatory inspection during commissioning (in Spain, Sweden, Great-Britain and United States), specific problems and practical experience of regulatory inspection during operation (in Spain, Great-Britain, Unites States, Italy and Sweden), special aspects of regulatory inspection (notably public information issues in Sweden and in Great-Britain, inspection of nuclear fuel transportation in Spain, enforcement programme in the USA)

  18. International Conference on Effective Nuclear Regulatory Systems: Sustaining Improvements Globally. Book of Abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    The objective of this conference is to review and assess ways of further improving the effectiveness of regulatory systems for nuclear facilities and activities for both nuclear safety and nuclear security. The action items in the summary presented by the President of the conference held in 2013 in Ottawa, the lessons of the Fukushima Daiichi accident, the discussions at other international conferences and at international experts’ meetings conducted within the framework of the IAEA Action Plan on Nuclear Safety, as well as the CNS and the principles outlined in the Vienna Declaration on Nuclear Safety, will continue to have a significant impact on regulatory systems. All the aforementioned need to be taken into account to sustain improvements to regulatory systems. The expected outcomes of the conference are: - Enhanced safety and security of nuclear installations worldwide; - Challenges in regulating radiation sources and radioactive waste addressed; - Enhanced international cooperation for sustaining regulatory effectiveness; - Strengthened and sustained regulatory competence for nuclear safety and security; and - Strategies and actions for the future identified, as well as issues for consideration by governments, regulatory bodies and international organizations.

  19. Role of the Regulatory Body in Implementing Defence in Depth in Nuclear Installations - Regulatory Oversight in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, B. M., E-mail: badawymel@yahoo.com [Egyptian Nuclear and Radiological Regulatory Authority Cairo (Egypt)

    2014-10-15

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are operated at all times in an acceptably safe manner including the safe conduct of decommissioning activities. Defence in depth is recognized as one of the fundamental safety principles that underlie the safety of nuclear power plants. Defence in depth is implemented to provide a graded protection against a wide variety of transients, incidents and accidents, including equipment failures and human errors within nuclear power plants and events initiated outside plants. The Regulator Body plays an important role in implementing defence in depth in nuclear installations in the context of a clear allocation of responsibilities with an operating organization. This role starting with setting safety objectives and by its own independent review and technical assessment of the safety justifications provided by the operating organization in addition to safety culture investigating within relevant organizations. This paper briefly reviews this role in normal operation and post accidents, and its effects on overall nuclear safety in nuclear installations with reference to Egyptian regulatory oversight. (author)

  20. Regulatory oversight of safety culture in nuclear installations - New IAEA developments

    International Nuclear Information System (INIS)

    Kerhoas, Anne; )

    2012-01-01

    Ms. Anne Kerhoas described the IAEA work on guidance for regulatory oversight of safety culture. She summarised the various IAEA, OECD/NEA and ANS meetings that have been held on the topic between 1995 and 2011. The IAEA has carried out two recent projects with the Bulgarian and Romanian regulatory bodies to develop a safety culture oversight program. The work was funded by the Norwegian government and has involved 30 experts from 17 different countries. Draft guidance for regulators on how to monitor licensee safety culture has also been produced (IAEA-TECDOC-DD1070). The document is intended to provide practical guidance on oversight strategies and is applicable to a wide range of nuclear installations, including nuclear power plants, fuel cycle facilities, research reactors and waste management facilities. A number of principles for regulatory oversight of safety culture were summarised. For example, the primary responsibility for safety remains with the licensee, safety culture oversight should be performed at all stages of the life cycle of the nuclear installation, and multiple data collection methods should be used. The overall approach to safety culture described in the draft IAEA Tech doc includes a range of approaches to build up a meaningful picture of the licensee's safety culture. These include interviews, observations, review of documents, review of events, discussions and surveys. The importance of ongoing discussion with the licensee throughout the process to develop a deeper shared understanding of issues was emphasised. The results of the Chester 2 workshop will be used as an input to finalization of the draft Tech Doc

  1. Nuclear regulatory challenges of who should we train and why - a regulatory perspective

    International Nuclear Information System (INIS)

    Furness, J.

    2000-01-01

    The understanding by the staff who design, construct, commission, operate and decommission our nuclear installations of the safety cases for the plants is crucial to nuclear safety. The lack of such understanding has been a major contributor to accidents at Windscale, Three Mile Island and Chernobyl, and may also have played a role in the recent criticality accident at Tokai-Mura. Competence is not only a matter of knowledge, but also of behaviour at the level of the individual and the organisation. It is also important for those in Government departments who sponsor or regulate nuclear power. The right competence is an essential ingredient in achieving a health safety culture at all levels. Staff turnover will be high over the next 5-10 years and the long experience of those who will be retiring must somehow be transferred to those who remain and who will be recruited. Competitive pressures may accelerate this process, increasing the stresses on the staff concerned. Plants are ageing and work-loads increasing, making safety culture all the more important. 'Soft skills' are as important as technical knowledge and should be included in training programmes at all levels. (author)

  2. An assessment of the contribution of NRC [Nuclear Regulatory Commission] regulatory growth to nuclear plant cost growth using engineering scope changes

    International Nuclear Information System (INIS)

    Cohen, S.

    1987-03-01

    The purpose of this study is to determine the contribution of NRC regulations to the growth in nuclear power plant capital costs using the case study method. The two plants selected for the case studies are Florida Power and Light Company's (FP and L) St. Lucie Unit 1 (SL1) and St. Lucie Unit 2 (SL2). SL1 was constructed in the early 1970s and was granted an operating license in 1976. SL2 was constructed in the late 1970s and early 1980s, and was granted an operating license in 1983. The information bases were the amendments to the contracts between FP and L and its architect-engineer/constructor, i.e., the ''scope changes''. These were examined and analyzed for causation, i.e., NRC-initiated or utility-initiated, and all of the costs associated with scope changes of each type were aggregated to determine the contribution of each. Although the scope changes accounted for only a small fraction of the total cost growth for either plant, they were still used to determine the relative contribution of regulatory growth to cost growth. Unexpectedly, a significantly higher percentage of out-of-scope work (approximately 84%) was attributable to NRC regulatory requirements for SL1 than SL2 (approximately 47%). These results were unexpected because SL2 was constructed during a period in which regulation was considered to be particularly unstable. However, a more detailed analysis of causation indicates that a shift occurred from an ad-hoc mode of regulation in the early 1970s to a more prescriptive process in the late 1970s. Thus the number of formal NRC requirements may not be a valid measure of regulatory stability

  3. The regulatory system of nuclear safety in Russia

    International Nuclear Information System (INIS)

    Mizoguchi, Shuhei

    2013-01-01

    This article explains what type of mechanism the nuclear system has and how nuclear safety is regulated in Russia. There are two main organizations in this system : ROSATOM and ROSTEKHADZOR. ROSATOM, which was founded in 2007, incorporates all the nuclear industries in Russia, including civil nuclear companies as well as nuclear weapons complex facilities. ROSTEKHNADZOR is the federal body that secures and supervises the safety in using atomic energy. This article also reviews three laws on regulating nuclear safety. (author)

  4. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-01-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  5. Nuclear processing during star formation

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    A preliminary survey was conducted of the thermonuclear energy release expected during star formation. The destruction of primordial deuterium provides substantial amounts of energy at surprisingly low temperatures, and must be considered in any meaningful treatment of star formation carried to stages in which the internal temperature exceeds a few hundred thousand degrees. Significant energy generation from consumption of initial lithium requires higher temperatures, of the order of a few million degrees. Depletion of primordial beryllium and boron may never provide an important energy source. The approach to equilibrium of the carbon--nitrogen cycle is dominant at temperatures approaching those characteristic of the central regions of main sequence stars. The present calculation should serve as a useful guide in choosing those nuclear processes to be included in a more detailed study. 8 figures, 2 tables

  6. January 1978 monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1978-01-01

    Highlights of technical progress during January 1978 are presented for sixteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  7. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, March 1977

    International Nuclear Information System (INIS)

    Fee, G.G.

    1977-01-01

    Highlights of technical progress during March 1977 are presented for thirteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  8. The role of the Nuclear Regulatory Commission in the management of nuclear waste

    International Nuclear Information System (INIS)

    Thompson, H.L. Jr.

    1988-01-01

    In general, the US Nuclear Regulatory Commission (NRC) is responsible for reviewing and making licensing decisions to ensure that the US Department of Energy's (DOE's) high-level waste repository is designed, constructed, and operated without unreasonable risk to public health and safety. In implementing this responsibility, however, the commission's guidance to the staff is that, in the absence of unresolved safety concerns, the NRC regulatory program will not delay the executive branch's program as set forth in the DOE project decision schedule. The NRC role for the next several years will be to develop its licensing framework and to consult with DOE on its plans. An essential ingredient in the success of both NRC's and DOE's respective missions is the need for free and open exchange of information, which will assure us that the concerns of all parties are addressed. With regard to low-level radioactive waste, the states have the lead responsibility for disposal. The NRC also provides assistance to the states and compacts on such items as regulatory programs, site characterization, and mixed waste disposal. Another of the NRC's roles is in the management of uranium mill tailings. Currently, most of the NRC's attention is focused on ensuring adequate long-term stabilization of tailings

  9. Bim nuclear translocation and inactivation by viral interferon regulatory factor.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2010-08-01

    Full Text Available Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8 uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1-4, which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFbeta receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control

  10. Role of the Nuclear Regulatory Authority in the final disposal of radioactive wastes in Argentina

    International Nuclear Information System (INIS)

    Petraitis, E.J.; Siraky, G.; Novo, R.G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. The activities of the Nuclear Regulatory Authority (ARN) and the applied approaches in relation to inspection of facilities, safety assessments of associated systems and collaboration in the matter with international agencies are also exposed. (author) [es

  11. Nuclear Regulatory Commission issuances. Volume 17, No. 3

    International Nuclear Information System (INIS)

    1983-03-01

    This report contains the Issuances received during March 1983 from the Commission (CLI), the Atomic Safety and Licensing Appeal Boards (ALAB), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judge (ALJ), the Directors Decisions (DD), and the Denials of Petition for Rulemaking (DPRM). The Issuances concerned the following facilities: Three Mile Island Nuclear Station, Unit No. 1; Comanche Peak Steam Electric Station, Units 1 and 2; Vallecitos Nuclear Center; Floating Nuclear Power Plants; San Onofre Nuclear Generating Station, Units 2 and 3; Point Beach Nuclear Plant, Unit 1; Perry Nuclear Power Plant, Units 1 and 2; Shoreham Nuclear Power Station, Unit 1; Western New York Nuclear Service Center; Limerick Generating Station, Units 1 and 2; Seabrook Station, Units 1 and 2; Black Fox Station, Units 1 and 2; WmH Zimmer Nuclear Power Station, Unit 1; WPPSS Nuclear Project No. 1; Zion Nuclear Plant, Units 1 and 2; and South Texas Project, Units 1 and 2

  12. Methodology used by the spanish nuclear regulatory body in the radiological impact assessment

    International Nuclear Information System (INIS)

    Diaz de la Cruz, F.

    1979-01-01

    The radiological risk assessment derived from the operation of a nuclear power plant is done in Spain with methods taken basically from the U.S.N.R.C. regulatory guides. This report presents the way followed by the Spanish Regulatory Body in order to arrive to an official decision on the acceptability of a nuclear plant in the different steps of the licensing. (author)

  13. Legislative and regulatory aspects of nuclear power reactor licensing in the U.S.A

    International Nuclear Information System (INIS)

    Malsch, M.G.

    1976-01-01

    An explanation of the origins, statutory basis and development of the present regulatory system in the US. A description of the various actions which must be taken by a license applicant and by the USNRC before a nuclear power plant can be constructed and placed on-line. Account of the current regulatory practices followed by the USNRC in licensing nuclear power reactors. (orig./HP) [de

  14. International nuclear safety experts conclude IAEA peer review of Canada's regulatory system

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: An international team of nuclear safety experts today completed a two-week IAEA review of the regulatory framework and effectiveness of the Canadian Nuclear Safety Commission (CNSC). The team identified good practices within the system and gave advice on some areas for improvement. The IAEA has conveyed initial findings to Canadian authorities; the final report will be submitted by autumn. The International Atomic Energy Agency (IAEA) assembled a team of nuclear, radiation, and waste safety experts at the request of the Government of Canada, to conduct an Integrated Regulatory Review Service (IRRS) mission. The mission from 31 May to 12 June was a peer review based on IAEA Standards, not an inspection, nor an audit. The scope of the mission included sources, facilities and activities regulated by the CNSC: the operation of nuclear power plants (NPPs), research reactors and fuel cycle facilities; the refurbishment or licensing of new NPPs; uranium mining; radiation protection and environmental protection programmes; and the implementation of IAEA Code of Conduct on Safety and Security of Radioactive Sources. The 21-member team from 13 IAEA States and from the IAEA itself reviewed CNSC's work in all relevant areas: legislative and governmental responsibilities; responsibilities and functions; organization; activities of the regulatory body, including the authorization process, review and assessment, inspection and enforcement, the development of regulations, as well as guides and its the management system of CNSC. The basis for the review was a well-prepared self-assessment by the CNSC, including an evolution of its strengths and proposed actions to improve its regulatory effectiveness. Mr. Shojiro Matsuura, IRRS Team Leader and President of the Japanese Nuclear Safety Research Association, said the team 'was impressed by the extensive preparation at all CNSC staff levels.' 'We identified a number of good practices and made recommendations and suggestions

  15. Importance of loss-of-benefits considerations in nuclear regulatory decision-making

    International Nuclear Information System (INIS)

    Buehring, W.A.; Peerenboom, J.P.

    1982-01-01

    This paper identifies and discusses some of the important consequences of nuclear power plant unavailability, and quantifies a number of technical measures of loss of benefits that may help the Nuclear Regulatory Commission make decisions involving nuclear power plant licensing and operation. The loss-of-benefits analysis presented here is based on the results of a series of case studies developed by Argonne National Laboratory in cooperation with four electric utilities on hypothetical nuclear plant shutdowns

  16. Quality Management System at the Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    Husarcek, J.; Novak, S.

    2008-01-01

    The process-oriented quality management system (QMS) implemented at the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in compliance with the EN ISO 9001:2001 standard is described. The history of the establishment and development of the QMS is given. The main, managerial and supporting processes with respect to defined activities are specified, and a scheme of their interactions is presented. The contents of the Quality Manual content and the structure of the system documentation are briefly described. The responsibilities for the operation and improvements of the QMS are described along with the methods applied (internal and external audits, self-assessment - Common Assessment Framework (CAF)). Examples of established quality objectives and indicators for some processes are provided. A future development of the QMS is expected in accordance with the relevant ISO Standard and IAEA recommendations and based on evaluation of the effectiveness of the critical system. (orig.)

  17. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic and on Safety of Nuclear Installations in the Slovak Republic in 2011

    International Nuclear Information System (INIS)

    2012-05-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2011 is presented. These activities are reported under the headings: Foreword; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Nuclear Materials in SR; (5) Nuclear materials and physical protection of nuclear materials; (6) Scope of powers of the office building; (7) Emergency planning and preparedness; (8) International activities; (9) Public communication; (10) Nuclear Regulatory Authority of the Slovak Republic; (11) UJD SR organization chart; The International Nuclear Event Scale (INES); (12) Abbreviations.

  18. Experience with Regulatory Strategies in Nuclear Power Oversight. Part 1: An International Exploratory Study. Part 2: Workshop Discussions and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Melber, Barbara [Melber Consulting, Seattle, WA (United States); Durbin, Nancy E. [Nancy E. Durbin Consulting, Kirkland, WA (United States); Tael, Irene (ed.) [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2005-03-01

    This report presents the results of a study which explored the use of six different regulatory strategies for oversight of commercial nuclear power facilities: prescriptive, case-based, outcome-based, risk-based, process-based, and self-assessment strategies. Information was collected on experiences with the use of these different regulatory strategies from experts from nuclear regulatory agencies in Canada, Finland, Spain, Sweden, the United Kingdom and the United States. Systematic, structured open-ended interviews with expert regulators with extensive experience were used in order to understand how regulatory strategies are applied in practice. Common patterns were identified regarding: Experts' perspectives on the major benefits and difficulties of using specific regulatory strategies; Experts' experiences with using regulatory strategies for three areas of oversight-design and modifications, quality systems, and training and qualifications; Expert views of the consequences of different regulatory strategies; Issues that emerged in the interviews regarding regulatory strategies. The major benefit of a prescriptive strategy was that it is clear about requirements and expectations. The major difficulties were that it takes responsibility away from the licensee, it requires a high use of regulator resources and is rigid and difficult to change. A case-based strategy had the key benefit of flexibility for adapting regulatory responses to unique situations, but the difficulties of being considered arbitrary, inconsistent, and unfair and requiring heavy resource use. An outcome-based strategy had the main benefit of allowing licensees to decide the best way to operate m order to meet safety goals, but the major difficulty of identifying appropriate ways to measure safety performance. The major benefit of a risk strategy was its use co prioritize safety issues and allocate resources. However, it was considered inappropriate to use as a stand alone strategy

  19. Experience with Regulatory Strategies in Nuclear Power Oversight. Part 1: An International Exploratory Study. Part 2: Workshop Discussions and Conclusions

    International Nuclear Information System (INIS)

    Melber, Barbara; Durbin, Nancy E.; Tael, Irene

    2005-03-01

    This report presents the results of a study which explored the use of six different regulatory strategies for oversight of commercial nuclear power facilities: prescriptive, case-based, outcome-based, risk-based, process-based, and self-assessment strategies. Information was collected on experiences with the use of these different regulatory strategies from experts from nuclear regulatory agencies in Canada, Finland, Spain, Sweden, the United Kingdom and the United States. Systematic, structured open-ended interviews with expert regulators with extensive experience were used in order to understand how regulatory strategies are applied in practice. Common patterns were identified regarding: Experts' perspectives on the major benefits and difficulties of using specific regulatory strategies; Experts' experiences with using regulatory strategies for three areas of oversight-design and modifications, quality systems, and training and qualifications; Expert views of the consequences of different regulatory strategies; Issues that emerged in the interviews regarding regulatory strategies. The major benefit of a prescriptive strategy was that it is clear about requirements and expectations. The major difficulties were that it takes responsibility away from the licensee, it requires a high use of regulator resources and is rigid and difficult to change. A case-based strategy had the key benefit of flexibility for adapting regulatory responses to unique situations, but the difficulties of being considered arbitrary, inconsistent, and unfair and requiring heavy resource use. An outcome-based strategy had the main benefit of allowing licensees to decide the best way to operate m order to meet safety goals, but the major difficulty of identifying appropriate ways to measure safety performance. The major benefit of a risk strategy was its use co prioritize safety issues and allocate resources. However, it was considered inappropriate to use as a stand alone strategy and a

  20. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2014-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acting as the regulatory body of the Swiss Federation assesses and monitors nuclear facilities in Switzerland: these include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the overview required concerning nuclear safety. It ensures that the facilities comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes operational experience, systems technology, radiological protection and management in all the nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2013, the five nuclear power plants in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were all operated safely and had complied with their approved operating conditions. The nuclear safety at all plants was rated as being good. 34 events were reported. During operation, no reactor scrams were recorded. On the INES scale, ranging from 0-7, ENSI rated all reportable events as Level 0. The ENSI safety evaluation reflects both reportable events and the results of the approximately 460 inspections conducted during 2013. ZWILAG consists of several storage halls, a conditioning plant and a plasma plant. At the end of 2013, the cask storage hall

  1. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2015-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI), acting as the regulatory body of the Swiss Federation, assesses and monitors nuclear facilities in Switzerland: the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety. It ensures that they comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes the operational experience, systems technology, radiological protection and management in all nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2014, all five nuclear power plants in Switzerland (Beznau Units I and 2, Muehleberg, Goesgen and Leibstadt) were operated safely. The nuclear safety at all plants was rated as good. 38 events were reported. There was one reactor scram at the Leibstadt nuclear power plant. On the International Event Scale (INES), ranging from 0--7, 37 events were rated as Level 0; one event was rated as INES 1: drill holes had penetrated the steel wall of the containment to secure two hand-held fire extinguishers. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant. At the end of 2014, the cask storage hall contained 42

  2. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Vassilaros, M.G.

    1998-01-01

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  3. Spanish regulatory perspective for the decommissioning of an old civilian nuclear research centre (CIEMAT)

    International Nuclear Information System (INIS)

    Gil, E.; Revilla, J.L.; Rodrigo, F.; Ortiz, J.

    1999-01-01

    The Center for Energy-related, Environmental and Technical Research (CIEMAT) is the main Spanish energy research center. CIEMAT is the heir of the former Nuclear Energy Board (Junta de Energia Nuclear - JEN), which was created in 1951 with a view to promoting the development and use of nuclear energy in Spain. Most of the centres for civilian nuclear research created in the fifties, like the JEN, had among their basic objectives to carry out investigations guided to the industrial development of the nuclear fuel cycle. The majority of them were endowed with experimental facilities that reproduced in a pilot scale the different stages of the full nuclear cycle facilities. The JEN main experimental facilities were: Plants for the treatment of uranium ores and for the concentration process; The manufacturing of fuel elements for research reactors; The JEN-1 thermal neutron experimental reactor, and CORAL fast reactor; The pilot plant for the treatment of irradiated fuel (M-1); The metallurgical hot cells for research relating to irradiated fuel; and Plants for the treatment and storage of liquid radioactive wastes. It should be pointed out that most of these installations were designed, built, operated, and even definitively shut down, prior a regulatory system as currently conceived is in force. The Science Act was passed in 1986, transforming the JEN into CIEMAT, and assigning to the latter a series of new functions, while making it the direct heir of the assets and strategic functions of its predecessor. The CIEMAT continued the process of 'denuclearization' of the installations inherited from the JEN, and used certain of them for the performance of research projects oriented towards the development of decontamination and dismantling techniques. (author)

  4. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  5. United States Nuclear Regulatory Commission information digest: 1997 edition. Volume 9

    International Nuclear Information System (INIS)

    1997-05-01

    The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general information on domestic and world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1996, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed

  6. Crisis, criticism, change: Regulatory reform in the wake of nuclear accidents

    International Nuclear Information System (INIS)

    Sexton, Kimberly A.; )

    2015-01-01

    Accidents are a forcing function for change in the nuclear industry. While these events can shed light on needed technical safety reforms, they can also shine a light on needed regulatory system reforms. The TEPCO Fukushima Daiichi nuclear power plant (NPP) accident in Japan is the most recent example of this phenomenon, but it is not the only one. In the wake of the three major accidents that have occurred in the nuclear power industry - Three Mile Island (TMI) in the United States; Chernobyl in Ukraine, in the former Soviet Union; and the Fukushima Daiichi NPP accident in Japan - a commission or committee of experts issued a report (or reports) with harsh criticism of the countries' regulatory system. And each of these accidents prompted changes in the respective regulatory systems. In looking at these responses, however, one must ask if this crisis, criticism, change approach is working and whether regulatory bodies around the world should instead undertake their own systematic reviews, un-prompted by crisis, to better ensure safety. This article will attempt to analyse the issue of regulatory reform in the wake of nuclear accidents by first providing a background in nuclear regulatory systems, looking to international and national legal frameworks. Next, the article will detail a cross-section of current regulatory systems around the world. Following that, the article will analyse the before and after of the regulatory systems in the United States, the Soviet Union and Japan in relation to the TMI, Chernobyl and Fukushima accidents. Finally, taking all this together, the article will address some of the international and national efforts to define exactly what makes a good regulator and provide conclusions on regulatory reform in the wake of nuclear accidents. (author)

  7. Permit processes for nuclear power. International lessons

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2010-01-01

    permitting process in the country as well as important planned (or recently introduced) changes in the relevant legislation. The analysis also presents the role of the regulating authorities as well as other key actors in the process, and outlines the different steps of the permitting processes, including the relationships between the different permits. We also address the responsibility for the radioactive waste and dismantling, and how these issues come into the licensing process. Important differences and similarities across the various countries are highlighted, with special emphasis on parallels to the Swedish legislation. The report then analyzes a number of important legal and political issues of a principal nature in the permitting of nuclear power plants. We compare how the different countries differ on these grounds, and also emphasize some overall lessons and practical experiences of nuclear power development internationally. Three broad issues are discussed. The first of these concerns the notion of nuclear power as a highly political issue, and we analyze the role of the public opinion, the extent to which the regulatory process is independent of policy decisions, as well as the allocation of political power between the national and local levels in the respective countries. Not the least the last issue has been in focus in some of the countries that have reformed their permitting process, and there exist significant inter-country differences. The second issue concerns how a number of countries - most notably the USA and Great Britain - have attempted to streamline their plant permitting processes for new nuclear power. These reforms are characterized by, for instance, a combined construction and operation license, the selection (and exclusion) of geographical locations for new installations, as well as attempts to achieve standardizations of nuclear reactor designs. We pay particular attention to the issues of reactor design standardization, including the scope

  8. The development of regulatory expectations for computer-based safety systems for the UK nuclear programme

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P. J. [HM Nuclear Installations Inspectorate Marine Engineering Submarines Defence Nuclear Safety Regulator Serco Assurance Redgrave Court, Merton Road, Bootle L20 7HS (United Kingdom); Westwood, R.N; Mark, R. T. [FLEET HQ, Leach Building, Whale Island, Portsmouth, PO2 8BY (United Kingdom); Tapping, K. [Serco Assurance,Thomson House, Risley, Warrington, WA3 6GA (United Kingdom)

    2006-07-01

    The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

  9. Nuclear regulatory policy concept on safety, security, safeguards and emergency preparedness (3S+EP)

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2009-01-01

    Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. By undertaking proper regulatory oversight on Safety, Security and Emergency Preparedness (3S+EP) as an integrated and comprehensive system, safe and secure use of nuclear energy can be assured. Licence requirements and conditions should fulfil regulatory requirements pertaining to 3S+EP for nuclear installation as an integrated system. An effective emergency capacity that can be immediately mobilized is important. The capacity in protecting the personnel before, during and after the disaster should also be planned. Thus, proper emergency preparedness should be supported by adequate resources. The interface between safety, security, safeguards and emergency preparedness has to be set forth in nuclear regulations, such as regulatory requirements; 3S+EP; components, systems and structures of nuclear installations and human resources. Licensing regulations should stipulate, among others, DIQ, installations security system, safety analysis report, emergency preparedness requirements and necessary human resources that meet the 3S+EP requirements.

  10. Different regulatory strategies in regulation of nuclear power projects: An Indian experience

    International Nuclear Information System (INIS)

    Khan, Sohail Ahmad

    2002-01-01

    Regulatory strategy needed for management of safety and safety culture involves careful planning and use of engineering concepts keeping in mind feasibility to implement certain safety requirements. It also requires adequate attention on working environment and mental conditions of designers, operating and maintenance staff and regulators. Different strategies followed during safety review and regulatory inspection of nuclear power projects for improving status of safety management and safety cultures have given certain results. The present paper brings out certain experience gained during regulation of Indian Nuclear Power Projects by Atomic Energy Regulatory Board of India in the area of management of safety and safety culture. (author)

  11. Program plan for future regulatory activity in nuclear-power-plant maintenance

    International Nuclear Information System (INIS)

    Badalamente, R.V.

    1982-10-01

    The intent of this paper is to describe the results of a study of nuclear power plant (NPP) maintenance conducted by Battelle's Pacific Northwest Laboratories (PNL) for the Nuclear Regulatory Commission (NRC). The purpose of the study for the NRC was to determine problems affecting human performance in NPP maintenance, pinpoint those which adversely affect public health and safety, review strategies for overcoming the problems, and suggest the direction that regulatory activities should take. Results of the study were presented to the NRC (Division of Human Factors Safety) in the form of a recommended program plan for future regulatory activity in NPP maintenance

  12. Collective statement on the role of research in a nuclear regulatory context

    International Nuclear Information System (INIS)

    2001-01-01

    In the present context of deregulation and privatisation of the nuclear industry, maintaining an adequate level of nuclear safety research is a primary concern for nuclear regulators, researchers and nuclear power plant licensees, as well as for government officials and the public. While these different stakeholders may have common concerns and interests, there may also be differences. At the international level, it is important to understand that divisions exist both within and among countries, not only in national cultures but also in the way regulators, researchers and licensees view the rote of research. An international gathering under the auspices of the OECD Nuclear Energy Agency (NEA) took place in June 2001, bringing together heads of nuclear regulatory bodies of NEA Member countries, senior regulators, senior executives of research organisations and leaders from the nuclear industry to discuss their perceptions of the rote of research in a nuclear regulatory context. This collective statement represents an international consensus on a rationale for regulatory research for currently operating nuclear reactors and for future reactors, and sets forth specific recommendations to NEA standing technical committees and Member countries. The intended audience is primarily nuclear safety regulators, senior researchers and industry leaders. Government authorities, nuclear power plant operators and the general public may also be interested. (author)

  13. The realities of nuclear power: international economic and regulatory experience

    International Nuclear Information System (INIS)

    Thomas, S.D.

    1988-01-01

    The book is aimed at the energy industry, energy ministries, nuclear power organisations and national agencies. A description is given of a framework for evaluating nuclear power technology development, along with the economic evaluation of nuclear power. The contrasting records are examined of four of the major users of nuclear power - the USA, the Federal Republic of Germany, Canada and France, and factors are identified which have been important in determining the success or otherwise of each of the four nuclear power programmes. Finally the future of nuclear power is discussed. (U.K.)

  14. Independence in regulatory decision making - INSAG-17. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    This report is intended to promote a common understanding among legislators and other political decision makers, nuclear safety regulators and licensees of the concept of independence in regulatory decision making and how to achieve it. Other interest groups, such as non-governmental organizations and members of the public interested in the regulation of nuclear safety, may also find the report useful. The principles concerning the independence of regulatory organizations are developed and discussed in publications in the IAEA's Safety Standards Series. Although the principles relating to protecting the independence of the regulatory body provide the necessary basis for independence in regulatory decision making, there are additional factors and features that require attention to ensure independence in the decision making by the regulatory body. This INSAG report highlights and discusses a number of such factors and features

  15. Self-assessment of the Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    Husarcek, J.; Grebeciova, J.

    2006-01-01

    The major results are presented of the self-assessment procedure which was carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) in 2005 based on the Common Assessment Framework (CAF) model. An overview is given of the most important preconditions and results and their interactions in the nine areas of assessment as follows: leadership, strategy and planning, human resource management, partnership and resources, process management and changes, customer and public oriented results, people results, society results, and key performance results. UJD's strengths and opportunities as emerged from the self-assessment are highlighted. The self-assessment process will be followed by the preparation and implementation of an Action Plan. (author)

  16. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2017-06-01

    ENSI, the Swiss Federal Nuclear Safety Inspectorate, assesses and monitors safety in the Swiss nuclear facilities. These include the five nuclear power plants: Beznau Units 1 and 2 (KKB1 and KKB2), Muehleberg (KKM), Goesgen (KKG) and Leibstadt (KKL), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) in Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, checks, analyses and the reporting of the operators of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. It ensures that they operate as required by law. ENSI's regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and preparations for a deep geological repository for radioactive waste. ENSI maintains its own emergency organisation, which is an integral part of the national emergency structure that would be activated in the event of a serious incident at a nuclear facility in Switzerland. ENSI reports periodically on its supervisory activities. It informs the public about special events and findings in the nuclear installations. All five nuclear power plants in Switzerland operated safely during the past year. Nuclear safety at all plants in operation was rated as good or satisfactory. In 2016, there were 31 reportable events at the nuclear power plants. 30 events were rated Level 0 (event of no or low safety significance) on the International Nuclear and Radiological Event Scale (INES) and one was rated Level 1 (anomaly) at KKL. Zwilag consists of several interim storage buildings, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2016, the cask storage hall contained 56 transport/storage casks with spent fuel assemblies and vitrified residue

  17. Metabonomics for detection of nuclear materials processing.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  18. Metabonomics for detection of nuclear materials processing

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-01-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  19. Regulatory practices for nuclear power plants in India

    Indian Academy of Sciences (India)

    decision making, the responsibility for ensuring that the regulatory decisions and enforcement ... and indicate acceptable methods for implementing specific requirements .... commissioning of coolant and moderator systems with light water.

  20. Licensing and regulatory control of nuclear power plants in Canada

    International Nuclear Information System (INIS)

    Atchison, R.J.

    1975-01-01

    The paper discusses the safety philosophy adopted in Canada, the safety criteria and regulatory requirements necessary for the application of this philosophy to reactor design and operation, and finally the means by which compliance with Board requirements is effected. It is emphasized that the effectiveness of regulatory control depends not only on the underlying philosophy but also on the detailed way in which it is applied. (orig./HP) [de

  1. Regulatory practice for safety of nuclear energy in the German Democratic Republic

    International Nuclear Information System (INIS)

    Krueger, F.W.; Arndt, H.; Nessau, L.; Rabold, H.; Roehnsch, W.; Scheel, H.

    1988-01-01

    An outline of the regulatory practice applied in the GDR to ensure the safe use of nuclear energy is given in the form of answers to a questionnaire issued by the IAEA with the objective of giving the international community confidence in the safety of nuclear power programmes. (author)

  2. European Union International Cooperation to Improve Regulatory Effectiveness in Nuclear Safety

    International Nuclear Information System (INIS)

    Stockmann, Y.

    2016-01-01

    The European Union (EU) promotes a high level of nuclear safety worldwide, through the ''Instrument for Nuclear Safety Cooperation'' (INSC) since 2007. The INSC builds on the experience gained under the completed ''Technical Assistance to the Commonwealth of Independent States'' Programme (TACIS) from 1991. Development and strengthening of national Regulatory Authorities’ capabilities is a key activity in achieving the INSC goals, in particular in countries with or embarking on nuclear power. Specific partner countries under INSC include countries of all types of maturity in the nuclear technology, with mature countries such as Brazil, Mexico and Ukraine, countries with waste and mining issues, but no direct intention of embarking on nuclear power such as Georgia, Mongolia, Tajikistan, Kyrgyzstan and Tanzania and countries planning to embark on nuclear power such as Belarus, Egypt, Jordan and Vietnam. For new projects, the main focus is on the neighbourhood of the EU. The EU cooperation within INSC encompasses measures to support the promotion of high standards in radiation protection, radioactive waste management, decommissioning, remediation of contaminated sites, and efficient and effective safeguards of nuclear material. The INSC regulatory support is aimed at continuous assistance to Nuclear Regulatory Authorities (NRAs), including their technical support organisations (TSOs), in order to reinforce the regulatory framework, notably concerning licensing activities.

  3. Improvement gives the legislative and regulatory base for the use the nuclear energy in Cuba

    International Nuclear Information System (INIS)

    Ferrer Iglesias, R.; Sarabia Molina, I.; Guillen Campos, A.

    1998-01-01

    Presently work the activities are exposed that carries out the Cuban National Center of Nuclear Security in the improvement the mark regulatory for the regulation to the safety uses the nuclear energy on the implementation to the IAEA recommendations as regards security

  4. International Nuclear Safety Experts Conclude IAEA Peer Review of Swiss Regulatory Framework

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international nuclear safety experts today completed a two-week International Atomic Energy Agency (IAEA) review of the regulatory framework for nuclear safety in Switzerland. The Integrated Regulatory Review Service (IRRS) mission noted good practices in the Swiss system and also made recommendations for the nation's nuclear regulatory authority, the Swiss Federal Nuclear Safety Inspectorate (ENSI). ''Our team developed a good impression of the independent Swiss regulator - ENSI - and the team considered that ENSI deserves particular credit for its actions to improve Swiss safety capability following this year's nuclear accident in Japan,'' said IRRS Team Leader Jean-Christophe Niel of France. The mission's scope covered the Swiss nuclear regulatory framework for all types of nuclear-related activities regulated by ENSI. The mission was conducted from 20 November to 2 December, mainly at ENSI headquarters in Brugg. The team held extensive discussions with ENSI staff and visited many Swiss nuclear facilities. IRRS missions are peer reviews, not inspections or audits, and are conducted at the request of host nations. For the Swiss review, the IAEA assembled a team of 19 international experts from 14 countries. The experts came from Belgium, Brazil, the Czech Republic, Finland, France, Germany, Italy, the Republic of Korea, Norway, Russia, Slovakia, Sweden, the United Kingdom, and the United States. ''The findings of the IRRS mission will help us to further improve our work. That is part of our safety culture,'' said ENSI Director General Hans Wanner. ''As Switzerland argued at international nuclear safety meetings this year for a strengthening of the international monitoring of nuclear power, we will take action to fulfil the recommendations.'' The IRRS team highlighted several good practices of the Swiss regulatory system, including the following: ENSI requires Swiss nuclear operators to back-fit their facilities by continuously upgrading

  5. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2012 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  6. Development of SKI's Regulatory Approach to the Siting of a Spent Nuclear Fuel Repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus

    2003-01-01

    Since the beginning of the 1990s the Swedish Nuclear Fuel and Waste Management Co., SKB, is actively working with the siting of a spent nuclear fuel repository. Feasibility studies have been completed in a total of eight municipalities, and in December 2000 three municipalities (Oskarshamn, Tierp and Oesthammar) were proposed for further investigations. These site investigations include surface based site characterisation from deep bore holes but also further studies of infrastructure, land use, transportation etc. SKB's proposal was reviewed by SKI and about 60 other organisations, including municipalities, NGOs, government agencies etc. during the winter/spring 2000/2001. In June 2001 SKI reported the review findings to the Government. In parallel with SKI also the Swedish Council for Nuclear Waste (KASAM) reviewed SKB's proposal and reported to the Government. In its decision in November 2001 the Government supported SKB's proposal to continue with site investigations. Based on SKB's material, the reviews and the Government's decision the municipalities of Oesthammar and Oskarshamn have agreed to site investigations while Tierp have decided no to continue. The site investigations in Oesthammar and Oskarshamn started during 2002. The siting process has meant that several new actors have been engaged in nuclear waste management in general and disposal of spent nuclear fuel in particular. This has meant that 'old' actors, particularly SKB, the regulators (the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI) have had to evaluate, develop and clarify their roles and strategies for dialogue. This paper presents reflections on the impacts on some of SKI's regulatory activities

  7. Public hearing process for nuclear power plants. Seminar report

    International Nuclear Information System (INIS)

    1979-02-01

    On June 26 and 27, 1978, the Nuclear Regulatory Commission conducted a seminar on the public hearing process for nuclear power plants. The seminar was intended to examine current practices regarding the conduct of public hearings and how these practices related to the statutory intent, to assess whether existing procedures are being followed, and to explore whether administrative or legal changes are warranted. The seminar format allowed exchanges of views among participants in the hearing process and was attended by members of the public, the General Accounting Office, Congressional staffs, NRC, and the nuclear industry. The report contains panel reports on scheduling of public hearings, procedures for Board notification, selection and training of panel members, hearing procedures, and Board functions

  8. Financial and ratepayer impacts of nuclear power plant regulatory reform

    International Nuclear Information System (INIS)

    Turpin, A.G.

    1985-01-01

    Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports

  9. Knowledge management in the Argentine Nuclear Regulatory Authority; La gestion del conocimiento en la Autoridad Regulatoria Nuclear Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Chahab, Martin [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2006-07-01

    In 2006, the Argentine Nuclear Regulatory Authority has initiated a regulatory knowledge management process to face the loss of knowledge resulting from retiring experts, the generation gap, and the existing need to train new human resources. A number of projects have been started together with the technical assistance of the National Public Administration Institute to preserve knowledge and render it explicit for the coming generations. These projects include 'The History of the Expert's Learning Process' in which the majority of the most critical experts have been interviewed so far. The results of this project help envision a training structure and prospective projects. An Internet Site has also been created on the Intranet in order to render knowledge explicit and facilitate the tools for knowledge management initiatives. Furthermore, ARN's knowledge map project has also been started. (author) [Spanish] La Autoridad Regulatoria Nuclear (ARN), es un Organismo Autarquico de la Administracion Publica Nacional de la Republica Argentina. La puesta en marcha de la gestion del conocimiento en este Organismo responde a la necesidad de no perder los conocimientos de la institucion en el marco del problema del retiro de un numero importante de expertos y de la falta de transmision de sus conocimientos a la nueva generacion. Esta actividad se pone en marcha a traves de programas especificos como entrevistas a expertos retirados y en actividad, la confeccion de un mapa del conocimiento, la identificacion de los conocimientos tacitos y explicitos para su transmision intergeneracional, entre otros, e implica supeditar la estructura tradicional y los procedimientos ya establecidos a los resultados de la misma para cumplir con la mision y vision institucional. Se presentan los objetivos y las caracteristicas del Plan Estrategico de la Institucion, los resultados hasta ahora alcanzados y los desafios a afrontar. (autor)

  10. Regulatory oversight report 2011 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2012-06-01

    The Swiss Federal Nuclear Safety Inspectorate ENSI, acting as the regulatory body of the Swiss Confederation, assesses and monitors nuclear facilities in Switzerland. These include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. ENSI ensures that the facilities comply with regulations and operate according to the law. Its regulatory responsibilities also include the transport of radioactive materials to and from nuclear facilities and the preparations for a deep geologic repository for nuclear waste. It maintains its own emergency organisation, which is an integral part of a national emergency structure. Building on the legislative framework, ENSI also formulates and updates its own guidelines. It provides the public with information on particular events and findings in nuclear facilities. In 2011, all five nuclear power reactors in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were operated safely and ENSI concluded that they had complied with their approved operating conditions. There were 27 reportable events in the nuclear power plants in Switzerland: 7 at Beznau, 5 at Goesgen, 11 at Leibstadt und 4 at Muehleberg. On the international INES scale of 0 to 7, ENSI rated 26 events as Level 0. One event, at the Muehleberg nuclear power plant, was rated as INES Level 1. This related to a potential blockage of the emergency water intake system in the event of extreme flooding. The operator BKW shut down the Muehleberg plant ahead of the scheduled maintenance date and upgraded the system. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2011, the cask storage hall contained 34 transport/storage casks with fuel assemblies and vitrified residue packages

  11. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the Comprehensive Nuclear-Test-Ban Treaty. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Okko, O [ed.

    2012-07-01

    The regulatory control of nuclear materials (i.e. nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. Safeguards are required for Finland to comply with international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). The results of STUK's nuclear safeguards inspection activities in 2011 continued to demonstrate that the Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations.

  12. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  13. Adaptation of regulatory information and knowledge through knowledge maps in the Argentine Nuclear Regulatory Authority within the framework of nuclear renaissance

    International Nuclear Information System (INIS)

    Chahab, Martin; Dawyd, Noelia

    2008-01-01

    Full text: In the new framework of nuclear renaissance in the world in general, and in Argentina in particular, proper and efficient management of information and knowledge produced in the past and to be produced during renaissance becomes critically important. The fact that in the nuclear sector across the world human resources are going through significant change as a result of the massive number of experts who are retiring from the workforce, the ensuing general gap, the new generation of workers who are joining the nuclear rank and file with different training, values and cultural beliefs, and the slow information and knowledge transfer process call for carefully considering and assessing new methods to manage information and knowledge. This paper discusses the topic of knowledge maps as a method to adapt historical information and knowledge and to make it more readily available for future workers; the paper also deals with a new management approach to such information. Knowledge maps probably represent an up-to-date method to manage both historical and new information and knowledge, adapting to a number of new cultural features, including but not limited to the intensive use of information technologies and the tendency to summarize and integrate concepts. A distinguishing feature of this new method of organizing information and knowledge is the need for a closer interrelation across the organisation's sectors. As a result, knowledge maps help create and improve manuals and procedures related to the specific tasks performed in the institution, based on the analysis carried out by those creating the maps. This tool also helps better analyze the tasks already conducted or to be conducted by workers, all of which optimizes the job description process in the area of human resources. Another benefit of knowledge maps is that they help preserve the information and knowledge that can be used to train the staff in merely technical or induction issues as well as in an

  14. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national <