WorldWideScience

Sample records for nuclear process off-gas

  1. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  2. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO /SUB x/ , hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140 0 to -160 0 C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140 0 to -160 0 C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton

  3. Method for treating a nuclear process off-gas stream

    Science.gov (United States)

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  4. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  5. Canadian development program for off-gas management in nuclear facilities

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1983-01-01

    The Canadian program for the development and evaluation of processes and technology for the separation and containment of radioactive species in off-gases is directed towards the following specific aspects: 1) assessment of available treatment technology and evaluation of future clean-up requirements; 2) development and engineering evaluation, under realistic conditions, of promising new processes that would be inherently simpler and safer; and 3) specification of off-gas emission control systems for future nuclear facilities based on the most favourable technology. The program is being carried out by Atomic Energy of Canada Limited in collaboration with the electrical utility, Ontario Hydro, and selected Canadian universities. A brief description is presented of methods for removing tritium and carbon-14 from the moderator systems of CANDU power reactors, methods for removing iodine from the off-gases of a molybdenum-99 production facility at the Chalk River Nuclear Laboratories, and procedures for monitoring the off-gas effluent composition in the Thorium Fuel Reprocessing Experiment (TFRE) facility at the Whiteshell Nuclear Research Establishment

  6. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  7. Design of off-gas and air cleaning systems at nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The primary purpose of this report is to describe the current design of air and process off-gas cleaning technologies used in nuclear power plants (NPPs). Because of the large inventory of fission products that are produced in the fuel (i.e. in the range of 5x10 19 Bq per GW(e)·a) and the highly restrictive airborne radionuclide release limits being established by Member States, air and process off-gas cleaning technologies are constantly being improved to provide higher airborne radionuclide recovery efficiencies and a smaller probability of malfunction. For various technologies considered an attempt has been made to provide the following information: (a) Process description in terms of principles of off-gas and air cleaning, operating parameters and system performance; (b) Design for normal and accident situations; (c) Design of components with regard to construction materials, size, shape and geometry of the system, resistance to chemical and physical degradation from the operational environment, safety and quality assurance requirements

  8. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  9. Trends in the design and operation of off-gas cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    First, M.W.

    1980-01-01

    Trends in the design and operation of off-gas cleaning systems in nuclear facilities reflect the normal development by manufacturers of new and improved equipment and the demand for more safety, greater reliability, and higher collection efficiency as an aftermath of the well publicized accident at Three Mile Island. The latter event has to be viewed as a watershed in the history of off-gas treatment requirements for nuclear facilities. It is too soon to predict what these will be with any degree of assurance but it seems reasonable to expect greatly increased interest in containment venting systems for light water and LMFBR nuclear power reactors and more stringent regulatory requirements for auxiliary off-gas cleaning systems. Although chemical and waste handling plants share few characteristics with reactors other than the presence of radioactive materials, often in large amounts, tighter requirements for handling reactor off-gases will surely be transferred to other kinds of nuclear facilities without delay. Currently employed nuclear off-gas cleaning technology was largely developed and applied during the decade of the 1950s. It is regrettable that the most efficient and most economical off-gas treatment systems do not always yield the best waste forms for storage or disposal. It is even more regrettable that waste management has ceased to be solely a technical matter but has been transformed instead into a highly charged political posture of major importance in many western nations. Little reinforcement has been provided by detailed studies of off-gas treatment equipment failures that show that approximately 13% of over 9000 licensee event reports to the United States Nuclear Regulatory Commission pertained to failures in ventilating and cleaning systems and their monitoring instruments

  10. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  11. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2011-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absorption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  12. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    International Nuclear Information System (INIS)

    Hirsch, P.M.; Higuchi, K.Y.; Abraham, L.

    1982-07-01

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO 2 /krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO 2 from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO 2 concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO 2 /krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO 2 was determined for gas mixtures containing 250 ppM to 2.2% CO 2 and 170 to 750 ppM krypton in either N 2 or air. Gas streams rich in CO 2 were diluted with N 2 to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO 2 concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products

  13. Off-gas control project

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Smith, I.M.

    1978-06-01

    A program to develop and study off-gas abatement techniques has recently been initiated at Whiteshell Nuclear Research Establishment (WNRE). This report provides information on the properties and expected behaviour of reprocessing plant off-gases, and outlines the experimental program to be undertaken. (author)

  14. Analysis of Off Gas From Disintegration Process of Graphite Matrix by Electrochemical Method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    Using electrochemical method with salt solutions as electrolyte, some gaseous substances (off gas) would be generated during the disintegration of graphite from high-temperature gas-cooled reactor fuel elements. The off gas is determined to be composed of H 2 , O 2 , N 2 , CO 2 and NO x by gas chromatography. Only about 1.5% graphite matrix is oxidized to CO 2 . Compared to the direct burning-graphite method, less off gas,especially CO 2 , is generated in the disintegration process of graphite by electrochemical method and the treatment of off gas becomes much easier. (authors)

  15. Microwave off-gas treatment apparatus and process

    Science.gov (United States)

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  16. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  17. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  18. Evaluation of off-gas characteristics in vitrification process of ion-exchange resin

    International Nuclear Information System (INIS)

    Park, S. C.; Kim, H. S.; Yang, K. H.; Yun, C. H.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9 Nm 3 /h at the burning rate of 40 kg/h. And the composition of off-gas was evaluated as CO 2 (41.4%), Steam (40.0%), O 2 (13.3%), NO (3.6%), and SO 2 (1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3 Nm 3 /h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin. (author)

  19. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  20. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  1. Concept of off-gas purification in reprocessing plants

    International Nuclear Information System (INIS)

    Henrich, E.; von Ammon, R.

    1986-01-01

    Concepts and individual processes for the off-gas purification in reprocessing plants are described which are suited to achieve a better retention of the gaseous and volatile radionuclides 129 I, 85 Kr, 14 C, and tritium. Improved and new process steps have been developed to the cold pilot plant scale. Essential individual process steps are an efficient iodine desorption from the dissolver solution, improved and new off-gas scrubs with nitric acid, a cryogenic as well as a selective absorption process for rare gas recovery plus the required prepurification steps and a process for the continuous and pressure-free fixation and storage of krypton in a metal matrix. Individual facilities have been selected and combined to investigate integrated dissolver off-gas systems. Advanced concepts based on a process using low flows and loads of all off-gas streams including the cell ventilation off-gas are briefly discussed

  2. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions

    International Nuclear Information System (INIS)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.

    2016-01-01

    U.S. regulations will require the removal of 129 I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorption of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3 I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.

  3. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, J. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorption of I2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH3I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.

  4. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  5. Gas processing in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L.

    1995-02-01

    This article is a brief overview of code requirements in the nuclear air cleaning arena. NRC standards, which employ the various ASME codes, are noted. It is also noted that DOE facilities do not fall under the purview of the NRC and that DOE facilities (especially fuel cycle facilities) typically have broader gas processing activities than for power reactors. The typical differences between DOE facilities` and power reactor facilities` gas processing needs are listed, as are DOE facility components not covered by the ASME AG-1 code.

  6. Computer simulation of the off gas treatment process for the KEPCO pilot vitrification plant

    International Nuclear Information System (INIS)

    Kim, Hey Suk; Maeng, Sung Jun; Lee, Myung Chan

    1999-01-01

    Vitrification technology for treatment of low and intermediate radioactive wastes can remarkably reduce waste volume to about one twentieth of the initial volume as they are collected and converted into a very stable form. Therefore, it can minimize environmental impact when the vitrified waste is disposed of. But an off gas treatment system is necessary to apply this technology because air pollutants and radioisotopes are generated like those of other conventional incinerators during thermal oxidation process at high temperature. KEPCO designed and installed a pilot scale vitrification plant to demonstrate the feasibility of the vitrification process and then to make a conceptual design for a commercial vitrification facility. The purpose of this study was to simulate the off gas treatment system(OGTS) in order optimize the operating conditions. Mass balance and temperature profile in the off gas treatment system were simulated for different combinations of combustible wastes by computer simulation code named OGTS code and removal efficiency of each process was also calculated with change of design parameters. The OGTS code saved efforts,time and capital because scale and configuration of the system could be easily changed. The simulation result of the pilot scale off gas process as well as pilot tests will be of great use in the future for a design of the commercial vitrification facility. (author)

  7. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    International Nuclear Information System (INIS)

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  8. Recovery of krypton-85 from dissolver off-gas streams

    International Nuclear Information System (INIS)

    Law, J.P.; Lamb, K.M.

    1988-01-01

    The Rare Gas Plant at the Idaho Chemical Processing Plant Recovers fission product krypton and xenon from dissolver off gas streams. Recently the system was upgraded to allow processing of hydrogen rich dissolver off-gas streams. A trickle bed hydrogen recombiner was installed and tested. The Rare Gas Plant can now safely process gas streams containing up to 80% hydrogen

  9. High-level waste vitrification off-gas cleanup technology

    International Nuclear Information System (INIS)

    Hanson, M.S.

    1980-01-01

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  10. Financing gas plants using off balance sheet structures

    International Nuclear Information System (INIS)

    Best, R.J.; Malcolm, V.

    1999-01-01

    A means by which to finance oil and gas facilities using off balance sheet structures was presented. Off balance sheet facility financing means the sale by an oil and gas producer of a processing and/or transportation facility to a financial intermediary, who under a Management Agreement, appoints the producer as the operator of the facility. The financial intermediary charges a fixed processing fee to the producer and all the benefits and upside of ownership are retained by the producer. This paper deals specifically with a flexible off balance sheet facility financing structure that can be used to make effective use of discretionary capital which is committed to gas processing and to the construction of new gas processing facilities. Off balance sheet financing is an attractive alternative method of ownership that frees up capital that is locked into the facilities while allowing the producer to retain strategic control of the processing facility

  11. Vermont Yankee advanced off-gas system (AOG)

    International Nuclear Information System (INIS)

    Littlefield, P.S.; Miller, S.R.; DerHagopian, H.

    1975-01-01

    Early in 1971 the Vermont Yankee Nuclear Power Corporation decided to modify the existing off-gas delay system to reduce the release of noble gas isotopes from its boiling water reactor. This modification included a subsystem for recombining the radiolytic hydrogen and oxygen from the reactor and a series of adsorber tanks filled with activated carbon to delay the noble gas isotopes from the condenser air ejectors. The off-gas system and its operating history from initial operation in November 1973 to the present time are described. Data are also presented on the measured dynamic adsorption coefficient of the ambient carbon subsystem. Laboratory adsorption tests were conducted on the carbon prior to AOG startup and the results are compared with the effective coefficients obtained under operating conditions. (U.S.)

  12. Development of filters for exhaust air or off-gas cleaning

    International Nuclear Information System (INIS)

    Wilhelm, J.

    1988-01-01

    The activities of the 'Laboratorium fuer Aerosolphysik und Filtertechnik II' of the 'Kernforschungszentrum Karlsruhe' concentrate on the development of filters to be used for cleaning nuclear and conventional exhaust air and off-gas. Originally, these techniques were intended to be applied in nuclear facilities only. Their application for conventional gas purification, however, has led to a reorientation of research and development projects. By way of example, it is reported about the use of the multi-way sorption filter for radioiodine removal in nuclear power plants and following flue-gas purification in heating power plants as well as for off-gas cleaning in chemical industry. The improvement of HEPA filters and the development of metal fibre filters has led to components which can be used in the range of high humidity and moisture as well as at high temperatures and an increased differential pressure. The experience obtained in the field of high-efficiency filtering of nuclear airborne particles is made use of during the investigations concerning the removal of particles of conventional pollutants in the submicron range. A technique of radioiodine removal and an improved removal of airborne particles has been developed for use in the future reprocessing plant. Thus, a maximum removal efficiency can be achieved and an optimum waste management is made possible. It is reported about the components obtained as a result of these activities and their use for off-gas cleaning in the Wackersdorf reprocessing plant (WAW). (orig.) [de

  13. Off-gas adsorption model and simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, V.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID (United States)

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  14. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  15. Efficient particulate scrubber for glass melter off-gas

    International Nuclear Information System (INIS)

    Wright, G.T.

    1983-01-01

    Operation of joule-heated, continuous slurry-fed melters has demonstrated that off-gas aerosols are generated by entrainment of feed slurry and vaporization of volatile species from the melt. Effective off-gas stream decontamination for these aerosols can be obtained by utilizing a suitably designed and operated wet scrubber system. Results are presented for performance tests conducted with an air aspirating-type venturi scrubber processing a simulated melter off-gas aerosol. Mass overall removal efficiencies ranged from 99.5 to 99.8%. Details of the testing program and applications for melter off-gas system design are discussed

  16. Evaluation of Ruthenium Capture Methods for Tritium Pretreatment Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, Denis M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    In the reprocessing of used nuclear fuel, radioactive elements are released into various plant off-gas streams. While much research and development has focused on the abatement of the volatile nuclides 3H, 14C, 85Kr, and 129I, the potential release of semivolatile isotopes that could also report to the off-gas streams in a reprocessing facility has been examined. Ruthenium (as 106Ru) has been identified as one of the semivolatile nuclides requiring the greatest degree of abatement prior to discharging the plant off-gas to the environment.

  17. Adsorptive separation of NOsub(x) from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.

    1984-06-01

    After precleaning the dissolver off-gas contains, besides the noble gases Xe and Kr, about 0.5 vol.% each of NOsub(x) and H 2 O. For the removal of these NOsub(x) and H 2 O residues to below 1 ppm, an adsorptive gas cleaning process has been developed and tested on a lab-scale. For the process, an acid resistant molecular sieve was selected and its properties investigated with respect to application; e.g. the dependence of the adsorption capacity on temperature, gas composition and face velocity. By the operation of a lab-scale facility with 400 Nl/h continuous off-gas throughput the suitability of the adsorption process has been demonstrated for off-gas cleaning and recycling of the separated NO 2 and H 2 O to the dissolver. (orig.) [de

  18. Process for off-gas particulate removal and apparatus therefor

    International Nuclear Information System (INIS)

    Carl, D.E.

    1997-01-01

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel's wall in the form of a ''wavy film,'' while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs

  19. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  20. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View Texas A& M; DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on the active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection

  1. A plasma process controlled emissions off-gas demonstration

    International Nuclear Information System (INIS)

    Battleson, D.; Kujawa, S.T.; Leatherman, G.

    1995-01-01

    Thermal technologies are currently identified as playing an important role in the treatment of many DOE waste streams, and emissions from these processes will be scrutinized by the public, regulators, and stakeholders. For some time, there has been a hesitancy by the public to accept thermal treatment of radioactive contaminated waste because of the emissions from these processes. While the technology for treatment of emissions from these processes is well established, it is not possible to provide the public complete assurance that the system will be in compliance with air quality regulations 100% of the operating time in relation to allowing noncompliant emissions to exit the system. Because of the possibility of noncompliant emissions and the public's concern over thermal treatment systems, it has been decided that the concept of a completely controlled emissions off-gas system should be developed and implemented on Department of Energy (DOE) thermal treatment systems. While the law of conservation of mass precludes a completely closed cycle system, it is possible to apply the complete control concept to emissions

  2. Development of silver impregnated alumina for iodine separation from off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  3. Gas treatment processes for keeping the environment of nuclear plants free from gas-borne activity

    International Nuclear Information System (INIS)

    Schiller, H.

    1977-01-01

    The separation processes in gas treatment steps for the decontamination of circuit or offgas streams are described and their practicability is evaluated. Examples of the effectiveness of gas separation plants for keeping the environment within and without nuclear plants free from harmful gas-borne activity are presented. (orig.) [de

  4. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  5. Development of the krypton absorption in liquid carbon dioxide (KALC) process for HTGR off-gas reprocessing

    International Nuclear Information System (INIS)

    Glass, R.W.; Beaujean, H.W.R.; Cochran, H.D. Jr.; Haas, P.A.; Levins, D.M.; Woods, W.M.

    1975-01-01

    Reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel involves burning of the graphite-matrix elements to release the fuel for recovery purposes. The resulting off-gas is primarily CO 2 with residual amounts of N 2 , O 2 , and CO, together with fission products. Trace quantities of krypton-85 must be recovered in a concentrated form from the gas stream, but processes commonly employed for rare gas removal and concentration are not suitable for use with off-gas from graphite burning. The KALC (Krypton Absorption in Liquid CO 2 ) process employs liquid CO 2 as a volatile solvent for the krypton and is, therefore, uniquely suited to the task. Engineering development of the KALC process is currently under way at the Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous Diffusion Plant (ORGDP). The ORNL system is designed for close study of the individual separation operations involved in the KALC process, while the ORGDP system provides a complete pilot facility for demonstrating combined operations on a somewhat larger scale. Packed column performance and process control procedures have been of prime importance in the initial studies. Computer programs have been prepared to analyze and model operational performance of the KALC studies, and special sampling and in-line monitoring systems have been developed for use in the experimental facilities. (U.S.)

  6. AKUT: a process for the separation of aerosols, krypton, and tritium from burner off-gas in HTR-fuel reprocessing

    International Nuclear Information System (INIS)

    Laser, M.; Barnert-Wiemer, H.; Beaujean, H.; Merz, E.; Vygen, H.

    1975-01-01

    The AKUT process consists of the following process steps: (1) aerosol retention by an electrostatic separator followed by HEPA filters, (2) oxidation of CO with O 2 or reaction of excess O 2 with CO, respectively, (3) compression, (4) scrubbing and/or liquefaction, (5) separation of krypton by distillation, and (6) separation of tritiated water and iodine by adsorption or chemical reaction. Liquefied off-gas with low permanent gas content resulting from graphite burning with oxygen may be distilled at ambient temperature. Off-gas with higher permanent gas content from burning with oxygen enriched air must be processed at lower temperature. The ambient temperature flow sheet is preferable from an economic as well as safety point of view. (U.S.)

  7. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  8. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  9. Process considerations for hot pressing ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wilson, C.N.; Brite, D.W.

    1981-01-01

    Spray calcined simulated ceramic nuclear waste powders were hot pressed in graphite, nickel-lined graphite and ZrO 2 -lined Al 2 O 3 dies. Densification, initial off-gas, waste element retention and pellet-die interactions were evaluated. Indicated process considerations and limitations are discussed. 15 figures

  10. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  11. Behavior of technetium in nuclear waste vitrification processes.

    Science.gov (United States)

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with 99m Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  12. Development of a technique for the efficiency calibration of a HPGe detector for the off gas samples of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Sarbjit; Agarwal, Chhavi; Ramaswami, A.; Manchanda, V.K.

    2007-01-01

    Regular monitoring of off gases released to the environment from a nuclear reactor is mandatory. The gaseous fission products are estimated by gamma ray spectrometry using a HPGe detector coupled to a multichannel analyser. In view of the lack of availability of gaseous fission products standards, an indirect method based on the charcoal absorption technique was developed for the efficiency calibration of HPGe detector system using 133B a and 152E u standards. The known activities of 133B a and 152E u are uniformly distributed in a vial having activated charcoal and counted on the HPGe detector system at liquid nitrogen temperature to determine the gamma ray efficiency for the vial having activated charcoal. The ratio of the gamma ray efficiencies of off gas present in the normal vial and the vial having activated charcoal at liquid nitrogen temperature are used to determine the gamma ray efficiency of off gas present in the normal vial. (author)

  13. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  14. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  15. Spin-off technologies developed through nuclear activities

    International Nuclear Information System (INIS)

    1993-01-01

    Given the changing role of government research establishments and the interest in maximizing return on capital and intellectual investment, determining the best way to apply or ''spin-off'' technologies from the nuclear field into other industrial and commercial sectors is of increasing concern. This study by the OECD Nuclear Energy Agency draws on expertise from numerous countries to determine what the spin-offs are, where they come from, and how they can best be fostered. It looks both at the results and process of spin-offs, and helps decision-makers in government and project leaders and managers in industry to maximize their benefits. (author)

  16. Off-gas treatment carbon footprint calculator : form and function

    Energy Technology Data Exchange (ETDEWEB)

    Kessell, L. [Good EarthKeeping Organization Inc., Corona, CA (United States); Squire, J.; Crosby, K. [Haley and Aldrich Inc., Boston, MA (United States)

    2008-07-01

    Carbon footprinting is the measurement of the impact on the environment in terms of the amount of greenhouse gases produced, measured in units of carbon dioxide released directly and indirectly by an individual, organization, process, event or product. This presentation discussed an off-gas treatment carbon footprint calculator. The presentation provided a review of off-gas treatment technologies and presented a carbon footprint model. The model included: form and function; parameters; assumptions; calculations; and off-gas treatment applications. Parameters of the model included greenhouse gases listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change, such as carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, hydrofluorocarbons, and perfluorocarbons. Assumptions of the model included stationary combustion emissions; mobile combustion emissions; indirect emissions; physical or chemical processing emissions; fugitive emissions; and de minimus emissions. The presentation also examined resource conservation and discussed three greenhouse gas footprint case studies. It was concluded that the model involved a calculator with standard calculations with clearly defined assumptions with boundaries. tabs., figs.

  17. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1985-01-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, /sup 238/239/Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr

  18. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1984-08-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized by Pacific Northwest Laboratory. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, 238 / 239 Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing of cooldown. Due to the high temperature during processing, some gases were released into the off-gas hood that was over the test site. The hood was maintained at a slight negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr. 7 references, 15 figures, 4 tables

  19. Separation of krypton from dissolver off-gas of a reprocessing plant using preparative gas chromatography

    International Nuclear Information System (INIS)

    Matoni, M.

    1984-02-01

    Kr-85 can be separated from the pre-purified purge air in the final processing step of the purification phase for dissolver off-gases of a reprocessing plant with the aid of preparative gas chromatography. Activated carbon adsorbers in combination with helium as carrier gas permits maximum gas mixture through-flow. A separation temperature of 30 0 C is considered optimal. An adsorbent volume of 40 dm 3 is necessary for processing the residual gas flow of 2.5 Nm 3 /h; the adsorbent is divided between 2 columns linked in series each of which are 2 m long with an internal diameter of 100 mm. The helium flow required is five times greater than the off-gas flow. The degree of purity for krypton is greater than 90% for a decontamination factor of greater than 1000. (orig./HP) [de

  20. Development of off-gas filters for reprocessing plants. Development and construction of an off-gas filter system for large reprocessing plants. Off-gas section of the resolver test stand of the IHCh

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Wilhelm, J.G.; Pfauter, C.; Jannakos, K.; Apenberg, W.; Lange, W.; Mendel, W.; Potgeter, G.; Zabel, G.

    1976-01-01

    The test of the highly impregnated iodine sorption material AC 6,120 was continued in the laboratory under simulated conditions of a 1,500 t/a uranium reprocessing plant. The influence of NO in nitrogen as the carrier gas on the removal efficiency of the sorption material has been especially examined. Several experiments on the removal efficiency of iodine sorption by the material AC 6,120 were carried out in the original off-gas of the French processing plant SAP Marcoule while the filter system was installed on the one side directly behind the dissolver and on the other side behind the iodine desorption columm. The first iodine filter developed at LAF II was installed in the off-gas line of the dissolver in the Karlsruhe reprocessing plant. The filter system for the dissolver off-gas handling test rig of the IHCh was specified and ordered with an engineering firm. The conception of the prototype off-gas filter system was selected and a lock and transport system allowing to replace filters was designed and subjected for testing. Five alternative solutions were set up in order to find the appropriate filter concept. The method of selection based on the evaluation of performance criteria. According to the selected solution a filter drum was designed and constructed. The lock of the filter system has been designed and realized. Preliminary tests have been made. (orig.) [de

  1. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  2. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  3. Cryogenic system for collecting noble gases from boiling water reactor off-gas

    International Nuclear Information System (INIS)

    Schmauch, G.E.

    1973-01-01

    In boiling water reactors, noncondensible gases are expelled from the main condenser. This off-gas stream is composed largely of radiolytic hydrogen and oxygen, air in-leakage, and traces of fission product krypton and xenon. In the Air Products' treatment system, the stoichiometric hydrogen and oxygen are reacted to form water in a catalytic recombiner. The design of the catalytic recombiner is an extension of industrial gas technology developed for purification of argon and helium. The off-gas after the recombiner is processed by cryogenic air-separation technology. The gas is compressed, passed into a reversing heat exchanger where water vapor and carbon dioxide are frozen out, further cooled, and expanded into a distillation column where refrigeration is provided by addition of liquid nitrogen. More than 99.99 percent of the krypton and essentially 100 percent of the xenon entering the column are accumulated in the column bottoms. Every three to six months, the noble-gas concentrate accumulated in the column bottom is removed as liquid, vaporized, diluted with steam, mixed with hydrogen in slight excess of oxygen content, and fed to a small recombiner where all the oxygen reacts to form water. The resulting gas stream, containing from 20 to 40 percent noble gases, is compressed into small storage cylinders for indefinite retention or for decay of all fission gases except krypton-85, followed by subsequent release under controlled conditions and favorable meteorology. This treatment system is based on proven technology that is practiced throughout the industrial gas industry. Only the presence of radioactive materials in the process stream and the application in a nuclear power plant environment are new. Adaptations to meet these new conditions can be made without sacrificing performance, reliability, or safety

  4. Development of high performance catalyst for off-gas treatment system in BWR

    International Nuclear Information System (INIS)

    Kawasaki, Toru; Kawabe, Kenichi; Maeda, Kiyomitsu; Matsubara, Hirofumi; Aizawa, Motohiro; Iizuka, Hidehiro; Kumagai, Naoki

    2011-01-01

    A high performance catalyst for off-gas treatment system in boiling water reactor (BWR) has been developed. The hydrogen concentration in the outlets of off-gas recombiners increased at several BWR plants in Japan. These phenomena were caused by deactivation of catalysts for the recombiners, and we assumed two types of deactivation mechanisms. The first cause was an increase of the amount of boehmite in the catalyst support due to alternation of the manufacturing process. The other cause was catalysts being poisoned by cyclic siloxanes that were introduced from the silicone sealant used in the upstream of the off-gas recombiners. The catalysts were manufactured by Pt adhering on alumina support. The conventional catalyst (CAT-A) used the aqueous solution of the chloroplatinic acid for adhesion of Pt. A dechlorination process by autoclave was applied to prevent the equipment at the downstream of the recombiners from stress corrosion cracking, but this process caused the support material to transform into boehmite. The boehmite-rich catalysts were deactivated more easily by organic silicon than gamma alumina-rich catalysts. Therefore, the CAT-A was replaced at many Japanese BWR plants by the improved catalyst (CAT-B), and their support was transformed into more stable gamma alumina by heating at 500degC. However, the siloxanes keep being detected in the off-gas though the source of siloxane had been removed and there still remain possibilities to deactivate the catalysts. Therefore, we have been developing high performance catalyst (CAT-C) that has higher activity and durability against poisoning. We investigated the properties of CAT-C by performance tests and instrumental analyses. The dependency of thermal output of nuclear reactor, and durability against siloxane poisoning were investigated. We found that CAT-C showed higher performance and better properties than CAT-B did. Moreover, we have been developing a modeling method to evaluate the hydrogen recombination

  5. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  6. Nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R [Kernforschungsanlage Juelich G.m.b.H. (F.R. Germany). Inst. fuer Reaktorentwicklung

    1976-05-01

    It is anticipated that the coupled utilization of coal and nuclear energy will achieve great importance in the future, the coal serving mainly as raw material and nuclear energy more as primary energy. Prerequisite for this development is the availability of high-temperature reactors, the state of development of which is described here. Raw materials for coupled use with nuclear process heat are petroleum, natural gas, coal, lignite, and water. Steam reformers heated by nuclear process heat, which are suitable for numerous processes, are expected to find wide application. The article describes several individual methods, all based on the transport of gas in pipelines, which could be utilized for the long distance transport of 'nuclear energy'.

  7. Nuclear spin off

    International Nuclear Information System (INIS)

    1984-01-01

    The focus for nuclear energy research in the UK has been mainly the generation of electricity. However, nuclear technology is also applied in many areas other than energy production. Nuclear Spin Off shows how technology has been transferred to industry, agriculture, medicine and other areas, creating considerable material benefit. Nuclear research has produced revolutionary new materials and measuring and detection techniques. This film shows a wide range of uses. (author)

  8. Continuous chemical cold traps for reprocessing off-gas purification

    International Nuclear Information System (INIS)

    Henrich, E.; Bauder, U.; Steinhardt, H.J.; Bumiller, W.

    1985-01-01

    Absorption of nitrogen oxides and iodine from simulated reprocessing plant off-gas streams has been studied using nitric acid and nitric acid/hydrogen peroxide mixtures at low temperatures. The experiments were carried out at the laboratory and on the engineering scale. The pilot plant scale column has 0.8 m diameter and 16 absorption plates at 0.2 m spacing. Cooling coils on the plates allow operating temperatures down to -60 0 C. The NO concentration in the feed gas usually has been 1% by volume and the flow rate 4-32 m 3 (STP) per hour. The iodine behavior has been studied using I-123 tracer. Results of the study are presented. The chemistry of the processes and the advantages and disadvantages in correlation to the various applications for an off-gas purification in a reprocessing plant are compared and discussed. The processes are compatible with the PUREX process and do not produce additional waste

  9. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  10. Iodine Adsorption by Ag-Aerogel under Prototypical Vessel Off-Gas Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. The required plant decontamination factor for iodine will vary based on fuel burnup, cooling time, and other factors but is very likely to be >1000 and could be as high as 8000. Multiple off-gas streams within a UNF reprocessing plant combine prior to environmental release, and each of these streams contains some amount of iodine. To achieve the decontamination factors (DFs) that are likely to be required by regulations, iodine removal from the vessel off-gas will be necessary. The vessel off-gas contains iodine at very dilute concentrations (ppb levels), and will also contain water vapor. Iodine species present are likely to include both elemental and organic iodides. There will also be solvent vapors and volatile radiolysis products. The United States has considered the use of silver-based sorbents for removal of iodine from UNF off-gas streams, but little is known about the behavior of those sorbents at very dilute iodine concentrations. The purpose of this study was to expose silver-functionalized silica aerogel (AgAerogel) to a prototypical vessel off-gas stream containing 40 ppb methyl iodide to obtain information about organic iodine capture by silver-sorbents at very low iodine concentrations. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the overall system DF could be obtained. Results show that CH3I penetrates into a AgAerogel sorbent bed to a depth of 3.9 cm under prototypical vessel off-gas conditions. An iodine loading of 22 mg I/g AgAerogel was observed in the first 0.3 cm of the bed. Of the iodine delivered to the system, 48% could not be accounted for, and future efforts will investigate this concern. Direct calculation of the decontamination factor is not

  11. Dissolution off-gases at the marcoule pilot facility: Iodine trapping and off-gas characterization unit

    International Nuclear Information System (INIS)

    Pouyat, D.; Vignau, B.; Roux, J.P.

    1993-01-01

    The Marcoule Pilot Reprocessing Facility (APM) reprocesses spent fuel from light water reactors and fast breeder reactors. A batch dissolution process is used with an annual throughput capacity of 5 metric tons. The off-gas treatment unit is described together with its characterization laboratory in order to highlight the functions and potential of the facilities. The objectives are consistent with the Marcoule site policy regarding diminished iodine release and investigation of the off-gas treatment process. The equipment used to meet these objectives is described from a functional standpoint. The facility implements measurement techniques to allow continuous quantitative measurements of nitrogen oxides, oxygen, iodine and krypton, as well as continuous monitoring of the demister inlet flow by γ spectrometry. Sorbents used for iodine trapping may be tested over a wide range of operating conditions (temperature, flow rate, iodine concentration) with representative dissolution off-gases. An X-ray and γ counting system is used to assess the activity of the adsorbed radionuclides, notably 129 I

  12. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    Robert S. Cherry; Richard A. Wood

    2006-01-01

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  13. Off-gas considerations for a vitrification plant in the republic of Korea

    International Nuclear Information System (INIS)

    Chun, Ung Kyung; Park, Jong Kil; Yang, Kyung Hwa; Song, Myung Jae

    1997-01-01

    The Republic of Korea is in the process of preparing for its first ever vitrification plant to handle low and intermediate-level radioactive waste from her pressurized water reactors (PWRs). KEPRI, in coordination with her partners, will design, construct, and erect a pilot plant using data from the orientation tests. The pilot plant will be the basis for the development of the final objective, the establishment of an industrial scale vitrification installation in the Republic of Korea. Throughout these projects, the major goal is to minimize the harmful effects of the final waste form to the environment. The gaseous effluents emissions from the facility will need to be managed to meet the environmental regulations concerning gaseous releases into the environment of the Republic of Korea. The focus of this paper is on the considerations for the treatment of the off-gas for a low and intermediate-level radioactive waste treatment vitrification installation in the Republic of Korea. Off-gas considerations will span a wide-range of areas such as waste characteristics, thermal treatment systems, off-gas regulations, off-gas characteristics, assessment of air pollution control devices, systems assessments, numerical modelling, economics etc. Off-gas regulations in Korea are becoming tighter and will likely change from year to year. In terms of both off-gas treatment equipment performance and public protection, the amount and nature (e.g. chemical behavior and morphology) of the species are important. The emissions may be classified as toxic metals, radionuclides, hydrocarbons, particulate matter, and acid gases. Air pollution control technologies are generally classified as wet or dry technologies covering over 40 different air pollution control devices (APCDs) with varying removal efficiencies for the different types of off-gas. In general, the state of the art systems for vitrification technologies incorporate the basic functions such as further oxidation of products

  14. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    International Nuclear Information System (INIS)

    Kudryavtsev, Yu.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L.P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-01-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  15. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas

    International Nuclear Information System (INIS)

    Waggoner, R.C.

    1982-08-01

    A technical and economical analysis has been made of methods for collecting and concentrating krypton from the off-gas from a typical nuclear fuel reprocessing plant. The methods considered were cryogenic distillation, fluorocarbon absorption, mordenite adsorption, and selective permeation. The conclusions reached were: Cryogenic distillation is the only demonstrated route to date. Fluorocarbon absorption may offer economic and technical advantages if fully developed and demonstrated. Mordenite adsorption has been demonstrated only on a bench scale and is estimated to cost more than either cryogenic distillation or fluorocarbon absorption. Selective permeation through a silicone rubber membrane is not sufficiently selective for the route to be cost effective

  16. Treatment of reactive process wastewater with high-level ammonia by blow-off method

    International Nuclear Information System (INIS)

    Chen Xiaotong; Quan Ying; Wang Yang; Fu Genna; Liu Bing; Tang Yaping

    2012-01-01

    The ceramic UO 2 kernels for nuclear fuel elements of high temperature gas cooled reactors were prepared through sol-gel process with uranyl nitrate, which produces process wastewater containing high-level ammonia and uranium. The blow-off method on a bench scale was investigated to remove ammonia from reactive wastewater. Under the optimized operating conditions, the ammonia can be removed by more than 95%, with little reactive uranium distilled. The effects of pH, heating temperature and stripping time were studied. Static tests with ion-exchange resin indicate that ammonia removal treatment increases uranium accumulation in anion exchange resin. (authors)

  17. Evaluation of the HEPA filter in-place test method in a corrosive off-gas environment

    International Nuclear Information System (INIS)

    Murphy, L.P.; Wong, M.A.; Girton, R.C.

    1978-01-01

    Experiments were performed to determine if the combined effects of temperature, humidity, and oxides of nitrogen (NO/sub x/) hinder the in-place testing of high-efficiency particulate air (HEPA) filters used for cleaning the off-gas from a nuclear waste solidification facility. The laboratory system that was designed to simulate the process off-gas contained two HEPA filters in series with sample ports before each filter and after the filter bank. The system also included a reaction bomb for partial conversion of NO to NO 2 . Instrumentation measured stream flow, humidity, NO/sub x/ concentration, and temperature. Comparison measurements of the DOP concentrations were made by a forward light-scattering photometer and a single particle intra-cavity laser particle spectrometer. Experimental conditions could be varied, but maximum system capabilities were 95% relative humidity, 90 0 C, and 10,000 ppM of NO/sub x/. A 2 3 factorial experimental design was used for the test program. This design determined the main effects of each factor plus the interactions of the factors in combination. The results indicated that water vapor and NO/sub x/ interfere with the conventional photometer measurements. Suggested modifications that include a unique sample dryer are described to correct the interferences. The laser particle spectrometer appears to be an acceptable instrument for measurements under adverse off-gas conditions

  18. Radioactive contamination monitoring device for off-gas in ventilation system

    International Nuclear Information System (INIS)

    Osaki, Masahiko; Watabe, Atsushi; Kaneko, Itaru; Kubokoya, Takashi.

    1990-01-01

    In a conventional method of detecting leakage for primary coolants, radioactive iodine in off-gases was detected while going up the off-gas system. As an event resulting in abnormality to radioactive rare gas level, leakage of water, leakage in cleanup system-recycling system, leakage in main steams and leakage from wastes processing system are considered. An off-gas system to be measured is selectively sampled by a sample changer in order to measure radioactive rare gases in the off-gases, and sample gases are introduced to detect radioactivity. Detection signals are received for analysis and quantitative determination, the result of the analysis is diagnosed and the presence or absence of abnormality in an object to be measured is determined. Subsequently, an abnormality alarm and the result of the analysis are outputted. Since the radioactive rare gases are chemically inactive, they are neither combined with other materials nor deposited to wall surfaces. Abnormality can be easily detected by always monitoring a composition pattern and a radioactivity level. (N.H.)

  19. Biological off-gas treatment: let's make things better

    NARCIS (Netherlands)

    Groenestijn, J.W. van

    1998-01-01

    Biological off-gas treatment is the most effective cleaning method for many off-gases which contain low concentration of pollutants (<5 g/m3). The world market share in off-gas treatment is a few percent. Potential buyers are reserved because of existing biofilter quality differences and lack of

  20. Treatment of off-gas from lagoon sludge thermal decomposition

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Ga, M. J.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has launched a decommissioning program of the uranium conversion plant in 2001. The treatment of the sludge waste, which was generated during the operation of the plant and stored in the lagoon, is one of the most important tasks in the decommissioning program of the plant. The major compounds of the lagoon sludge are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and uranium compounds. The minor compounds are iron, magnesium, aluminum, silicon and phosphorus. A treatment process of the sludge was developed as figure 1 based on the results of the sludge characteristics and the developed treatment technologies. A treatment of off-gas evolved from the nitrate salts thermal decomposition is one of the important process. Off-gas treatment by using a selective catalytic reduction (SCR) method was investigated in this study

  1. Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents

    International Nuclear Information System (INIS)

    Holladay, D.W.

    1979-01-01

    Emphasis was focused on the operating parameters that most strongly affected the optimization of the processes used to treat actual process or feed streams which simulated actual compositions occurring at nuclear facilities. These parameters included gas superficial velocity, temperature, types of organic and inorganic contaminants, relative humidity, iodine feed-gas concentration, iodine species, column design (for both acid-scrub and solid sorbent-based processes), sorbent particle size, run time, intense radiation (solid sorbents only), and scrub-acid concentration. The most promising acid-scrub process for removal of iodine species from off-gases appears to be Iodox. The most promising solid sorbent for removal of iodine species from off-gases is the West German Ag-KTB--AgNO 3 -impregnated amorphous silicic acid. The tandem silver mordenite--lead mordenite sorbent system is also quite attractive. Only a limited number of processes have thus far been studied for removal of iodine species from low-level liquid waste streams. The most extensive successful operating experience has been obtained with anion exchange resins utilized at nuclear power reactors. Bench-scale engineering tests have indicated that the best process for removal of all types of iodine species from liquid waste streams may be treatment on a packed bed containing a mixture of sorbents with affinity for both elemental and anionic species of iodine. 154 references, 7 figures, 21 tables

  2. Economics of nuclear gas stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G W [Austral Oil Company Incorporated, Houston, TX (United States); Coffer, H F; Luetkehans, G R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  3. Economics of nuclear gas stimulation

    International Nuclear Information System (INIS)

    Frank, G.W.; Coffer, H.F.; Luetkehans, G.R.

    1970-01-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  4. Nuclear spin-off

    International Nuclear Information System (INIS)

    1981-11-01

    This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)

  5. Spin-off strategies for the improvement of the performance national nuclear R and D project

    International Nuclear Information System (INIS)

    Lee, T. J.; Kim, H. J.; Jung, H. S.; Yang, M. H.; Choi, Y. M.

    1998-01-01

    In the light of the strategic utilization of the national R and D projects, this paper is to induce the spin-off strategies to improve the national R and D effectiveness through analyzing the spin-off characteristics of nuclear technologies, the spin-off status of the advanced countries and the case study of Korean nuclear spin-offs. Spin-off process is viewed as a three-stage operation, such as preparation stage, implementation stage and maintenance stage. In order to find the correlation between the influencing factors and spin-off effectiveness, the Spearman's correlation coefficient was employed as a specific statistical technique. By integrating this correlation, spin-off process and spin-off strategies, this paper presents an efficient frame work to improve the spin-off effectiveness

  6. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  7. Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Im, Myungshin [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2017-08-01

    The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directly responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.

  8. Technology of off-gas treatment for liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.A.; Goles, R.W.; Peters, R.D.

    1985-05-01

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs.

  9. Fluidized-bed calcination of LWR fuel-reprocessing HLLW: requirements and potential for off-gas cleanup

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1979-01-01

    Fluidized-bed solidification (calcination) was developed on a pilot scale for a variety of simulated LWR high-level liquid-waste (HLLW) and blended high-level and intermediate-level liquid-waste (ILLW) compositions. It has also been demonstrated with ICPP fuel-reprocessing waste since 1963 in the Waste Calcining Facility (WCF) at gross feed rates of 5 to 12 m 3 /day. A fluidized-bed calciner produces a relatively large volume of off-gas. A calciner solidifying 6 m 3 /day of liquid waste would generate about 13 standard m 3 /min of off-gas containing 10 to 20 g of entrained solids per standard m 3 of off-gas. Use of an off-gas system similar to that of the WCF could provide an overall process decontamination factor for particulates of about 2 x 10 10 . A potential advantage of fluidized-bed calcination over other solidification methods is the ability to control ruthenium volatilization from the calciner at less than 0.01% by calcining at 500 0 C or above. Use of an off-gas system similar to that of the WCF would provide an overall process decontamination factor for volatile ruthenium of greater than 1.6 x 10 7

  10. ISOLDE Off-line Gas Leak Upgrade

    CERN Document Server

    Nielsen, Kristoffer Bested

    2017-01-01

    This study investigates gas injection system of the ISOLDE Off-line separator. A quadrupole mass spectrometer is used to analysis the composition of the gas. Based on these measurements a contamination of the injected gas is found and a system upgrade is purposed. Furthermore a calibration of the leak rate of the leak valve is made.

  11. Characterization of off-gases from a small-scale, joule-heated ceramic melter for nuclear waste vitrification

    International Nuclear Information System (INIS)

    Woolsey, G.B.; Wilhite, E.L.

    1980-01-01

    This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste

  12. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  13. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  14. Lift-off process for deep-submicron-size junctions using supercritical CO2

    International Nuclear Information System (INIS)

    Fukushima, A.; Kubota, H.; Yuasa, S.; Takahachi, T.; Kadoriku, S.; Miyake, K.

    2007-01-01

    Deep-submicron-size (∼100-nm-size) junctions are a key element to investigate spin-torque transfer phenomena such as current induced magnetization reversal or the spin-torque diode effect. In the fabrication of submicron-size junctions using an etching method, the lift-off process after the etching process tends to be difficult as the size of junctions shrinks. In this study, we present a new lift-off process using supercritical CO 2 . In this process, the samples were immersed in solvent (mixture of N-Methyl-2-pyrrolidone and isopropanol), and pressurized by CO 2 gas. The CO 2 gas then went into supercritical phase and the solvent was removed by a continuous flow of CO 2 . We obtained considerable yield rate (success ratio in lift-off process) of more than 50% for the samples down to 100-nm-size junctions

  15. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    International Nuclear Information System (INIS)

    Dal Magro, Fabio; Meneghetti, Antonella; Nardin, Gioacchino; Savino, Stefano

    2015-01-01

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  16. On-line determination of iodine in nuclear fuel reprocessing off-gas streams by a combination of laser-induced fluorimetry and laser photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Kuno, Yusuke; Sato, Souichi; Masui, Jinichi

    1992-01-01

    The on-line determination of molecular iodine and organic iodides in nuclear fuel reprocessing off-gas streams containing high concentrations of NO x gas was studied. Ultraviolet radiation is used to convert organic iodides into molecular iodine. The approximate concentration of iodine before and after the photochemical conversion in the presence of NO x gas was first determined by laser-induced fluorimetry. NO 2 was determined by photoacoustic spectroscopy, correcting the acoustic signal due to iodine by using the approximate iodine concentration. NO was determined from the concentrations of NO 2 before and after the photoirradiation based on the photochemical fraction changes of NO and NO 2 . The quenching of the fluorimetry due to NO and NO 2 was finally corrected with the NO and NO 2 concentrations obtained. The detection limit of the proposed method is 10 nl 1 -1 . 7 figs., 2 tabs., 11 refs

  17. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  18. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    International Nuclear Information System (INIS)

    Ottesen, D.; Allendorf, S.; Ludowise, P.; Hardesty, D.; Miller, T.; Goldstein, D.; Smith, C.; Bonin, M.

    1999-01-01

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO 2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  19. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  20. Radioactive gas waste processing device

    International Nuclear Information System (INIS)

    Soma, Koichi.

    1996-01-01

    The present invention concerns a radioactive gas waste processing device which extracts exhaust gases from a turbine condensator in a BWR type reactor and releases them after decaying radioactivity thereof during temporary storage. The turbine condensator is connected with an extracting ejector, a preheater, a recombiner for converting hydrogen gas into steams, an off gas condensator for removing water content, a flow rate control valve, a dehumidifier, a hold up device for removing radiation contaminated materials, a vacuum pump for sucking radiation decayed-off gases, a circulation water tank for final purification and an exhaustion cylinder by way of connection pipelines in this order. An exhaust gas circulation pipeline is disposed to circulate exhaust gases from an exhaust gas exit pipeline of the recycling water tank to an exhaust gas exit pipeline of the exhaust gas condensator, and a pressure control valve is disposed to the exhaust gas circulation pipeline. This enable to perform a system test for the dehumidification device under a test condition approximate to the load of the dehumidification device under actual operation state, and stabilize both of system flow rate and pressure. (T.M.)

  1. Pilot plant development for adsorptive krypton separation from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.; Printz, R.

    1987-01-01

    In view of hot cell application a separation process was investigated for the retention of Kr-85 from gaseous effluents. In the flow sheet only adsorption beds are applied. The most efficient process scheme is adsorption of the noble gas on activated charcoal and thereafter separation of the coadsorbed gas species like N 2 , O 2 , Xe and CO 2 from the krypton by gas chromatography. Adsorption is at normal pressure and low temperatures of up to -160 0 C, whereas desorption is at elevated temperatures and under helium purge. Influences on the process operation like off-gas composition, adsorption temperatures and adsorbent are experimentally investigated, as well as the behavior of trace impurities in the adsorption columns. On the basis of pilot plant operation the main components for a full scale facility are being designed

  2. Electron beam induced purification of dilute off gases from industrial processes and automobile tunnels

    International Nuclear Information System (INIS)

    Paur, H.-R.; Maetzing, H.

    1993-01-01

    The electron beam process has proved to be an efficient method for the removal of inorganic pollutants from flue gas. Since it simulates natural processes which occur in the atmospheric photochemistry, it appeared attractive to investigate the potential of the e-beam process to clean off-gases which contain hydrocarbon and inorganic trace components. Such emissions arise from industrial processes and from automobile tunnels. Commercial solvents were vaporized in air and irradiated with energetic electrons (300 keV). CO, CO 2 and aerosol particles were found as products and were determined quantitatively. The aerosol particles can be collected by a gravel bed filter and can be removed by combustion or biological degradation. From experiments and model calculations it was found that the e-beam process is a very economic tool to remove hydrocarbons from large off-gas volumes at initial concentrations of 50-100 mg C/m 3 , and that NO x can be removed very efficiently from tunnel off-gas. (author)

  3. Investigations of gas explosions in a nuclear coal gasification plant

    International Nuclear Information System (INIS)

    Schulte, K.

    1981-01-01

    The safety research program on gas cloud explosions is performed in the context of the German project of the Prototype Plant Nuclear Process Heat. By the work within this project, it is tried to extend the use of nuclear energy to non-electric application. The programme comprises efforts in several scientific disciplines. The final goal is to provide a representative pressure-time-function or a set of such functions. These functions should be the basis for safe design and construction of the nuclear reactor system of a coal gasification plant. No result yet achieved contradicts the assumption that released process gas is only able to deflagrate. It should be possible to demonstrate that, if unfavourable configurations are avoided, a design pressure of 300 mbar is sufficient to withstand an explosion of process gas; this pressure should never be exceeded by process gas explosions irrespective of gas mass released and distance to release point, except possibly in relatively small areas

  4. Olefin recovery from FCC off-gas can pay off

    International Nuclear Information System (INIS)

    Brahn, M.G.

    1992-01-01

    This paper reports on olefins recovery from refinery FCC offgas streams which offers an attractive cash flow from olefins from a tail-gas stream that has typically been consumed as refinery fuel. Such recovery schemes can be employed in refineries or olefins plants, and can be tailored to fit individual requirements. Mobil Chemical Co. has operated such a dephlegmator-based off-gas recovery unit at its Beaumont, Tex., olefin plant since 1987. It reported that the project was paid out within 11 months of initial start-up

  5. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    International Nuclear Information System (INIS)

    Goles, R.W.; Sevigny, G.J.

    1983-09-01

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  6. Air and gas cleaning technology for nuclear applications

    International Nuclear Information System (INIS)

    First, M.W.

    1986-01-01

    All large-scale uses of radioactive materials require rigid control of off-gases and generated aerosols. Nuclear air and gas cleaning technology has answered the need from the days of the Manhattan Project to the present with a variety of devices. The one with the longest and most noteworthy service is the HEPA (high efficiency particulate air) filter that originally was referred to as an absolute filter in recognition of its extraordinary particle retention characteristics. Activated-charcoal adsorbers have been employed worldwide for retention of volatile radioiodine in molecular and combined forms and, less frequently, for retention of radioactive noble gases. HEPA filters and activated -charcoal adsorbers are often used with auxiliary devices that serve to extend their effective service life or significantly improve collection efficiency under unfavorable operating conditions. Use of both air cleaning devices and their auxiliaries figure prominently in atomic energy, disposal of high- and low-level nuclear wastes, and in the production of fissile materials. The peaceful uses of nuclear energy would be impossible without these, or equivalent, air- and gas-cleaning devices

  7. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  8. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    , there are many process benefits to be gained by removing the steam-stripping step from the CPC cycle. The goal of this task was to study what adverse impact the zero-mercury-removal scenario would have on the DWPF melter off-gas system operation. It is stressed again that this study was intended to be scoping in nature, so the results presented in this report are preliminary. Any further substantiation of these results for actual implementation into the DWPF flowsheet would require an in-depth modeling study of all three reaction zones, including the aqueous-phase reactions in the quencher, OGCT, Steam Atomized Scrubber (SAS), and off-gas condenser with recirculated condensate, and the proof-of-principle experiments.

  9. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  10. Test results from the GA Technologies engineering-scale off-gas treatment system

    International Nuclear Information System (INIS)

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1985-01-01

    Test results are available from the GA Technologies (GA) off-gas treatment facilities using gas streams from both the graphite fuel element burner system and from the spent fuel dissolver. The off-gas system is part of a pilot plant for development of processes for treating spent fuel from high temperature gas-cooled reactors (HTGRs). One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constituents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Integrated testing of major BOG system components confirmed the performance of units evaluated in individual tests. Design decontamination and conversion factors were maintained for up to 72 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  11. Shake-off processes at the electron transitions in atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Parilis, Eh.S.

    1982-01-01

    Elementary processes in multielectron atoms - radiative and Auger transitions, photoionization and ionization by an electron impact etc. are usually followed by the relaxation of electron shells. The conditions under which such multielectron problem could be solved in the shake-off approximation are considered. The shake-off processes occurring. as a result of the electron transitions are described from the general point of view. The common characteristics and peculiar features of this type of excitation in comparison with the electron shake-off under nuclear transformations are pointed out. Several electron shake-off processes are considered, namely: radiative Auger effect, the transition ''two electrons-one photon'', dipole ionization, spectral line broadening, post collision interaction, Auger decay stimulated by collision with fast electrons, three-electron Auger transitions: double and half Auger effect. Their classification is given according to the type of the electron transition causing the shake-off process. The experimental data are presented and the methods of theoretical description are reviewed. Other similar effects, which could follow the transitions in electron shells are pointed out. The deduction of shake-off approximation is presented, and it is pointed out that this approach is analogous to the distorted waves approximation in the theory of scattering. It was shown that in atoms the shake-off approximation is a very effective method, which allows to obtain the probability of different electronic effects

  12. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  13. Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station

    Science.gov (United States)

    Hu, Junzhi; Zhou, Jiyong; Li, Siyuan

    2017-06-01

    Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.

  14. Improvement of melter off-gas design for commercial HALW vitrification facility

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, A.; Kitamura, M.; Yamanaka, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan); Yoshioka, M.; Endo, N.; Asano, N. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  15. Improvement of melter off-gas design for commercial HALW vitrification facility

    International Nuclear Information System (INIS)

    Ohno, A.; Kitamura, M.; Yamanaka, T.; Yoshioka, M.; Endo, N.; Asano, N.

    2001-01-01

    The Japan commercial reprocessing plant is now under construction, and it will commence the operation in 2005. The High Active Liquid Waste (HALW) generated at the plant is treated into glass product at the vitrification facility using the Liquid Fed Joule-Heated Ceramic Melter (LFCM). The characteristic of the LFCM is that the HALW is fed directly onto the molten glass surface with the glass forming material. This process was developed by the Japan Nuclear Cycle Development Institute (JNC). The JNC process was first applied to the Tokai Vitrification Facility (TVF), which is a pilot scale plant having about 1/6 capacity of the commercial facility. The TVF has been in operation since 1995. During the operation, the rapid increase of the differential pressure between the melter plenum and the dust scrubber was observed. This phenomenon is harmful to the long-term continuous operation of TVF. And, it is also anticipated that the same phenomenon will occur in commercial vitrification facility. In order to solve this problem, the countermeasures were studied and developed. Through the study on the deposit growing mechanism, it was probable that the rapid increased differential pressure was attributed to the condensation of meta-boric acid at the outlet of the air-film cooler slits. And, the heating and the humidification of purge air were judged to be effective as the countermeasures to suppress the condensation. On the other hand, the water injection into melter off-gas pipe was found to be very effective to reduce the differential pressure as the results of the various tests. The deposit adhered on the inner surface of the off-gas pipe was almost washed out. And, it was also demonstrated that the system was superior to other systems by virtue of its simplicity and stability. In order to apply the system to the commercial scale plant, the scale-up tests were conducted at JNC mock-up facility using the acrylic model. (author)

  16. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  17. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Inst., Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Inst., Des Plaines, IL (United States)

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  18. Modular design of a reprocessing plant dissolver off-gas system. Variations, flexibility and stage of development

    International Nuclear Information System (INIS)

    Henrich, E.; Huefner, R.

    1984-01-01

    Simple and economic control of the volatile radionuclides in a reprocessing plant requires two equally important prerequisites: suitable processing in the plant head-end and reliable operation of the dissolver off-gas (DOG) purification system. A small number of DOG purification modules was selected from various alternatives. The major selection criteria are removal efficiency, simplicity, convenient operating conditions and flexibility that provide compatibility with other off-gas treatment steps, subsequent waste treatment and different processing modes in the head-end. The behaviour of noxious materials was investigated in nitric acid off-gas scrubbers of different design and for a wide range of operating modes and conditions. A concentration range of nitric acid from very dilute to hyperazeotropic concentrations and a temperature range from -55 deg. C to above room temperature as well as the use of hydrogen peroxide were studied on an engineering scale. Nitrous gases and iodine can be removed to the trace level at special operating modes. Aerosol and iodine filters are discussed briefly. A selective absorption process using CF 2 Cl 2 solvent for noble gas and 14 C removal was developed on a laboratory scale. It operates at low temperatures and atmospheric pressure. Xe and Kr were separated using two absorption columns. Pilot-plant scale noble gas scrubbers are under construction and are being integrated into the existing test facility. A series of process steps has been chosen for integrated process demonstration runs on an engineering scale. The integrated DOG system consists of several scrubbers and filters operating at atmospheric pressure. The temperature decreases stepwise, without producing large changes in the opposite direction, providing compatibility within the process train

  19. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates

    International Nuclear Information System (INIS)

    Laamanen, Corey A.; Shang, Helen; Ross, Gregory M.; Scott, John A.

    2014-01-01

    Highlights: • Development of a model to assess process-coupled algae production in cold climates. • Algae growth temperatures in open tanks can be maintained with industrial off-gas. • Indirect and direct heat application from industrial off-gasses are assessed. • CO 2 -rich off-gas can be bubbled into algae tanks to provide a carbon source. • A nickel smelter’s off-gas is used to demonstrate how waste heat can be repurposed. - Abstract: Lipids produced by microalgae are a promising biofuel feedstock. However, as most commercial mass production of microalgae is in open raceway ponds it is generally considered only a practical option in regions where year-round ambient temperatures remain above 15 °C. To address this issue it has been proposed to couple microalgae production with industries that produce large amounts of waste heat and carbon dioxide (CO 2 ). The CO 2 would provide a carbon source for the microalgae and the waste heat would allow year-round cultivation to be extended to regions that experience seasonal ambient temperatures well below 15 °C. To demonstrate this concept, a dynamic model has been constructed that predicts the impact on algal pond temperature from both bubbled-in off-gas and heat indirectly recovered from off-gas. Simulations were carried out for a variety of global locations using the quantity off-gas and waste energy from a smelter’s operations to determine the volume of microalgae that could be maintained above 15 °C. The results demonstrate the feasibility of year-round microalgae production in climates with relatively cold winter seasons

  20. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  1. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  2. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  3. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    International Nuclear Information System (INIS)

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed

  4. Removal of CO2 in closed loop off-gas treatment systems

    International Nuclear Information System (INIS)

    Clemens, M.K.; Nelson, P.A.; Swift, W.M.

    1994-01-01

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO 2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO 3 . Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO 2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO 2 in scrubbing towers using aqueous-based CO 2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO 2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO 2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  5. Applications of genetic algorithms to optimization problems in the solvent extraction process for spent nuclear fuel

    International Nuclear Information System (INIS)

    Omori, Ryota, Sakakibara, Yasushi; Suzuki, Atsuyuki

    1997-01-01

    Applications of genetic algorithms (GAs) to optimization problems in the solvent extraction process for spent nuclear fuel are described. Genetic algorithms have been considered a promising tool for use in solving optimization problems in complicated and nonlinear systems because they require no derivatives of the objective function. In addition, they have the ability to treat a set of many possible solutions and consider multiple objectives simultaneously, so they can calculate many pareto optimal points on the trade-off curve between the competing objectives in a single iteration, which leads to small computing time. Genetic algorithms were applied to two optimization problems. First, process variables in the partitioning process were optimized using a weighted objective function. It was observed that the average fitness of a generation increased steadily as the generation proceeded and satisfactory solutions were obtained in all cases, which means that GAs are an appropriate method to obtain such an optimization. Secondly, GAs were applied to a multiobjective optimization problem in the co-decontamination process, and the trade-off curve between the loss of uranium and the solvent flow rate was successfully obtained. For both optimization problems, CPU time with the present method was estimated to be several tens of times smaller than with the random search method

  6. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  7. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  8. Sorption Modeling and Verification for Off-Gas Treatment

    International Nuclear Information System (INIS)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-01-01

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  9. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  10. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  11. I-129, Kr-85, C-14 and NO/sub x/ removal from spent fuel dissolver off-gas at atmospheric pressure and at reduced off-gas flow

    International Nuclear Information System (INIS)

    Henrich, E.; Huefner, R.

    1981-01-01

    A dissolver off-gas (DOG) system suitable for a LWR, FBR or HTR spent fuel reprocessing plant is described, incorporating the following features: (1) the DOG flow is reduced to a reasonably small volume, using fumeless dissolution conditions, by maintaining high concentrations, the retention procedures are simplified and accompanied by an economic reduction of the equipment size; (2) all process operations are conducted at atmospheric or subatmospheric pressure, including noble gas removal by selective absorption, without using high temperature processes; (3) all processes, except HEPA filtering, are continuous and do not accumulate large amounts of waste nuclides, the DOG process sequence is mutually compatible with itself and with processing in the headend, showing on-line redundancy for the removal of the most radiotoxic nuclides; and (4) the DOG system only deviates slightly from proven technology. The stage of development and relevant results are given both for a lab. scale and a pilot plant scale

  12. Fabrication of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jr., Joseph Franklin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    A small sorbent-based capture system was designed that could be placed in the off-gas line from the fuel dissolver in the ATALANTE hot cells with minimal modifications to the ATALANTE dissolver off-gas system. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system have been specified, procured, and received on site at Oak Ridge National Laboratory (ORNL), meeting the April 30, 2015, milestone for completing the fabrication of the ATALANTE dissolver off-gas capture system. This system will be tested at ORNL to verify operation and to ensure that all design requirements for ATALANTE are met. Modifications to the system will be made, as indicated by the testing, before the system is shipped to ATALANTE for installation in the hot cell facility.

  13. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  14. Modeling the high-temperature gas-cooled reactor process heat plant: a nuclear to chemical conversion process

    International Nuclear Information System (INIS)

    Pfremmer, R.D.; Openshaw, F.L.

    1982-05-01

    The high-temperature heat available from the High-Temperature Gas-Cooled Reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design

  15. Simulation of gas turbines operating in off-design condition

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Arnaldo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: walter@fem.unicamp.br

    2000-07-01

    In many countries thermal power plants based on gas turbines have been the main option for new investment into the electric system due to their relatively high efficiency and low capital cost. Cogeneration systems based on gas turbines have also been an important option for the electric industry. Feasibility studies of power plants based on gas turbine should consider the effect of atmospheric conditions and part-load operation on the machine performance. Doing this, an off-design procedure is required. A G T off-design simulation procedure is described in this paper. Ruston R M was used to validate the simulation procedure that, general sense, presents deviations lower than 2.5% in comparison to manufacturer's data. (author)

  16. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  17. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  18. Protection and safety functions of different off-gas treatment systems in radioactive waste incineration

    International Nuclear Information System (INIS)

    Caramelle, D.; Chevalier, G.; Chevalier, G.

    1986-01-01

    Gaseous effluent cleaning installations are designed to protect workmen and environment and must be efficient enough to guarantee that the amounts of gases and dusts emitted by a furnace operating normally or accidentally are at an acceptable level in the atmosphere on the incinerator site. The process equipments necessary to operations and the monitoring devices must be reliable. The main risk in normal operation is occupational exposure close to the radioactive products accumulation points. The accidental risks are mainly related to an outage of the off-gas cleaning or a tightness failure with radioactive products dissemination resulting from either internal perturbation (filter tear, exhauster failure, ...) or external incident (electricity cut-off, furnace disarrangements, fire or explosion inside the incinerator). In view of these risks, it is interesting to examine the safety and protection functions of different components of off-gas treatment systems

  19. Off-site nuclear emergency exercises in Japan

    International Nuclear Information System (INIS)

    Eiji, U.; Kiyoshi, T.; Masao, O.; Shigeru, F.

    1993-01-01

    Nuclear emergency planning and preparedness in Japan have been organized by both national and local governments based on the Disaster Countermeasures Basic Act. Off-site nuclear emergency exercises are classified into two types: national-government level exercises and local-government level exercises. National-government level exercises are carried out once a year by the competent national authorities. Among these authorities, the Science and Technology Agency (STA) fills a leading position in the Japanese nuclear emergency planning and preparedness. Local-government level exercises are carried out once a year or once in a few years by the local governments of the prefectures where nuclear facilities are located. Most of the off-site nuclear emergency exercises in Japan are performed by local-governments. The aim of these exercises is to reinforce the skills of the emergency staff. The national government (STA etc.) provides advices and assistance including financial support to the local-governments. Emergency exercises with the participation of residents have been carried out in some local-governments. As an example of local-government level exercises, an experience in Shizuoka prefecture (central part of Japan) is presented

  20. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  1. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  2. Pinch-off Scaling Law of Soap Bubbles

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  3. In-place testing of off-gas iodine filters

    International Nuclear Information System (INIS)

    Duce, S.W.; Tkachyk, J.W.; Motes, B.G.

    1980-01-01

    At the Idaho National Engineering Laboratory, both charcoal and silver zeolite (AgX) filters are used for radioactive iodine off-gas cleanup of reactor systems. These filters are used in facilities which are conducting research in the areas of reactor fuel failure, reactor fuel inspection, and loss of fluids from reactor vessels. Iodine retention efficiency testing of these filters is dictated by prudent safety practices and regulatory guidelines. A procedure for determining iodine off-gas filter efficiency in-place has been developed and tested on both AgX and charcoal filters. The procedure involves establishing sample points upstream and downstream of the filter to be tested. A step-by-step approach for filter efficiency testing is presented

  4. A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species Present in Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Strata-G, Knoxville, TN (United States); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to less than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these

  5. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  6. Data quality objectives summary report for the 105-N monolith off-gas issue

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1997-01-01

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85 Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85 Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  7. Plasma processes including electron beam for off-gases purification

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Witman, S.; Licki, J.

    2011-01-01

    Complete text of publication follows. Non-thermal plasma technologies based on different methods of plasma generation are being applied for ozone generation for different applications, waste water and off-gases treatment. Plasmas create reactive species, in particular ions, radicals or other reactive compounds, which can decompose pollutant molecules, organic particulate matter or soot. Electron beam flue gas treatment is another plasma-based technology which has been successfully demonstrated on industrial scale coal fired power plants. High efficiency of SO 2 (> 95%) and NO x (> 70%) has been obtained and industrial plant applying this process has been built in Poland. The further investigations carried out all over the world have illustrated that the process can be applied for poly-aromatic hydrocarbons (PAH) destruction as well, and just recently research laboratories in the US and South Korea have reported in the feasibility of the process for mercury removal from the flue gas. The recent studies concern a new type of accelerators implementation in the industrial scale, application of the process in the high sulfur oil fired boilers and Diesel off - gases purification. The treatment of the flue gases with the high NOx concentration is a special challenge for the technology since the main energy consumption (and applied accelerators power) is related to this pollutant content in the processed off gases. The pulse beams and scavenger application can be a solution to reduce investment and operational costs. The further development of the technology is directly connected with high power accelerators development. Acknowledgement: The R and D activities are supported by the European Regional Development Found in the frame of the project PlasTEP 'Dissemination and fostering of plasma based technological innovation for environment protection in the Baltic Sea Region'.

  8. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  9. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  10. Design of off-gas cleaning systems for high-level waste vitrification

    International Nuclear Information System (INIS)

    Hanson, M.S.; Kaser, J.D.

    1976-01-01

    High-level wastes are generally nitric acid solutions. Vitrification converts the nitrate salts to oxides, forming nitrogen oxides (NO/sub x/) as a by-product. These NO/sub x/ releases can be controlled by nitric acid recovery or by conversion of the NO/sub x/ to an acceptable species for release, such as N 2 O or N 2 . The off-gas system must also be capable of controlling any fission products which may be voltatilized in appreciable quantities and may be controlled in the off-gas system by absorption or adsorption. Whichever method is used, the recovered fission products must somehow be converted to a safe disposal form. Proposed off-gas systems are described, and areas requiring research and development are discussed

  11. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  12. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    Science.gov (United States)

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  13. Analysis of fire and smoke threat to off-gas HEPA filters in a transuranium processing plant

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1988-01-01

    The author performed an analysis of fire risk to the high-efficiency particulate air (HEPA) filters that provide ventilation containment for a transuranium processing plant at the Oak Ridge National Laboratory. A fire-safety survey by an independent fire-protection consulting company had identified the HEPA filters in the facility's off-gas containment ventilation system as being at risk from fire effects. Independently studied were the ventilation networks and flow dynamics, and typical fuel loads were analyzed. It was found that virtually no condition for fire initiation exists and that, even if a fire started, its consequences would be minimal as a result of standard shut-down procedures. Moreover, the installed fire-protection system would limit any fire and thus would further reduce smoke or heat exposure to the ventilation components. 4 references, 4 figures, 5 tables

  14. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  15. FY-2001 Accomplishments in Off-gas Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas William

    2001-09-01

    This report summarizes the efforts funded by the Tank Focus Area to investigate nitrogen oxide (NOx) destruction (a.k.a. deNOx) technologies and off-gas scrubber system designs. The primary deNOx technologies that were considered are staged combustion (a.k.a. NOx reburning), selective catalytic reduction, selective non-catalytic reduction, and steam reformation. After engineering studies and a team evaluation were completed, selective catalytic reduction and staged combustion were considered the most likely candidate technologies to be deployed in a sodium-bearing waste vitrification facility. The outcome of the team evaluation factored heavily in the establishing a baseline configuration for off-gas and secondary waste treatment systems.

  16. Charge symmetry of the nuclear force as off-shell constraint

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1975-01-01

    Off-shell changes are generated in the 1 S 0 nucleon-nucleon interaction using the Reid soft-core potential and unitary transformations of short range. Charge symmetry is assumed for the nuclear force. The same off-shell variations of the Reid potential are employed as the hadronic part of the proton-proton interaction and as neutron-neutron interaction. The Reid potential fits the experimental proton-proton data. It also accounts for the neutron-neutron scattering length with satisfying accuracy. The off-shell behavior of the Reid potential is varied in two different ways. First, off-shell changes consistent with the experimental proton-proton data can be selected. (auth) are performed which preserve the fit to the proton-proton data. Most transformed potentials of the type attempted here are unable to yield the correct experimental value of the neutron-neutron scattering length and have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the neutron-neutron scattering length can be selected. Second, off-shell changes are performed which leave the neutron-neutron scattering length unaltered. Transformed potentials of this type have usually been employed in nuclear-structure calculations. The potentials which exhibit large off-shell effects in nuclear structure are unable to account for the experimental proton-proton data. Their off-shell effects are therefore of no physical significance, and the potentials have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the experimental proton-proton data can be selected. (U.S.)

  17. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    International Nuclear Information System (INIS)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang

    2006-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  18. Test results in the treatment of HTR reprocessing off-gas

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Bendick, B.; Juergens, B.; Nafissi, A.; Vygen, H.; Krill, W.

    1983-01-01

    The AKUT II-facility (throughput 10 m 3 /h, STP) for the clean up of the burner off-gas has been tested with synthetic off-gas and with off-gas from cold burner tests. The results are reported. During dissolution of the burner ash in nitric acid an off-gas is formed whose main component is air and which, besides the gaseous fission products, contains NO/sub x/. Before the separation of the gaseous fission products NO/sub x/ and/or O 2 are removed by reaction with H 2 or NH 3 . For these reactions catalysts were used. Because of the known disadvantages of catalytic systems, like reduction in efficiency by poisoning or thermal influence, the alternative method of thermal, flameless reduction was tested. The reactions were carried out in a stainless steel and a quartz reactor. Throughput, reaction temperature, O 2 -, NO/sub x/-, H 2 -, and NH 3 -concentrations respectively were varied. The goal of these tests was to remove O 2 and NO/sub x/ to below 1 ppM behind the reactor and NH 3 to below the detection limit of 50 ppM. It was found that at a reaction temperature of 750 0 C in the stainless steel reactor these goals can be reached for both H 2 and NH 3 as reducing agents. In the quartz reactor only the O 2 -H 2 -reaction takes place. Obviously stainless steel acts as a catalyst for all other reactions

  19. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    Science.gov (United States)

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  20. Waste Isolation Pilot Plant: Alcove Gas Barrier trade-off study

    International Nuclear Information System (INIS)

    Lin, M.S.; Van Sambeek, L.L.

    1992-07-01

    A modified Kepner-Tregoe method was used for a trade-off study of Alcove Gas Barrier (AGB) concepts for the Waste Isolation Pilot Plant. The AGB is a gas-constraining seal to be constructed in an alcove entrance drift. In this trade-off study, evaluation criteria were first selected. Then these criteria were classified as to their importance to the task, assigning a weighting value to each aspect. Eleven conceptual design alternatives were developed based on geometrical/geological considerations, construction materials, constructibility, and other relevant factors and evaluated

  1. Off-gas system data summary for the ninth run of the large slurry fed melter

    International Nuclear Information System (INIS)

    Colven, W.P.

    1983-01-01

    The ninth melter campaign successfully demonstrated extended operation of both melter and off-gas systems. Two critical problem areas associated with the handling of melter off-gases were resolved leading to firm definition of the DWPF Off-Gas Treatment System. These two concerns, wet scrubber decontamination efficiency and the reduction of solids deposition at the off-gas line entrance, were the primary focus of off-gas system studies during the 63-day run (LSFM-9). The Hydro-Sonic Scrubber was confirmed to be the superior candidate for wet scrubbing by outperforming all other scrubbers tested at the Equipment Test Facility (ETF). The two stage, steam-driven scrubber achieved consistent decontamination factors for cesium exceeding the required DWPF flowsheet DF of 50. As a result, the device was selected as the reference wet scrubber for the DWPF. The Off-Gas Film Cooling device continued to show promising results for reducing three accumulation of solid deposits at the entrance to the off-gas line. In addition, a rotating wire brush cleaning device provided easy and efficient removal of deposits which had accumulated. The combination of the two has adequately resolved the deposit accumulation problem and both devices have been incorporated in the DWPF design

  2. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference

    International Nuclear Information System (INIS)

    First, M.W.; Harvard Univ., Boston, MA

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  3. Commercial application of titania-supported hydrodesulfurization catalysts in the production of hydrogen using full-range FCC off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaohu [SINOPEC Wuhan Branch, Qingshan, Wuhan 430082 (China); Shen, Binglong; Qu, Lianglong [Beijing Haishunde Titanium Catalyst Co. Ltd., A-1 North East-Ring Road, Beijing Economic-Technological Development Area, Beijing 100176 (China)

    2004-11-24

    This paper provides an alternative for low-cost feed used for on-purpose hydrogen production. Full-range FCC off-gas was applied to steam-reforming process as feed after treating with hydrogenation and hydrodesulfurization catalysts. Commercial run results were reported with novel TiO{sub 2}-supported Mo-based catalysts, T205A-1 and T205. The processes of catalysts loading, sulfidation, start-up and long-term run were described in details. Long-term run showed that TiO{sub 2}-supported Mo catalysts have good low-temperature hydrogenation activity, excellent HDS activity, and outstanding stability. Use of FCC off-gas as feed for hydrogen production is quite promising and will increase margins for refiners today.

  4. Pyrolysis and its potential use in nuclear graphite disposal

    International Nuclear Information System (INIS)

    Mason, J.B.; Bradbury, D.

    2001-01-01

    Graphite is used as a moderator material in a number of nuclear reactor designs, such as MAGNOX and AGR gas cooled reactors in the United Kingdom and the RBMK design in Russia. During construction the moderator of the reactor is usually installed as an interlocking structure of graphite bricks. At the end of reactor life the graphite moderator, weighing typically 2,000 tonnes, is a radioactive waste which requires eventual management. Radioactive graphite disposal options conventionally include: In-situ SAFESTORE for extended periods to permit manual disassembly of the graphite moderator through decay of short-lived radionuclides. Robotic or manual disassembly of the reactor core followed by disposal of the graphite blocks. Robotic or manual disassembly of the reactor core followed by incineration of the graphite and release of the resulting carbon dioxide Studsvik, Inc. is a nuclear waste management and waste processing company organised to serve the US nuclear utility and government facilities. Studsvik's management and technical staff have a wealth of experience in processing liquid, slurry and solid low level radioactive waste using (amongst others) pyrolysis and steam reforming techniques. Bradtec is a UK company specialising in decontamination and waste management. This paper describes the use of pyrolysis and steam reforming techniques to gasify graphite leading to a low volume off-gas product. This allows the following options/advantages. Safe release of any stored Wigner energy in the graphite. The process can accept small pieces or a water-slurry of graphite, which enables the graphite to be removed from the reactor core by mechanical machining or water cutting techniques, applied remotely in the reactor fuel channels. In certain situations the process could be used to gasify the reactor moderator in-situ. The low volume of the off-gas product enables non-carbon radioactive impurities to be efficiently separated from the off-gas. The off-gas product can

  5. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  6. Gas stripping and recirculation process in heavy water separation plant

    International Nuclear Information System (INIS)

    Nazzer, D.B.; Thayer, V.R.

    1976-01-01

    Hydrogen sulfide is stripped from hot effluent, in a heavy water separation plant of the dual temperature isotope separation type, by taking liquid effluent from the hot tower before passage through the humidifier, passing the liquid through one or more throttle devices to flash-off the H 2 S gas content, and feeding the gas into an absorption tower containing incoming feed water, for recycling of the gas through the process

  7. LFCM [liquid-fed eramic melter] emission and off-gas system performance for feed component cesium

    International Nuclear Information System (INIS)

    Goles, R.W.; Andersen, C.M.

    1986-09-01

    Except for volatile off-gas effluents, overall adequacy of the liquid-fed ceramic melter (LFCM) system depends most upon its effectiveness in dealing with cesium. However, the mechanism responsible for melter cesium losses has proved insensitive to many LFCM operating and processing conditions. As a result, variations in inleakage, plenum temperature, feeding rate and waste loading do not significantly influence melter cesium performance. Feed composition, specifically halogen content, is the only processing variable that has had a significant effect. Due to the submicron nature of LFCM-generated aerosols, melter disengagement design features are not expected to be particularly effective in reducing cesium emission rates. For the same reason, the cesium performance of conventional quench scrubbers is quite low, being dependent only upon the magnitude of melter entrainment losses. Although a deep bed washable filter has been effective in removing submicron aerosols from the process exhaust, high performance has only been achieved under dry operating conditions. The melter's idling state does not appear to place additional demands upon the off-gas treatment system

  8. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  9. Disposal of Kr-85 separated from the dissolver off-gas of a reprocessing plant for LWR fuels

    International Nuclear Information System (INIS)

    Nommensen, O.

    1981-08-01

    The principle of the radiation protection to keep the radiation load of the population as low as possible requires the development of methods for retaining the radionuclide Krypton 85 seperated off the dissolver waste gas of future reprocessing plants for LWR-nuclear fuel elements. In a recommendation of the RSK the long-termed storage of the Kr-85 in a pressure gas bottle and the marine disposal we considered to be disposal methods low in risk. The present work develops a concept for both of the disposal methods and demonstrates their technical feasibility. The comparison of the cost estimations effected for both of the disposal methods shows that the costs related with the marine disposal of the pressure gas bottles amounting to 1.90 DM/kg of reprocessed U fall by the factor 10 below the costs that result from the surface storage of the bottles. In both cases was referred to a reprocessing capacity of 1400 t U/a corresponding to 50 GW installed nuclear power, thereby accumulating approximately 629 PBq (17 MCi) Kr-85 per year. Both concepts project the seperated radioactive inert gas to be filled in pressure gas bottles in a low temperature rectification plant. Each of the 85 bottles to be filled per year contains 7.4 PBq (200 kCi) Kr-85. (orig./HP) [de

  10. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  11. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  12. Amplitude structure of off-shell processes

    International Nuclear Information System (INIS)

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  13. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  14. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  15. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  16. Nuclear: how to get off?; Nucleaire: comment en sortir?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This study aims to propose actions to get off the nuclear in less than 10 years. The first part is devoted to the energy efficiency: the energy produced by the today electric network, the energy conservation in the ternary, industrial and residential sector. The second part presents an offer of electricity without the nuclear: the renewable energies, the fossil energies, the carbon tax and the nuclear park closure. (A.L.B.)

  17. Technology survey for real-time monitoring of plutonium in a vitrifier off-gas system

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.

    1996-01-01

    We surveyed several promising measurement technologies for the real-time monitoring of plutonium in a vitrifier off-gas system. The vitrifier is being developed by Westinghouse Savannah River Corp. and will be used to demonstrate vitrification of plutonium dissolved in nitric acid for fissile material disposition. The risk of developing a criticality hazard in the off-gas processing equipment can be managed by using available measurement technologies. We identified several potential technologies and methods for detecting plutonium that are sensitive enough to detect the accumulation of a mass sufficient to form a criticality hazard. We recommend gross alpha-monitoring technologies as the most promising option for Westinghouse Savannah River Corp. to consider because that option appears to require the least additional development. We also recommend further consideration for several other technologies because they offer specific advantages and because gross alpha-monitoring could prove unsuitable when tested for this specific application

  18. Method of processing radioactive gas

    International Nuclear Information System (INIS)

    Saito, Masayuki.

    1978-01-01

    Purpose: To reduce the quantity of radioactive gas discharged at the time of starting a nuclear power plant. Method: After the stoppage of a nuclear power plant air containing a radioactive gas is extracted from a main condenser by operating an air extractor. The air is sent into a gaseous waste disposal device, and then introduced into the activated carbon adsorptive tower of a rare gas holdup device where xenon and krypton are trapped. Thereafter, the air passes through pipelines and returned to the main condenser. In this manner, the radioactive gas contained in air within the main condenser is removed during the stoppage of the operation of the nuclear power plant. After the plant has been started, when it enters the normal operation, a flow control valve is closed and another valve is opened, and a purified gas exhausted from the rare gas holdup device is discharged into the atmosphere through an exhaust cylinder. (Aizawa, K.)

  19. System evaluation of offshore platforms with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; de Oliveira Júnior, Silvio

    2018-01-01

    Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore for liqu......Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore...... improvements are discussed based on an energy and exergy analysis. Compared to a standard platform where gas is directly injected into the reservoir, the total power consumption increases by up to 50%, and the exergy destruction within the processing plant doubles when a liquefaction system is installed....... It is therefore essential to conduct a careful analysis of the trade-off between the capital costs and operating revenues for such options....

  20. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  1. Organic waste incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P. [CEA Valrho, Bagnols sur Ceze Cedex (France); Chateauvieux, H.; Thiebaut, C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2001-07-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and {alpha}-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  2. Organic waste incineration processes

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P.; Chateauvieux, H.; Thiebaut, C.

    2001-01-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and α-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  3. Total and occluded residual gas content inside the nuclear fuel pellets

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Fernandes, Carlos E.; Oliveira, Justine R.; Machado, Joyce F.; Guglielmo, Luisa M.; Bustillos, Oscar V.

    2009-01-01

    This work describes three techniques available to measure total and occluded residual gases inside the UO 2 nuclear fuel pellets. Hydrogen is the major gas compound inside these pellets, due to sintering fabrication process but Nitrogen is present as well, due to storage atmosphere fuel. The total and occluded residual gas content inside these pellets is a mandatory requirement in a quality control to assure the well function of the pellets inside the nuclear reactor. This work describes the Gas Extractor System coupled with mass spectrometry GES/MS, the Gas Extractor System coupled with gas chromatography GES/GC and the total Hydrogen / Nitrogen H/N analyzer as well. In the GES, occlude gases in the UO 2 pellets is determinate using a high temperature vacuum extraction system, in which the minimum limit of detection is in the range 0.002 cc/g. The qualitative and quantitative determination of the amount of gaseous components employs a mass spectrometry or a gas chromatography technique. The total Hydrogen / Nitrogen analyzer employ a thermal conductivity gas detector linked to a gaseous extractor furnace which has a detection limit is in the range 0.005 cc/g. The specification for the residual gas analyses in the nuclear fuel pellets is 0.03 cc/g, all techniques satisfy the requirement but not the nature of the gases due to reaction with the reactor cladding. The present work details the chemical reaction among Hydrogen / Nitrogen and nuclear reactor cladding. (author)

  4. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    International Nuclear Information System (INIS)

    Hudson, P.I.; Buckley, C.P.; Miller, W.W.

    1995-01-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant's discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation

  5. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.I. [British Nuclear Fuels, Sellafield (United Kingdom); Buckley, C.P.; Miller, W.W. [British Nuclear Fuels, Risley (United Kingdom)

    1995-02-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant`s discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation.

  6. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  7. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  8. Improvements of reforming performance of a nuclear heated steam reforming process

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1996-10-01

    Performance of an energy production process by utilizing high temperature nuclear process heat was not competitive to that by utilizing non-nuclear process heat, especially fossil-fired process heat due to its less favorable chemical reaction conditions. Less favorable conditions are because a temperature of the nuclear generated heat is around 950degC and the heat transferring fluid is the helium gas pressurized at around 4 MPa. Improvements of reforming performance of nuclear heated steam reforming process were proposed in the present report. The steam reforming process, one of hydrogen production processes, has the possibility to be industrialized as a nuclear heated process as early as expected, and technical solutions to resolve issues for coupling an HTGR with the steam reforming system are applicable to other nuclear-heated hydrogen production systems. The improvements are as follows: As for the steam reformer, (1) increase in heat input to process gas by applying a bayonet type of reformer tubes and so on, (2) increase in reforming temperature by enhancing heat transfer rate by the use of combined promoters of orifice baffles, cylindrical thermal radiation pipes and other proposal, and (3) increase in conversion rate of methane to hydrogen by optimizing chemical compositions of feed process gas. Regarding system arrangement, a steam generator and superheater are set in the helium loop as downstream coolers of the steam reformer, so as to effectively utilize the residual nuclear heat for generating feed steam. The improvements are estimated to achieve the hydrogen production rate of approximately 3800 STP-m 3 /h for the heat source of 10 MW and therefore will provide the potential competitiveness to a fossil-fired steam reforming process. Those improvements also provide the compactness of reformer tubes, giving the applicability of seamless tubes. (J.P.N.)

  9. Thermoeconomic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Sayyaadi, Hoseyn; Babaelahi, M. [Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis Str., Mollasadra Ave., Vanak Sq., Tehran 1999 143344 (Iran)

    2010-09-15

    The development of the liquefaction process for the Liquefied Natural Gas (LNG) boil-off re-liquefaction plants will be addressed to provide an environmentally friendly and cost effective solution for the gas transportation. In this manner, onboard boil-off gas (BOG) re-liquefaction system as a cryogenic refrigeration cycle is utilized in order to re-liquefy the BOG and returns it to the cargo tanks instead of burning it. In this paper, a thermoeconomic optimization of the LNG-BOG liquefaction system is performed. A thermoeconomic model based on energy and exergy analyses and an economic model according to the total revenue requirement (TRR) are developed. Minimizing of the unit cost of the refrigeration effect as a product of BOG re-liquefaction plant is performed using the genetic algorithm. Results of thermoeconomic optimization are compared with corresponding features of the base case system. Finally, sensitivity of the total cost of the system product with respect to the variation of some operating parameters is studied. (author)

  10. Design and operation of off-gas cleaning and ventilation systems in facilities handling low and intermediate level radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The number of developing countries constructing new nuclear facilities is increasing. These facilities include the production and processing of radioisotopes, as well as all types of laboratories and installations, which handle radioactive material and deal with the treatment of radioactive wastes. Ventilation and air cleaning systems are a vital part of the general design of any nuclear facility. The combination of a well designed ventilation system with thorough cleaning of exhaust air is the main method of preventing radioactive contamination of the air in working areas and in the surrounding atmosphere. This report provides the latest information on the design and operation of off-gas cleaning and ventilation systems for designers and regulatory authorities in the control and operation of such systems in nuclear establishments. The report presents the findings of an Advisory Group Meeting held in Vienna from 1 to 5 December 1986 and attended by 12 experts from 11 Member States. Following this meeting, a revised report was prepared by the International Atomic Energy Agency Secretariat and three consultants, M.J. Kabat (Canada), W. Stotz (Federal Republic of Germany) and W.A. Fairhurst (United Kingdom). The final draft was commented upon and approved by the participants of the meeting. 69 refs, 37 figs, 12 tabs

  11. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  12. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Djoa, S. H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-04-15

    This paper describes a process developed for the retainment and separation of volatile (3H, 129 +131I) and gaseous (85Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 deg K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 deg K and low subpressure; deposition of krypton in solid form at 80 deg K after compression to about 6 bar; decontamination of 85krypton-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, e.g., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1/3 of the full capacity and can treat about 1 m3 STP/h helium, corresponding to a quantity of about 10,000 MW(e) HTGR-fuel reprocessing plant.

  13. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    International Nuclear Information System (INIS)

    Bohnenstingl, J.; Djoa, S.H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-01-01

    This paper describes a process developed for the retainment and separation of volatile ( 3 H, 129+131 I) and gaseous ( 85 Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 0 K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 0 K and low subpressure; deposition of krypton in solid form at 80 0 K after compression to about 6 bar; decontamination of 85 Kr-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, i.e., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1 / 3 of the full capacity and can treat about 1 m 3 STP/h helium, corresponding to a quantity of about 10,000 MW/sub e/ HTGR-fuel reprocessing plant

  14. Competing values, tensions and trade-offs in management of nuclear power plants.

    Science.gov (United States)

    Reiman, Teemu; Rollenhagen, Carl

    2012-01-01

    The specific goal of the study is to look how tensions, competing values and trade-offs manifest in the management of nuclear power plants. Second goal is to inspect how existing frameworks, such as Competing Values Framework, can be used to model the tensions. Empirical data consists of thirty interviews that were conducted as part of a NKS study on safety culture in the Nordic nuclear branch. Eight trade-offs are identified based on a grounded theory based analysis of the interview data. The competing values and potential tensions involved in the trade-offs are discussed.

  15. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  16. Off-line programming and simulation in handling nuclear components

    International Nuclear Information System (INIS)

    Baker, C.P.

    1993-10-01

    IGRIP was used to create a simulation of the robotic workcell design for handling components at the PANTEX nuclear arms facility. This initial simulation identified problems with the customer's proposed worker layout, and allowed a correction to be proposed. Refinement of the IGRIP simulation allowed the design and construction of a workcell mock-up and accurate off-line programming of the system. IGRIP's off-line programming capabilities are being used to develop the motion control code for the workcell. PNLs success in this area suggests that simulation and off-line programming may be valuable tools for developing robotics in some automation resistant industries

  17. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P; Eriksson, G; Neuschuelz, D [Lehrstuhl fuer Theoretische Huettenkunde, Aachen (Germany)

    1998-12-31

    Polychlorinated dibenzo-p-dioxins and dibenzo-furans form a family of more than 200 compounds which are relatively stable in the biosphere and tend to accumulate in the human body. The tetra- to hexa-chlorinated dioxins and furans are considered highly toxic. To facilitate the assessment of the total toxicity of dioxin and furan mixtures, the estimated toxic effects of the individual compounds relative to the 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) were introduced as Toxic Equivalent Factors which yield, when multiplied with the respective concentrations, the Toxic Equivalent (TE) of the mixture. Toxic dioxins and furans are unintentionally formed in a number of industrial combustion processes such as waste incineration and iron ore sintering, in the chemical industry and in household heating. To keep the emissions as low as possible, off-gas clearing systems for the collection of dioxins and furans are increasingly prescribed by the authorities. In addition, it appears desirable to select process conditions that are unfavourable for the formation of these compounds. A simulation of the relevant processes on the basis of thermodynamic data may be helpful in defining such process conditions. To simulate dioxin formation in the sintering process, all major gas-solid reactions taking place in the sinter bed must also be simulated. A sufficiently accurate reproduction of the off-gas compositions along the length of the sinter strand requires detailed assumptions concerning the relative amounts of `active` O{sub 2} as well as the distribution of reacting carbon and water over the strand length. From this basis, an equilibrium calculation for the gas/solid reactions at the sintering temperature of 1150 deg C and an equilibrium calculation restricted to the gas phase at 700 deg C produced values for the concentrations of the major off-gas constituents in very good agreement with the measured values. The further assumption that below 700 deg C all reactions are frozen

  18. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.; Eriksson, G.; Neuschuelz, D. [Lehrstuhl fuer Theoretische Huettenkunde, Aachen (Germany)

    1997-12-31

    Polychlorinated dibenzo-p-dioxins and dibenzo-furans form a family of more than 200 compounds which are relatively stable in the biosphere and tend to accumulate in the human body. The tetra- to hexa-chlorinated dioxins and furans are considered highly toxic. To facilitate the assessment of the total toxicity of dioxin and furan mixtures, the estimated toxic effects of the individual compounds relative to the 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) were introduced as Toxic Equivalent Factors which yield, when multiplied with the respective concentrations, the Toxic Equivalent (TE) of the mixture. Toxic dioxins and furans are unintentionally formed in a number of industrial combustion processes such as waste incineration and iron ore sintering, in the chemical industry and in household heating. To keep the emissions as low as possible, off-gas clearing systems for the collection of dioxins and furans are increasingly prescribed by the authorities. In addition, it appears desirable to select process conditions that are unfavourable for the formation of these compounds. A simulation of the relevant processes on the basis of thermodynamic data may be helpful in defining such process conditions. To simulate dioxin formation in the sintering process, all major gas-solid reactions taking place in the sinter bed must also be simulated. A sufficiently accurate reproduction of the off-gas compositions along the length of the sinter strand requires detailed assumptions concerning the relative amounts of `active` O{sub 2} as well as the distribution of reacting carbon and water over the strand length. From this basis, an equilibrium calculation for the gas/solid reactions at the sintering temperature of 1150 deg C and an equilibrium calculation restricted to the gas phase at 700 deg C produced values for the concentrations of the major off-gas constituents in very good agreement with the measured values. The further assumption that below 700 deg C all reactions are frozen

  19. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  20. Formation rate of ammonium nitrate in the off-gas line of SRAT and SME in DWPF

    International Nuclear Information System (INIS)

    Lee, L.

    1992-01-01

    A mathematical model for the formation rate of ammonium nitrate in the off-gas line of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mixed Evaporator (SME) in DWPF has been developed. The formation rate of ammonium nitrate in the off-gas line depends on pH, temperature, volume and total concentration of ammonia and ammonium ion. Based on a typical SRAT and SME cycle in DWPF, this model predicts the SRAT contributes about 50 lbs of ammonium nitrate while SME contributes about 60 lbs of ammonium nitrate to the off-gas line

  1. Pulmonary hemodynamics and gas exchange in off pump coronary artery bypass grafting.

    Science.gov (United States)

    Vedin, Jenny; Jensen, Ulf; Ericsson, Anders; Samuelsson, Sten; Vaage, Jarle

    2005-10-01

    To investigate the influence of cardiopulmonary bypass on pulmonary hemodynamics and gas exchange. Low risk patients admitted for elective coronary artery bypass grafting were randomized to either on (n=25) or off pump (n=25) surgery. Central hemodynamics, gas exchange, and venous admixture were studied during and up to 20 h after surgery. There was no difference in pulmonary vascular resistance index (P=0.16), right ventricular stroke work index (P>0.2), mean pulmonary artery pressure (P>0.2) or pulmonary capillary wedge pressure (P>0.2) between groups. Soon after surgery there was a tendency towards higher cardiac index (P=0.07) in the off pump group. Arterial oxygen tension (P>0.2), hematocrit (P>0.2), venous admixture (P>0.2), and arterial-venous oxygen content difference (P=0.12) did not differ between groups. This prospective, randomized study showed no difference in pulmonary hemodynamics, pulmonary gas exchange, and venous admixture, in low risk patients undergoing off pump compared to on pump coronary artery bypass surgery.

  2. The IRIS process and its industrial application at the CEA's Valduc Center

    International Nuclear Information System (INIS)

    Lemort, F.; Longuet, T.; Charvillat, J.P.; Chateauvieux, H.; Guiberteau, P.; Lorich, M.

    2000-01-01

    Following several years of laboratory research initiated in 1983 on a nonradioactive prototype unit at the CEA's (Atomic Energy Commission) Valrho/Marcoule Research Center, an innovative process, IRIS, has been developed to meet the need for processing nuclear glove box waste. It is to our knowledge the only high-capacity process in the world capable of dealing with highly chlorinated (25 wt% chlorine) alpha-contaminated waste. IRIS is based on a two-step incineration process combining pyrolysis and calcination with a specific off-gas treatment. The nonradioactive prototype at Marcoule has operated for over 5000 hours, demonstrating the following advantages: - Highly effective process control through regular, continuous feed of the rotating tubular kiln. - Very effective control of corrosion by pyrolytic decomposition of organo-chlorine compounds at 550 deg. C under inert atmosphere. - High ash quality (< 1% carbon, < 1% chlorine) compatible with online radionuclide recovery or vitrification processes. - High waste/ash weight and volume reduction factors (30 in both cases). - Very low gas flow rates limiting waste entrainment compared with direct incineration. - Very high efficiency off-gas treatment complying with gaseous emission standards. - Protection of system piping by substitution of stable phosphates for metal chlorides generated in the off-gas lines. - Flexible process capacity from a few kg/h for nuclear waste to 500 kg/h for conventional waste. In December 1991, the CEA's Valduc Center decided to build the first industrial facility based on the IRIS process. Construction work, equipment design and assembly, nonradioactive testing and preparation of the safety report lasted six years. The facility successfully began operating with radioactive waste on March 10, 1999, substantiating the R and D effort. Three other nuclear industrial operators around the world have adopted the IRIS process for future implementation. (authors)

  3. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  4. Design of a boil-off natural gas reliquefaction control system for LNG carriers

    International Nuclear Information System (INIS)

    Shin, Younggy; Lee, Yoon Pyo

    2009-01-01

    Onboard boil-off gas (BOG) reliquefaction is a new technology that liquefies BOG and returns it to the cargo tanks instead of burning it off during a voyage. For the commercial development of this technology, an object-oriented dynamic simulation is presented which facilitates the design of the plant and control system for the thermal process. A reliquefaction process based on the reverse Brayton cycle has been designed, and its static thermodynamic states at the design BOG load are presented. To make the cycle work for any BOG load, an idea was sought that would achieve a heat balance with the work extracted by the expander. Dynamic simulations were conducted for all operating modes, including start-up and idle. It was found that the expander exit temperature is the key process variable for control and that the process control works successfully when three actuators are activated in three different BOG load regimes. The study also shows that control of the separator pressure to keep the vapor fraction at the throttle valve exit as low as possible is an efficient method for purging nitrogen from BOG

  5. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  6. Analysis of copper losses throughout weak acid effluent flows generated during off-gas treatment in the New Copper Smelter RTB Bor

    Directory of Open Access Journals (Sweden)

    Dragana Ivšić-Bajčeta

    2013-09-01

    Full Text Available The previous inadequate treatment of off-gas in RTB Bor in Serbia has resulted in serious pollution of the environment and the possibly high losses of copper through the effluent flows. The project of New Copper Smelter RTB Bor, besides the new flash smelting furnace (FSF and the reconstruction of Pierce-Smith converter (PSC, includes more effective effluent treatment. Paper presents an analysis of the new FSF and PSC off-gas treatment, determination of copper losses throughout generated wastewaters and discussion of its possible valorization. Assumptions about the solubility of metals phases present in the FSF and PSC off-gas, obtained by the treatment process simulation, were compared with the leaching results of flue dusts. Determined wastewaters characteristics indicate that the PSC flow is significantly richer in copper, mostly present in insoluble metallic/sulfide form, while the FSF flow has low concentration of copper in the form of completely soluble oxide/sulfate. The possible scenario for the copper valorization, considering arsenic and lead as limiting factors, is the separation of the FSF and PSC flows, return of the metallic/sulfide solid phase to the smelting process and recovery from the sulfate/oxide liquid phase.

  7. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    Science.gov (United States)

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Design report: An off gas trapping system for a voloxidizer in INL of US

    International Nuclear Information System (INIS)

    Jung, I. H.; Shin, J. M.; Park, J. J.; Park, G. I.; Lee, H. H.

    2006-09-01

    This reports on the 'Development of Voloxidation Process for Treatment of LWR Spent Fuel', and it is the second year since it has started from June 2004 as a tripartite cooperation project among KAERI(Korea Atomic Energy Research Institute), INL(Idaho National Laboratory) and ORNL(Oak Ridge National Laboratory). This report is described mainly for the Task B2 accomplished during the second project year. The Task B2 in proposal contains two sub-tasks. The first one is design of an off-gas treatment system for a voloxidizer to be used in HFEF of INL. For this, KAERI team developed the design of INL OTS (Off-gas Treatment System) for hot experiment in the HFEF. INL team modified and completed the design of the INL OTS. The second task is manufacturing and test operation of the INL OTS for a voloxidizer in the INL. Manufacturing of the OTS is accomplished by INL team with co-work of KAERI. KAERI provided four sets of trapping filters needed for conducting hot experiment in the INL HFEF

  9. Structure function of off-mass-shell pions and the calculation of the Sullivan process

    International Nuclear Information System (INIS)

    Shakin, C.M.; Sun, W.

    1994-01-01

    We construct a model for the pion (valence) structure function that fits the experimental data obtained in the study of the Drell-Yan process. The model may also be used to calculate the structure function of off-mass-shell pions. We apply our model in the study of deep-inelastic scattering from off-mass-shell pions found in the nucleon and are thus able to resolve a problem encountered in the standard analysis of such processes. The usual analysis is made using the structure function of on-mass-shell pions and requires the use of a soft πNN form factor that is inconsistent with standard nuclear physics phenomenology. The use of our off-mass-shell structure functions allows for a fit to the data for nonperturbative aspects of the nucleon ''sea'' with a pion-nucleon form factor of the standard form

  10. Problems in future negotiations for a treaty on the cut-off of fissile material for nuclear weapons

    International Nuclear Information System (INIS)

    Schaper, A.

    1999-01-01

    A treaty to end the production of fissile material for nuclear weapons, the so-called cutoff, is one of the most important next steps on the disarmament agenda.' But meanwhile, the Conference on Disarmament (CD) is deadlocked, and confidence in negotiations taking place in the near future is replaced by bewilderment at the inaction. The underlying conflict of the Comprehensive Test Ban Treaty (CTBT) negotiations can be summarized as nuclear disarmament versus nuclear nonproliferation. The same conflict is now blocking progress with negotiations in the CD on the Fissile Material Cut-off Treaty (FMCT). Nevertheless, the cut-off would be the major policy driver to insert transparency and irreversibility into the disarmament process,' and we need to harness all our efforts to overcome the current difficulties. The CTBT can be regarded as a tool to cap the qualitative nuclear arms race, for example to hinder the future development of qualitatively new nuclear explosives, and an FMCT can be seen as its quantitative counterpart, capping the amount of material available for new nuclear weapons. The complex questions involve political, technical, legal, and economic aspects and constitute a challenge for diplomats and decision makers

  11. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  12. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system

    International Nuclear Information System (INIS)

    Suetens, T.; Guo, M.; Van Acker, K.; Blanpain, B.

    2015-01-01

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe 2 O 3 particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe 2 O 3 , Zn vapor reacts to form ZnFe 2 O 4 and ZnO. - Abstract: To better understand the phenomena of ZnFe 2 O 4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe 2 O 4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe 2 O 4 formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe 2 O 4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber

  13. Aerosol and iodine removal system for the dissolver off-gas in a large fuel reprocessing plant

    International Nuclear Information System (INIS)

    Furrer, J.; Wilhelm, J.G.; Jannakos, K.

    1979-01-01

    A newly developed filter combination for the dissolver off-gas in a reprocessing plant with a throughput of 1400 t/y of heavy metal is presented and single filter components are described. The design principle chosen provides for remote handling and direct disposal in waste drums of 200 l volume. The optimization of housings and filter units is studied on true scale components in the simulated dissolver off-gas of a test facility named PASSAT. This facility will be described. PASSAT will be also used for final testing of the SORPTEX process which is under development. Its concept is included in the paper. The design and function of the new multiway sorption filter providing for complete loading of the iodine sorption material and maintaining continuously high decontamznation factors will also be given. Removal efficiencies measured for aerosols and iodine in an existing reprocessing plant are indicated

  14. Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-03-01

    To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus

  15. Application of gas shielded arc welding and submerged arc welding for fabrication of nuclear reactor vessels

    International Nuclear Information System (INIS)

    Gehani, M.L.; Rodrigues, W.D.

    1976-01-01

    The remarkable progress made in the development of knowhow and expertise in the manufacture of equipment for nuclear power plants in India is outlined. Some of the specific advances made in the application of higher efficiency weld processes for fabrication of nuclear reactor vessels and the higher level of quality attained are discussed in detail. Modifications and developments in submerged arc, gas tungsten arc and gas metal arc processes for welding of Calandria which have been a highly challenging and rewarding experience are discussed. Future scope for making the gas metal arc process more economical by using various gas-mixes like Agron + Oxygen, Argon + Carbon Dioxide, Argon + Nitrogen (for Copper Alloys) etc., in various proportions are outlined. Quality and dimensional control exercised in these jobs of high precision are highlighted. (K.B.)

  16. Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents

    International Nuclear Information System (INIS)

    Jubin, R.T.

    1988-02-01

    Extensive work in the area of iodine removal from reprocessing plant off-gas streams using various types of solid sorbent materials has been conducted worldwide over the past two decades. This work has focused on the use of carbon filters, primarily for power plant applications. More recently, the use of silver-containing sorbents has been the subject of considerable research. The most recent work in the United States has addressed the use of silver-exchanged faujasites and mordenites. The chemical reactions of iodine with silver on the sorbent are not well defined, but it is generally believed that chemisorbed iodides and iodates are formed. The process for iodine recovery generally involves passage of the iodine-laden gas stream through a packed bed of the adsorbent material preheated to a temperature of about 150/degree/C. Most iodine removal system designs utilizing silver-containing solid sorbents assume only a 30 to 50% silver utilization. Based on laboratory tests, potentially 60 to 70% of the silver contained in the sorbents can be reacted with iodine. To overcome the high cost of silver associated with these materials, various approaches have been explored. Among these are the regeneration of the silver-containing sorbent by stripping the iodine and trapping the iodine on a sorbent that has undergone only partial silver exchange and is capable of attaining a much higher silver utilization. This summary report describes the US work in regeneration of iodine-loaded solid sorbent material. In addition, the report discusses the broader subject of plant off-gas treatment including system design. The off-gas technologies to recovery No/sub x/ and to recover and dispose of Kr, 14 C, and I are described as to their impacts on the design of an integrated off-gas system. The effect of ventilation philosophy for the reprocessing plant is discussed as an integral part of the overall treatment philosophy of the plant off-gas. 103 refs., 5 figs., 8 tabs

  17. Iodine and NOx behavior in the dissolver off-gas and IODOX [Iodine Oxidation] systems in the Oak Ridge National Laboratory Integrated Equipment Test facility

    International Nuclear Information System (INIS)

    Birdwell, J.F.

    1990-01-01

    This paper describes the most recent in a series of experiments evaluating the behavior of iodine and NO x in the Integrated Equipment Test (IET) Dissolver Off-Gas (DOG) System. This work was performed as part of a joint collaborative program between the US Department of Energy and the Power and Nuclear Fuel Development Corporation of Japan. The DOG system consists of two shell-and-tube heat exchangers in which water and nitric acid are removed from the dissolver off-gas by condensation, followed by a packed tower in which NO x is removed by absorption into a dilute nitric acid solution. The paper also describes the results of the operation of the Iodine Oxidation (IODOX) System. This system serves to remove iodine from the DOG system effluent by absorption into hyperazeotropic nitric acid. 7 refs., 11 figs., 10 tabs

  18. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  19. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  20. Materials performance in off-gas systems containing iodine

    International Nuclear Information System (INIS)

    Beavers, J.A.; Berry, W.E.; Griess, J.C.

    1981-11-01

    During the reprocessing of spent reactor fuel elements, iodine is released to gas streams from which it is ultimately removed by conversion to nonvolatile iodic acid. Under some conditions iodine can produce severe corrosion in off-gas lines; in this study these conditions were established. Iron- and nickel-based alloys containing more than 6% molybdenum, such as Hastelloy G (7%), Inconel 625 (9%), and Hastelloy C-276 (16%), as well as titanium and zirconium, remained free of attack under all conditions tested. When the other materials, notably the austenitic stainless steels, were exposed to gas streams containing even only low concentrations of iodine and water vapors at 25 and 40 0 C, a highly corrosive, brownish-green liquid formed on their surfaces. In the complete absence of water vapor, the iodine-containing liquid did not form and all materials remained unaffected. The liquid that formed had a low pH (usually 2 inhibited attack

  1. Off-Gas Analysis During the Vitrification of Hanford Radioactive Waste Samples

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Crawford, C.L.; Choi, A.S.; Bibler, N.E.

    1998-01-01

    This paper describes the off-gas analysis of samples collected during the radioactive vitrification experiments. Production and characterization of the Hanford waste-containing LAW and HAW glasses are presented in related reports from this conference

  2. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  3. The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2016-10-01

    Full Text Available This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively.

  4. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  5. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  6. Uranium mining, processing and nuclear energy - opportunities for Australia?

    International Nuclear Information System (INIS)

    2006-12-01

    On 6 June 2006, the Prime Minister announced the appointment of a taskforce to undertake an objective, scientific and comprehensive review of uranium mining, value-added processing and the contribution of nuclear energy in Australia in the longer term. This is known as the Review of Uranium Mining Processing and Nuclear Energy in Australia, referred to in this report as the Review. The Prime Minister asked the Review to report by the end of 2006. A draft report was released for public comment on 21 November 2006 and was also reviewed by an expert panel chaired by the Chief Scientist (see Appendix F). The Review is grateful for comments provided on the draft report by members of the public. The report has been modified in the light of those comments. In response to its initial call for public comment in August 2006 the Review received over 230 submissions from interested parties. It also conducted a wide range of consultations with organisations and individuals in Australia and overseas, and commissioned specialist studies on various aspects of the nuclear industry. Participating in the nuclear fuel cycle is a difficult issue for many Australians and can elicit strong views. This report is intended to provide a factual base and an analytical framework to encourage informed community discussion. Australia's demand for electricity will more than double before 2050. Over this period, more than two-thirds of existing electricity generation will need to be substantially upgraded or replaced and new capacity added. The additional capacity will need to be near-zero greenhouse gas emitting technology if Australia is just to keep greenhouse gas emissions at today's levels. Many countries confront similar circumstances and have therefore considered the use of nuclear power for some of the following reasons: the relative cost competitiveness of nuclear power versus the alternatives; security of supply and independence from fossil fuel energy imports; diversity of domestic

  7. Losses of off-site power at U.S. nuclear power plants -- through 1995. Final report

    International Nuclear Information System (INIS)

    Wyckoff, H.

    1996-04-01

    This report provides a database and summary analysis of losses of off-site power at US nuclear generating units. It includes the 16 years 1980 through 1995. This is the twelfth update of this database and analysis. During 1994 there were no losses of all off-site power and in 1995 only two short losses. Both the short term and long term US loss of all off-site power experience is extremely favorable. The frequency of losing all off-site power is an important input to many nuclear plant safety assessments. The industry's loss of all off-site power experience that is set forth in this report can provide perspective to plant specific probabilistic safety assessments

  8. Development program for the high-temperature nuclear process heat system

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1975-09-01

    A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning

  9. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  10. High temperature reactor and application to nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1976-01-01

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  11. Development of processes for the utilization of Brazilian coal using nuclear process heat and/or nuclear process steam

    International Nuclear Information System (INIS)

    Bamert, H.; Niessen, H.F.; Walbeck, M.; Wasrzik, U.; Mueller, R.; Schiffers, U.; Strauss, W.

    1980-01-01

    Status of the project: End of the project definition phase and preparation of the planned conceptual phase. Objective of the project: Development of processes for the utilization of nuclear process heat and/or nuclear process steam for the gasification of coal with high ash content, in particular coal from Brazil. Results: With the data of Brazilian coal of high ash content (mine Leao/ 43% ash in the mine-mouth quality, 20% ash after preparation) there have been worked out proposals for the mine planning and for a number of processes. On the basis of these proposals and under consideration of the main data specified by the Brazilian working group there have been choosen two processes and worked out in a conceptual design: 1) pressurized water reactor + LURGI-pressure gasifier/hydrogasification for the production of SNG and 2) high temperature reactor steam gasification for the production of town gas. The economic evaluation showed that the two processes are not substantially different in their cost efficiency and they are economical on a long-term basis. For more specific design work there has been planned the implementation of an experimental programme using the semi-technical plants 'hydrogasification' in Wesseling and 'steam gasification' in Essen as the conceptual phase. (orig.) [de

  12. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  13. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  14. Time-dependent analysis of dissolver off-gas cleaning installations in a reprocessing plant

    International Nuclear Information System (INIS)

    Nagel, K.; Furrer, J.; Becker, G.; Obrowski, W.; Seghal, Y.P.; Weymann, J.

    1983-01-01

    The iodine- and aerosol-filtering test facility PASSAT of the Nuclear Research Centre in Karlsruhe has been investigated using a method which allows time-dependent analyses under accident conditions. This method which is closely related to fault-tree analysis needs subdivision in barriers of the system, and their logical combination in a tree. The barriers have binary states: defect and intact. The defect state will be described by a fault tree, whereas the intact state includes dependences of a barrier operation on physical parameters. The intact state enables time-dependent calculations. Calculations have been done for iodine filtering, because the best known entrance data are given. Results demonstrate clearly that the amount of iodine released increases only if both heaters failed, which heat the off-gas from 30 0 C to 80 0 C and then to 130 0 C. Additionally the integrated amount of iodine released depends on time period between the failures of the heaters

  15. Direct reactions in inverse kinematics for nuclear structure studies far off stability at low incident energies

    International Nuclear Information System (INIS)

    Egelhof, P.

    1997-02-01

    The investigation of light-ion induced direct reactions with exotic beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The present contribution will focus on the investigation of few-nucleon transfer reactions, which turn out to be most favourably studied with good-quality low-energy radioactive beams, as provided by the new generation of radioactive beam facilities presently planned or under construction at Caen, Grenoble, Munich, and elsewhere. An overview on the physics motivation, basically concerning nuclear structure and nuclear astrophysics questions, is given. Of particular interest are the nuclear shell model in the region far off stability, the two-body residual interaction in nuclei, the structure of halo nuclei, as well as the understanding of the r-process scenario. The experimental conditions, along with the experimental concept, for such measurements are discussed with particular emphasis on the kinematical conditions, the observables, as well as the appropriate detection schemes. The concept of a large solid angle TPC ionization chamber as an active target for experiments with low-energy radioactive beams is presented. It turns out to be a highly effective detection scheme, well suited for the present experimental conditions, at least for light exotic beams up to Z∼20. (orig.)

  16. Fuel rod pressure in nuclear power reactors: Statistical evaluation of the fuel rod internal pressure in LWRs with application to lift-off probability

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Tomas

    2001-02-01

    In this thesis, a methodology for quantifying the risk of exceeding the Lift-off limit in nuclear light water power reactors is outlined. Due to fission gas release, the pressure in the gap between the fuel pellets and the cladding increases with burnup of the fuel. An increase in the fuel-clad gap due to clad creep would be expected to result in positive feedback, in the form of higher fuel temperatures, leading to more fission gas release, higher rod pressure, etc, until the cladding breaks. An increase in the fuel-clad gap that leads to this positive feedback is a phenomenon called Lift-off and is a limitation that must be considered in the fuel core management. Lift-off is a consequence of very high internal fuel rod pressure. The internal fuel rod pressure is therefore used as a Lift-off indicator. The internal fuel rod pressure is closely connected to the fission gas release into the fuel rod plenum and is thus used to increase the database. It is concluded that the dominating error source in the prediction of the pressure in Boiling Water Reactors (BWR), is the power history. There is a bias in the fuel pressure prediction that is dependent on the fuel rod position in the fuel assembly for BWRs. A methodology to quantify the risk of the fuel rod internal pressure exceeding a certain limit is developed; the risk is dependent of the pressure prediction and the fuel rod position. The methodology is based on statistical treatment of the discrepancies between predicted and measured fuel rod internal pressures. Finally, a methodology to estimate the Lift-off probability of the whole core is outlined.

  17. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  18. Use of nuclear explosions to create gas condensate storage in the USSR. LLL Treaty Verification Program

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The Soviet Union has described industrial use of nuclear explosions to produce underground hydrocarbon storage. To examples are in the giant Orenburg gas condensate field. There is good reason to believe that three additional cavities were created in bedded salt in the yet to be fully developed giant Astrakhan gas condensate field in the region of the lower Volga. Although contrary to usual western practice, the cavities are believed to be used to store H 2 S-rich, unstable gas condensate prior to processing in the main gas plants located tens of kilometers from the producing fields. Detonations at Orenburg and Astrakhan preceded plant construction. The use of nuclear explosions at several sites to create underground storage of highly corrosive liquid hydrocarbons suggests that the Soviets consider this time and cost effective. The possible benefits from such a plan include degasification and stabilization of the condensate before final processing, providing storage of condensate during periods of abnormally high natural gas production or during periods when condensate but not gas processing facilities are undergoing maintenance. Judging from information provided by Soviet specialists, the individual cavities have a maximum capacity on the order of 50,000 m 3

  19. Off gas processing device for degreasing furnace for uranium/plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ueda, Masaya; Akasaka, Takayuki; Noura, Takeshi.

    1996-01-01

    A low melting ingredient capturing-cooling trap connected to a degreasing sintering furnace by way of sealed pipelines, a burning/decomposing device for decomposing high melting ingredient gases discharged from the cooling trap by burning them and a gas sucking means for forming the flow of off gases are contained in a glovebox, the inside pressure of which is kept negative. Since the degreasing sintering furnace for uranium/plutonium mixed oxide fuels is disposed outside of the glovebox, operation can be performed safely without greatly increasing the scale of the device, and the back flow of gases is prevented easily by keeping the pressure in the inside of the glovebox negative. Further, a heater is disposed at the midway of the sealed pipelines from the degreasing sintering furnace to the cooling trap, the temperature is kept high to prevent deposition of low melting ingredients to prevent clogging of the sealed pipelines. Further, a portion of the pipelines is made extensible in the axial direction to eliminate thermal stresses caused by temperature change thereby enabling to extend the life of the sealed pipelines. (N.H.)

  20. Micro-gas turbine performance optimization by off-design characteristics prediction

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.B.; Pahlevanzadeh, H. [Power and Water University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Micro-gas turbines are increasingly seen as a good option for supplying distributed electric or combined heat and power (CHP) systems. Micro turbines operate on the same thermodynamic cycle as the Brayton cycle. Fresh air enters a compressor and air pressure increases isentropically and high-pressure air and fuel are mixed and burnt in the combustion chamber at constant pressure. During this process the flue gas expands to lower pressure and increase volume isentropically. In this study a model was developed using parameters obtained from the compressor and turbine. Ambient temperature and and pressure effects on micro-gas turbines were examined. Customer requirements were used as constraints on micro-gas turbine parameters. The computer software Matlab was used to study the effect of the surge margin on the behaviour of the engine. Optimum performance speeds were presented, and a marginal envelope was obtained at the optimal speed. Issues concerning fuel consumption, power output, and efficiency were considered. The principal results of the simulation presented an optimum region of operation rather than any single optimal point. It was suggested that further research is needed to study the influence of the heat exchanger on efficiency and development of a model of the power electronics so that the complete system can be simulated from power generation. It was noted that although operation of microturbines at high speeds of revolution causes more net power output, this affects the thermal efficiency of the system and fuel consumption is high. It was concluded that optimum operating conditions should be evaluated by satisfying the trade off between net power generated and fuel consumption, as well as the achievable efficiency. 8 refs., 12 figs.

  1. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  2. Progress in standards for nuclear air and gas treatment

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1978-01-01

    Standardization in nuclear air and gas treatment spans a period of more than 25 years, starting with military specifications for HEPA filters and filter media, and now progressing to the development of a formal code analogous to the ASME Boiler and Pressure Vessel Code. Whereas the current standard for components and installation of nuclear air cleaning systems is limited to safety related facilities for nuclear power plants, the proposed code will cover all types of critical ventilation and air and gas treatment installations for all types of nuclear facilities

  3. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  4. Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

    DEFF Research Database (Denmark)

    Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine......When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order...... to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines...

  5. Nuclear power plants in Germany. Recent developments in off-site nuclear emergency preparedness and response; Kernkraftwerke in Deutschland. Neue Entwicklungen im anlagenexternen Notfallschutz

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Florian [Bundesamt fuer Strahlenschutz, Oberschleissheim/Neuherberg (Germany). Abt. SW 2.2 Entscheidungshilfesysteme, Lageermittlung und Kommunikation

    2014-10-15

    The reactor accident in Fukushima, Japan, in 2011 triggered a thorough review of the off-site emergency preparedness and response for nuclear power plants in Germany. ''Off-site emergency preparedness and response'' includes all actions to protect the public outside the fence of a nuclear power plant. This review resulted in several changes in off-site emergency preparedness and response, which are briefly described in this article. Additionally, several recent activities are described which may influence emergency preparedness and response in the future.

  6. Gas processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1991-01-01

    State of electric discharge is detected based on a gas pressure in a sealed container and a discharging current flowing between both of electrodes. When electric arc discharges occur, introduction of gases to be processed is stopped and a voltage applied to both of the electrodes is interrupted. Then, when the gas pressure in the sealed container is lowered to a predetermined value, a power source voltage is applied again to both of the electrodes to recover glow discharges, and the introduction of the gas to be processed is started. With such steps, even if electric arc discharges occur, they are eliminated automatically and, accordingly, normal glow discharges can be recovered, to prevent failures of the device due to electric arc discharges. The glow discharges are recovered automatically without stopping the operation of the gas processing device, and gas injection and solidification processing can be conducted continuously and stably. (T.M.)

  7. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  8. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  9. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Nick Soelberg

    2005-01-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  10. Formation of the ZnFe{sub 2}O{sub 4} phase in an electric arc furnace off-gas treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Suetens, T., E-mail: thomas.suetens@mtm.kuleuven.be; Guo, M., E-mail: muxing.guo@mtm.kuleuven.be; Van Acker, K., E-mail: karel.vanacker@lrd.kuleuven.be; Blanpain, B., E-mail: bart.blanpain@mtm.kuleuven.be

    2015-04-28

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe{sub 2}O{sub 3} particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe{sub 2}O{sub 3}, Zn vapor reacts to form ZnFe{sub 2}O{sub 4} and ZnO. - Abstract: To better understand the phenomena of ZnFe{sub 2}O{sub 4} spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe{sub 2}O{sub 4} formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe{sub 2}O{sub 4} formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe{sub 2}O{sub 4} spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  11. Planning and exercise experiences related to an off-site nuclear emergency in Canada: the federal component

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1986-01-01

    The Canadian Government's Federal Nuclear Emergency Response Plan (off-site) (FNERP) was issued in 1984. In this plan, a nuclear emergency is defined as an emergency involving the release of radionuclides but does not include the use of nuclear weapons against North America. Because of the federal nature of Canada and its large area, special considerations are required for the plan to cover both the response to nuclear emergencies where the national government has primary responsibility and to provincial requests for assistance where the federal response becomes secondary to the provincial. The nuclear emergencies requiring the implementation of this plan are: (a) an accident in the nuclear energy cycle in Canada with off-site implications; (b) an accident in the nuclear energy cycle in another country which may affect Canada; (c) nuclear weapons testing with off-site implications which may affect Canada; and (d) nuclear-powered devices impacting on Canadian territory. Each emergency requires a separate sub-plan and usually requires different organizations to respond. Some scenarios are described. The Department of National Health and Welfare has established a Federal Nuclear Emergency Control Centre (FNECC). The FNECC participated in September 1985 in an exercise involving a nuclear reactor facility in the Province of Ontario and the experience gained from this activity is presented. The FNECC co-operates with its counterparts in the United States of America through a nuclear emergency information system and this network is also described. (author)

  12. Treatment Of Mercury Target Off-Gas At SNS

    International Nuclear Information System (INIS)

    DeVore, Joe R.; Freeman, David W.

    2007-01-01

    The Spallation Neutron Source (SNS) is the first operational spallation source to use liquid Mercury as a target material. This paper describes the treatment system to remove volatile spallation products from a Helium purge stream that emanates from the Mercury target and adjustments made to achieve design goals in response to phenomena experienced during initial operations. The Helium stream is treated to remove volatile spallation products prior to environmental release because of its activity level as these accumulate in the gas space in the Mercury Loop. Unanticipated local dose rates were noted in treatment system components during low power startup. Gamma scanning of these components identified the presence of nineteen noble gas isotopes and their daughters, indicating that the doses resulted from noble gas sorption. Treatment of this equipment with stable Xenon greatly reduced but did not eliminate these. Significant moisture was also encountered in the system, resulting in the plugging of the system cold trap. Changes to some of the system equipment were required together with moisture elimination from components to which moisture was sorbed. Necessary re-configuration of Mercury pump components presented additional requirements and system control changes to accommodate system operation at reduced pressure. The Off-Gas Treatment System has been successfully operated since April, 2006. System availability and removal effectiveness have been high. Operational issues occurring during the first year of operation have been resolved.

  13. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  14. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  15. Shallow gas charged sediments off the Indian west coast: Genesis and distribution

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Peketi, A.; Dewangan, P.; Badesab, F.K.; Ramprasad, T; Ramana, M.V.; Patil, D.J.; Dayal, A.M.

    Geophysical and geochemical surveys were carried out off Goa, central west coast of India, to understand the genesis and distribution of shallow gases in marine sediments. Shallow gas charged sediments within the water depths of approx. 15 to 40 m...

  16. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  17. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  18. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  19. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    International Nuclear Information System (INIS)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-01-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs

  20. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  1. Report on ANSI/ASME nuclear air and gas treatment standards for nuclear power plants

    International Nuclear Information System (INIS)

    Fish, J.F.

    1979-01-01

    Original N Committee, N45-8, has completed and published through the approved American National Standards Institute process two Standards, N-509 and N-510. This committee has been dissolved and replaced by ASME Committee on Nuclear Air and Gas Treatment with expanded scope to cover not only air cleaning, but thermal treatment equipment. Current efforts are directed to produce Code documents rather than Standards type publications. This report summarizes changed scope, current organization and sub-committee coverage areas

  2. R and D for an off-gas treatment system for a slagging pyrolysis radioactive waste incinerator. Final report for Phase I

    International Nuclear Information System (INIS)

    Christian, J.D.; Kirstein, B.E.; Pence, D.T.

    1978-01-01

    Preliminary evaluations were made of off-gas treatment needs for a slagging pyrolysis incinerator (SPI) of Andco--Torrax design for the treatment of radioactive waste at the INEL. Approximate decontamination factors (DFs) for particulates of 10 7 and for volatilized radionuclides of 10 3 will be required across the off-gas system. If lead is present in the waste at concentrations greater than 25-to-120 g/metric ton, volatilized lead will result in formation of substantial deposits in the off-gas system and regenerative towers. A review was made of radioactive incinerator development. Particulate and volatile component removal mechanisms and devices were reviewed. Three off-gas treatment systems were proposed for the SPI which will provide DFs for particulates of 10 8 . 9 figures, 7 tables

  3. Applications of the gas chromatography in the nuclear science and technology

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1972-01-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  4. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  5. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  6. Accident and Off-Normal Response and Recovery from Multi-Canister Overpack (MCO) Processing Events

    International Nuclear Information System (INIS)

    ALDERMAN, C.A.

    2000-01-01

    In the process of removing spent nuclear fuel (SNF) from the K Basins through its subsequent packaging, drymg, transportation and storage steps, the SNF Project must be able to respond to all anticipated or foreseeable off-normal and accident events that may occur. Response procedures and recovery plans need to be in place, personnel training established and implemented to ensure the project will be capable of appropriate actions. To establish suitable project planning, these events must first be identified and analyzed for their expected impact to the project. This document assesses all off-normal and accident events for their potential cross-facility or Multi-Canister Overpack (MCO) process reversal impact. Table 1 provides the methodology for establishing the event planning level and these events are provided in Table 2 along with the general response and recovery planning. Accidents and off-normal events of the SNF Project have been evaluated and are identified in the appropriate facility Safety Analysis Report (SAR) or in the transportation Safety Analysis Report for Packaging (SARP). Hazards and accidents are summarized from these safety analyses and listed in separate tables for each facility and the transportation system in Appendix A, along with identified off-normal events. The tables identify the general response time required to ensure a stable state after the event, governing response documents, and the events with potential cross-facility or SNF process reversal impacts. The event closure is predicated on stable state response time, impact to operations and the mitigated annual occurrence frequency of the event as developed in the hazard analysis process

  7. Nuclear process heat at high temperature: Application, realization and development programme

    International Nuclear Information System (INIS)

    Sammeck, K.H.; Fischer, R.

    1976-01-01

    Studies in the Federal Republic of Germany (FRG), the USA and the United Kingdom have shown that high-temperature helium energy from an HTR can advantageously be utilized for coal gasification and other fossil fuel conversion processes, and that a substantial demand for substitute natural gas (SNG) can be expected in the future. These results are based on plant design studies, economic assessments and basic development efforts in the field of coal gasification with nuclear heat, which in the FRG were carried out by Arbeitsgemeinschaft Nukleare Prozesswaerme (ANP)-members, HRB and KFA Juelich. Nuclear process plants are based on different gasification processes, resulting in different concepts of the nuclear heat system. In the case of hydro-gasification it is expected that steam reformers, arranged within the primary circuit of the reactor, will be heated directly by the primary helium. In the case of steam gasification, the high-temperature energy must be transferred to the gasification process via an intermediate circuit which is coupled to a gasifier outside the containment. In both cases the design of the nuclear reactor resembles an HTR for electricity generation. The main objectives of the development of nuclear process heat are to increase the helium outlet temperature of the reactor up to 950 0 C, to develop metallic alloys for high-temperature components such as heat exchangers, to design and construct a hot-gas duct, a steam reformer and a helium-helium heat exchanger and to develop the gasification processes. The nuclear safety regulations and the interface problems between the reactor, the process plant and the electricity generating plant have to be considered thoroughly. The Arbeitsgemeinschaft Nukleare Prozesswaerme and HRB started a development programme, in close collaboration with KFA Juelich, which will lead to the construction of a prototype plant for coal gasification with nuclear heat within 5 to 5 1/2 years. A survey of the main objectives

  8. Assessment of off-site consequences of nuclear accidents (MARIA)

    International Nuclear Information System (INIS)

    Haywood, S.M.

    1985-01-01

    A brief report is given of a workshop held in Luxembourg in 1985 on methods for assessing the off-site radiological consequences of nuclear accidents (MARIA). The sessions included topics such as atmospheric dispersion; foodchain transfer; urban contamination; demographic and land use data; dosimetry, health effects, economic and countermeasures models; uncertainty analysis; and application of probabilistic risk assessment results as input to decision aids. (U.K.)

  9. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  10. Process for the fabrication of nuclear fuel oxide pellets

    International Nuclear Information System (INIS)

    Francois, Bernard; Paradis, Yves.

    1977-01-01

    Process for the fabrication of nuclear fuel oxide pellets of the type for which particles charged with an organic binder -selected from the group that includes polyvinyl alcohol, carboxymethyl cellulose, polyvinyl compounds and methyl cellulose- are prepared from a powder of such an oxide, for instance uranium dioxide. These particles are then compressed into pellets which are then sintered. Under this process the binder charged particles are prepared by stirring the powder with a gas, spraying on to the stirred powder a solution or a suspension in a liquid of this organic binder in order to obtain these particles and then drying the particles so obtained with this gas [fr

  11. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  12. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  13. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    potential, the maximum efficiency is about 52 % under the conditions of 40% sulfur power plant efficiency and 60 w-% sulfuric acid concentration in electrolyzer The major factors that can affect the cycle efficiency are reducing the electrode over-potential Because the once-through process does not need a high temperature reactor for sulfuric acid decomposition, initial hydrogen feed for boosting the hydrogen economy can be provided by the currently available nuclear electricity which is carbon-free. After the initiation of the hydrogen economy, closed recycle of sulfuric acid using high temperature nuclear reactors can be pursued. Until the commercialization of closed nuclear hydrogen process, by using the once-through process, the initial hydrogen feed for the hydrogen economy can be provided by nuclear electricity. Fossil fuels provide 86% of total primary energy today. Considering the current energy mix, fossil fuels will inevitably play a major role and sulfur will flow out as a by product. The sulfur byproduct utilization for the nuclear hydrogen generation will make the transition to the hydrogen economy smooth. In addition, off-peak electricity can be converted into hydrogen by the once-through process and converted back to electricity for the peak load. Depending on the electrode potential and round trip efficiency, off-peak electricity can be stored very efficiently. (authors)

  14. Blow-off of hydrogen using an optimized design of discharge jet-mixer arrangement

    International Nuclear Information System (INIS)

    Ristow, Torsten

    2011-01-01

    Hydrogen is ignitable in air at volume concentrations between 4 % and 75 %. Therefore, in the case of an emergency evacuation of a hydrogen-cooled generator in nuclear power plants, the gas has to be safely blown-off above the turbine building. Especially, a leakage at the hydrogen containing piping system at the generator has gained more and more importance in the context of safety assessments. The design of a blow-off system respects two safety aspects: Firstly, a short blow-off time is necessary to reduce the hydrogen release inside the turbine building in case of a leakage. Secondly, for the postulated ignition of the released hydrogen on the roof of the building the resulting pressure load must remain below the maximum admissible one of the turbine building roof. In order to fulfill the first condition an appropriate fast evacuation piping system from the generator to the blow-off outlet is designed. Regarding the latter the blow-off system uses special discharge nozzles placed horizontally in a radial-symmetric configuration. In this respect, the influence of strong wind conditions during the evacuation process is also considered. The resulting ignitable volume of the overlapping H2-air clouds does not exceed the maximum allowed ignitable volume. In the following the underlying process of blow-off by a fast hydrogen evacuation system is discussed. First the transient general blow-off behavior in the dedicated piping system is analyzed with the fluid piping tool ROLAST. The results of these calculations are boundary conditions for the subsequent qualification of the blow-off jet-mixer. Here a proof of the general functionality is given (2D CFD). Subsequently the blow-off behavior of the H2-air mixture is discussed in independent 3D CFD calculations with and without wind. From these analyses the possible ignitable gas volumes are determined. Final step is a simplified semi-analytical assessment of the resulting possible deflagration loads on the civil structure

  15. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.

    1982-05-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author) [de

  16. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.R.M.

    1983-01-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxiliary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10,000 kcal/kg waste. The maximum throughput amounts to 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveyed by doserate and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (author)

  17. Role of isospin in nuclear-matter liquid-gas phase transition

    International Nuclear Information System (INIS)

    Ducoin, C.

    2006-10-01

    Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)

  18. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  19. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  20. Removal of tritium from gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Nieder, R.

    1976-01-01

    Tritium contained in the coolant gas in the primary circuit of a gas cooled nuclear reactor together with further tritium adsorbed on the graphite used as a moderator for the reactor is removed by introducing hydrogen or a hydrogen-containing compound, for example methane or ammonia, into the coolant gas. The addition of the hydrogen or hydrogen-containing compound to the coolant gas causes the adsorbed tritium to be released into the coolant gas and the tritium is then removed from the coolant gas by passing the mixture of coolant gas and hydrogen or hydrogen-containing compound through a gas purification plant before recirculating the coolant gas through the reactor. 14 claims, 1 drawing figure

  1. Treatment of the off-gas stream from the HTR reprocessing head-end

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Juergens, B.; Vijgen, H.

    1985-01-01

    The AKUT II-facility (nominal throughput 10 m 3 /h, STP) for the clean-up of the burner off-gas has been operated for 20 cold runs in parallel to the JUPITER reprocessing head-end. Two of these runs were continuous operation tests with a duration of 50 and 80 hours, respectively. The facility met or exceeded all design specifications. In a further test series the distillation column alone was run with pure CO 2 and two- and three-component gas mixtures to determine the flooding curves and the stage height (HETP)

  2. Chemical process measurements in PWR-type nuclear power plants

    International Nuclear Information System (INIS)

    Glaeser, E.

    1978-01-01

    In order to achieve high levels of availability of nuclear power plants equipped with pressurized water reactors, strict standards have to be applied to the purity of coolant and of other media. Chemical process measurements can meet these requirements only if programmes are established giving maximum information with minimum expenditure and if these programmes are realized with effective analytical methods. Analysis programmes known from literature are proved for their usefulness, and hints are given for establishing rational programmes. Analytical techniques are compared with each other taking into consideration both methods which have already been introduced into nuclear power plant practice and methods not yet generally used in practice, such as atomic absorption spectrophotometry, gas chromatography, etc. Finally, based on the state of the art of chemical process measurements in nuclear power plants, the trends of future development are pointed out. (author)

  3. Proceedings of the 19th DOE/NRC nuclear air cleaning conference

    International Nuclear Information System (INIS)

    First, M.W.

    1987-05-01

    This document contains the papers and the associated discussions of the 19 DOE/NRC Nuclear Air Cleaning Conference. Sessions were devoted to (1) fire, explosion and accident analysis, (2) adsorption and iodine retention, (3) filters and filter testing, (4) standards and regulation, (5) treatment of radon, krypton, tritium and carbon-14, (6) ventilation and air cleaning in reactor operations, (7) dissolver off-gas cleaning, (8) adsorber fires, (9) nuclear grade carbon testing, (10) sampling and monitoring, and (11) field test experience. Individual papers were processed separately for the data base

  4. Gas exploitation and gas conversion; Gassutnyttelse og gasskonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Laading, Gjert

    1998-07-01

    This presentation deals with some of the challenges and possibilities connected with ''stranded'' gas. These are offshore gas reserves, especially associated gas, that is not connected with the market and that cannot be piped onshore, and where reinjection is not profitable, and where flaring off is not an option. There is increasing interest all over the world to find economical and environmentally friendly solutions to this problem. A good solution will render such fields economically developable and will to a high degree increase the total volume of the world's exploitable gas reserves. Since synthesis gas is a dominating cost element in most chemical conversion processes for gas, the synthesis gases are discussed in some detail. There is also a discussion of the conversion of the gas to Methanol, Synthetic oil (Syncrude and Synfuels) and to DME (Di-methyl-ether). Two methods for gas transport from the field are discussed; LNG on floating production storage and off loading (FPSO), and Gas hydrates. Principles, limitations and conditions for placing those processes on a FPSO. Finally, the presentation discusses the most important economic factors related to the exploitation of offshore gas, and suggests some possibilities for future development.11 figs.

  5. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  6. Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)

    2008-04-15

    Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.

  7. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  8. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  9. Selected conversion of NO/sub x/ by catalytic reduction with ammonia

    International Nuclear Information System (INIS)

    Hirsch, P.M.

    1982-01-01

    An effective off-gas treatment system is an environmental must in the reprocessing of nuclear fuels. An up-to-date progress report on such a treatment system is presented. During 1978, General Atomic Company (GA) completed the detailed design of a cold (radioactively) engineering-scale off-gas treatment system for spent nuclear fuel reprocessing. The GA off-gas treatment system is designed to process simulated radioactive or other noxious volatile and gaseous constituents in dissolver off-gas (DOG) streams indigenous to several nuclear fuel cycles, e.g., light-water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and liquid-metal fast-breeder reactors (LMFBRs). The GA off-gas treatment system also has the capability to treat fluidized-bed burner off-gas (BOG) streams, which are specific for HTGR fuel reprocessing only

  10. Dynamic performance of power generation systems for off-shore oil and gas platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Breuhaus, Peter; Haglind, Fredrik

    2014-01-01

    %) arises on the prediction of the rotational speed of the high pressure shaft, while the largest deviation (average relative error ~20%) occurs in the evaluation of the pressure at the outlet of the low pressure turbine. As waste heat recovery units (e.g. organic Rankine cycles) are likely...... to be implemented in future off-shore platforms, the proposed model may serve in the design phase for a preliminary assessment of the dynamic response of the power generation system and to evaluate if requirements such as minimum and maximum frequency during transient operation and the recovery time are satisfied......On off-shore oil and gas platforms two or more gas turbines typically support the electrical demand on site by operating as a stand-alone (island) power system. As reliability and availability are major concerns during operation, the dynamic performance of the power generation system becomes...

  11. Aggregation process, application to nuclear multifragmentation

    International Nuclear Information System (INIS)

    Garcia, Jean-Baptiste

    1995-01-01

    It is depicted an aggregation model (applied to nuclear multifragmentation) which I have elaborated and validated. This model contains an aggregation procedure, allowing one to determine the aggregation state of a given system. It takes into account spatial and kinetic nucleonic information, as well as in-medium effects. It is made of several energetic linkage criterions, all based on a single quantity: the energy of a system computed in its center of mass frame. This procedure has been applied to nuclear physics, assuming nucleus as a mix of two Fermi gas, interacting via the Yukawa potential (plus Coulomb in between protons) and obeying to a classical exclusion principle. The general trends of the model match with those of nuclear physics. Moreover, two comparisons between the model and nuclear multifragmentation experiments (ALADIN, then FOPI) exhibit nice agreements. The FOPI one, shows that fragments are bound to be formed at the beginning of the expansion phase (Au + Au at 150 MeV/nuc, for central collisions). This work ends with a study of the main ingredients included in the model. It reveals that in-medium effects, exclusion principle as well as the shape of the potential have a non negligible influence on the studied nuclear aggregation process. (author) [fr

  12. Advanced gas cooled nuclear reactor materials evaluation and development program

    International Nuclear Information System (INIS)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed

  13. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  14. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available , clean coal, nuclear, natural gas The Sustainable Energy Resource Handbook Volume 6 Dominic Milazi, Dr Tobias Bischof-Niemz, Abstract Since its release in 2011, the Integrated Resource Plan (IRP 2010-2030), or IRP 2010, has been the authoritative... text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  15. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  16. Degradation of organochloride pesticides by molten salt oxidation at IPEN: spin-off nuclear activities

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2013-01-01

    Nuclear spin-off has at least two dimensions. It may provide benefits to the society such as enlarge knowledge base, strengthen infrastructure and benefit technology development. Besides this, to emphasize that some useful technologies elapsed from nuclear activities can affect favorably the public opinion about nuclear energy. In this paper is described a technology developed initially by the Rockwell Int. company in the USA more than thirty years ago to solve some problems of nuclear fuel cycle wastes. For different reasons the technology was not employed. In the last years the interest in the technology was renewed and IPEN has developed his version of the method applicable mainly to the safe degradation of hazardous wastes. This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs - persistent organic pollutants and particularly for the organ chlorides. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions, resultants of the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (polychlorinated biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their life cycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves using a chemical reactor containing molten salts, sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation and the residue is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe

  17. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  18. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    International Nuclear Information System (INIS)

    Okano, Masanori; Kuno, Takehiko; Shirouzu, Hidetomo; Yamada, Keiji; Sakai, Toshio; Takahashi, Ichiro; Charlton, William S.; Wells, Cyndi A.; Hemberger, Philip H.

    2006-12-01

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  19. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  20. Off-shell pairing correlations from meson-exchange theory of nuclear forces

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2003-01-01

    We develop a model of off-mass-shell pairing correlations in nuclear systems, which is based on the meson-exchange picture of nuclear interactions. The temporal retardations in the model are generated by the Fock-exchange diagrams. The kernel of the complex gap equation for baryons is related to the in-medium spectral function of mesons, which is evaluated nonperturbatively in the random phase approximation. The model is applied to the low-density neutron matter in neutron star crusts by separating the interaction into a long-range one-pion-exchange component and a short-range component parametrized in terms of Landau Fermi liquid parameters. The resulting Eliashberg-type coupled nonlinear integral equations are solved by an iterative procedure. We find that the self-energies extend to off-shell energies of the order of several tens of MeV. At low energies the damping of the neutron pair correlations due to the coupling to the pionic modes is small, but becomes increasingly important as the energy is increased. We discuss an improved quasiclassical approximation under which the numerical solutions are obtained

  1. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  2. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  3. Zero-Release Mixed Waste Process Facility Design and Testing

    International Nuclear Information System (INIS)

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-01-01

    A zero-release off-gas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotary kiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release off-gas cleaning system is to recycle the bulk of the off-gas stream to the thermal treatment process. A slip stream is taken off the off-gas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the off-gas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing off-gas emissions. Consideration of the proposed closed-system off-gas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis

  4. Collection and evaluation of complete and partial losses of off-site power at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.

    1985-02-01

    Events involving loss of off-site power that have occurred at nuclear power plants through 1983 are described and categorized as complete or partial losses. The events were identified as plant-centered or grid-related failures. In addition, the causes of the failures were classified as weather, human error, design error, or hardware failure. The plant-centered failures were usually of shorter duration than the weather-related grid failures. For this reason, the weather-related events were reviewed in detail. Design features that may be important factors affecting off-site power system reliability were tabulated for most of the operating nuclear power plants. The tabulated information was provided to NRC for a statistical analysis to determine the importance of these design features for losses of off-site power. The frequency of losses of off-site power versus duration was estimated for three time periods. The frequency of loss of off-site power was estimated to be 0.09/reactor-year based on industry-wide data for the years 1959 through 1983

  5. Statistical methods to monitor the West Valley off-gas system

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1990-01-01

    This paper reports on the of-gas system for the ceramic melter operated at the West Valley Demonstration Project at West Valley, NY, monitored during melter operation. A one-at-a-time method of monitoring the parameters of the off-gas system is not statistically sound. Therefore, multivariate statistical methods appropriate for the monitoring of many correlated parameters will be used. Monitoring a large number of parameters increases the probability of a false out-of-control signal. If the parameters being monitored are statistically independent, the control limits can be easily adjusted to obtain the desired probability of a false out-of-control signal. The principal component (PC) scores have desirable statistical properties when the original variables are distributed as multivariate normals. Two statistics derived from the PC scores and used to form multivariate control charts are outlined and their distributional properties reviewed

  6. Experimental engineering section off-gas decontamination facility's fractionator column: installation and performance

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Fowler, V.L.; Inman, D.J.

    1978-03-01

    A detailed description of the third column recently installed in the Experimental Engineering Section Off-Gas Decontamination Facility (EES-ODF) is presented. The EES-ODF is being used to provide engineering-scale experiments (nominal gas and liquid flows of 5 scfm and 0.5 gpm, respectively) in the development of the Krypton Absorption in Liquid CO 2 (KALC) process. A detailed discussion of the column's construction is provided. This discussion includes the peripherals associated with the column, such as refrigeration, heat exchangers, instrumentation, etc. The compressibility of Goodloe packing (the packing in the other columns) and the possible reduced throughput due to this compression have revealed the desirablility of a random (i.e., noncompressible) packing. Toward this end, the third column is packed with a new random packing (PRO-PAK). A preliminary comparison between this packing and the woven wire mesh packing (Goodloe) used in the other two columns has been made. Experiments comparing the throughput capacity indicate that the PRO-PAK packing has approximately 60% the capacity of Goodloe for a CO 2 system. When used as a fractionator or stripper with the basic O 2 -Kr-CO 2 KALC system, the PRO-PAK column produced HTU values less than or equal to the GOODLOE columns under similar operating conditions

  7. Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine

    International Nuclear Information System (INIS)

    Han, Wei; Chen, Qiang; Lin, Ru-mou; Jin, Hong-guang

    2015-01-01

    Highlights: • We develop an off-design model for a CCP system driven by gas turbine. • An alternative operating strategy is proposed to improve the system performance. • Off-design performance of the combined cooling and power system (CCP) is enhanced. • Effects of both the different operating strategy are analyzed and compared. • Performance enhancement mechanism of the proposed operating strategy is presented. - Abstract: A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating

  8. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  9. Chemistry of nuclear waste disposal

    International Nuclear Information System (INIS)

    Zimmer, E.

    1981-01-01

    In extractive purification of the low-enriched uranium fuel element (UO 2 -particle fuel element with SiC coating) no problems arise in the PUREX-process which have not already been solved when reprocessing LWR-type reactor and breeder fuel elements. Concerning the HTR-type reactor fuel elements containing thorium, there are two process cycles behind the head end; the pure U-235 is reprocessed in the same manner as the low-enriched uranium fuel, and the thorium, which is the bigger fraction, is reprocessed together with U-233 in the same manner as the mixed oxides. Only the CO 2 -off gas system, which contains krypton and carbon 14, leads to difficulties in nuclear waste disposal. (DG) [de

  10. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  11. Burner and dissolver off-gas treatment in HTR fuel reprocessing

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Heidendael, M.; Kirchner, H.; Merz, E.; Schroeder, G.; Vygen, H.

    1979-01-01

    In the reprocessing of HTR fuel, essentially all of the gaseous fission products are released during the heat-end tratment, which includes burning of the graphite matrix and dissolving of the heavy metallic residues in THOREX reagent. Three facilities for off-gas cleaning are described, the status of the facility development and test results are reported. Hot tests with a continuous dissolver for HTR-type fuel (throughput 2 kg HM/d) with a closed helium purge loop have been carried out. Preliminary results of these experiments are reported

  12. Development of thermal-hydraulic safety codes for HTGRs with gas-turbine and hydrogen process cycles

    International Nuclear Information System (INIS)

    No, Hee Cheon; Yoon, Ho Joon; Lee, Byung Jin; Kim, Yong Soo; Jin, Hyeng Gon; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik

    2008-01-01

    We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA in which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed SANA code to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found out that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The GAMMA-SANA coupled code was assessed by comparing its results with the steady-state of the GTHTR300, and the load reduction transient was simulated for the 100% to 70% power operation. The calculation results confirm that two-dimensional throughflow modeling can be successfully used to describe the gas turbine behavior. The dynamic equations for the distillation column of the HI process in the I-S cycle are described with 4 material components involved in the HI process: H2O, HI, I2, and H2. For the VLE prediction in the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. Relative to the experimental data, the improved Neumann model shows deviations of 8.6% in maximum and 2.5% in average for the total pressure, and 9.5% in maximum for the liquid-liquid separation composition. Through a parametric analysis using the published experimental data related to the Bunsen reaction and liquid-liquid separation, an optimized operating condition for the

  13. Development of the preparation technology of macroporous sorbent for industrial off-gas treatment including 14C

    International Nuclear Information System (INIS)

    Cho, Il Hoon; Cho, Young Hyun; Park, Guen Il; Kim, In Tae; Kim, June Hyung; Ahn, Byung Kil

    2001-01-01

    For environmental and health effects due to increasing levels of pollution in the atmosphere, it is necessary to develop environmentally sound technologies for the treatment of greenhouse gases (CO 2 , CH 4 , CFC, etc.) and acid gases (SOx, NOx, etc.). Specifically, advanced technology for CO 2 capturing is currently one of the most important environmental issues in worldwide. 14 CO 2 , specially which has been gradually emerging issue in the nuclear facilities, is generated about 330 ppm from the CANDU (Canadian Deuterium Uranium Reactor) nuclear power plant and the DUPIC (Direct Use of spent PWR fuel in CANDU reactors) process which is the process of spent fuel treatment. For this purpose, it is necessary to develop the most efficient treatment technology of CO 2 capture by various lime materials in semi- or dry process, it should be also considering a removal performance, waste recycling and safety of disposal. In order to develop a highly active slaked lime as a sorbent for CO 2 and high temperature desulfurization, macroporous slaked lime is necessarily prepared by modified swelling process and equipment, which was developed under carrying out this project. And also for the optimal removal process of off-gases the removal performance tests of various sorbents and the effects of relative humidity and bed depth on the removal capacity must be considered

  14. Canada's nuclear industry, greenhouse gas emissions, and the Kyoto Protocol

    International Nuclear Information System (INIS)

    Pendergast, D.R.; Duffey, R.B.; Tregunno, D.

    1998-01-01

    The Kyoto Protocol of the United Nations Framework Convention on Climate change, dated December 10, 1997 committed Canada to reduce greenhouse gases to 6% below 1990 levels by 2008-2012. Other nations also committed to varying degrees of reduction. The Protocol includes provisions for credit to the 'developed' counties for initiatives which lead to greenhouse gas reduction in the 'developing' countries and for the sharing of credit between 'developed' countries for projects undertaken jointly. The rules and details for implementation of these guidelines remain to be negotiated. We begin our study by establishing the magnitude of greenhouse gas emissions already avoided by the nuclear industry in Canada since the inception of commercial power plants in 1971. We then review projections of energy use in Canada and anticipated increase in electricity use up to the year 2020. These studies have anticipated no (or have 'not permitted') further development of nuclear electricity production in spite of the clear benefit with respect to greenhouse gas emission. The studies also predict a relatively small growth of electricity use. In fact the projections indicate a reversal of a trend toward increased per capita electricity use which is contrary to observations of electricity usage in national economies as they develop. We then provide estimates of the magnitude of greenhouse gas reduction which would result from replacing the projected increase in fossil fuel electricity by nuclear generation through the building of more plants and/or making better use of existing installations. This is followed by an estimate of additional nuclear capacity needed to avoid CO 2 emissions while providing the electricity needed should per capita usage remain constant. Canada's greenhouse gas reduction goal is a small fraction of international commitments. The Kyoto agreement's 'flexibility mechanism' provisions provide some expectation that Canada could obtain some credit for greenhouse gas

  15. The required rate of return for new nuclear investment, and the choice between nuclear and gas plant

    International Nuclear Information System (INIS)

    Dimson, E.; Staunton, M.

    1995-01-01

    The British Government is in the process of reviewing its strategy for nuclear power, which is largely in the hands of Nuclear Electric, a candidate for early privatisation. We estimate that the after-tax real return which must be earned on new investment by Nuclear Electric is at least 11 percent. The corresponding pre-tax required rate of return is at least 13 percent in real terms. The fact that some of the investment risks of nuclear power can be shifted onto competitors or consumers should not, in a regulated industry, be allowed to lower the discount rate. Nuclear Electric's current required rate of return of 8 percent before tax is too low, and leads to an overstatement of the value of the Sizewell C and Hinkley Point C proposals. Based on Nuclear Electric's own plant parameter assumptions, going ahead with both stations will be some Pound 4 billion more expensive than the gas alternative. Incorporating best estimates of capital cost and plant performance, we estimate the two proposals would result in a combined loss in value of approximately Pound 6-7 billion. (author)

  16. Possible use of electron beam treatment for removal of SO2 in off-gases from copper smelters. Preliminary tests results

    International Nuclear Information System (INIS)

    Villanueva, L.; Ahumanda, L.; Chmielewski, A.; Zimek, A.; Budka, S.; Licki, J.

    1996-01-01

    The Chilean Nuclear Energy Commission is currently performing a previous feasibility study concerning possible utilization of electron-beam process for removal of SO 2 from different types of sulfurous streams from copper smelters. First part of the project was related to verify, in a experimental line at Institute of Nuclear Chemistry and Technology, INCT, Poland, the behaviour of the process for simulated off-gases with very high SO 2 content, between 5% to 15% by volume. Tests were performed at laboratory stage and with flowrate of 5 Nm 3 /hr, using an ILU-6 electron accelerator, with the following results: High removal efficiencies of SO 2 , up to 90% were achieved for simulated off-gases containing up to 15% of SO 2 ; Required dose was in the range 5 to 8 kGy; Big influence of NH 3 stoichiometry and gas humidity on SO 2 removal efficiency; Rapid generation of sub-micron solid by-product, in great amount, that causes deposits on ducts and filtration units. This work presents the experimental results and discuss is technical projections in the field of interest. (author)

  17. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  18. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  19. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  20. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  1. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  2. H_2 production by the steam reforming of excess boil off gas on LNG vessels

    International Nuclear Information System (INIS)

    Fernández, Ignacio Arias; Gómez, Manuel Romero; Gómez, Javier Romero; López-González, Luis M.

    2017-01-01

    Highlights: • BOG excess in LNG vessels is burned in the GCU without energy use. • The gas management plants need to be improved to increase efficiency. • BOG excess in LNG vessels is used for H_2 production by steam reforming. • The availability of different fuels increases the versatility of the ship. - Abstract: The gas management system onboard LNG (Liquid Natural Gas) vessels is crucial, since the exploitation of the BOG (Boil Off Gas) produced is of utmost importance for the overall efficiency of the plant. At present, LNG ships with no reliquefaction plant consume the BOG generated in the engines, and the excess is burned in the GCU (Gas Combustion Unit) without any energy use. The need to improve the gas management system, therefore, is evident. This paper proposes hydrogen production through a steam reforming plant, using the excess BOG as raw material and thus avoiding it being burned in the GCU. To test the feasibility of integrating the plant, an actual study of the gas management process on an LNG vessel with 4SDF (4 Stroke Dual Fuel) propulsion and with no reliquefaction plant was conducted, along with a thermodynamic simulation of the reforming plant. With the proposed gas management system, the vessel disposes of different fuels, including H_2, a clean fuel with zero ozone-depleting emissions. The availability of H_2 on board in areas with strict anti-pollution regulations, such as ECAs (Emission Control Area), means that the vessel may be navigated without using fossil fuels which generate CO_2 and SO_X emissions. Moreover, while at port, Cold Ironing is avoided, which entails high costs. Thus it is demonstrated that the installation of a reforming plant is both energetically viable and provides greater versatility to the ship.

  3. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  4. Study on economic potential of nuclear-gas combined cycle power generation in Chinese market

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Bian Zhiqiang; Yang Mengjia

    2004-01-01

    Facing the challenges of separation of electric power plant and grid, and the deregulation of Chinese electricity supplying market in near future, nuclear power plants mainly operated as based load at the present regulated market should look for new operation mode. The economics of electric generation with nuclear-natural gas combined cycle is studied based on current conditions of natural gas and nuclear power plants in China. The results indicate that the technology development of nuclear-natural gas combined cycle for power generation is of potential prospects in Chinese electric market. (authors)

  5. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    Science.gov (United States)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  6. Corrosion in the off-gas system of a radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Peters, J.J.

    1987-01-01

    Corrosion in a low-level radioactive-waste incinerator off-gas system at the Department of Energy's Savannah River Plant is discussed. Severe corrosive attack and failure of an alloy 600 part exposed to high-temperature (>1000 0 C) gases was observed. Rapid attack of carbon steel components, and cracking of austenitic stainless steel parts also occurred at locations where lower gas temperatures and periodic condensate exposure occurred. Investigation showed HCl, SO 2 , SO 3 and phosphorus-oxides were present and contributed to the failures. Mechanisms of high-temperature failure include alloy separation and reactions with phosphorus. Coupons placed in the exhaust stream have provided information for selection of future materials of construction for system components. Several nickel- and iron-base alloys, and a stainless steel with an aluminum-diffusion coating were investigated

  7. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    Science.gov (United States)

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  8. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  9. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    2018-03-30

    Reprocessing of used nuclear fuel (UNF) is expected to play an important role for sustainable development of nuclear energy by increasing the energy extracted from the fuel and reducing the generation of the high level waste (HLW). However, aqueous reprocessing of UNF is accompanied by emission of off-gas streams containing radioactive nuclides including iodine, krypton, xenon, carbon, and tritium. Volatile iodine (129I), and krypton (85Kr) are long lived isotopes which have adverse effects on the environment as well as human health. Development of methods for the capture and long-term storage of radioactive gases is of crucial importance in order to manage their emissions that are anticipated to increase significantly with the growth of nuclear energy. For more than 70 years, porous solid sorbents have been in the forefront of radioactive contaminant removal due to promising results and their advantages such as high removal efficiency, low maintenance cost, simple equipment design and operation over other techniques. The research conducted in this project has focused on development of a novel nanostructured sorbent and its application for the capture of the above two contaminants of interest. Nanostructured carbon polyhedrons supported on Engelhard Titanosilicate-10 sorbent was synthesized using hydrothermal methods and subjected to structural and compositional characterization using various techniques including electron microscopy, Raman, x-ray diffraction and BET surface area analysis. Dynamic sorption experiments conducted using a flow-through column setup yielded information on the thermodynamics and kinetics of sorption in single-contaminant and multi-contaminant streams. Parameters varied in the study included carbon loading, temperature, contact time, contaminant concentration and humidity. The behavior of the system was modeled using models available in literature as well as development of a mass-transfer model from fundamental principles. Experimental

  10. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Fuel assembly for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.

    1976-01-01

    A fuel assembly is described for gas-cooled nuclear reactor which consists of a wrapper tube within which are positioned a number of spaced apart beds in a stack, with each bed containing spherical coated particles of fuel; each of the beds has a perforated top and bottom plate; gaseous coolant passes successively through each of the beds; through each of the beds also passes a bypass tube; part of the gas travels through the bed and part passes through the bypass tube; the gas coolant which passes through both the bed and the bypass tube mixes in the space on the outlet side of the bed before entering the next bed

  12. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  13. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  14. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  15. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  16. The role of nuclear power in the reduction of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Baratta, A.J.

    2010-01-01

    Nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to greenhouse gas reduction but only on a modest scale, replacing a portion of the electricity produced by coal fired power plants. While it has the potential to do more, there are significant resource issues that must be addressed if nuclear power is to replace coal or natural gas as a source of electricity

  17. A Novel Boil-Off Gas Re-Liquefaction Using a Spray Recondenser for Liquefied Natural-Gas Bunkering Operations

    Directory of Open Access Journals (Sweden)

    Jiheon Ryu

    2016-11-01

    Full Text Available This study presents the design of a novel boil-off gas (BOG re-liquefaction technology using a BOG recondenser system. The BOG recondenser system targets the liquefied natural gas (LNG bunkering operation, in which the BOG phase transition occurs in a pressure vessel instead of a heat exchanger. The BOG that is generated during LNG bunkering operation is characterized as an intermittent flow with various peak loads. The system was designed to temporarily store the transient BOG inflow, condense it with subcooled LNG and store the condensed liquid. The superiority of the system was verified by comparing it with the most extensively employed conventional re-liquefaction system in terms of consumption energy and via an exergy analysis. Static simulations were conducted for three compositions; the results indicated that the proposed system provided 0 to 6.9% higher efficiencies. The exergy analysis indicates that the useful work of the conventional system is 24.9%, and the useful work of the proposed system is 26.0%. Process dynamic simulations of six cases were also performed to verify the behaviour of the BOG recondenser system. The results show that the pressure of the holdup in the recondenser vessel increased during the BOG inflow mode and decreased during the initialization mode. The maximum pressure of one of the bunkering cases was 3.45 bar. The system encountered a challenge during repetitive operations due to overpressurizing of the BOG recondenser vessel.

  18. Nuclear powerplant with closed gas-cooling circuit

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Winter, U.

    1976-01-01

    Disclosed is a nuclear power plant comprising a pressure-tight safety vessel surrounding the entire plant, an inner vessel of reinforced concrete, a high-temperature reactor contained in the inner vessel, a gas turbine assembly having a turbine and a high- and low-pressure compressor located in a horizontally oriented chamber below the reactor, a plurality of heat exchange units positioned in a plurality of vertically oriented pods spaced radially symmetrically about the reactor and suitable conduits for carrying the reactive gas between the system components. The conduits are arranged in generally horizontally and vertically oriented straight lines, and the conduits for carrying low-pressure gas comprise a horizontal system positioned beneath the turbine assembly having a plurality of coaxial connecting tubes, collectors and distributors as well as normal conduits, so that high pressure gas flows in the internal passage and low-pressure gas flows in the outer passage. 22 claims, 7 figures

  19. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  20. Gas core nuclear rocket feasibility project

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed

  1. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  2. Nitrogen gas supply device in nuclear power plant

    International Nuclear Information System (INIS)

    Nishino, Masami

    1991-01-01

    The present invention concerns a nitrogen gas supply device in a nuclear power plant for supplying nitrogen gases to a reactor container and equipments working with the nitrogen gas as the load. A liquid nitrogen storage pool is disposed to a concrete nuclear buildings and has a two-vessel structure of inner and outer vessels, in which heat insulators are disposed between the inner and the outer vessels. Further, the nitrogen gas supply mechanism is disposed in an evaporation chamber disposed in adjacent with the liquid nitrogen storage pool in the reator building. Accordingly, since liquid nitrogen is stored in the liquid nitrogen storage pool having a structure surrounded by concrete walls, direct sunlight is completely interrupted, thereby enabling to prevent the heat caused by the direct sunlight from conducting to the liquid nitrogen. Further, since the outer vessel is not exposed to the surrounding atmosphere, heat conduction rate relative to the external air is small. This can reduce the amount of liquid nitrogen released to the atmospheric air due to natural evaporation. (I.N.)

  3. Development of the preparation technology of macroporous sorbent for industrial off-gas treatment including {sup 14}C

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il Hoon; Cho, Young Hyun; Park, Guen Il; Kim, In Tae; Kim, June Hyung; Ahn, Byung Kil

    2001-01-01

    For environmental and health effects due to increasing levels of pollution in the atmosphere, it is necessary to develop environmentally sound technologies for the treatment of greenhouse gases (CO{sub 2}, CH{sub 4}, CFC, etc.) and acid gases (SOx, NOx, etc.). Specifically, advanced technology for CO{sub 2} capturing is currently one of the most important environmental issues in worldwide. {sup 14}CO{sub 2}, specially which has been gradually emerging issue in the nuclear facilities, is generated about 330 ppm from the CANDU (Canadian Deuterium Uranium Reactor) nuclear power plant and the DUPIC (Direct Use of spent PWR fuel in CANDU reactors) process which is the process of spent fuel treatment. For this purpose, it is necessary to develop the most efficient treatment technology of CO{sub 2} capture by various lime materials in semi- or dry process, it should be also considering a removal performance, waste recycling and safety of disposal. In order to develop a highly active slaked lime as a sorbent for CO{sub 2} and high temperature desulfurization, macroporous slaked lime is necessarily prepared by modified swelling process and equipment, which was developed under carrying out this project. And also for the optimal removal process of off-gases the removal performance tests of various sorbents and the effects of relative humidity and bed depth on the removal capacity must be considered.

  4. Cryogenic separation of krypton and xenon from dissolver off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Heidendael, M.; Laser, M.; Mastera, S.; Merz, E.

    1976-03-15

    Although the release of fission product noble gas Kr-85 has not posed a health problem to date, a process is being developed for the removal and storage of fission product noble gases from dissolution process stream of fuel reprocessing. The separation process described for noble gas in air being proved in semi-technical scale includes cryogenic distillation and consists of the following steps: (1) removal of 129 +131iodine on silver-coated silica gel; (2) deposition of particulate materials by HEPA-filters; (3) elimination of O2 and NOx by catalytic conversion with H2/ to N2 and H2O; (4) drying of the gas stream with molecular sieve; (5) deposition of xenon in solid form at about 80 K, while the remaining gas components are liquified; (6) enrichment of Kr by low temperature distillation of liquid-gas mixture; (7) withdrawal of the highly enriched Kr-fraction at the bottom of the still to be bottled in pressurized steel cylinders for final disposal; and (8) purification of Kr-85 contaminated Xe for further industrial reuse by batch distillation.

  5. A nuclear gas turbine perspective: The indirect cycle (IDC) offers a practical solution

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1996-01-01

    The current generation of nuclear power plants are based on light water reactors and steam cycle power conversion systems. This coupling yields a power plant efficiency of less than 30% when dry-cooled. By utilizing a higher temperature heat source, and a more efficient prime-mover, the next generation of nuclear power plants have the potential for an efficiency of close to 50%, with attendant fuel savings and reduced heat rejection to the environment. The nuclear closed Brayton cycle (NCBC) gas turbine plant involves the coupling of a high temperature reactor (HTR) and a high efficiency helium gas turbine. Studies over many years have shown the merits of an indirect cycle (IDC) approach in which an intermediate heat exchanger is used to transfer the reactor thermal energy to the prime-mover. The major advantages of this include the following: (1) multipurpose nuclear heat source; (2) gas turbine operation in a clean non-nuclear environment; (3) power conversion system simplicity; and (4) maximum utilization of existing technology. An additional factor, which may dominate the above is that the IDC approach is in concert with the only active gas-cooled reactor program remaining in the world, namely a high temperature test reactor (HTTR) under construction in Japan, the culmination of which will be the demonstration of a viable high temperature nuclear heat source. The major theme of this paper is that the IDC nuclear gas turbine offers a practical NCBC power plant concept for operation in the second or third decades of the 21st century

  6. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2018-03-31

    This project developed an alternative design for heat exchangers for application to heating supercritical carbon dioxide (S-CO2) or air for power conversion. We have identified an annular coiled tube bundle configuration–where hot sodium enters tubes from multiple vertical inlet manifold pipes, flows in a spiral pattern radially inward and downward, and then exits into an equal number of vertical outlet manifold pipes–as a potentially attractive option. The S-CO2 gas or air flows radially outward through the tube bundle. Coiled tube gas heaters (CTGHs) are expected to have excellent thermal shock, long-term thermal creep, in-service inspection, and reparability characteristics, compared to alternative options. CTGHs have significant commonality with modern nuclear steam generators. Extensive experience exists with the design, manufacture, operation, in-service inspection and maintenance of nuclear steam generators. The U.S. Nuclear Regulatory Commission also has extensive experience with regulatory guidance documented in NUREG 0800. CTGHs leverage this experience and manufacturing capability. The most important difference between steam generators and gas-Brayton cycles such as the S-CO2 cycle is that the heat exchangers must operate with counter flow with high effectiveness to minimize the pinch-point temperature difference between the hot liquid coolant and the heated gas. S-CO2-cycle gas heaters also operate at sufficiently elevated temperatures that time dependent creep is important and allowable stresses are relatively low. Designing heat exchangers to operate in this regime requires configurations that minimize stresses and stress concentrations. The cylindrical tubes and cylindrical manifold pipes used in CTGHs are particularly effective geometries. The first major goal of this research project was to develop and experimentally validate a detailed, 3-D multi-phase (gas-solid-liquid) heat transport model for

  7. Energy and exergy analysis of the silicon production process

    International Nuclear Information System (INIS)

    Takla, M.; Kamfjord, N.E.; Tveit, Halvard; Kjelstrup, S.

    2013-01-01

    We used energy and exergy analysis to evaluate two industrial and one ideal (theoretical) production process for silicon. The industrial processes were considered in the absence and presence of power production from waste heat in the off-gas. The theoretical process, with pure reactants and no side-reactions, was used to provide a more realistic upper limit of performance for the others. The energy analysis documented the large thermal energy source in the off-gas system, while the exergy analysis documented the potential for efficiency improvement. We found an exergetic efficiency equal to 0.33 ± 0.02 for the process without power production. The value increased to 0.41 ± 0.03 when waste heat was utilized. For the ideal process, we found an exergetic efficiency of 0.51. Utilization of thermal exergy in an off-gas of 800 °C increased this exergetic efficiency to 0.71. Exergy destructed due to combustion of by-product gases and exergy lost with the furnace off-gas were the largest contributors to the thermodynamic inefficiency of all processes. - Highlights: • The exergetic efficiency for an industrial silicon production process when silicon is the only product was estimated to 0.33. • With additional power production from thermal energy in the off-gas we estimated the exergetic efficiency to 0.41. • The theoretical silicon production process is established as the reference case. • Exergy lost with the off-gas and exergy destructed due to combustion account for roughly 75% of the total losses. • With utilization of the thermal exergy in the off-gas at a temperature of 800 °C the exergetic efficiency was 0.71

  8. Leak detection device for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Ikeda, Jun.

    1988-01-01

    Purpose: To test the leakage of a nuclear reactor pressure vessel during stopping for a short period of time with no change to the pressure vessel itself. Constitution: The device of the present invention comprises two O-rings disposed on the flange surface that connects a pressure vessel main body and an upper cover, a leak-off pipeway derived from the gap of the O-rings at the flange surface to the outside of the pressure vessel, a pressure detection means connected to the end of the pipeway, a humidity detection means disposed to the lead-off pipeway, a humidity detection means disposed to the lead-off pipeway, and gas supply means and gas suction means disposed each by way of a check valve to a side pipe branched from the pipeway. After stopping the operation of the nuclear reactor and pressurizing the pressure vessel by filling water, gases supplied to the gap between the O-rings at the flange surface by opening the check valve. In a case where water in the pressure vessel should leak to the flange surface, when gas suction is applied by properly opening the check valve, increase in the humidity due to the steams of leaked water diffused into the gas is detected to recognize the occurrence of leakage. (Kamimura, M.)

  9. Steam gasification of coal, project prototype plant nuclear process heat

    International Nuclear Information System (INIS)

    Heek, K.H. van

    1982-05-01

    This report describes the tasks, which Bergbau-Forschung has carried out in the field of steam gasification of coal in cooperation with partners and contractors during the reference phase of the project. On the basis of the status achieved to date it can be stated, that the mode of operation of the gas-generator developed including the direct feeding of caking high volatile coal is technically feasible. Moreover through-put can be improved by 65% at minimum by using catalysts. On the whole industrial application of steam gasification - WKV - using nuclear process heat stays attractive compared with other gasification processes. Not only coal is conserved but also the costs of the gas manufactured are favourable. As confirmed by recent economic calculations these are 20 to 25% lower. (orig.) [de

  10. Gas release from pressurized closed pores in nuclear fuels

    International Nuclear Information System (INIS)

    Bailey, P.; Donnelly, S.E.; Armour, D.G.; Matzke, H.

    1988-01-01

    Gas release from the nuclear fuels UO 2 and UN out of pressurized closed pores produced by autoclave anneals has been studied by Thermal Desorption Spectrometry (TDS). Investigation of gas release during heating and cooling has indicated stress related mechanical effects leading to gas release. This release occurred in a narrow temperature range between about 1000 and 1500 K for UO 2 , but it continued down to ambient temperature for UN. No burst release was observed above 1500 K for UO 2 . (orig.)

  11. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  12. Process and apparatus for separating and recovering krypton-85 from exhaust gas of nuclear reactor or the like

    International Nuclear Information System (INIS)

    Yusa, H.; Kamiya, K.; Murata, T.; Yamaki, H.; Hisatomi, S.

    1975-01-01

    An apparatus is described for separating and recovering radioactive krypton-85 contained in an exhaust gas of a nuclear reactor or the like, which comprises a plurality of adsorption beds connected in parallel with respect to a passageway for the exhaust gas, each being packed with activated carbon, wherein adsorption and desorption of krypton-85 in each of the beds are alternatively and repeatedly performed by operating valves disposed between each of the beds and means for reducing pressure in the beds to be desorbed in accordance with a predetermined time schedule. The adsorption and concentration efficiencies are markedly increased by combining the above adsorption apparatus and a distillation apparatus

  13. Monitoring the performance of off-site processors

    International Nuclear Information System (INIS)

    Miller, C.C.

    1995-01-01

    Commercial nuclear power plants have been able to utilize the latest technologies and achieve large volume reduction by obtaining off-site waste processor services. Although the use of such services reduce the burden of waste processing it also reduces the utility's control over the process. Monitoring the performance of off-site processors is important so that the utility is cognizant of the waste disposition for required regulatory reporting. In addition to obtaining data for Reg Guide 1.21 reporting, Performance monitoring is important to determine which vendor and which services to utilize. Off-site processor services were initially offered for the decontamination of metallic waste. Since that time the list of services has expanded to include supercompaction, survey for release, incineration and metal melting. The number of vendors offering off-site services has increased and the services they offer vary. processing rates vary between vendors and have different charge bases. Determining which vendor to use for what service can be complicated and confusing

  14. Gas reactor international cooperative program interim report: United States/Federal Republic of Germany nuclear licensing comparison

    International Nuclear Information System (INIS)

    1978-09-01

    In order to compare US and FRG Nuclear Licensing, a summary description of United States Nuclear Licensing is provided as a basis. This is followed by detailed information on the participants in the Nuclear Licensing process in the Federal Republic of Germany (FRG). FRG licensing procedures are described and the rules and regulations imposed are summarized. The status of gas reactor licensing in both the U.S. and the FRG is outlined and overall conclusions are drawn as to the major licensing differences. An appendix describes the most important technical differences between US and FRG criteria

  15. Organic iodine removal from simulated dissolver off-gas systems utilizing silver-exchanged mordenite

    International Nuclear Information System (INIS)

    Jubin, R.T.

    1981-01-01

    The removal of methyl iodide by adsorption onto silver mordenite was studied using a simulated off-gas from the fuel dissolution step of a nuclear fuel reprocessing plant. The adsorption of methyl iodide on silver mordenite was examined for the effect of NO/sub x/, humidity, iodine concentration, filter temperature, silver loadings and filter pretreatment. The highest iodine loading achieved in these tests was 142 mg CH 3 I per g of substrate on fully exchanged zeolite, approximately the same as elemental iodine loadings. A filter using fully exchanged silver mordenite operating at 200 0 C obtained higher iodine loadings than a similar filter operating at 150 0 C. Pretreatment of the sorbent bed with hydrogen rather than dry air, at a temperature of 200 0 C, also improved the loading. Variations in the methyl iodide concentration had minimal effects on the overall loading. Filters exposed to moist air streams attained higher loadings than those in contact with dry air. Partially exchanged silver mordenite achieved higher silver utilizations than the fully exchanged material. The partially exchanged mordenite also achieved higher loadings at 200 0 C than at 250 0 C. The iodine loaded onto these beds was not stripped at 500 0 C by either 4.5% hydrogen or 100% hydrogen; however, the iodine could be removed by air at 500 0 C, and the bed could be reloaded. A study of the regeneration characteristics of fully exchanged silver mordenite indicates limited adsorbent capacity after complete removal of the iodine with 4.5% hydrogen in the regeneration gas stream at 500 0 C. The loss of adsorbent capacity is much higher for silver mordenite regenerated in a stainless steel filter housing than in a glass filter housing

  16. Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods.

    Science.gov (United States)

    Zhang, Yan; Guo, Shuntang; Liu, Zhisheng; Chang, Sam K C

    2012-08-01

    Off-flavor of soymilk is a barrier to the acceptance of consumers. The objectionable soy odor can be reduced through inhibition of their formation or through removal after being formed. In this study, soymilk was prepared by three grinding methods (ambient, cold, and hot grinding) from two varieties (yellow Prosoy and a black soybean) before undergoing three heating processes: stove cooking, one-phase UHT (ultrahigh temperature), and two-phase UHT process using a Microthermics direct injection processor, which was equipped with a vacuuming step to remove injected water and volatiles. Eight typical soy odor compounds, generated from lipid oxidation, were extracted by a solid-phase microextraction method and analyzed by gas chromatography. The results showed that hot grinding and cold grinding significantly reduced off-flavor as compared with ambient grinding, and hot grinding achieved the best result. The UHT methods, especially the two-phase UHT method, were effective to reduce soy odor. Different odor compounds showed distinct concentration patterns because of different formation mechanisms. The two varieties behaved differently in odor formation during the soymilk-making process. Most odor compounds could be reduced to below the detection limit through a combination of hot grinding and two-phase UHT processing. However, hot grinding gave lower solid and protein recoveries in soymilk.

  17. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    International Nuclear Information System (INIS)

    Walker Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.; Bruffey, Stephanie H.

    2015-01-01

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ?100 L/h (1.67 L/min), (2) an external temperature of ?50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  18. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  19. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  20. Optimization of a gas turbine in the methanol process, using the NLP model

    International Nuclear Information System (INIS)

    Kralj, Anita Kovac; Glavic, Peter

    2007-01-01

    Heat and power integration can reduce fuel usage, CO 2 and SO 2 emissions and, thereby, pollution. In the simultaneous heat and power integration approach and including additional production, the optimization problem is formulated using a simplified process superstructure. Nonlinear programming (NLP) contains equations which enable structural heat and power integration and parametric optimization. In the present work, the NLP model is formulated as an optimum energy target of process integration and electricity generation using a gas turbine with a separator. The reactor acts as a combustion chamber of the gas turbine plant, producing high temperature. The simultaneous NLP approach can account for capital cost, integration of combined heat and power, process modification, and additional production trade-offs accurately, and can thus yield a better solution. It gives better results than non-simultaneous methods. The NLP model does not guarantee a global cost optimum, but it does lead to good, perhaps near optimum designs. This approach is illustrated by an existing, complex methanol production process. The objective function generates a possible increase in annual profit of 1.7 MEUR/a

  1. Flue Gas Desulphurization Processes

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Halhouli, K.A.; Abu-Ashur, B.M.

    1999-01-01

    Flue gas desulphurization process are discussed. These processes can be grouped into non-regenerable systems and regenerable systems. The non-regenerable systems produce a product which is either disposed of as waste or sold as a by-product e.g. lime/limestone process. While in the regenerable systems, e.g. Wellman-Lord process, the SO 2 is regenerated from the sorbent(sodium sulphite), which is returned to absorb more SO 2 . Also a newer technology for flue gas desulphurization is discussed. The Ispra process uses bromine as oxidant, producing HBr, from which bromine is regenerated by electrolysis. The only by-products of this process are sulphuric acid and hydrogen, which are both valuable products, and no waste products are produced. Suggested modifications on the process are made based on experimental investigations to improve the efficiency of the process and to reduce its costs

  2. Applications of the gas chromatography in the nuclear science and technology; Aplicaciones de la cromatografia de gases a la ciencia y tecnologia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L

    1972-07-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  3. Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas

    International Nuclear Information System (INIS)

    Choi, Jeong-Hoo; Yi, Chang-Keun; Jo, Sung-Ho; Ryu, Ho-Jung; Park, Young-Cheol

    2014-01-01

    We simulated a bubbling bed process capturing CO 2 from flue gas. It applied for a laboratory scale process to investigate effects of operating parameters on capture efficiency. The adsorber temperature had a stronger effect than the regenerator temperature. The effect of regenerator temperature was minor for high adsorber temperature. The effect of regenerator temperature decreased to level off for the temperature >250 .deg. C. The capture efficiency was rather dominated by the adsorption reaction than the regeneration reaction. The effect of gas velocity was as appreciable as that of adsorber temperature. The capture efficiency increased with the solids circulation rate since it was ruled by the molar ratio of K to CO 2 for solids circulation smaller than the minimum required one (G s, min ). However, it leveled off for solids circulation rate >G s, min . As the ratio of adsorber solids inventory to the total solids inventory (x w1 ) increased, the capture efficiency increased until x w1 =0.705, but decreased for x w1 >0.705 because the regeneration time decreased too small. It revealed that the regeneration reaction was faster than the adsorption reaction. Increase of total solids inventory is a good way to get further increase in capture efficiency

  4. New directions in gas processing

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Papers presented at the Insight conference held on January 30, 1996 in Calgary, Alberta, were contained in this volume. The conference was devoted to a discussion of new directions in the gas processing business, the changing business environment, new processing technologies, and means by which current facilities agreements can be adapted to the new commercial reality. High operating costs which have resulted in the downsizing and restructuring of the industry, and partnering with a third party in the gathering and processing operations, with apparently beneficial result both to plant owners, as well to third party processors, received the most attention. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement, which defines the obligations of third parties, was the center of discussion. Regulatory changes and the industry's response to the changes was also on the agenda. Refs., tabs., figs

  5. On-line optimal control improves gas processing

    International Nuclear Information System (INIS)

    Berkowitz, P.N.; Papadopoulos, M.N.

    1992-01-01

    This paper reports that the authors' companies jointly funded the first phase of a gas processing liquids optimization project that has the specific purposes to: Improve the return of processing natural gas liquids, Develop sets of control algorithms, Make available a low-cost solution suitable for small to medium-sized gas processing plants, Test and demonstrate the feasibility of line control. The ARCO Willard CO 2 gas recovery processing plant was chosen as the initial test site to demonstrate the application of multivariable on-line optimal control. One objective of this project is to support an R ampersand D effort to provide a standardized solution to the various types of gas processing plants in the U.S. Processes involved in these gas plants include cryogenic separations, demethanization, lean oil absorption, fractionation and gas treating. Next, the proposed solutions had to be simple yet comprehensive enough to allow an operator to maintain product specifications while operating over a wide range of gas input flow and composition. This had to be a supervisors system that remained on-line more than 95% of the time, and achieved reduced plant operating variability and improved variable cost control. It took more than a year to study various gas processes and to develop a control approach before a real application was finally exercised. An initial process for C 2 and CO 2 recoveries was chosen

  6. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    Science.gov (United States)

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  7. Preparation of off-site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This document is issued as a lead document to facilitate preparation of specific site manuals by the Responsible Organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publication on the subject: Safety Manual on Off-Site Emergency Plan for Nuclear Installations, AERB/SM/NISD-2, 1988 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come out in a significant manner after the accidents at Chernobyl and Bhopal

  8. Development of a decision support system for off-site emergency management in the early phase of a nuclear accident

    International Nuclear Information System (INIS)

    Datta, D.; Sharma, R.M.

    2002-01-01

    Full text: Experience gained after the Chernobyl accident clearly demonstrated the importance of improving administrative, organizational and technical emergency management arrangements in India. The more important areas where technical improvements were needed were early warning monitoring, communication networks for the rapid and reliable exchange of radiological and other information and decision support systems for off-site emergency management. A PC based artificial intelligent software has been developed to have a decision support system that can easily implement to manage off-site nuclear emergency and subsequently analyze the off-site consequences of the nuclear accident. A decision support tool, STEPS (source term estimate based on plant status), that provides desired input to the present software was developed. The tool STEPS facilitates meta knowledge of the system. The paper describes the details of the design of the software, functions of various modules, tuning of respective knowledge base and overall its scope in real sense in nuclear emergency preparedness and response

  9. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  10. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  11. Techno-economic optimisation of three gas liquefaction processes for small-scale applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Elmegaard, Brian

    2016-01-01

    inventory. The present work investigates three configurations (single-mixed refrigerant, single and dual reverse Brayton cycles) for small-scale applications, which are optimised and evaluated individually. The influences of the refrigerant properties and process technologies are analysed, and the most...... promising cycle setups are identified. The findings illustrate the resulting trade-offs between the system performance and investment costs, which differ significantly with the type of refrigeration cycle. Although these configurations are suitable for small-scale applications, mixed-refrigerant processes...... thermodynamic models leads to relative deviations of up to 1% for the power consumption and 20% for the network conductance. Particular caution should thus be exercised when extrapolating the results of process models to the design of actual gas liquefaction systems....

  12. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  13. Study on the code system for the off-site consequences assessment of severe nuclear accident

    International Nuclear Information System (INIS)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents

  14. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2002-01-01

    Nuclear energy plays an essential role in avoiding greenhouse gas emissions. The contribution of nuclear power to electricity supplies has grown rapidly since the 1970's. As of July 2000, 432 power reactors were in operation in 31 countries. Nuclear power provided some 2300 TWh. This is about 17% of the world's total electricity, or 7% of total primary energy. This contribution avoids the emissions of about 2300 million tonnes of carbon dioxide annually, assuming that it would otherwise be provided mainly by coal-fired plants. This represents nearly one-third of the carbon dioxide presently emitted by power generation. Since electricity generation accounts for about 30% of all anthropogenic carbon dioxide emissions, total emissions would be about 10% higher if it were not for nuclear power. In contrast, the objective of the Kyoto Protocol is to reduce greenhouse gas emissions in industrialized nations by 5% by 2008-12 compared to a 1990 baseline. In order for atmospheric greenhouse gas concentrations to be stabilized at a sustainable level, it will be necessary to reduce emissions by around 60% from the 1990 level. Advocates of a policy of 'convergence and contraction', where developed and developing countries are to be allowed similar levels of emissions on a per capita basis, state that developed countries may have to reduce emissions by as much as 80%. Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However, the scale of that contribution will be strongly influenced by the way in which this contribution is recognized in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent

  15. Off-shell distortions of multichannel atomic processes

    Science.gov (United States)

    Barrachina, R. O.; Clauser, C. F.

    2017-10-01

    Any multichannel problem can be reduced to a succession of two-body events. However, these basic building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distortions have branch-point singularities on the on-shell limit. In this article we demonstrate that these singularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to better results that removing them completely.

  16. Hydroxylamine a potential reagent for dissolution off gas scrubbing in nuclear spent fuel reprocessing: kinetics of the iodine reduction

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.; Devisme, F.; Chopin, J.; Vargas, S.

    1996-01-01

    Iodine, which can be released inside the containment buildings when accident occurs, can be traced, in normal operating conditions, at the back end of the fuel cycle. Hydroxylamine has been selected as a regent of potential interest to trap iodine in the dissolution off gas treatment. The kinetics of the reaction between hydroxylamine and iodine has been studied in a narrow range of pH(1-2), with hydroxylamine in excess (ratios of hydroxylamine to iodine initial concentrations varying from 2 to 40), at constant temperature (30 deg. C) and ionic strength (0.1 mol/l). Spectrophotometry and voltametry have been coupled for analytical solved using a investigation. The problem of the rapid mixing of the reactants has been solved using a continuous reactor. Tri-iodine has been shown non reactive towards hydroxylamine. An initial rate law have been proposed, pointing out the first order of the reaction with respect to hydroxylamine and iodine, and the inhibitory effect and hydrogen ions. Nitrous acid has been identified as a transitory product. Nitrous oxide and nitrogen monoxide have been detected by gas chromatography, the ratio of the amounts of products formed depending on acidity. The complexity of the overall reaction has been ascribed to the competition of hour reactions (I 2 + I I 3 - NH 3 OH + + 2 I 2 + H 2 O ->HNO 2 + 4 I - + 5 H + ; NH 3 OH + + HNO 2 -> N 2 O + 2 H 2 O + H-+ 2HNO 2 + 2 I - + 2H-+ -> 2 NO + I 2 + H 2 O). (authors)

  17. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  18. A study on the improvement of spin-off effectiveness of national nuclear R and D activities

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Lee, T. J.

    1997-02-01

    This study consists of two parts. One is to identify factors affecting technological effectiveness of the spin-off process that is defined as the technology transfer process from government sponsored research institutes (GRI's) to the civilian sector. The other is to analyze the environment of the spin-off process and to suggest guidelines for addition, this study also examines spin-off effectiveness with technology transfer types. To validate the conceptual model and hypotheses of the spin-off process, data are collected from 12 cases through in-depth interviews and questionnaires. Spearman correlation analysis is employed in order to test the hypotheses on the spin-off process. (author). 50 refs., 17 tabs., 12 figs

  19. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  20. Off-site environmental monitoring report: Radiation monitoring around United States Nuclear Test areas, Calendar year 1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Fontana, C.A.; Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome', D.J.; Mullen, A.A.

    1987-05-01

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests; and protective actions in support of the nuclear testing program. These are conducted to document compliance with standards, to identify trends, and to provide information to the public. 28 refs., 37 figs., 30 tabs

  1. Gas pressure and gas purity analyzing device in nuclear fuel rod

    International Nuclear Information System (INIS)

    Mizutani, Chihiro; Hasegawa, Toru.

    1996-01-01

    The present invention provides a device for measuring and analyzing a pressure and a purity of a helium gas sealed in a BWR type nuclear fuel rod. Namely, a portion between a rotational shaft of an electromotive drill for perforating the fuel rod and a vacuum chamber is sealed with a magnetic fluid sealing material so that error factors can be recognized before and after the destruction detection (perforation) of a fuel rod. With such procedures, involving of an atmospheric air from the drill rotational shaft upon perforation can be eliminated. As a result, accuracy for the measurement can be improved. In addition, a filter is disposed to a pipeline connecting the vacuum chamber and the measuring system. With such a constitution, scattering of cutting dusts to the measuring system, troubles due to damages of a stop valve can be reduced. As a result, the efficiency of the measurement is improved. Further, a plurality kinds of gas collecting vessel having different capacities are connected in parallel to the pipeline of the measuring system. Then, the gas collecting vessels can be used selectively. As a result, the device can cope with a gas pressure over a wide range. (I.S.)

  2. Dungeness Power Station off-site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This off-site Emergency Plan in the event of an accidental release of radioactivity at the Dungeness Nuclear power station sets out the necessary management and coordination processes between Nuclear Electric, operators of the site, the emergency services and relevant local authorities. The objectives promoting the aim are identified and the activities which will be undertaken to protect the public and the environment in the event of an emergency are outlined. (UK)

  3. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  4. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  5. Studies of nuclear processes

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1993-01-01

    Results for the period 1 Sep 92 through 31 Aug 93 are presented in nearly a hundred brief papers, some of which present new but preliminary data. Activities reported may be grouped as follows: Fundamental symmetries in the nucleus (parity-mixing measurements, time reversal invariance measurements, signatures of quantum chaos in nuclei), Internucleon reactions (neutron -- proton interactions, the neutron -- neutron scattering length, reactions between deuterons and very light nuclei), Dynamics of very light nuclei (measurements of D states of very light nuclei by transfer reactions, nuclear reactions between very light nuclei, radiative capture reactions with polarized sources), The many-nucleon problem (nuclear astrophysics, high-spin spectroscopy and superdeformation, the nuclear mean field: Dispersive relations and nucleon scattering, configuration mixing in 56 Co and 46 Sc using (d,α) reactions, radiative capture studies, high energy resolution resonance studies at 100--400 keV, nuclear data evaluation for A=3--20), Nuclear instruments and methods (FN tandem accelerator operation, KN accelerator operation and maintenance, atomic beam polarized ion source, development of techniques for determining the concentration of SF 6 in the accelerator insulating gas mixture, production of beams and targets, detector systems, updating of TeX, Psprint, and associated programs on the VAX cluster), and Educational Activities

  6. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    Science.gov (United States)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  7. Noble metal-catalyzed homogeneous and heterogeneous processes in treating simulated nuclear waste media with formic acid

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Smith, H.D.

    1995-09-01

    Simulants for the Hanford Waste Vitrification Plant feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2 -, NO 3 -, and NO 2 - were used to study reactions of formic acid at 90 degrees C catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Such reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase and a microammonia electrode to analyze the NH 4 +/NH 3 in the liquid phase as a function of time. The following reactions have been studied in these systems since they are undesirable side reactions in nuclear waste processing: (1) Decomposition of formic acid to CO 2 + H 2 is undesirable because of the potential fire and explosion hazard of H 2 . Rhodium, which was introduced as soluble RhCl 3 -3H 2 O, was found to be the most active catalyst for H 2 generation from formic acid above ∼ 80 degrees C in the presence of nitrite ion. The H 2 production rate has an approximate pseudo first-order dependence on the Rh concentration, (2) Generation of NH 3 from the formic acid reduction of nitrate and/or nitrite is undesirable because of a possible explosion hazard from NH 4 NO 3 accumulation in a waste processing plant off-gas system. The Rh-catalyzed reduction of nitrogen-oxygen compounds to ammonia by formic acid was found to exhibit the following features: (a) Nitrate rather than nitrite is the principal source of NH 3 . (b) Ammonia production occurs at the expense of hydrogen production. (c) Supported rhodium metal catalysts are more active than rhodium in any other form, suggesting that ammonia production involves heterogeneous rather than homogeneous catalysis

  8. Prototype plant for nuclear process heat (PNP), reference phase

    International Nuclear Information System (INIS)

    Fladerer, R.; Schrader, L.

    1982-07-01

    The coal gasification processes using nuclear process heat being developed within the framwork of the PNP project, have the advantages of saving feed coal, improving efficiency, reducing emissions, and stabilizing energy costs. One major gasification process is the hydrogasification of coal for producing SNG or gas mixture of carbon monoxide and hydrogen; this process can also be applied in a conventional route. The first steps to develop this process were planning, construction and operation of a semi-technical pilot plant for hydrogasification of coal in a fluidized bed having an input of 100 kg C/h. Before the completion of the development phase (reference phase) describing here, several components were tested on part of which no operational experience had so far been gained; these were the newly developed devices, e.g. the inclined tube for feeding coal into the fluidized bed, and the raw gas/hydrogenation gas heat exchanger for utilizing the waste heat of the raw gas leaving the gasifier. Concept optimizing of the thoroughly tested equipment parts led to an improved operational behaviour. Between 1976 and 1980, the semi-technical pilot plant was operated for about 19,400 hours under test conditions, more than 7,400 hours of which it has worked under gasification conditions. During this time approx. 1,100 metric tons of dry brown coal and more than 13 metric tons of hard coal were gasified. The longest coherent operational phase under gasification conditions was 748 hours in which 85.4 metric tons of dry brown coal were gasified. Carbon gasification rates up to 82% and methane contents in the dry raw gas (free of N 2 ) up to 48 vol.% were obtained. A detailed evaluation of the test results provided information of the results obtained previously. For the completion of the test - primarily of long-term tests - the operation of the semi-technical pilot plant for hydrogasification of coal is to be continued up to September 1982. (orig.) [de

  9. Radioactive gas processing device

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki; Okazaki, Akira; Kumagaya, Koji.

    1982-01-01

    Purpose: To simplify the structure of a gas processing system which has hitherto been much complicated by the recyclic use of molecular sieve regeneration gas, by enabling to release the regeneration gas to outside in a once-through manner. Constitution: The system comprises a cooler for receiving and cooling gases to be processed containing radioactive rare gases, moisture-removing pipelines each connected in parallel to the exit of the cooler and having switching valves and a moisture removing column disposed between the valves and a charcoal absorber in communication with the moisture removing pipelines. Pipelines for flowing regeneration heating gases are separately connected to the moisture removing columns, and molecular sieve is charged in the moisture removing column by the amount depending on the types of the radioactive rare gases. (Aizawa, K.)

  10. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  11. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    Science.gov (United States)

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  12. Working under the PJVA gas processing agreement

    International Nuclear Information System (INIS)

    Collins, S.

    1996-01-01

    The trend in the natural gas industry is towards custom processing. New gas reserves tend to be smaller and in tighter reservoirs than in the past. This has resulted in plants having processing and transportation capacity available to be leased to third parties. Major plant operators and owners are finding themselves in the business of custom processing in a more focused way. Operators recognize that the dilution of operating costs can result in significant benefits to the plant owners as well as the third party processor. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement were discussed. Details of the standard agreement that clearly defines the responsibilities of the third party producer and the processor were explained. In addition to outlining obligations of the parties, it also provides a framework for fee negotiation. It was concluded that third party processing can lower facility operating costs, extend facility life, and keep Canadian gas more competitive in holding its own in North American gas markets

  13. The modelling of off-site economic consequences of nuclear accidents

    International Nuclear Information System (INIS)

    Alonso, A.; Gallego, E.; Martin, J.E.

    1991-01-01

    The paper presents a computer model for the probabilistic assessment of the off-site economic risk derived from nuclear accidents. The model is called MECA (Model for Economic Consequence Assessment) and takes into consideration the direct costs caused, following an accident, by the different countermeasures adopted to prevent both the early and chronic exposure of the population to the radionuclides released, as well as the direct costs derived from health damage to the affected population. The model uses site-specific data that are organized in a socio-economic data base; detailed distributions of population, livestock census, agricultural production and farmland use, as well as of employment, salaries, and added value for different economic sectors are included. This data base has been completed for Spain, based on available official statistics. The new code, coupled to a general ACA code, provides capability to complete probabilistic risk assessments from the point of view of the off-site economic consequences, and also to perform cost-effectiveness analysis of the different countermeasures in the field of emergency preparedness

  14. Study of Electron Gas on a Neutron-Rich Nuclear Pasta

    Science.gov (United States)

    Ramirez-Homs, Enrique

    This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.

  15. On-line mass spectrometry measurement of fission gas release from nuclear fuel submitted to thermal transients

    International Nuclear Information System (INIS)

    Guigues, E.; Janulyte, A.; Zerega, Y.; Pontillon, Y.

    2013-06-01

    The work presented in this paper has been performed in the framework of a joint research program between Aix-Marseille University and CEA Cadarache. The aim is to develop a mass spectrometer (MS) device for the MERARG facility. MERARG is devoted to the study of fission gas release measurement, from nuclear fuels submitted to annealing tests in high activity laboratory such as LECA-STAR, thanks to gamma spectrometry. The mass spectrometer will then extend the measurement capability from the γ-emitters gases to all the gases involved in the release in order to have a better understanding of the fission gas release dynamics from fuel during thermal transients. Furthermore, the mass spectrometer instrument combines the capabilities and performances of both on-line (for release kinetic) and off-line implementations (for delayed accurate analysis of capacities containing total release gas). The paper deals with two main axes: (1) the modelling of gas sampling inlet device and its performance and (2) the first MS qualification/calibration results. The inlet device samples the gas and also adapts the pressure between MERARG sweeping line at 1.2 bar and mass spectrometer chamber at high vacuum. It is a two-stage device comprising a capillary at inlet, an intermediate vacuum chamber, a molecular leak inlet and a two-stage pumping device. Pressure drops, conductance and throughputs are estimated both for mass spectrometer operation and for exhaust gas recovery. Possible gas segregation is also estimated and device modification is proposed to attain a more accurate calibration. First experimental results obtained from a standard gas bottle show that the quantitative analysis at a few ppm level can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  16. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.

    Science.gov (United States)

    Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam

    2010-06-01

    Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments

    International Nuclear Information System (INIS)

    Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai

    2012-01-01

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

  18. Hydroxylamine a potential reagent for dissolution off gas scrubbing in nuclear spent fuel reprocessing: kinetics of the iodine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C.; Devisme, F. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Chopin, J.; Vargas, S.

    1996-12-31

    Iodine, which can be released inside the containment buildings when accident occurs, can be traced, in normal operating conditions, at the back end of the fuel cycle. Hydroxylamine has been selected as a regent of potential interest to trap iodine in the dissolution off gas treatment. The kinetics of the reaction between hydroxylamine and iodine has been studied in a narrow range of pH(1-2), with hydroxylamine in excess (ratios of hydroxylamine to iodine initial concentrations varying from 2 to 40), at constant temperature (30 deg. C) and ionic strength (0.1 mol/l). Spectrophotometry and voltametry have been coupled for analytical solved using a investigation. The problem of the rapid mixing of the reactants has been solved using a continuous reactor. Tri-iodine has been shown non reactive towards hydroxylamine. An initial rate law have been proposed, pointing out the first order of the reaction with respect to hydroxylamine and iodine, and the inhibitory effect and hydrogen ions. Nitrous acid has been identified as a transitory product. Nitrous oxide and nitrogen monoxide have been detected by gas chromatography, the ratio of the amounts of products formed depending on acidity. The complexity of the overall reaction has been ascribed to the competition of hour reactions (I{sub 2} + I <=> I{sub 3}{sup -}NH{sub 3}OH{sup +} + 2 I{sub 2} + H{sub 2}O ->HNO{sub 2} + 4 I{sup -} + 5 H{sup +}; NH{sub 3}OH{sup +} + HNO{sub 2} -> N{sub 2}O + 2 H{sub 2}O + H-+ 2HNO{sub 2} + 2 I{sup -} + 2H-+ -> 2 NO + I{sub 2} + H{sub 2}O). (authors). 12 refs.

  19. India's nuclear spin-off

    International Nuclear Information System (INIS)

    Kaul, Ravi.

    1974-01-01

    After examining world-wide reactions of the foreign governments and news media to the India's peaceful nuclear experiment (PNE) in the Rajasthan Desert on 18 May 1974, development of nuclear technology in India is assessed and its economic advantages are described. Implications of the Non-Proliferation Treaty are explained. Psychological impact of India's PNE on India's neighbours and superpowers and associated political problems in context of proliferation of nuclear weapons are discussed in detail. (M.G.B.)

  20. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  1. Canadian experience with spin-offs from nuclear technology

    International Nuclear Information System (INIS)

    Lennox, C.G.; Garvey, P.M.

    1989-01-01

    The innovation process introduced into AECL's research laboratories is described, with its achievements in increased commercial and spin-off businesses. In particular, the role of the champion or entrepreneur is emphasized in the manner in which he/she interacts within a dedicated team to pursue each opportunity. Examples are provided of several commercial and business development opportunities resulting from the background research programs

  2. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  3. Gas processing industrial hygiene needs

    International Nuclear Information System (INIS)

    D'Orsie, S.M.

    1992-01-01

    Handling of gases and natural gas liquids provides many opportunities for workers to be exposed to adverse chemical and physical agents. A brief overview of common hazards found in the processing of gas and natural gas liquids is presented in this paper. Suggestions on how an employer can obtain assistance in evaluating his workplace are also presented.presented

  4. Methane emissions due to oil and natural gas operations in the Netherlands

    International Nuclear Information System (INIS)

    Oonk, J.; Vosbeek, M.E.J.P.

    1995-01-01

    The Netherlands is the 4th largest natural gas producer, with about 4% of the total world natural gas production. Also, significant amounts of oil are extracted. For this reason it can be expected that methane emissions from oil and natural gas operations contribute significantly to total methane emissions. Estimates so far, made by both the Dutch government and the industry vary widely. A renewed estimate is made of methane emissions from oil and natural gas production, based on a detailed engineering study of sources of methane in the system and quantification of source strengths. The estimate is validated by interpretation of atmospheric measurements. 1990 methane emissions from natural gas production were estimated to be 62 to 108 kton. The main cause of methane emissions is the venting of off-gases from processes and passing-valve emissions in the off-shore. Emissions from oil production were estimated to be 14 kton, mainly caused by venting of off-gases from processes. Best feasible options for emission reduction are: identification and replacement of leaking valves, and reuse or re-compression of off-gases from processes. Both options are existing policy in the Netherlands. 23 figs., 38 tabs., 2 appendices, 53 refs

  5. Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Tockstein, Jameson

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  6. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  7. Removal of Aerosol Particles Generated from Vitrification Process for High-Level Liquid Wastes

    OpenAIRE

    加藤 功

    1990-01-01

    The vitrification technology has been developed for the high-level liquid waste (HLLW) from reprocessing nuclear spent fuel in PNC. The removal performance of the aerosol particles generated from the melting process was studied in a nonradioactive full-scale mock-up test facility (MTF). The off-gas treatment system consists of submerged bed scrubber (SBS), venturi scrubber, NOx absorber, high efficiency mist eliminater (HEME). Deoomtamination factors (DFs) were derived from the mass ratio of ...

  8. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  9. Modeling nuclear processes by Simulink

    International Nuclear Information System (INIS)

    Rashid, Nahrul Khair Alang Md

    2015-01-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples

  10. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Battaglia, Francine

    2008-01-01

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  11. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  12. Process and device for reducing the presence in the safety containment of a nuclear reactor

    International Nuclear Information System (INIS)

    Stiefel, M.

    1981-01-01

    If faults occur, the excess pressure in the safety containment has to be reduced. Part of the gas contents of the safety containment is drawn off for this purpose. Hydrogen up to a maximum of 3.5% by volume is added to the drawn-off gas. The gas enriched with hydrogen is taken through a recombiner, where part of the oxygen content of the gas burns with the hydrogen, producing water. The gas with reduced oxygen content is returned to the safety containment via the free end of an annular pipe. The pressure existing in the safety containment is reduced according to the reduction in oxygen content. (orig./HP) [de

  13. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats

    International Nuclear Information System (INIS)

    1992-01-01

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems

  14. Data-processing program from the operating modes of the nuclear reactor (P0DER)

    International Nuclear Information System (INIS)

    Totev, T.L.; Boyadzhiev, A.I.

    1981-01-01

    A program PODER for processing data from the operating modes of the reactors taking into account the effects of corrosion, hydration, and deformation of the nuclear reactor fuel element sheathing, the formation of the corrosion product deposits, the change in the geometric dimensions of the nuclear reactor fuel element due to the temperature deformation, as well as the various gas fillers, are elaborated. The ''hot channel'' method determining the reliability of the system is realized. The basic equations describing the thermohydraulic processes in nuclear reactors are solved by the finite difference method. Approximations are carried out with the approach of least squares. The temperature distribution versus the zirconium sheathing height is computed for the case of WWER-440 type reactors. The advantages of the proposed program P0DER are discussed

  15. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2000-01-01

    Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However the scale of that contribution will be strongly influenced by the way in which this contribution is recognised in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent years, has come about as a result of the massive explosion in greenhouse gas emissions since the beginning of the industrial era. This paper will give an overview of the institutions and organisations involved in the international climate change negotiations. It will describe the political positions of different countries on their perceived role of nuclear power in mechanisms designed to reduce greenhouse gas emissions. The paper will also give an insight into the financial impact of assigning a value to carbon emissions and how that might change the relative economics of nuclear power in comparison to fossil fuel generation

  16. ‘Face’ and psychological processes of laid-off workers in transitional China

    Directory of Open Access Journals (Sweden)

    Bingxin Wang

    2016-08-01

    Full Text Available Objective: The objective was to explore the psychological experiences of laid-off workers in contemporary transitional China and to formulate a theoretical model of these. Methods: In-depth interviews of 26 laid-off workers were conducted and analysed using grounded theory techniques. Results: Four themes underline the psychological processes of these laid-off workers – feeling of loss, feeling of physical pain, feeling of fatalism, and final acceptance. These are characterized by Chinese culture and its philosophy – feeling of loss is dominated by their loss of face (diu mianzi, physical pain is a somatization of their mental painfulness, their fatalism is traced back to the Chinese ancient theocratic concept of Tian Ming, and their acceptance of reality to their final making face (zheng mianzi is sourced from both Confucianism and Daoism. Conclusion: The psychological experience of laid-off workers (or unemployed workers is likely to have varied manifestations in different cultural contexts. The psychological processes of Chinese laid-off workers (or unemployed workers might be different from those of laid-off workers in Western countries. A therapeutic intervention to cater for the needs of laid-off workers derived from the four themes might be effective.

  17. Off-gassing induced tracer release from molten basalt pools

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Callow, R.A.

    1994-01-01

    Two in situ vitrification (ISV) field tests were conducted at the Idaho National Engineering Laboratory (INEL) during the summer of 1990 to assess ISV suitability for long-term stabilization of buried waste that contains transuranic and other radionuclide contaminants. The ISV process uses electrical resistance heating to melt buried waste and soil in place, which upon cooldown and resolidification fixes the waste into a vitrified (glass-like) form. In these two ISV field tests, small quantities of rare-earth oxides (tracers DY 2 O 3 , Yb 2 O 3 , and Tb 4 O 7 ) were placed in the test pits to simulate the presence of plutonium oxides and assess plutonium retention/release behavior. The analysis presented in this report indicates that dissolution of tracer oxides into basaltic melts can be expected with subsequent tracer molecular or microparticle carry-off by escaping gas bubbles, which is similar to adsorptive bubble separation and ion flotation processes employed in the chemical industry to separate dilute heavy species from liquids under gas sparging conditions. Gaseous bubble escape from the melt surface and associated aerosolization is believed to be responsible for small quantities of tracer ejection from the melt surface to the cover hood and off-gas collection system. Methods of controlling off-gassing during ISV would be expected to improve the overall retention of such heavy oxide contaminants during melting/vitrification of buried waste

  18. Aspects of nuclear process heat application of very high temperature reactors (VHTR)

    International Nuclear Information System (INIS)

    Jansing, W.T.; Kugeler, K.

    2014-01-01

    The different processes of high temperature process application require new concepts for heat exchangers to carry out key process like steam reforming of light hydrocarbons, gasification of coal or biomass, or thermo-chemical cycles for hydrogen production. These components have been tested in the German projects for high temperature development. The intention was always to test at original conditions of temperatures, pressures and gas atmospheres. Furthermore the time of testing should be long as possible, to be able to carry out extrapolations to the real lifetime of components. Partly test times of around 20 000 hours have been reached. Key components, which are discussed in this paper, are: Intermediate heat exchangers to separate the primary reactor side and the secondary process side. Here two components with a power of 10 MW have been tested with the result, that all requirements of a nuclear component with larger power (125 MW) can be fulfilled. The max. primary helium temperature was 950°C, the maximal secondary temperature was 900°C. These were components with helical wounded tubes and U-tubes. In the test facility KVK, which had been built to carry out many special tests on components for helium cycles, furthermore hot gas ducts (with large dimensions), hot gas valves (with large dimensions), steam generators (10 MW), helium circulators, the helium gas purification and special measurements installations for helium cycle have been tested. All these tests delivered a broad know how for the urther development of technologies using helium as working fluid. The total test time of KVK was longer than 20 000 h. In a large test facility for steam reforming (EVAⅡ10 MW, T He =950°C, p He =40 bar, T Reform =800°C) all technical details of the conversion process have been investigated and today the technical feasibility of this process is valuated as given. Two reformer bundles, one with baffles and one with separate guiding tubes for each reformer tube have

  19. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel

    International Nuclear Information System (INIS)

    Wu, Jie; Liu, Run; Xue, Wenbin; Wang, Bin; Jin, Xiaoyue; Du, Jiancheng

    2014-01-01

    Highlights: • Cooling rate of carburized steel at the end of PEC treatment is measured. • The quench hardening in the fast or slow turn-off mode hardly takes place. • Decrease of the surface roughness during slow turn-off process is found. • A slow turn-off mode is recommended to replace the conventional turn-off mode. - Abstract: Plasma electrolytic carburizing (PEC) under different turn-off modes was employed to fabricate a hardening layer on carbon steel in glycerol solution without stirring at 380 V for 3 min. The quenching process in fast turn-off mode or slow turn-off mode of power supply was discussed. The temperature in the interior of steel and electron temperature in plasma discharge envelope during the quenching process were evaluated. It was found that the cooling rates of PEC samples in both turn-off modes were below 20 °C/s, because the vapor film boiling around the steel sample reduced the cooling rate greatly in terms of Leidenfrost effect. Thus the quench hardening hardly took place, though the slow turn-off mode slightly decreased the surface roughness of PEC steel. At the end of PEC treatment, the fast turn-off mode used widely at present cannot enhance the surface hardness by quench hardening, and the slow turn-off mode was recommended in order to protect the electronic devices against a large current surge

  20. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  1. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  2. The knowledge-based off-site emergency response system for a nuclear power plant

    International Nuclear Information System (INIS)

    Ho, L.W.; Loa, W.W.; Wang, C.L.

    1987-01-01

    A knowledge-based expert system for a nuclear power plant off-site emergency response system is described. The system incorporates the knowledge about the nuclear power plant behaviours, site environment and site geographic factors, etc. The system is developed using Chinshan nuclear power station of Taipower Company, Taiwan, ROC as a representative model. The objectives of developing this system are to provide an automated intelligent system with functions of accident simulation, prediction and with learning capabilities to supplement the actions of the emergency planners and accident managers in order to protect the plant personnel and the surrounding population, and prevent or mitigate property damages resulting from the plant accident. The system is capable of providing local and national authorities with rapid retrieval data from the site characteristics and accident progression. The system can also provide the framework for allocation of available resources and can handle the uncertainties in data and models

  3. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates

  4. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  5. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  6. Gas storage and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro.

    1988-01-01

    Purpose: To improve the gas solidification processing performance in a gas storing and processing device for solidifying treatment of radioactive gaseous wastes (krypton 85) by ion injection method. Constitution: The device according to the present invention is constituted by disposing a coil connected with a magnetic field power source to the outer circumference of an outer cathode vessel, so that axial magnetic fields are formed to the inside of the outer cathode vessel. With such a device, thermoelectrons released from the thermocathode downwardly collide against gaseous radioactive wastes at high probability while moving spirally by the magnetic fields. The thus formed gas ions are solidified by sputtering in the cathode in the vessel. (Horiuchi, T.)

  7. Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model

    Science.gov (United States)

    Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.

    2018-05-01

    The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.

  8. Adequate Measuring Technology and System of Fission Gas release Behavior from Voloxidation Process

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Yang, M. S.; Song, K. C.

    2006-09-01

    Based on the published literature and an understanding of available hot cell technologies, more accurate measuring methods for each volatile fission product released from voloxidation process were reviewed and selected. The conceptual design of an apparatus for measuring volatile and/or semi-volatile fission products released from spent fuel was prepared. It was identified that on-line measurement techniques can be applied for gamma-emitting fission products, and off-line measurement such as chemical/or neutron activation analysis can applied for analyzing beta-emitting fission gases. Collection methods using appropriate material or solutions were selected to measure the release fraction of beta-emitting gaseous fission products at IMEF M6 hot cell. Especially, the on-line gamma-ray counting system for monitoring of 85Kr and the off-line measuring system of 14C was established. On-line measuring system for obtaining removal ratios of the semi-volatile fission products, mainly gamma-emitting fission products such as Cs, Ru etc., was also developed at IMEF M6 hot cell which was based on by measuring fuel inventory before and after the voloxidation test through gamma measuring technique. The development of this measurement system may enable basic information to be obtained to support design of the off-gas treatment system for the voloxidation process at INL, USA

  9. Possible techniques for decontamination of natural gas from gas wells stimulated by a nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Wethington, Jr, John A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Decontamination of the products from gas wells stimulated by nuclear explosions requires the removal of T, present as HT, CH{sub 3}T, C{sub 2}H{sub 5}T, etc., and {sup 85}Kr from the production stream. Flaring of large volumes of gas from the Gasbuggy well led to the replacement of radioactive cavity gas with inactive formation gas, but this would not be a satisfactory production procedure because it releases T and {sup 85}Kr into the atmosphere and wastes large amounts of product gas. Exchange reactions appear to offer promise for removing the tritium. For example, water or steam flowing countercurrent to tritiated gas in the presence of a suitable catalyst can participate in the exchange reactions CH{sub 3}T + H{sub 2}O {r_reversible} CH{sub 4} + HTO, HT + H{sub 2}O {r_reversible} H{sub 2} + HTO, resulting in the transfer of T from gas into water. Other possibilities for utilizing exchange reactions include exchange of the gas with ethylene glycol used in the gas dryer, with silicate rocks introduced into the gas stream, or with a countercurrent stream of NH{sub 3} or H{sub 2}S. As another approach, use of the contaminated gas for the manufacture of ammonia synthesis gas has potential for removal of both T and {sup 85}Kr. (author)

  10. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall.

    Science.gov (United States)

    Egodawatta, Prasanna; Goonetilleke, Ashantha

    2008-01-01

    Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.

  11. Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power

    Science.gov (United States)

    Kharecha, Pushker A.; Hansen, James E.

    2013-01-01

    In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.

  12. Treatment and separation of radioactive fission products tritium, rare gases and iodine in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Schnez, H.

    1975-07-15

    Rare gases must be separated from the process off-gases of the head-end of the Purex and Thorex processes. To achieve high decontamination factors, the quantity of off-gas should be kept as low as possible. For rare gas separation, there are two possible methods of routing the off-gas: (a) the open flushing gas circuit, in which the purified off-gas (generally air) is passed off via the stack and (b) the closed circuit in which the off-gas (nitrogen or rare gases) is recycled to the dissolver after purification. Tritium must not be entrained into the second extraction cycle or be emitted with off-gases in the form of water vapor (HTO) or HT, but must remain completely in the aqueous phase. Most of the process water is recycled, as a result of which the tritium becomes concentrated in it. This tritiated water is then subjected to tritium rectification at a suitable point in the process. Iodine is very difficult to isolate to a small number of process stages. Present aim is to release the iodine in the dissolver stage into the off-gas, so as to prevent it being entrained into the extraction part. By the injection of hot nitrogen or water vapor into the dissolver or into iodine-containing condensates, all of the iodine is passed into the gaseous phase. Scrubbers can also be used together with iodine-containing condensates to adjust the scrubbing solution. Capital cost of separation plants account for 1 to 10 percent of the total cost of the reprocessing installation, and even more if a sophisticated tritium separation system is required. (DLC)

  13. On-site and off-site atmospheric PBDEs in an electronic dismantling workshop in south China: Gas-particle partitioning and human exposure assessment

    International Nuclear Information System (INIS)

    An Taicheng; Zhang Delin; Li Guiying; Mai Bixian; Fu Jiamo

    2011-01-01

    Gas samples and total suspended particle during work and off work time were investigated on-site and off-site electronic waste dismantling workshop (I- and O-EWDW), then compared with plastic recycling workshop (PRW) and waste incineration plant (WIP). TSP concentrations and total PBDE were 0.36-2.21 mg/m 3 and 27-2975 ng/m 3 at different workshops, respectively. BDE-47, -99, and -209 were major ΣPBDE congeners at I-EWDW and WIP, while BDE-209 was only dominant congener in PRW and control sites during work time and all sites during off work time. The gas-particle partitioning result was well correlated with the subcooled liquid vapor pressure for all samples, except for WIP and I-EDWD, at park during work time, and residential area during off work time. The predicted urban curve fitted well with measured φ values at O-DEWD during work time, whereas it was slightly overestimated or underestimated for others. Exposure assessment revealed the highest exposure site was I-EDWD. - Highlights: → On- and off-site atmospheric PBDEs was monitored in e-waste dismantling workshops in south China. → The gas-particle partitioning result was well correlated with the subcooled liquid vapor pressure for some samples. → Exposure assessment revealed that workers in I-EDWD were the highest exposure population. - The findings of this study may serve as a valuable reference for future risk assessment and environmental management in Guiyu, South China.

  14. Evaluation of the performance of thermal diffusion column separating binary gas mixtures with continuous draw-off

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Takashima, Yoichi

    1977-01-01

    Advanced transport relations involving three column constants, H sup(σ), K sub(c)sup(σ) and K sub(d)sup(σ), are developed to describe the separation performance of a thermal diffusion column with continuous draw-off. These constants were related to some integral functions of velocity profile, temperature distribution, density of gas mixture and characteristic values of transport coefficients. The separation of binary gas mixture by this technique was so effective that three reasonable factors had to be introduced into the column constants in the theory. They are a circulation constant of natural convection, a definition of characteristic mean temperature and a definition of mean composition over the column. The separation performance and the column constants also varied with the distortion of velocity profile due to continuous draw-off from the top or the bottom of column. However, its effect was not large, compared with the other factors mentioned above. The theory presented here makes possible to estimate the separation performance of hot-wire type thermal diffusion column with high accuracy. (auth.)

  15. Incineration of radioactive wastes at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, W; Hempelmann, W; Krause, H

    1976-06-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the fumes are cleaned by ceramic filter candles. After passing the filtering system and cooling, the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 l-drums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m/sup 3/ of combustible solids and about 60 m/sup 3/ organic solvents have been incinerated in the plant. The operating experiences are presented.

  16. Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration

    International Nuclear Information System (INIS)

    Arbabzadeh, Maryam; Johnson, Jeremiah X.; De Kleine, Robert; Keoleian, Gregory A.

    2015-01-01

    Highlights: • We assess energy storage role in reaching emissions targets in an off-grid model. • The energy storage technology is vanadium redox flow battery (VRFB). • We evaluate life cycle GHG emissions and total cost of delivered electricity. • Generation mixes are optimized to meet emissions targets at the minimum cost. • For this model, integrating VRFB is economical to reach very low emissions targets. - Abstract: Energy storage may serve as a solution to the integration challenges of high penetrations of wind, helping to reduce curtailment, provide system balancing services, and reduce emissions. This study determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) model is developed to determine the system configuration needed to achieve a variety of CO 2 -eq emissions targets. The relationship between total system costs and life cycle emissions are used to optimize the generation mixes to achieve emissions targets at the least cost and determine when VRFBs are preferable over wind curtailment. Different greenhouse gas (GHG) emissions targets are defined for the off-grid system and the minimum cost resource configuration is determined to meet those targets. This approach determines when the use of VRFBs is more cost effective than wind curtailment in reaching GHG emissions targets. The research demonstrates that while incorporating energy storage consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except under very low emission targets (190 g of CO2-eq/kW h and less for the examined system). This suggests that “overbuilding” wind is a more viable option to reduce life cycle emissions for all but the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage could be economically preferable only when wind curtailment exceeds 66% for the

  17. Conversion of nuclear power plants into natural gas plant: dismaking the disinformation

    International Nuclear Information System (INIS)

    Lima Porto, M.S.P. de.

    1990-05-01

    This work was presented by the Brasilian Nuclear Energy Association - ABEN during the meeting of May 9th of the GT Pronen-Grupo de trabalho do Programa Nacional de Energia Nuclear created by the decret 99194 of March 27, 90. The political subject named convertion of nuclear power plants into natural gas plants is analysed. The conclusion calls for the total technical impossibility of such 'convertion'. The term reconstruction is sugested in substitution to the term convertion. Complete and actual data with figures of the reconstruction, in USA, of the Midland units I and II is presented. The case of Montalto Di Castro plant, in Italy, where no work at all was performed is analysed. Considerations concerning the use of natural gas in the brasilian energy matrix is also presented. (author)

  18. Basic research on nuclear track microfilters for gas separation

    CERN Document Server

    Sudowe, R; Ensinger, W; Vetter, J; Penzhorn, R D; Brandt, R

    1999-01-01

    Basic research on nuclear track microfilters, NTMF, made from the polyimide foil UPILEX, has been carried out to investigate the possible use of NTMF for gas separation in an environment containing large amounts of tritium. NTMF with a pore diameter as low as 0.1 mu m have been etched and metal replicas of the pores have been produced to determine the pore shape. An experimental setup for determining the separation factor of a NTMF for a given gas mixture has been constructed, and first experiments have been carried out.

  19. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  20. A preliminary assessment of the radiological implications of commercial utilization of natural gas from a nuclearly stimulated well

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D G; Struxness, E G [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bowman, C R [El Paso Natural Gas Company, El Paso, TX (United States)

    1970-05-01

    Widespread utilization of nuclear explosives, in conjunction with the natural gas industry, can result in radiation exposure of sizable population groups. It is prudent to make realistic assessments of such potential radiation exposures before they occur and, unless the expected exposures are clearly insignificant, to consider these exposures in evaluating the net benefit of this particular use of nuclear energy. All pertinent facts relating to such assessments should be made public and presented in such a way that those who are to assume the risks, if any, can make a reasonable judgment as to whether the risks are acceptable. Radioactivity in natural gas from the Gasbuggy cavity has been analyzed prior to and during flaring operations. None of this gas has entered the collection and distribution system, but a theoretical analysis has been made of the hypothetical impact on members of the public that would have occurred if the gas had been introduced into the commercial stream. Dose equivalents have been estimated for both workers and consumers. In this analysis, Gasbuggy gas has been traced through a real gas-collection system and processing plant, as represented by the present situation existing in the San Juan Production Division, El Paso Natural Gas Company. In addition, a number of considerations are presented which would apply to radiation exposure in metropolitan areas. Results of this analysis for the Gasbuggy well indicate hypothetical dose equivalents to various population groups to be well within the annual dose limits suggested by the International Commission on Radiological Protection. Projection to a steady-state situation involving extensive natural gas production from many producing wells also resulted in hypothetical dose equivalents within the annual dose limits. Simple extrapolation of the results from this analysis to potential exposures resulting from nuclear stimulation of other gas reservoirs cannot be made on a direct basis, but this method

  1. A preliminary assessment of the radiological implications of commercial utilization of natural gas from a nuclearly stimulated well

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Struxness, E.G.; Bowman, C.R.

    1970-01-01

    Widespread utilization of nuclear explosives, in conjunction with the natural gas industry, can result in radiation exposure of sizable population groups. It is prudent to make realistic assessments of such potential radiation exposures before they occur and, unless the expected exposures are clearly insignificant, to consider these exposures in evaluating the net benefit of this particular use of nuclear energy. All pertinent facts relating to such assessments should be made public and presented in such a way that those who are to assume the risks, if any, can make a reasonable judgment as to whether the risks are acceptable. Radioactivity in natural gas from the Gasbuggy cavity has been analyzed prior to and during flaring operations. None of this gas has entered the collection and distribution system, but a theoretical analysis has been made of the hypothetical impact on members of the public that would have occurred if the gas had been introduced into the commercial stream. Dose equivalents have been estimated for both workers and consumers. In this analysis, Gasbuggy gas has been traced through a real gas-collection system and processing plant, as represented by the present situation existing in the San Juan Production Division, El Paso Natural Gas Company. In addition, a number of considerations are presented which would apply to radiation exposure in metropolitan areas. Results of this analysis for the Gasbuggy well indicate hypothetical dose equivalents to various population groups to be well within the annual dose limits suggested by the International Commission on Radiological Protection. Projection to a steady-state situation involving extensive natural gas production from many producing wells also resulted in hypothetical dose equivalents within the annual dose limits. Simple extrapolation of the results from this analysis to potential exposures resulting from nuclear stimulation of other gas reservoirs cannot be made on a direct basis, but this method

  2. Gas storing and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Takano, Yosoko.

    1988-01-01

    Purpose: To increase the gas injection processing performance and obtain stable accumulation layers by increasing the thickness of the accumulation layers of amorphous alloy. Constitution: The gas storing processing device comprises a cylindrical vessel constituting an outer cathode for introducing gases to be processed, an inner cathode in which transition metal material and rare earth metal material as a sputtering target disposed in the vessel are combined by way of insulating material, an anode cover disposed to the upper portion of the vessel and an anode bottom disposed at the bottom thereof. It is adapted such that DC high voltage sources are connected respectively to the outer and the inner cathodes and sputtering voltage can be applied, removed and controlled independently to the transition metal and the rare earth metal of the inner cathode. This enables to control the composition ratio of the accumulation layers of amorphous alloy formed to the surface of the outer cathode, thereby enabling operation related with the gas injection ratio. (Sekiya, K.)

  3. Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1989-01-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages

  4. Nuclear parton distributions

    Directory of Open Access Journals (Sweden)

    Kulagin S. A.

    2017-01-01

    Full Text Available We review a microscopic model of the nuclear parton distribution functions, which accounts for a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents, off-shell corrections to bound nucleon distributions and nuclear shadowing. We also discuss applications of this model to a number of processes including lepton-nucleus deep inelastic scattering, proton-nucleus Drell-Yan lepton pair production at Fermilab, as well as W± and Z0 boson production in proton-lead collisions at the LHC.

  5. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Haag, G.L.

    1980-01-01

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO 2 -Ba(OH) 2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO 3 , possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO 2 ) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH) 2 .8H 2 O flakes to remove CO 2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH) 2 .8H 2 O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH) 2 .8H 2 O to BaCO 3 and not from the hydration of the commercial Ba(OH) 2 .8H 2 O (i.e. Ba(OH) 2 .7.50H 2 O) to Ba(OH) 2 .8H 2 O

  6. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  7. On Markov processes in the hadron-nuclear and nuclear-nuclear collisions at superhigh energies

    International Nuclear Information System (INIS)

    Lebedeva, A.A.; Rus'kin, V.I.

    2001-01-01

    In the article the possibility of the Markov processes use as simulation method for mean characteristics of hadron-nuclear and nucleus-nuclear collisions at superhigh energies is discussed. The simple (hadron-nuclear collisions) and non-simple (nucleus-nuclear collisions) non-uniform Markov process of output constant spectrum and absorption in a nucleon's nucleus-target with rapidity y are considered. The expression allowing to simulate the different collision modes were obtained

  8. Canada's east coast offshore oil and gas industry: a backgrounder

    International Nuclear Information System (INIS)

    Bott, R.

    1999-06-01

    Another of the backgrounder series published by the Petroleum Communication Foundation, this booklet describes Canada's offshore oil and natural gas operations in the North Atlantic Ocean, specifically in the Hibernia (off Newfoundland, crude oil), Terra Nova (off Newfoundland, crude oil), Cohasset-Panuke (off Nova Scotia, crude oil) and Sable Island (off Nova Scotia, natural gas) fields. Together, these project represent an investment of more than 10 billion dollars and constitute a growing portion of Canada's 400,000 cubic metres of crude oil and natural gas liquids per day production. The booklet explains the importance of the offshore oil and natural gas industry to Canada, the benefits accruing to the maritime provinces locally, prospects for future offshore oil and natural gas development and provides a brief summary of each of the four current major projects. The booklet also provides an overview of the facilities required for offshore energy projects, environmental impacts and safeguards, exploration, drilling, production, processing and transportation aspects of offshore oil and gas projects. 9 refs, photos

  9. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment.

    Science.gov (United States)

    Purtskhvanidze, Konstantine; Hillenkamp, Jost; Tode, Jan; Junge, Olaf; Hedderich, Jürgen; Roider, Johann; Treumer, Felix

    2017-01-01

    To evaluate retinal layer thickness with optical coherence tomography (OCT) in eyes with macula-off retinal detachment after silicone oil (SiO) or gas endotamponade. Cross-sectional study of 40 eyes with macula-off rhegmatogenous retinal detachment that underwent vitrectomy. 20 eyes received SiO tamponade and 20 matched eyes received gas. 33 healthy fellow eyes served as controls. Macular spectral domain OCT was performed with automated layer detection in the 5 inner subfields of the Early Treatment Diabetic Retinopathy Study (ETDRS) map. Comparing the SiO group with the gas group, the ganglion cell layer showed a significant thinning in all fields of the inner ring of the ETDRS map, the inner plexiform layer in the nasal, superior and temporal quadrants, and the outer plexiform layer in the nasal quadrant. Inner retinal layers in the fovea/parafovea were significantly thinner in the SiO group. Prospective studies are warranted to further elucidate possible retinal adverse effects of SiO tamponade. © 2017 S. Karger AG, Basel.

  10. Nuclear Spiral Shocks and Induced Gas Inflows in Weak Oval Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong-Tae [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Elmegreen, Bruce G., E-mail: wkim@astro.snu.ac.kr, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-05-20

    Nuclear spirals are ubiquitous in galaxy centers. They exist not only in strong barred galaxies but also in galaxies without noticeable bars. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like and oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies as well as to drive supersonic turbulence at small radii.

  11. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  12. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  13. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Capdevila, H.; Clement, S. [CEA, DEN, DEC, SA3C, LAMIR, F-13108 Saint Paul lez Durance, (France); Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J. [Aix-Marseille Universite, LISA EA 4672, 13397 MARSEILLE cedex 20, (France)

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  14. Multiplicity distributions and multiplicity correlations in sequential, off-equilibrium fragmentation process

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    A new kinetic fragmentation model, the Fragmentation - Inactivation -Binary (FIB) model is described where a dissipative process stops randomly the sequential, conservative and off-equilibrium fragmentation process. (K.A.)

  15. The closure of European nuclear power plants: a commercial opportunity for the gas-producing countries

    International Nuclear Information System (INIS)

    Pauwels, J-P.; Swartenbroekx, C.

    2000-01-01

    The planned closure of nuclear power plants in Sweden, Germany, Belgium, Spain and the Netherlands and their hypothetical closure in the United Kingdom and Switzerland - two countries where this question remains open - will require their replacement by other types of production capacity, mainly gas turbine combined-cycle power stations (GTCCs). The increase in efficiency of GTCCs and the lower carbon content of natural gas favour the use of gas for electricity generation over coal. However, carbon dioxide emissions are unavoidable and, in the context of the Kyoto Protocol, supplementary measures must be taken to compensate, where possible, for the resulting increases in emissions. The replacement of nuclear plants with a 35-40 year lifetime by up-to-date GTCCs will require some 62 billion cubic metres per year of natural gas, resulting in an emissions increase of about 130 million tonnes per year of CO 2 . The replacement of polluting coal-fired and oil-fired plants by GTCCs will reduce CO 2 emissions, but will also require some extra 42 bcm/y of natural gas, at an (unrealistic) high cost. In short, gas-producing countries will benefit from the market breakthrough of their 'clean' fuel, thanks to the GTCCs, and gas demand will be reinforced by the abandonment of nuclear power. (author)

  16. Life Cycle Assessment Of Hydrogen Production From Natural Gas Reforming Process

    International Nuclear Information System (INIS)

    Ozturk, M.

    2010-01-01

    Society has become concerned about the issues of natural resource depletion and environmental degradation. The environmental performance of products or processes has become a key issue, which is why ways to minimize the effects on the environment are investigated. The most effective tool for this purpose is called life cycle assessment (LCA). This concept considers the entire life cycle of product or process. The life cycle of a product begins with the extraction of raw materials from the earth to create the product and ends at the point when all materials are returned to the earth. LCA makes it possible to estimate the cumulative environmental impacts resulting from all stages in the product life cycle, often including impacts not considered in more traditional analyses. Therefore, LCA provides a comprehensive view of the environmental aspects of the product or process and a more accurate picture of the true environmental trade-offs in product selection. In the case of this study, life cycle assessments of hydrogen production via natural gas reforming process are investigated for environmental affect.

  17. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  18. Development and testing of prototype alpha waste incinerator off-gas systems

    International Nuclear Information System (INIS)

    Freed, E.J.; Becker, G.W.

    1982-01-01

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  19. Metabonomics for detection of nuclear materials processing

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-01-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  20. Dense Molecular Gas and H2O Maser Emission in Galaxies F ...

    Indian Academy of Sciences (India)

    2School of Physics and Telecommunication Engineering, South China Normal University,. Guangzhou 510006, China. ∗ e-mail: jszhang@gzhu.edu.cn. Abstract. Extragalactic H2O masers have been found in dense gas cir- cumstance in off-nuclear star formation regions or within parsecs of. Active Galactic Nuclei (AGNs).

  1. Off-site nuclear emergency management

    International Nuclear Information System (INIS)

    Miska, H.

    2003-01-01

    Full text: Urgent protective measures for the possibly affected population are the main items to be addressed here, that means actions to be planned and taken in the pre-release and release phase of a nuclear accident. Since we will focus an off-site nuclear emergency management, the utility or licensee only plays a subordinate role, but nevertheless may be the potential cause of all actions. At the other end, there is the possible affected population, the environment, and also economic values. Emergency preparedness and response aims at minimizing adverse effects from the power plant to the values to protect. In the early phase of an accident under consideration here, prompt and sharp actions are necessary to ensure efficacy. On the other hand, the available information on the situation is most limited in this phase such that pre-determined actions based on simple criteria are indispensable. The responsibility for early response actions normally rest with a regional authority which may have some county administrations at subordinate level. The leader of the regional staff has to decide upon protective measures to be implemented at county or municipal level; thus, coherence of the response is ensured at least at a regional level. The decision will be governed at the one side by the existing or predicted radiological situation, on the other side an practical limitations like availability of teams and means. The radiological situation has to be assessed by an advisory team that compiles all information from the utility, the weather conditions, and monitoring results. While the staff leader is experienced through response to major non-nuclear events, the advisors mainly come from the environmental side, having no experience in taking swift decisions in an emergency, but are used to control and prevent. This might be the source of conflicts as observed in several exercises. The radiation protection advisors collect information from the utility, especially about time

  2. Incineration plant for radioactive waste at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hempelmann, W.; Krause, H.

    1977-02-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the flue gases are cleaned by ceramic filter candles. After passing the filtering system and cooling the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 ldrums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m 3 of combustible solids and about 60 m 3 organic solvents have been incinerated in the plant. The operating experiences are presented. (orig.) [de

  3. The nuclear liquid-gas phase transition: Present status and future perspectives

    International Nuclear Information System (INIS)

    Pochodzalla, J.; Imme, G.; Maddalena, V.

    1996-07-01

    More than two decades ago, the van der Waals behavior of the nucleon -nucleon force inspired the idea of a liquid-gas phase transition in nuclear matter. Heavy-ion reactions at relativistic energies offer the unique possibility for studying this phase transition in a finite, hadronic system. A general overview of this subject is given emphasizing the most recent results on nuclear calorimetry. (orig.)

  4. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  5. Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-05-01

    Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported

  6. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  7. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  8. Abundant natural gas delays nuclear decision for the Netherlands

    International Nuclear Information System (INIS)

    Wasser, P.J.B.

    1978-01-01

    The energy situation in the Netherlands is discussed. A decrease in natural gas reserves and a rise in energy demand will mean a relative decline in the share of natural gas in the economy. The share of primary energy sources in total energy consumption and the development of electricity consumption are shown. Two scenarios for future energy supply are worked out, one assuming cumulative growth and the other considering the case of gradual stabilization. Possible ways of meeting future demand are illustrated and factors to be considered in making a choice, such as the role of nuclear power, are indicated. (UK)

  9. Metabonomics for detection of nuclear materials processing.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  10. Gas Sorption, Diffusion and Permeation in a Polymer of Intrinsic Microporosity (PIM-7)

    KAUST Repository

    Alaslai, Nasser Y.

    2013-01-01

    consumption. Membrane technology is a relatively new separation process for natural gas purification with large growth potential, specifically for off-shore applications. The economics of any membrane separation process depend primarily on the intrinsic gas

  11. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off

    International Nuclear Information System (INIS)

    Sharma, Rakhi; Raychaudhuri, Santanu; Dasgupta, Asim

    2004-01-01

    Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus (PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other transcription factors at glutamine-glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS, KKKRD, spanning amino acids 125-129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells. Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with the nuclear fraction by 3-4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host cell transcription shut-off

  12. Blow-off device for limiting excess pressure in nuclear power plants, especially in boiling-water nuclear power plants

    International Nuclear Information System (INIS)

    Kuehnel, R.

    1979-01-01

    In a blow-off device for limiting excess pressure in nuclear power plants, at least one condensation tube disposed so that a lower outlet end thereof is immersed in a volume of water in a condensation chamber having a gas cushion located in a space above the volume of water, and the upper inlet end of the condensation tube extending out of the volume of water and being connectible to a source of steam that is to be condensed or a steam-air mixture, the outlet end of the condensation tube, for smoothing the condensation, being provided with wall parts forming passages extending in axial direction, delimited from one another and terminating in the water volume, the wall parts serving to subdivide steam flow from the source thereof and bubbles produced thereby in the water volume, the wall parts being constructed as a tube attachment and being formed with an opening corresponding to the outlet end of the condensation tube and by means of which the tube attachment is mounted on the outlet end of the condensation tube, a first group of the wall parts in the tube attachment being disposed in alignment with the outlet end of the condensation tube, and a second group of the wall parts surrounding the first group thereof, the passages formed by the second group of the wall parts communicating laterally with the passages formed by the first group of the wall parts, the passages formed by the second group of the wall parts, at least at the upper ends thereof, communicating with the water volume

  13. Device to remove hydrogen isotopes from a gas phase

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device described here guarantees the selective removal of hydrogen isotopes from gas phases in order to prevent the occurence of explosive H 2 gas mixtures, or to separate off radioactive tritium in nuclear plants from the gas phase. It consists of a closed container whose walls are selectively penetrable by hydrogen isotopes. It is simultaneously filled compactly and presssure-resistant with a metal bulk (e.g. powder, sponges or the like of titanium or other hydrogen isotope binding metal). Walling and bulk are maintained at suitable working temperatures by means of a system according to the Peltier effect. The whole thing is safeguarded by protective walling. (RB) [de

  14. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.

    Science.gov (United States)

    Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T

    2016-02-22

    We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.

  15. Finite size effects in liquid-gas phase transition of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Pawlowski, P.

    2001-01-01

    Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb

  16. Prospects for a fissile material cut-off: Achieving a successful NPT review process

    International Nuclear Information System (INIS)

    Kalinowski, M.

    1999-01-01

    Finding new and creative ways to overcome the current deadlock in progress in nuclear arms control became the most important question in the past year. For a long time it had been expected that after the conclusion of the Comprehensive Test Ban Treaty, the next step would be to ban production of fissile materials for weapon purposes. Three strategies are proposed for reaching relevant cut-off agreements. First suggests possible fore for achievement of relevant agreements, second is the proposal to begin with international register of inventories and production capabilities for all relevant nuclear materials, and the third one is ti identify equivalent steps obligatory for all the parties involved

  17. Gas-processing profit margin series begins in OGJ

    International Nuclear Information System (INIS)

    Kovacs, K.J.

    1991-01-01

    This paper reports on the bases and methods employed by the WK (Wright, Killen and Co, Houston) profit-margin indicator for U.S. gas-processing plants. Additionally, this article reviews the historical profitability of the gas-processing industry and key factors affecting these trends. Texas was selected as the most representative for the industry, reflecting the wide spectrum of gas-processing plants. The profit performance of Texas' gas plants is of special significance because of the large number of plants and high volume of NGL production in the region

  18. Calculational techniques for estimating population doses from radioactivity in natural gas from nuclearly stimulated wells

    International Nuclear Information System (INIS)

    Barton, C.J.; Moore, R.E.; Rohwer, P.S.; Kaye, S.V.

    1975-01-01

    Techniques for estimating radiation doses from exposure to combustion products of natural gas obtained from wells created by use of nuclear explosives were first developed in the Gasbuggy Project. These techniques were refined and extended by development of a number of computer codes in studies related to the Rulison Project, the second in the series of joint government-industry efforts to demonstrate the feasibility of increasing natural gas production from low-permeability rock formations by use of nuclear explosives. These techniques are described and dose estimates that illustrate their use are given. These dose estimation studies have been primarily theoretical, but we have tried to make our hypothetical exposure conditions correspond as closely as possible with conditions that could exist if nuclearly stimulated natural gas is used commercially. (author)

  19. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  20. Investigations on the applicability of pure gases in the transport of nuclear reaction products in a gas jet, and the use of this gas jet for radiochemical separation processes

    International Nuclear Information System (INIS)

    Aumann, D.C.; Presuhn, R.; Weismann, D.

    1975-01-01

    Earlier investigations on the effectivity of the transport of nuclear reaction products in a gas jet were continued where the transporting properties of ethylene and CO 2 in particular were examined in detail. By means of selected measurements, it is shown what influence the temperature of the gas bottle and that of the pressure releaser has on the transport yield. It is attempted from the results to explain the formation of aerosols in pure gases. The fission fragments of the spontaneous fission of Cf-252 are gamma-spectrometrically measured to determine the yields, or the total yield is determined by simple activity measurements. The determination of the isomeric ratio of Cs 138 m/g is described as an example of the possible application of a gas jet. Furthermore, an experiment for the search of super-heavy elements is suggested. (RB/LH) [de

  1. Investigations on the applicability of pure gases in the transport of nuclear reaction products in a gas jet, and the use of this gas jet for radiochemical separation processes

    International Nuclear Information System (INIS)

    Aumann, D.C.; Presuhn, R.; Weismann, D.

    1975-01-01

    Earlier investigations on the effectivity of the transport of nuclear reaction products in a gas jet were continued, the transporting properties of ethylene and CO 2 being particularly examined in detail. By means of selected measurements, it is shown what influence the temperature of the gas bottle and that of the pressure releaser has on the transport yield. It is attempted from the results to explain the formation of aerosols in pure gases. The fission fragments of the spontaneous fission of Cf-252 are gamma-spectrometrically measured to determine the yields, or the total yield is determined by simple activity measurements. The determination of the isomeric ratio of Cs 138 m/g is described as an example of the possible application of a gas jet. Furthermore, an experiment for the search of super-heavy elements is suggested. (RB/LH) [de

  2. Membrane System for the Recovery of Volatile Organic Compounds from Remediation Off-Gases. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    Membrane Technology and Research, Inc.'s (MTR's) membrane-based off-gas treatment technology separates the organic components from the off-gas stream, producing a VOC-free air stream that can be discharged or recycled to the gas-generating process. The membrane system produces a constant, high-quality air discharge stream irrespective of the feed-air composition. The system also produces a concentrated liquid VOC stream for disposal. Any water vapor present in the off-gas is removed as condensed dischargeable water. Benefits: Applicable to a broad range of off-gas generating sources. Target streams are off-gas from soil remediation by in situ vacuum extraction or air and steam sparging, and soil vitrification Suitable for remote sites: systems require minimal site preparation, little operator attention once installed, electrical power but no other utilities, and no expendable chemicals Minimizes waste volume: dischargeable air and water are produced, and VOCs removed from the feed gas ar e concentrated into a condensed liquid. No other waste streams result Treats off-gases containing both flammable and nonflammable and chlorinated and nonchlorinated VOCs Cost competitive with other technologies in the VOC concentration range 100-1,000 ppm and offers significant cost reduction at higher VOC concentrations Systems are easily moved and transported to new sites with a minimum of refurbishing or modification Generates no air emissions, minimizing permitting issues and speeding up the start of a clean-up operation Technology: Removal of VOCs from air streams with membranes is a relatively new technology

  3. Heat supply analysis of steam reforming hydrogen production process in conventional and nuclear

    International Nuclear Information System (INIS)

    Siti Alimah; Djati Hoesen Salimy

    2015-01-01

    Tile analysis of heat energy supply in the production of hydrogen by natural gas steam reforming process has been done. The aim of the study is to compare the energy supply system of conventional and nuclear heat. Methodology used in this study is an assessment of literature and analysis based on the comparisons. The study shows that the heat sources of fossil fuels (natural gas) is able to provide optimum operating conditions of temperature and pressure of 850-900 °C and 2-3 MPa, as well as the heat transfer is dominated by radiation heat transfer, so that the heat flux that can be achieved on the catalyst tube relatively high (50-80 kW/m"2) and provide high thermal efficiency of about 85 %. While in the system with nuclear energy, due to the demands of safety, process operating at less than optimum conditions of temperature and pressure of 800-850 °C and 4.5 MPa, as well as the heat transfer is dominated by convection heat transfer, so that the heat flux that can be achieved catalyst tube is relatively low (1020 kW/m"2) and it provides a low thermal efficiency of about 50 %. Modifications of reformer and heat utilization can increase the heat flux up to 40 kW/m"2 so that the thermal efficiency can reach 78 %. Nevertheless, the application of nuclear energy to hydrogen production with steam reforming process is able to reduce the burning of fossil fuels which has implications for the potential decrease in the rate of CO2 emissions into the environment. (author)

  4. Milestone Report - M3FT-15OR03120213 - A Literature Survey to Identify Potentially Problematic Volatile Iodine-Bearing Species Present in Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, Denis M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet U.S. regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially highest biological impact. Accordingly, control of the release of 129I is most critical with respect to U.S. regulations for the release of radioactive material in stack emissions. Current U.S. Environmental Protection Agency regulation governing nuclear facilities (40 CFR 190) states that the total quantity of radioactive materials entering the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy produced by the fuel cycle, must contain less than 5 mCi of 129I. The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2, and the focus of organic iodide studies has been CH3I.

  5. Test results from the GA technologies engineering-scale off-gas treatment system

    International Nuclear Information System (INIS)

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1984-06-01

    One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constitutents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Silver-based iodine adsorbents were found to catalyze the premature conversion of CO to CO 2 . Subsequent tests showed that iodine removal could not be performed downstream of the CO/HT oxidizer since iodine in the BOG system rapidly deactivated the Pt-coated alumina CO catalyst. Lead-exchanged zeolite (PbX) was found to be an acceptable alternative for removing iodine from BOG without CO conversion. Intermittent and steady-state tests of the pilot-plant SO 2 removal unit containing sodium-exchanged zeolite (NaX) demonstrated that decontamination factors greater than or equal to 100 could be maintained for up to 50 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system at GA, iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  6. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  7. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  8. The pebble-bed high-temperature reactor as a source of nuclear process heat. Vol. 10

    International Nuclear Information System (INIS)

    Schulten, R.; Kugeler, K.; Kugeler, M.; Niessen, H.F.; Roeth-Kamat, M.; Woike, O.

    1974-08-01

    The necessary development steps, which have to be taken for the construction of a prototype plant for nuclear process heat, are enumerated. In particular, the work which is involved for the development of the nuclear steam-reforming technique, for the further development of the ball-shaped fuel elements at high gas outlet temperatures and for the reactor components, is described in detail. A brief survey of the needs of development of the IHX (intermediate heat exchanger) is given. An attempt is made to give overall time and cost estimates. (orig.) [de

  9. Will nuclear blasts reverberate in the CPI chemical process industry

    Energy Technology Data Exchange (ETDEWEB)

    Chopey, N P

    1968-03-11

    Fully contained nuclear explosions result in a rubble- filled chimney having fractures up to 4 times the radius of the cavity itself. For natural gas stimulation, Project Gasbuggy boosters hope the explosion-produced network of fractures will provide a more-effective drainage of the gas reservoir. An expanded well bore should allow higher sustained rates of production, and the void space should afford an effective storage area for a high delivery rate over a short period of time. Nuclear stimulation should pay for itself best in deep, thick, low-permeability gas fields such as those located in the Rocky Mt. region. Copper producers foresee the use of nuclear blasts to create a chimney of broken low-grade ore that would be economically unworkable by ordinary means. For shale oil production, the blast would form a chimney of shale chunks that would likewise be treated in situ, by a new technique in which the material would be distilled or decomposed by heat. All these possibilites are still at preliminary exploratory stages, and much more work is needed to see if they are practical.

  10. Nuclear interactions between cosmic radiation and interstellar gas, and nucleosynthesis of lithium, beryllium, and boron

    International Nuclear Information System (INIS)

    Meneguzzi, Maurice.

    1975-01-01

    The effects of nuclear interactions between the nuclei of cosmic radiation and those of interstellar gas were studied. The variation in the chemical composition of cosmic radiation with energy shows that the quantity of matter it passes through decreases between 1 and 100GeV/nucleon from 6 to 1g/cm 2 approximately. The chemical and isotopic composition for C, N and O suggests that the relative abundances of these nuclei at the source are much the same as the universal abundances except for the ratio C/O, higher by about a factor 1.5 in cosmic radiation sources. The enrichment of interstellar gas in light elements Li, Be and B was calculated. The value obtained accounts well for the universal abundances of the four isotopes 6 Li, 9 Be, 10 B, 11 B independently of the model used. It may be assumed that large fluxes of low-energy cosmic rays exist in the remains of supernovae and that 7 Li is produced in these objects and then spread out in the galaxy. These objects could be extended sources of nuclear γ's, which are observable, but the same process proves unable to produce sufficient quantities of the very heavy proton-rich elements of dubious origin. Inelastic collisions or spallation reactions between cosmic and interstellar gas nuclei induce a quantity of nuclear γ ray emission not necessarily undetectable. The position flux of a few MeV from the β + disintegration of unstable spallation products is too low on the other hand to give an estimate of the low-energy cosmic radiation flux in the interstellar medium [fr

  11. Cooling facility of nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Kenji; Nagasaki, Hideo.

    1992-01-01

    In a cooling device of a nuclear power plant, an exhaust pipe for an incondensible gas is branched. One of the branched exhaust pipes is opened in a pressure suppression pool water in a suppression chamber containing pool water and the other is opened at a lower portion of a dry well incorporating a pressure vessel. In a state where the pressure in the dry well is higher than that in the suppression chamber, an off-gas is exhausted effectively by way of the exhaustion pipe in communication with the suppression chamber. In a state where there is no difference between the pressures and the opening end of the exhaustion pipe in communication with the suppression chamber is sealed with water, off-gas is exhausted by way of the exhaustion pipe in communication with the lower portion of the dry well. Then, since the incondensible gas in a heat transfer pipe is not accumulated, after-heat can be removed efficiently. Satisfactory cooling is maintained even after the coincidence of the pressures in the dry well with that in the suppression chamber, to decrease a pressure in a reactor container. (N.H.)

  12. Nuclear Data Processing for Reactor Physics Calculation

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Pandiangan, Tumpal

    2003-01-01

    Nuclear data processing for reactor physics calculation has been done. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in neutronic calculation. The processing code system such as NJOY-PC code has been used from linearization of nuclear cross-sections data and background contribution of resonance parameter (MF2) using RECONR module (0K) with energy range from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (i.e. 293K) by using BROADR module. The Grouper and Therma modules will be applied for multi-groups calculation which suitable for WIMS/D4 (69 groups) and thermalization of nuclear constants. The final stage of processing nuclear cross-sections is updating WIMS/D4 library. The WIMSR module in NJOY-PC and WILLIE code will be applied in this stage. The evaluated nuclear data file, especially for 1 H 1 isotope, was taken from JENDL-3.2 and ENDF/B-VI for preliminary study. The results of nuclear data processing 1 H 1 shows that the old-WIMS (WIMS-lama) library have much discrepancies comparing with JENDL-3.2 or ENDF/B-VI files, especially in energy around 5 keV

  13. Preliminary results on food consumption rates for off-site dose calculation of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Gab Bock; Chung, Yang Geun; Bang, Sun Young; Kang, Duk Won

    2005-01-01

    The Internal dose by food consumption mostly account for radiological dose of public around nuclear power plants(NPP). But, food consumption rate applied to off-site dose calculation in Korea which is the result of field investigation around Kori NPP by the KAERI in 1988. is not reflected of the latest dietary characteristics. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. To update the food consumption rates of the maximum individual, the analysis of the national food investigation results and field surveys around nuclear power plant sites have been carried out

  14. Development of high purity CO gas recovery system for BOF gas by modified PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Sakuraya, Toshikazu; Fujii, Tetsuya; Yaji, Motoyasu; Matsuki, Takao; Matsui, Shigeo; Hayashi, Shigeki

    1985-01-01

    COPISA process (where two processes for separating CO-adsorptive gases and desorbing desorption-difficult gas are added to conventional PSA gas separation process) is outlined. In two units of PSA, CO/sub 2/ gas is adsorbed and separated in first PSA unit. The gas excluding CO/sub 2/ is fed to second PSA unit, where CO is adsorbed and separated from N/sub 2/ and H/sub 2/, and then desorbed and recovered under reduced pressure. For optimizing the process, a pilot plant was operated for about 1000 hrs. in a half year. The results confirm possibility of simplifying pre-treatment of coal gas. CO-PSA pressure swing pattern suitable for elimination of Co-adsorptive N/sub 2/ is established. Recovery of CO gas is enhanced. Optimization of gas flow pattern between adsorption towers required for reduction in operating cost is performed. (7 figs, 1 tab, 8 refs)

  15. Lattice-enabled nuclear reactions in the nickel and hydrogen gas system

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    Thousands of lattice-enabled nuclear reaction (LENR) experiments involving electrochemical loading of deuterium into palladium have been conducted and reported in hundreds of papers. But, it appears that the first commercial LENR power generators will employ gas loading of hydrogen onto nickel. This article reviews the scientific base for LENR in the gas-loaded Ni-H system, and some of the tests of pre-commercial prototype generators based on this combination. (author)

  16. Great gas plants : these five natural gas processing facilities demonstrate decades of top-flight technology

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-07-15

    The natural gas purification and pipeline sector is a major economic driver in Canada. Gas processing facilities are growing in number, and several large gas projects are being planned for future construction in the western provinces. This article outlined 5 gas plants in order to illustrate the sector's history and breadth in Canada. The Shell Jumping Pound gas complex was constructed in 1951 after a sulfur-rich gas discovery near Calgary in 1944. The Empress Straddle plant was built in 1971 in southeastern Alberta and is one of the largest single industrial consumers of electrical power in the province. The Fort Nelson gas processing plant is North America's largest sour gas processing facility. The Shell Caroline complex was built 1993. The Sable offshore energy project is located on the coast of Nova Scotia to handle gas produced from the Thebaud wells. A consortium is now considering the development of new gas fields in the Sable area. 5 figs.

  17. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  18. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    International Nuclear Information System (INIS)

    Wijmans, J.G.

    2003-01-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  19. Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1988-07-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs

  20. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)