WorldWideScience

Sample records for nuclear physics department

  1. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  2. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  3. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  4. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1987-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1985 to September 30, 1986. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  5. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1984 to September 30, 1985. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the antiproton beams at CERN. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  6. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1981-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1979 to September 30, 1980. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  7. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1983-01-01

    The experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1981 to September 30, 1982 are presented. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories, in particular the SARA facility at Grenoble, the boosted tandem at Heidelberg and the secondary beams at CERN [fr

  8. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    In the Laboratory of Chemistry and Radiochemistry, research on chemistry of the transactinide elements 104(Rf), 105(Db) and 106(Sg) in model systems with their homologs (Zr, Hf, Nb, Ta, Mo, and W) was continued, and studies on ion-exchange and extraction behaviour of Tc, Re and Os as homologs of Bh(107) and Hs(108) were started. Basing on the law of periodicity, conditions for separation of superheavy elements Rf, Sg, and Bh were adjusted. A particularly important achievement was participation of our group in the third experiment in the world on aqueous chemistry of Sg, performed in the summer 1998 in GSI Darmstadt. The Environmental Radioactivity Laboratory, was continuing non-stop records of the ground-level atmospheric radioactivity. Besides, Pu content was determined in two-years collection of rainwater samples. An air monitoring station was recently equipped with a prototype γ-spectrometric scintillation system which, modem-coupled with the central server, will be tested in the Laboratory. For ultra-low-background measurements a muonic chamber was designed and made, and new spectrometer's background was recorded in various shielding configurations. Research on α-active and γ-active environmental contaminants in Antarctic samples, supplied by the Institute of Botany of the Jagiellonian University, resulted in an M.Sc. thesis defended in June 1998. Other cooperations of the Laboratory in 1998 have been the following: a) determination of 90 Sr and 137 Cs in wild animals bones (Institute of Nuclear Techniques, Technical University, Budapest, Hungary and Medical Academy, Bialystok, Poland); b) PIXE determinations of trace elements in ASS-500 air filters (Department 2 of the Institute) and mineralogical studies of collected dusts (Institute of Geological Sciences, Jagiellonian University and the Institute of Geography, Pedagogical University, Cracow); c) a-spectrometric determination of radium isotopes in river waters and bottom sediments (Institute of Geography

  9. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    taking part in the proficiency test on the determination of 239 Pu, 241 Pu and 241 Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238 Pu, 239+240 Pu, 241 Pu, 241 Am and 244 Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90 Sr and 241 Pu accumulated in animal bones. For 90 Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32 P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32 P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na 2 H 32 PO 4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32 P were prepared. Liquid 32 P sources calibrated in the Institute were first applied in pre-clinical intravascular

  10. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  11. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  12. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  13. Department of Nuclear Methods in the Solid State Physics

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activity of the Department of Nuclear Methods in the Solid State Physics is focused on experimental research in condensed matter physics. Thermal neutron scattering and Moessbauer effect are the main techniques mastered in the laboratory. Most of the studies aim at better understanding of properties and processes observed in modern materials. Some applied research and theoretical studies were also performed. Research activities of the Department in 2001 can be summarized as follows: Neutron scattering studies concerned the magnetic ordering in TbB 12 and TmIn 3 and some special features of magnetic excitations in antiferromagnetic γ-Mn-alloys. Some work was devoted to optimization of the neutron single crystal monochromators and polarizers grown in Crystal Growth Laboratory. Small angle scattering studies on the surfactant - water ternary system were performed in cooperation with JINR Dubna. Moessbauer effect investigations of dysprosium intermetallic compounds yielded the new data for Pauling-Slater curves. The same technique applied to perovskites and ferrocene adduct to fullerene helped to resolve their structure. X-ray topographic and diffractometric studies were performed on hydrogen implanted semiconductor surfaces employing the synchrotron radiation sources. The X-ray method was applied also to investigations of plasma spraying process and phase composition of ceramic oxide coatings. Large part of studies concerned the structure of biologically active, pharmacologically important organic complexes, supported by modeling of their electron structure. Crystal growth of large size single-crystals of metals and alloys was used for preparation of specimens with mosaic structure suitable for neutron monochromator and polarizer systems. The construction work of the Neutron and Gamma Radiography Station has been completed. The results of first tests and studies proved the expected abilities of the systems. The possibility to visualize inner structures

  14. Overview of experimental research on nuclear structure in department of modern applied physics

    International Nuclear Information System (INIS)

    Zhu Shengjiang

    1999-01-01

    The experimental research on nuclear structure in Department of Modern Applied Physics, Tsinghua University has been summarized. The main research results in high spin states of nuclear structure, as well as some low spin states, have been reported

  15. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  16. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  17. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  18. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  19. Training of personnel for nuclear power at Nuclear Physics Department of Faculty of Mathematics and Physics, Comenius University

    International Nuclear Information System (INIS)

    Povinec, P.; Florek, M.; Chudy, M.

    1983-01-01

    The Science Faculty of the Comenius University in Bratislava established the nuclear physics specialization in 1962. Students enrolled in the study course acquired basic knowledge in mathematics and physics, foundations of the microstructure of matter and experimental methods of nuclear physics and technics. Since 1976 nuclear physics has been a separate study field which from the fourth year of study has its narrow specializations, namely applied nuclear physics, experimental nuclear physics and physics of the atomic nucleus and elementary particles. A change has recently been made in the system of optional lectures with the aim of providing the students with a wider range of knowledge in the physics of nuclear reactors and the use of computer technology and microelectronics in nuclear physics and technology. In 1980 a postgraduate study course was opened oriented to nuclear power and the environment. (E.S.)

  20. Forty years of the Department of Nuclear Physics, 1961-2001

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    A brief report of activities of the Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava during forty years of history is given. A review o personnel, research programmes, graduates and master thesis, curriculum of the master study, as well as of important scientific projects is given

  1. Progress report of the Nuclear Physics Department (1.10.1983 - 30.9.1984)

    International Nuclear Information System (INIS)

    1985-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1983 to September 20, 1984. These studies concern the structure of nuclei and the nuclear reaction mechanisms. The experiments have been carried at the 9 MV tandem Van de Graaff, the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the secondary beams at CERN [fr

  2. The US Department of Energy Nuclear Data and Low Energy Physics Programs: Aspects of current operational status and future direction

    International Nuclear Information System (INIS)

    Whetstone, S.L.; Meyer, R.A.

    1991-01-01

    The Nuclear Data and Low-Energy Programs are operated within the Division of Nuclear Physics of the US Department of Energy. The data program supports a range of activities including large scale data measurements, nuclear cross section modelling, and nuclear data compilation and dissemination. The US nuclear data needs and prospects for the future of this effort are currently being addressed and its present status is reviewed. Possibilities for the next generation nuclear data accessibility will be discussed and examples presented. The Low-Energy Nuclear Physics Program supports investigations into low-energy nuclear structure and neutrino physics. Among examples of the latter that are covered is the Sudbury Neutrino Observatory

  3. Progress report of the Nuclear Physics Department (1.10.1982 - 30.9.1983)

    International Nuclear Information System (INIS)

    1984-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1982 to September 30, 1983. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 9 MV tandem Van de Graaff, with the 700 MeV electron linac, at the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble and the secondary beams at CERN [fr

  4. Progress report of the Nuclear Physics Department (1 Oct 1978 - 30 Sep 1979)

    International Nuclear Information System (INIS)

    1980-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1978 to September 30, 1979. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8,5 MV tandem Van de Graaff, with the 600 MeV electron linac, and with different accelerators belonging to other laboratories [fr

  5. Progress report of the Nuclear Physics Department (1.10.1980-30.9.1981)

    International Nuclear Information System (INIS)

    1982-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1980 to September 30, 1981. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  6. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  7. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  8. Annual Report on Scientific Activities in 1997 of Department of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow

    International Nuclear Information System (INIS)

    Wolny, J.; Olszynska, E.

    1998-01-01

    The Annual Report 1997 is the review of scientific activities of the Department of Nuclear Physics and Techniques (DNPT) of the Academy of Mining and Metallurgy, Cracow. The studies connected with: radiometric analysis, nuclear electronics, solid state physics, elementary particle and detectors, medical physics, physics of environment, theoretical physics, nuclear geophysics, energetic problems, industrial radiometry and tracer techniques have been broadly presented. The fill list of works being published and presented at scientific conferences in 1997 by the staff of DNPT are also included

  9. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  10. Scientometric data. The Department of Nuclear Physics and the field of cluster radioactivities

    International Nuclear Information System (INIS)

    Poenaru, N.D.

    1999-01-01

    The first attempts to make a quantitative evaluation of scientific activity in the Department of Nuclear Physics date from the seventies. Progress Reports for two-year period have been published regularly since 1972. On this basis we are now able to follow the evolution of the number and visibility of the publications. The number of articles published in refereed journals per graduated person was around 0.4 per year; after 1990 it increases rapidly over unity, reflecting not only the local efforts but also the increased contributions of international cooperation. Similar evolution can be noticed for participation with invited talks, oral contributions and posters at various scientific international conferences, workshops, and summer schools. For the field of cluster radioactivities, which has been opened by a team of researchers from our Institute and the Institute of Theoretical Physics of the Frankfurt am Main University, we can give some specific examples of the most cited publications, showing that their impact during a certain period of time, has been much stronger than mean value of the impact parameter of the corresponding journals. (author)

  11. Nuclear Physics Department: Progress report from the 1st October 1988 to the 30th September 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The work performed at the Nuclear Physics Department, from the 1st October 1988 to the 30th September 1990, are summarized. The investigations are carried out in the fields of heavy ion physics, intermediate energy physics and accelerators using superconducting cavities. Theoretical and experimental studies accomplished in the following fields are included: hot nuclei, exotic nuclei, giant resonances, fission, inelastic scattering, electroproduction of pions, polarization of deuterons, central collisions [fr

  12. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  13. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2000-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research, yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five students are working for their Ph.D. or MSc degrees under supervision of the senior members from the Department. We continue our participation at the EC SOCRATES-ERASMUS educational programme which allows exchange of graduate students between our Department and the Department of Physics of the University of Durham in the UK. (author)

  14. Department of Physics

    International Nuclear Information System (INIS)

    Following a list of the academic staff of the Physics Dept., the coursesoffered, seminars held and lectures held by guests, the research activities are very briefly described. These cover nuclear physics, elementary particles and ionospheric physics. Participation by staff members in conferences etc. is listed, as are lectures given by staff members at other academic institutions and reports and articles published. (JIW)

  15. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2002-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department successfully collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network which allows for the mobility of researchers. Several members of our Department have also participated in the research projects funded by the State Committee for Scientific Research. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute and at other academic institutions in Cracow. At present, eight students are working towards their Ph.D. degrees under the supervision of senior members of the Department. (author)

  16. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2001-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet more formal problems are also considered. A detailed summary of the research projects and of the results obtained in various field is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network, which stimulates the mobility of researchers. Several members of our Department also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). Besides pure research, members of our Department are also involved in graduate and up graduate teaching activity at our Institute as well as at other academic institution in Cracow. At present nine students are working on their Ph.D. degrees under the supervision of senior members of the Department. (author)

  17. Nuclear physics at Peking University

    International Nuclear Information System (INIS)

    Wang, Ruo Peng

    2009-01-01

    Full text: The teaching program of nuclear physics at Peking University started in 1955, in answer to the demand of China's nuclear program. In 1958, the Department of Atomic Energy was founded. The name of this department was changed to the Department of Technique Physics in 1961. Graduates in nuclear physics and technical physics had great contribution in China's nuclear program. The nuclear physics specialty from the Department of Technique Physics merged into the School of Physics in 2001. At present, nuclear physics is not any more a major for undergraduate students in the school of physics, but there are Master programs and Ph. D programs in nuclear physics, nuclear techniques and heavy ion physics. About 200 new students are admitted each year in the School of Physics at Peking University. About 20 graduates from the School of Physics work or continue to study in nuclear physics and related fields each year. (author)

  18. Nuclear physics

    International Nuclear Information System (INIS)

    Patel, S.B.

    1991-01-01

    This book is a simple and direct introduction to the tools of modern nuclear physics, both experimental and mathematical. Emphasizes physical intuition and illuminating analogies, rather than formal mathematics. Topics covered include particle accelerators, radioactive series, types of nuclear reactions, detection of the neutrino, nuclear isomerism, binding energy of nuclei, fission chain reactions, and predictions of the shell model. Each chapter contains problems and illustrative examples. Pre-requisites are calculus and elementary vector analysis

  19. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1999-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five PhD students are working for their degree under supervision of the senior members from the Department. In the last year we have completed our active participation in the educational TEMPUS programme funded by the European Communities. This programme has in particular allowed exchange of students between our Department and the Department of Physics of the University of Durham in the United Kingdom. In 1998 we joined the SOCRATES - ERASMUS project which will make it possible to continue this exchange. (author)

  20. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  1. Nuclear physics

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1981-01-01

    Major centres of experimental nuclear physics are at Melbourne University, A.N.U., the A.A.E.C., James Cook University and the University of Western Australia. Groups working in theoretical nuclear physics exist at Melbourne, A.N.U., the A.A.E.C., Flinders and Adelaide Universities and the University of Western Australia. The activities of these groups are summarised

  2. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2004-01-01

    Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science

  3. Department of Theoretical Physics. Annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The research done at the Department of Theoretical Physics of the H. Niewodniczanski Institute of Nuclear Physics concerns various theoretical problems of low, medium and high energy nuclear physics, elementary particle physics, astrophysics, general physics and mathematical physics. Both formal problems as well as more phenomenologically oriented ones are being considered. The details of the results obtained in various fields are summarised in the presented abstracts. (author)

  4. Nuclear physics

    International Nuclear Information System (INIS)

    Guzman B, O.; Vallejo M, J.I.; Cardenas C, H.F.

    1989-01-01

    A historical review of the evolution of the Nuclear Physics Section at the IAN is presented along the 30 years of existence of the Institute. Objectives, structure, programs and goal are historically examined. Present status of the section and its projection on national development is also analyzed

  5. Nuclear physics

    International Nuclear Information System (INIS)

    1990-01-01

    This work describes the actual situation of nuclear physics in Brazil as well as its perspectives of developments and real needs in the next decade. It discusses the main projects and the financing of brazilian research groups and Universities. (A.C.A.S.)

  6. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  7. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Nowicki, L.

    2006-01-01

    In 2005 the Department held a steady course. Topics of nuclear physics, atomic physics and materials research that started in previous years were continued. Although our team was smaller than years ago, the scientific activity, estimated by number of published papers is still very high. Scientists of the Department are co-authors or authors of more than 50 papers. Nuclear physics, which is our main-stream activity, covered a wide energy range. It started close to the Coulomb barrier, where 6 He breakup on heavy nuclei were studied, and ended at zones of tens of GeV; such high energies were used to investigate spin structure of deuterons and to explore hadron leptoproduction. Traditionally, experimental investigations in the fields of atomic physics and of physics of materials completed the scene. Our old Van de Graaff accelerator Lech was used for studies of M-shell ionisation of heavy elements, for hardening of Ultra-High Molecular Weight Polyethylene and for characterisation of materials with RBS and NRA techniques. The VdG runs perfectly although it is over 40 years old. Two Ph.D. students finished their theses and were promoted. Izabela Fijal's work concerned multi-ionization and intrashell coupling effects for L-shell x-ray emission induced by heavy ions, while Sergiy Mezhevych showed studies on scattering of 11 B from carbon isotopes. It is obvious that contemporary works on physics do not arise in a single lab. Our contributions to many papers were possible due owing to collaborations involving many institutions. Some of them are listed: GSI, Darmstadt (PANDA Collaboration) DESY, Hamburg (HERMES Collaboration) Institut fuer Kernphysik, Forschungszentrum Juelich Forschungszentrum Rossendorf CSNSM, Orsay GANIL, Caen University of Huelva Institute of Nuclear Research, Kiev SLCJ, Warsaw ITME, Warsaw Some of our colleagues traditionally gave lectures and made physical demonstrations on Warsaw informal learning events: 9 th Science Picnic and 9 th Science Festival

  8. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    International Nuclear Information System (INIS)

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  9. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  10. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  11. Department of Nuclear Theory: Overview

    International Nuclear Information System (INIS)

    Wilk, G.

    1999-01-01

    Full text: The Department of Nuclear Theory consists of 18 physicists and 3 graduate students working on different aspects of low energy, high energy, plasma and nonlinear physics. Most of the effort is phenomenologically oriented. Close collaboration with SMC, LEAR and ALICE Collaborations at CERN must be also emphasized. The specific topics are: Studies of strangeness in nuclei stem from a long Warsaw tradition of hypernuclear physics. These include attempts to understand the elusive Σ-hypernuclei, studies of nuclear bound states of η-mesons that introduce hidden strangeness into nuclei. Some studies have been devoted to the structure of superheavy elements, which resulted in predicting properties of deformed superheavy nuclei. They are continued with calculations of collective motion, neutron haloes and energy dissipation in heavy ion collisions. An increasing effort is also devoted to research on nuclear collisions at high energies. Much attention is paid to the study of the mass of exotic nuclei. Studies in high energy physics are devoted to understanding deep inelastic lepton scattering, formal properties of the contour gauge theories, the phenomenology of high energy multiparticle and production processes in both hadronic and nuclear collisions, (especially the systematics of leading particle production in these processes). A new approach to the standard model via conformed unification of general relativity has been attempted. The new attempt at quantization of nonlinear theories has been undertaken and first positive and interesting results obtained. Theoretical studies of soliton solutions in several branches of physics are performed. Methods of testing the stability and metamorphosis of these soliton solutions have been developed. Results have implications in solid state physics as well as for plasmas and hydrodynamics. Collaborations with several universities have been maintained. These include the Universities of Warsaw, Bucharest, Kielce, T.U. Munich

  12. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    International Nuclear Information System (INIS)

    Haase, M.; Hine, C.; Robertson, C.

    1996-01-01

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy''s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades

  13. US Department of Energy (DOE)/Gosatomnadzor (GAN) of Russia project at the Petersburg Nuclear Physics Institute (PNPI)

    International Nuclear Information System (INIS)

    Baranov, I.A.; Konoplev, K.A.; Hauser, G.C.

    1997-01-01

    This paper presents a summary of work accomplished within the scope of the DOE-Gosatomnadzor (GAN) Agreement to reduce vulnerability to theft of direct-use nuclear materials in Russia. The DOE-GAN agreement concerns the Russian Academy of Science B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), located 45 kilometers from St. Petersburg. The PNPI operates facilities to research basic nuclear physics. Current world conditions require particular attention to the issue of Material Protection, Control, and Accounting (MPC ampersand A) of nuclear materials. The long-term plan to increase security at the facility is outlined, including training, physical protection upgrades, and material control and accountability. 4 figs

  14. The Ministry of the Russian Federation for Atomic Energy, the State Scientific Center of Russian Federation, A.I.Leipunsky Institute for Physics and Power Engineering, Nuclear Physics Department annual report 1998

    International Nuclear Information System (INIS)

    Kuzminov, B.D.

    1998-01-01

    The report contains 69 abstracts or short communications on the research activities in 1998 of the Nuclear Physics Department of the Institute for Physics and Power Engineering, Obninsk, Russian Federation. The papers are grouped in nine chapters: Nuclear fission (5), Nuclear structure and nuclear reactions (6), Nuclear data (14), Transmutation (4), Condensed matter physics (10), Mathematical modelling (14), Applied research (7), High-voltage accelerators (6), and Instruments and methods (4). A separate indexing was provided for each paper. The report also includes a presentation of the department structure, and accelerator complex, list of publications, participation in international and national conferences and meetings, cooperation

  15. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1999-01-01

    Full text: The Department of Nuclear Reactions had a very productive year. The following reports cover three major domains of our activities: nuclear, material and atomic physics. One of the current questions in modern nuclear physics is question of the phase transitions in nuclear matter. Our physicists, the members of the ALADIN Collaboration at Gesellschaft fuer Schwerionenforschung, participated in new experiments exploring properties of highly excited nuclear matter and the phenomenon of the liquid - gas phase transition. The experiments yielded a number of important results. Details can be found in the three short reports presented in this volume. Structure of a nucleon is another important subject of nuclear science research. In the last year energy region of Δ resonance has been investigated by means of charge exchange reaction. The experiment was performed at Laboratory National Saturne in Saclay by SPESIV-π collaboration consisting of physicist from Institute of Nuclear Physics Orsay, Niels Bohr Institute Copenhagen and from our Department. The main achievement of the experiment was evidence for a Δ - hole attraction in the spin longitudinal channel. Reactions induced by radioactive ion beams such as 6 He recently attract a lot of interest. There exist some evidences that the 6 He nucleus has a two-neutron halo structure similar to that well established for 11 Li. An analysis of 6 He + 4 He scattering data reported in this volume revealed some similarities between the loosely bound 6 Li nucleus and the neutron rich 6 He. Research in material physics has focused on two basic topics: a crystallographic model of uranium dioxide, a material currently used as a nuclear fuel and transformations of defects in GaAs crystals at low temperature. The investigations have been carried out in a wide collaboration with scientists from the University of Jena, Research Center Karlsruhe and Centre de Spectrometrie Nucleaire Orsay. Some experiments have been performed at

  16. Nuclear physics

    International Nuclear Information System (INIS)

    Dacre, J.

    1990-01-01

    This book fills a gap in current literature by covering the increasing nuclear physics content of various A-level syllabuses. In section 1 we outline the background and early development of the subject, in section 2 we deal with nuclear properties and theories at a level suitable for the pre-university student. The majority of topics have been treated with the limited use of mathematics, this necessitating some simplification which we hope to have accomplished without undue error. A few topics have been developed mathematically, to some extent, e.g. series decay. While it is the purpose of a book at this level to introduce the reader to the facts and theories of nuclear physics, we have to recognise that any teacher of science, at any level, must attempt to instill in the young scientist a sense of responsibility and an understanding of the problems attendant on the technological applications are important. These problems have been touched on in the text but we hope the student will be persuaded to read further; for this purpose we have added a short list of suggested additional reading. A selection of A-level past paper questions has been included. (author)

  17. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2007-01-01

    The scientific activity of our department is traditionally focused on nuclear physics, atomic physics and material research. Our interest in nuclear physics is broad, ranging from the structure of a nucleon to the structure of the nucleus. The spin structure of a nucleon has been investigated within the HERMES Collaboration which comprises 32 institutions from 11 countries. The collaboration performs experiments at Deutches Elektronen-Synchrotron in Hamburg. Another large-scale international collaboration we are participating in is PANDA. The PANDA (antiProton ANnihilation at DArmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. Our colleagues, led by Dr. B. Zwieglinski, have been working on the concept of a calorimeter, testing different scintillators. Many experiments in low energy nuclear physics were performed in collaboration with University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and Heavy Ion Laboratory of the Warsaw University. They were devoted to studying nucleus-nucleus interactions near the Coulomb barrier. This year, atomic studies focused on the L-shell ionisation of some heavy elements by silicon ions accelerated to the energy of 8.5-36 MeV. The results are presented in this report and are compared to different model calculations. Finally, I take great pleasure in congratulating Dr. L. Nowicki, whose study of uranium oxide structure, performed in collaboration with Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse in Orsay, was chosen as an important scientific achievement of our Institute in 2006. Apart from purely scientific activities, a few of our colleagues have been involved in education, giving lectures to students from high schools in Warsaw and Warsaw University. R. Ratajczak contributed to the 10 th Science Festival, an event organized for the general public every year

  18. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2002-01-01

    Full text: The Nuclear Spectroscopy Department is the largest department of the Institute. It merges a variety of research groups having been performing investigations with a rich diversity of methods: from pure studies of the structure of nucleus and of nuclear properties through applied nuclear spectroscopy in condensed matter research, to the complex biophysical investigations of biological tissues. The nuclear structure experiments were performed mainly in European Large Scale Facilities (ALPIINFN-Legnaro, VIVITRON-IReS-Strasbourg, JYFL-K100-Cyclotron) with the use of the GASP, EUROBALL IV, RITU systems and with application of ancillary detectors - HECTOR+HELENA, RFD. Some data were obtained with the GAMMASPHERE in USA. Other research has been based on our own instrumentation - VdG, AFM, Dual-Beam-Implanter, PAC, Moessbauer spectrometers etc., in a strong co-operation with Polish and European institutions, of course. The atomic studies were done on the ESR at GSI in Darmastadt. In several pages which follow, some important results of the investigations in the Department are presented. In 2001, Dr hab. Jerzy Dryzek and Dr hab. Adam Maj were granted the Associated Professor positions, and Miss Agnieszka Kulinska and Mrs Maria Kmiecik - the Ph.D. degrees. Dr Kmiecik was also awarded the Henryk Niewodniczanski prize for studies of 147 Eu compound nucleus shape evolution. Some of us became (continued to be) members of International Committees - the PHINUFY (R. Broda), the Steering Committee of RISING at GSI (J. Styczen), the PAC of the VIVITRON at Strasbourg (J. Styczen). We organized an International Conference on Condensed Matter Studies (100 participants), which belonged to the well known series of Zakopane School of Physics. It's Proceedings appeared as a volume of the Acta Physica Polonica A journal. (author)

  19. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  20. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1998-01-01

    (full text) During the last year our activities were spread over the three major domains: nuclear, atomic and material physics. The nuclear physics experimental programme covered a broad range of nuclear reactions induced by light and heavy ions. New experiments were performed at the compact C-30 cyclotron at Swierk, at University of Jyvaeskylae, GSI Darmstadt, LN Saturne. Prospects for future experiments on nucleon structure at Forschungszentrum Juelich were open. The collaboration with INR Kiev was tightened and work was done in order to prepare experiments at the C-200 heavy ion cyclotron in Warsaw. An effort to install the ion guide isotope separator on line (IGISOL) at the C-200 cyclotron has also to be mentioned A half a year stay of Dr. Nicholas Keeley in the Department, who received The Royal Society/Polish Academy of Science grant, resulted in many interesting results on breakup of light nuclei. Details can be found in the short abstracts presented in this report. As far as atomic physics is concerned, the activity of a group lead by Prof. Marian Jaskola yielded various new results. The experiments were performed at the University of Erlangen, in close collaboration with the Pedagogical University in Kielce and the University of Basel. Fast neutrons generated in the 3 H(d,n) 4 He reaction induced by the 2 MeV deuteron beam from the Van der Graaff accelerator at the Department were used to calibrate solid state-nuclear-track detectors. This was a very good year for material physics research: Jan Kaczanowski and Slawomir Kwiatkawski received Ph.D. degrees based on dissertation research performed in the material physics research programme, while Pawel Kolodziej completed his MSc. thesis in collaboration with the Institute of Electronic Materials Technology in Warsaw, Research Center Karlsruhe, University of Jena and CSNSM Orsay many results were obtained. Lech Nowicki and Prof. Andrzej Turos were awarded by the Director of the IPJ prizes for their scientific

  1. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Marianski, B.

    2010-01-01

    of polychromatic decorations from ancient Egyptian tombs. Important findings on the origin and dating of wall paintings at different archaeological sites are reported. · In this year the study of nuclear track detectors continued. These detectors will be used in a planned tokamak experiment in Great Britain. A new subject undertaken in the Department in collaboration with the Institute of Nuclear Physics of the Polish Academy of Science concerns diamond detectors. Diamond detectors have a large energy gap and very short pulse rise time. They are able to measure high intensity particle beams. As every year, apart from purely scientific activities. a few of our colleagues have been involved in education, giving lectures to students of many High Schools in Warsaw and to students of Warsaw University. (author)

  2. Department of Nuclear Reactions - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Marianski, B [The Andrzej Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2010-07-01

    -ray emission (PIXE) studies of polychromatic decorations from ancient Egyptian tombs. Important findings on the origin and dating of wall paintings at different archaeological sites are reported. centre dot In this year the study of nuclear track detectors continued. These detectors will be used in a planned tokamak experiment in Great Britain. A new subject undertaken in the Department in collaboration with the Institute of Nuclear Physics of the Polish Academy of Science concerns diamond detectors. Diamond detectors have a large energy gap and very short pulse rise time. They are able to measure high intensity particle beams. As every year, apart from purely scientific activities. a few of our colleagues have been involved in education, giving lectures to students of many High Schools in Warsaw and to students of Warsaw University. (author)

  3. Physics department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1980-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics, plasma physics, and meteorology. The principal activities in these fields are presented for the period from 1 January to 31 December 1980. (Auth.)

  4. LECI Department of Nuclear Materials

    International Nuclear Information System (INIS)

    2006-01-01

    The LECI is a 'hot' laboratory dedicated mostly to the characterization of irradiated materials. It has, however, limited activities on fuel, as a back up to the LECA STAR in Cadarache. The LECI belongs to the Section of Research on Irradiated Materials (Department of Nuclear Materials). The Department for Nuclear Materials (DMN) has for its missions: - to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the material physical and mechanical properties under service conditions (irradiation, thermomechanical solicitations, influence of the environment,..); - to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy, in particular via modelling. These materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiations with charged particles; - to establish, maintain and make use of the databases generated by these data; - to propose new or optimized materials, satisfying future service conditions and extend the life or the competitiveness of the associated systems; - to establish constitutive laws and models for the materials in service, incidental, accidental and storage conditions, and contribute to the development of the associated design codes in order to support the safety argumentation of utilities and vendors; - to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms and to offer leads for improvement. This document presents, first, the purpose of the LECI (Historical data, Strategy, I and K shielded cell lines (building 605), M shielded cell line (building 625), Authorized materials). Then, it presents the microscopy and irradiation damage studies laboratory of the Saclay centre (Building 605) Which belongs to the Nuclear

  5. Public Outreach of the South Texas Health Physic Society and Texas A and M University Nuclear Engineering Department

    International Nuclear Information System (INIS)

    Berry, R. O.

    2003-01-01

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A and M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to site a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue

  6. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  7. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2000-01-01

    Full text: During last year the physicists of the Department of Nuclear Reactions were involved in many experiments and projects: -Low energy nuclear reactions: For the first time a heavy ion beam from the Warsaw Cyclotron C-200 was used to investigate elastic and inelastic scattering of 12 C ions from 12 C target. The experiment is a part of a long range programme devoted to study the energy dependence of the nucleus-nucleus interactions. -Multifragmentation of relativistic heavy ions: Multifragmentation reactions induced by 12 C on different heavy targets and at different energies were studied in experiments performed at Gesellschaft fuer Schwerionenforschung by the ALADIN Collaboration. These asymmetric systems were investigated in order to study the interplay between preequilibrium and equilibrium phenomena in the nuclear liquid - gas phase transition. -The structure of nucleons: A novel, two-structure description of the Roper resonance was proposed on the basis of the α-p scattering data reanalysed by means of a T-matrix formalism. -Atomic physics: Emission of the X-rays by fast heavy ions (S, Ti, Fe) as they traverse the matter (thin carbon or other light element foil) was investigated in a series of experiments performed at University of Erlangen. It was demonstrated, that the characteristic K α X-rays emitted by a heavy ion can serve as a tool for Z-value control of the ion. -Material research: Semiconductor heterostructures were investigated by means of Rutherford Back Scattering and Channeling methods using the 2 MeV α particles from the Van de Graaff accelerator ''Lech'' at the Department. The following reports present the results and major successes which were achieved in 1999. (author)

  8. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2005-01-01

    Full text: It is surprising how so few under-paid scientists could do so much. During 2004 the number of papers published or being in press exceeded fifty, making almost three papers per person employed in our department. Furthermore, among these papers one was published in Nature, the World's highest-ranked scientific journal. This is a result that will be difficult to beat. It is my pleasure to mention that one of our PhD students, Mr Sergiy Mezhevych, won a prestigious Heavy Ion Laboratory Prize founded by Prof. Inamura, for his experimental work using a beam from the Warsaw Cyclotron. Thanks to the effort of our colleagues the Hermes Collaboration Meeting organized by IPJ in Kazimierz Dolny (June 25 - July 1) turned out a success. The following short reports cover the three major domains of our scientific activities: nuclear, materials and atomic physics. -Nuclear physics - The structure of light nuclei, including exotic radioactive isotopes, was investigated both experimentally and theoretically. Some experimental studies were performed at the Heavy Ion Laboratory of Warsaw University in collaboration with scientists from the Institute of Nuclear Research in Kiev, Ukraine. The two reports present interesting results for the rare carbon isotope, 14 C. In the framework of Feshbach, Kerman and Koonin theory the multistep emission of one particle as well as more complicated direct processes were studied. It was found that these more complex processes play an important role in proton induced reactions. Experimental data from projectile-multifragmentation experiments with stable and radioactive beams were analysed. Some preliminary results are presented. Using a proton beam provided by the C-30 compact cyclotron at Swierk, detectors consisting of a PWO scintillator coupled to avalanche photodiodes were tested. The aim of these tests was to find the best detectors for the large electromagnetic calorimeter which will be used in future PANDA Collaboration experiments

  9. Creating a Virtual Physics Department.

    Science.gov (United States)

    Suson, Daniel J.; Hewett, Lionel D.; McCoy, Jim; Nelson, Vaughn

    1999-01-01

    Describes a solution to alleviate the low numbers of students graduating from the majority of physics programs throughout the nation. Discusses the outcome of a virtual physics department. (Author/CCM)

  10. Department of Theoretical Physics. Annual Report 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Abstracts of studies done in 1989 at the Department of Theoretical Physics of the H. Niewodniczanski Institute of Nuclear Physics in Cracow are given together with the lists of personnel, guests, conference papers, lectures, habilitations, ph.d. theses and publications. 45 refs. (A.S.)

  11. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  12. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  13. Department of Physical Sciences

    African Journals Online (AJOL)

    USER

    2017-05-05

    May 5, 2017 ... ... of Physical Sciences, The Open University of Tanzania, P. O. Box ... bioaccumulation and biomagnification in the food chain. This research deals with human health risk assessment of metal contamination through the .... poisoning is untreatable (Faller, 2009). ... probability of adverse health effects in.

  14. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2001-01-01

    Full text: The last year of the twentieth-century was productive for our Department. Although the name of the Department suggests that we are all involved in investigations of nuclear reactions, in fact our activities are spread over three major domains: nuclear, atomic and material physics. Some of the projects we were involved in the last year have been realized using national facilities and accelerators, like the Van de Graaff accelerator of our Department at 69 Hoza Street, Warsaw Cyclotron U-200P of Warsaw University, and compact C30 cyclotron of our Institute at Swierk. Other projects were done abroad, using facilities of the Gesellschaft fuer Schwerionenforschung in Darmstadt, Institute de Physique Nucleaire at Orsay, and Universitaet Erlangen-Nuernberg in Erlangen. We carried out our work in close collaborations with physicists from many laboratories, Polish and foreign. - Low energy nuclear reactions. In collaboration with scientists from Ukraine experiments, using heavy ion beam provided by the Warsaw Cyclotron, were started. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interaction. Efforts were made to develop a multistep direct model of nuclear reactions. In the model contributions due to the low energy collective excitations were taken into account. Good agreement with the experimental data was achieved. - Multifragmentation of relativistic heavy ions. ALADIN Collaboration studied multifragmentation reactions induced by relativistic heavy ions. The main activities of our scientists concentrated on an upgrade of the detecting system in order to replace photo multipliers with large area avalanche photodiodes in the central section of the TOF-wall. Some tests of the photodiodes manufactured by Advanced Photonix Inc. were performed using standard β - and γ-sources. - Structure of a nucleon. Decay properties of the Roper resonance were studied. A

  15. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  16. Nuclear physics

    International Nuclear Information System (INIS)

    Connell, K.A.; Warner, D.D.

    1990-01-01

    The first volume of the Annual Report for 1989/90 gives an overview of the Nuclear Structure Facility at Daresbury, its development and a selection of highlights of the year's programme. This volume is complementary, presenting brief specialist reports, submitted by the users, describing the progress and results of each individual proposal. The contents reflect the extremely successful year due in good measure to the performance of the tandem accelerator which provided a record number of hours with ''beam on target''. Reports are grouped in four sections: research into nuclear structure with contributions ordered in increasing Z numbers of the nuclei studied; investigations of nuclear reaction mechanisms; nuclear theory; accelerator operations and development plus experimental instrumentation and techniques. The appendix forms a concise summary of the work at the facility for the year. (author)

  17. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2009-01-01

    Full text: Our activity in 2008 has focused on well-established domains of research: nuclear and atomic physics, and applications. · As far as nuclear physics is concerned; our interests are very broad, ranging from the structure of the nucleon to the structure of the nucleus including high-energy multifragmentation studies. Our colleagues led by Prof. Pawel Zupranski, members of the HERMES collaboration that comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron (DESY) in Hamburg, worked last year on the extraction of Spin Density Matrix Elements of vector mesons from scattering experiments on hydrogen targets. They also studied the distribution of quarks and gluons in nucleon. A team led by Prof. B. Zwieglinski was involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They studied the response of cooled PWO scintillators irradiated by gammas in the energy range of 4-20 MeV. The gammas were produced radiative proton capture on light by nuclei using a proton beam from the Van de Graaff accelerator of our Department. As a result, an important extrapolation of measurements performed by another group of physicists at much higher γ-ray energies was obtained. Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: the University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and the Institute de Recherches Subatomique in Strasbourg. At high energies, a study of the isospin - dependence of the caloric curve was performed by the ALADIN Collaboration in a series of experiments at GSI - Darmstadt using radioactive beams of Sn and La. It was found that the asymmetry due to isospin is very weak. · Atomic physics studies were devoted to ionisation of heavy atoms by oxygen ions from the tandem accelerator of Erlangen-Nuernberg University. X-rays generated in the

  18. Department of Nuclear Reactions - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Rusek, K [The Andrzej Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2009-07-01

    Full text: Our activity in 2008 has focused on well-established domains of research: nuclear and atomic physics, and applications. {center_dot} As far as nuclear physics is concerned; our interests are very broad, ranging from the structure of the nucleon to the structure of the nucleus including high-energy multifragmentation studies. Our colleagues led by Prof. Pawel Zupranski, members of the HERMES collaboration that comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron (DESY) in Hamburg, worked last year on the extraction of Spin Density Matrix Elements of vector mesons from scattering experiments on hydrogen targets. They also studied the distribution of quarks and gluons in nucleon. A team led by Prof. B. Zwieglinski was involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They studied the response of cooled PWO scintillators irradiated by gammas in the energy range of 4-20 MeV. The gammas were produced radiative proton capture on light by nuclei using a proton beam from the Van de Graaff accelerator of our Department. As a result, an important extrapolation of measurements performed by another group of physicists at much higher {gamma}-ray energies was obtained. Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: the University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and the Institute de Recherches Subatomique in Strasbourg. At high energies, a study of the isospin - dependence of the caloric curve was performed by the ALADIN Collaboration in a series of experiments at GSI - Darmstadt using radioactive beams of Sn and La. It was found that the asymmetry due to isospin is very weak. {center_dot} Atomic physics studies were devoted to ionisation of heavy atoms by oxygen ions from the tandem accelerator of Erlangen-Nuernberg University. X

  19. Physics Department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1981-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics; plasma physics; meteorology. The principal activities in these fields are presented in this report, which covers the period from 1 January to 31 December 1981. Introductions to the work in each of the main fields are given in the respective sections of the report. (Auth.)

  20. Department of Nuclear Theory: Overview

    International Nuclear Information System (INIS)

    Wilk, G.

    2000-01-01

    Full text: The Department of Nuclear Theory consists of 18 physicists and 3 graduate students working on different aspects of low energy, high energy, plasma and nonlinear physics and, recently, also on a general problem of quantization of particle dynamics. In addition to this activity, close collaboration with SMC, LEAR and ALICE Collaborations at CERN must be also emphasized. This year was particularly fruitful for our Department because of the success of our colleague, Dr. Robert Smolanczuk (at present Fullbright Fellow at LBL, Berkeley). In a series of papers he demonstrated a new possibility of obtaining superheavy elements hinting at the existence of the ''island of stability'' for some combinations of charges and atomic numbers. His ideas were behind the experiment done at Berkeley claiming the discovery of two new elements with A=116 and 118. If confirmed, this could be a dawn of a new approach to the physics of superheavy nuclei. The weight of this discovery is such that the name of our colleague was mentioned in international journals and papers of very broad dissemination, radio and TV included. He was also rewarded by ''J.M.Nitschke Technical Excellence Award'' (USA) for this achievement. Other studies were perhaps not so spectacular but still they brought us in total (including collaborations with experimental groups, mostly from the Department of High Energy Physics) 38 regular papers (plus over 14 already accepted for publication). The specific topics worthy of special emphasis are: - Studies of structure and decay of heaviest nuclei have been continued. Much attention was given to rotational properties of deformed superheavy nuclei. An intensive study of cross sections for the synthesis of heaviest nuclei via various reaction channels has been performed. - Studies of strange nuclear matter have been continued focusing this time on the proper description of the pion spectra from the strangeness exchange reactions measured recently at BNL. - The work

  1. Nuclear physics

    International Nuclear Information System (INIS)

    Warner, D.D.; Aitken, T.W.; Rowley, N.

    1989-01-01

    The many diverse programmes of fundamental research and technical development at the Daresbury Nuclear Structure Facility (NSF) have continued at their usual hectic pace throughout the period 1988/89. An overview of the overall programme and of the Facility has been presented in the first volume of this report, along with an expanded discussion of some of the highlights of the year's work. This second volume presents the more technical and detailed reports on the progress and results of individuals proposals and hence will be of most interest to the more expert reader. The reports are grouped in terms of experimental studies aimed at probing the structure of individual nuclei or series of nuclei, studies devoted to probing the primary nuclear reaction mechanism itself, theoretical work and research devoted to the development of the accelerator, and experimental equipment/techniques. Overall, they provide a concise summary of the year's work at the NSF. (author)

  2. Michel Spiro is appointed director of the IN2P3 and the Department of Nuclear and Particle Physics of the CNRS

    CERN Multimedia

    2003-01-01

    "Michel Spiro was appointed director of the IN2P3, by order of the Minister of Youth, National Education and Research and the Minister of Research and New Technologies on February 17, 2003. He was also appointed director of the Department of Nuclear and Particle Physics of the CNRS by decision of the CNRS Director General on February 21, 2003" (1/2 page).

  3. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  4. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); nuclear physics (nuclear structure, nuclear reactions); solid state physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); solar energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  5. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); Nuclear Physics (nuclear structure, nuclear reactions); Solid State Physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); Solar Energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  6. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  7. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  8. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  9. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  10. Nuclear physics looks ahead

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-03-15

    A very wide-ranging report published by the Nuclear Physics European Collaboration Committee (NuPECC) looks at the future of nuclear physics in general, and in Europe in particular. However in view of the increasing interplay between nuclear and particle physics, many of the report's recommendations are of wider interest.

  11. Nuclear physics looks ahead

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A very wide-ranging report published by the Nuclear Physics European Collaboration Committee (NuPECC) looks at the future of nuclear physics in general, and in Europe in particular. However in view of the increasing interplay between nuclear and particle physics, many of the report's recommendations are of wider interest

  12. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  13. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  14. Overview. Department of Theoretical Physics. Section 4

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy ππ and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S p (6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars

  15. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2000-01-01

    Full text: The contributions given hereafter to this Annual Report cover a broad activity of the Department in 1999 both in the pure nuclear spectroscopy and in the applied spectroscopy investigations. That activity is then assembled in the two main groups: the nuclear structure studies with the application of the multidetector systems such as GASP, GAMMASPHERE, EUROBALL and the RFD - as its ancillary device, and investigations of condensed matter properties with the use of nuclear methods. In addition, non-nuclear methods such as the atomic force microscopy provided several new encouraging results. The nice data obtained are due to the great skill and hard work of all members of the staff, and a vast cooperation both with international and national institutes and institutions. When anticipated for calling the attractive results of the past year, I would rather admit that all data given here pretend to be those. To meet with, I refer directly to the short presentations given in the next pages. (author)

  16. Nuclear and particle physics 1993

    International Nuclear Information System (INIS)

    MacGregor, I.J.D.; Doyle, A.T.

    1993-01-01

    This item documents the International Conference on Nuclear and Particle Physics held at the University of Glasgow, UK, from 30th March to 1st April 1993. It was organised by the Department of Physics and Astronomy at Glasgow University on behalf of the Nuclear and Particle Physics Division of the Institute of Physics. The scientific programme covered many areas of current interest in nuclear and particle physics. Particle physics topics included up to the minute reports on the physics currently coming from CERN'S Low Energy Antiproton Ring (LEAR), Hadron-Elektron-Ring Analage (HERA) and Large Electron-Positron Storage Rings (LEP), and reviews of quantum chromodynamics (QCD) lattice gauge theory. Looking to the future the programme covered the search for the Higgs boson and a review of physics experiments planned for the new generation of accelerators at Large Hadron Collider (LHC) and Superconducting Supercollider (SSC). The conference coincided with the final closure of the world class Nuclear Structure Facility at Daresbury and marked the transition of United Kingdom (UK) nuclear physics research into a new era of international collaboration. Several talks described new international collaborative research programmes in nuclear physics initiated by UK scientists. The conference also heard of new areas of nuclear physics which will in future be opened up by high energy continuous beam electron accelerators and by radioactive ion beam accelerators. (author)

  17. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985 within its three divisions: (1) Tandar Project; (2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and (3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.)

  18. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985, within its three divisions: 1) Tandar Project; 2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and 3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.) [es

  19. Vol. 2: Nuclear Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to nuclear physics

  20. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  1. Annual Report on Scientific Activities in 1997 of Department of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow; Sprawozdanie z dzialalnosci naukowej w roku 1997, Wydzial Fizyki i Techniki Jadrowej, Akademia Gorniczo-Hutnicza, Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, J.; Olszynska, E. [eds.

    1998-12-31

    The Annual Report 1997 is the review of scientific activities of the Department of Nuclear Physics and Techniques (DNPT) of the Academy of Mining and Metallurgy, Cracow. The studies connected with: radiometric analysis, nuclear electronics, solid state physics, elementary particle and detectors, medical physics, physics of environment, theoretical physics, nuclear geophysics, energetic problems, industrial radiometry and tracer techniques have been broadly presented. The fill list of works being published and presented at scientific conferences in 1997 by the staff of DNPT are also included.

  2. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  3. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  4. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2008-01-01

    Full text: Our scientific activities last year focused on nuclear physics, materials science and medical applications. · As far as nuclear physics is concerned, our interest ranged from the structure of the nucleon to that of the nucleus. On the 30 th June 2007 DESY's HERA collider was shut down, and so data taking by the HERMES experiment was terminated. However, our colleagues involved in studies of the spin structure of the nucleon have been working and will still work for a few more years analysing experimental data taken during the whole HERMES campaign. Last year they worked, among others, on the beam spin asymmetries for charged and neutral pions produced in deep inelastic scattering of polarized electrons on protons. A team led by Assoc. Prof. B. Zwieglinski was involved in a large-scale international collaboration PANDA. The PANDA (antiProton ANnihilation at Darmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. In this report the team presents a proposal for an experimental study of the two-quark system. Low energy nuclear physics experiments were performed at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Sciences and the Institute de Recherches Subatomique in Strasbourg. One of the achievements was the commissioning of a large scattering chamber ICARE equipped with charged particle detectors. · Material science studies focused on semiconductor compounds that could be used in electronic and optoelectronic devices. This was done in collaboration with the Institute of Electronic Materials Technology. In particular, a channeling study of GaN was performed in order to learn about the thermal stability of this compound. · Radiobiological studies was a new domain of our activity last year. The team of Prof

  5. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    2002-01-01

    Full text: Research at the Department of Nuclear Radiospectroscopy concerns various aspects of Nuclear Magnetic Resonance (NMR) and its applications to solids and to biological systems. Current research activity covers two areas: investigation of molecular dynamics and structure in solids using NMR spectroscopy, and biomedical investigations on animal models and humans using NMR imaging and localized spectroscopy. MAGNETIC RESONANCE IMAGING LABORATORY: Biomedical applications of Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS), as well as development of MR technology were our main topics of research. Our research capabilities were significantly widened with the commissioning of the 4.7 T horizontal bore animal MRI system with MARAN DRX console from Resonance Instruments Ltd. The water diffusion tensor in the spinal cord of the rat was investigated as a function of the diffusion gradient amplitude in order to determine different components of diffusion. In vitro DTI measurements using our 8.5 T MR Microscope were performed on excised samples of the injured and normal spinal cord of the rat kept in PBS. A non-exponential diffusion was found in the gray matter. In the white matter diffusion in the transverse direction to the axon bundles was non-exponential, whereas along the axon it had a single component. Experimental data could be best fitted using a model of two-component anisotropic diffusion. Our results and absolute values of the DT components are similar to the well known results obtained for the optical nerve. In order to analyze diffusion weighted MR images, a software using IDL was developed. First results of DTI in vivo for the rat brain and the rat spinal cord were obtained on our new 4.7 T MRI system. Continuing our interest in volume measurements using MRI, subdermic and visceral fatty tissue volumes were determined for a group of 46 patients undergoing a 6 months lose-weight program. In collaboration with the Academy of Physical Education

  6. Nuclear physics group report

    International Nuclear Information System (INIS)

    1982-04-01

    A brief description is given of the operation and maintenance of the cyclotron. The computors and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear reactions and nuclear structure which are in progress or soon to be reported are presented. Projects in theoretical nuclear physics and radiation physics are also described. Lists of seminars, lectures, visitors, conferences and publications are given. (RF)

  7. Overview. Department of Nuclear Radiospectroscopy. Section 8

    Energy Technology Data Exchange (ETDEWEB)

    Hennel, J.W. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research at the Department of Nuclear Radiospectroscopy of thr H. Niewodniczanski Institute of Nuclear Physics covers three areas: magnetic resonance, magnetic resonance imaging and solid state physics by computer simulation. In first of the mentioned above research directions, we apply magnetic resonance method in studies of molecular rotation in solids. Two ways of rotation have been distinguished: tunneling through the potential barriers and random jumps between distinct orientations. In the second one, the magnetic resonance microscope based on a 6.3 T superconducting magnet was completed. Each part of this system was tested and appropriate software has been written in the Laboratory and used for testing, optimization and running the experiment. In the field of solid state physics the work was concentrated around consequences of tetragonal-orthorhombic phase transition, experimentally observed in high temperature superconducting materials. In this section of the Annual Report, the detail descriptions of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  8. Overview. Department of Nuclear Radiospectroscopy. Section 8

    International Nuclear Information System (INIS)

    Hennel, J.W.

    1995-01-01

    Research at the Department of Nuclear Radiospectroscopy of thr H. Niewodniczanski Institute of Nuclear Physics covers three areas: magnetic resonance, magnetic resonance imaging and solid state physics by computer simulation. In first of the mentioned above research directions, we apply magnetic resonance method in studies of molecular rotation in solids. Two ways of rotation have been distinguished: tunneling through the potential barriers and random jumps between distinct orientations. In the second one, the magnetic resonance microscope based on a 6.3 T superconducting magnet was completed. Each part of this system was tested and appropriate software has been written in the Laboratory and used for testing, optimization and running the experiment. In the field of solid state physics the work was concentrated around consequences of tetragonal-orthorhombic phase transition, experimentally observed in high temperature superconducting materials. In this section of the Annual Report, the detail descriptions of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  9. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2000-01-01

    Full text: This year 1999 can be considered as very successful. Not only that we have published 33 papers in journals listed by the Philadelphia Institute of Science but because our hard work allowed us to obtain new and exciting results. A group of theoretical papers concerned with application of correlation among random matrices elements developed for statistical aspects of nuclear coupling into continuum to study of the collective effects in brain activity and stock market dynamics. These papers arose quite an interest and got several citations. Studies of the nonpartonic components in the nucleon structure function led to better understanding of the higher-twist effects. It was shown that inclusion of the terms of the order of 1/Q 4 improves fits to the experimental data. A review paper summarizing results on the role of the leading baryon in high energy reactions appeared in Progress on Nuclear and Particle Physics. Studies on multistep transfer reactions of light heavy ions in collaboration with the Institute of Nuclear Physics of the Ukrainian Academy of Sciences in Kiev have explained angular distributions of many reactions using the coupled channel theory. We have shown that it is possible to determine energy dependence of the optical model potential for such unstable nuclei like 8 Be. Further studies of mechanism of near threshold light meson production in collaboration with Juelich and Jagiellonian University were performed. Within COSY 10 and COSY 11 collaborations new data on the isospin symmetry breaking in pionic reactions and strange meson accompanied by hyperons emission were obtained. Together with colleagues from the Flerov Nuclear Reaction Laboratory we have started experiments with radioactive beams. Using magnetic separator COMBAS velocity distributions of isotopes with 2 ≤Z≤11 in reactions induced by 16 O on 9 Be were obtained. At the high resolution radioactive beam channel ACCULINA reactions induced by 6 He and 8 He nuclei were studied

  10. Wills Plasma Physics Department annual report, 1989

    International Nuclear Information System (INIS)

    1991-01-01

    An overview of the collaborative researches carried out during the 1989 at the Wills Plasma Physics Department is given. The main activities included the study of hydromagnetic surface waves and RF heating using the Tortus tokamak; the development of diagnostic techniques, particularly those based on submillimetre lasers and tunable gyrotrons; gas discharge studies and investigations of apparent cold nuclear fusion in deuterated palladium. The small research tokamak Tortus was upgraded during the year, thus enabling the machine to be routinely and reliably operated at toroidal currents around 40 kA. A list of papers published or presented at various conferences during the year is included in the Appendix

  11. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  12. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  13. Nuclear physics and neutronics

    International Nuclear Information System (INIS)

    Paya, D.

    1997-01-01

    After a brief review of the beginnings of the nuclear reaction physics in France in the 40's and 50's, the experimentation neutronics and nuclear physics studies are related and their uses presented, which aims were to provide data for the study of the various reactor concepts and to study fundamental physics. Progressively, pure nuclear physics lost its links with neutronics, and its influence decreases more or less. Long life radioactive waste reprocessing is an important domain where it could regain its contribution

  14. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    1999-01-01

    Full text: The year 1998 can be considered as very successful both in harvesting important results from the existing collaborations as well as establishing new ones. In the frame of the COSY-11 collaboration cross section for η' production in p-p collision close to the threshold has been measured. In the region of excess energy between 1.5 and 4.1 MeV the η' cross sections are much lower than those of the π 0 and η production. There seems to be no indication that N * resonance doorway-like state governs the reaction mechanisms. The determined coupling constant g η'pp appears to be consistent with the prediction of the simple quark model. Results were published in Phys. Rev. Letters. Using the GEM detector, investigations of the isospin symmetry breaking were performed. Two reactions channels 3 Heπ 0 and 3 Hπ + from the reaction at proton momenta 700, 767, and 825 MeV/c were measured. Data analysis is in progress. The model of the meson cloud in the nucleon which is a speciality of our department has been successfully applied to explain the leading proton and neutron cross sections from the e + or e - proton collisions at the HERA ring. General formulas to calculate polarization of the particles with spin transmitted through the barrier in the presence of strong magnetic fields were obtained. New collaboration between our laboratory and the Institute for Nuclear Research in Kiev has been established. One PhD thesis was completed in the frame of this collaboration. We joined the new collaboration with Lund University concerning studies of hot nuclear matter properties using heavy ions from CELSIUS ring. First test of the phoswich detector for the forward wall was performed in Uppsala. Isoscalar giant dipole resonance strength distribution 3 ℎω has been evaluated in 208 Pb in the space of 1p1h and 2p2h excitation. The centroid energy of this state can directly be related to the nuclear incompressibility module. Our result indicates rather large values of

  15. Nuclear physics workshop

    International Nuclear Information System (INIS)

    1988-01-01

    This Workshop in Nuclear Physics related to the TANDAR, took place in Buenos Aires in April from 23 to 26, 1987, with attendance of foreign scientists. There were presented four seminars and a lot of studies which deal with the following fields: Nuclear Physics at medium energies, Nuclear Structure, Nuclear Reactions, Nuclear Matter, Instrumentation and Methodology for Nuclear Spectroscopy, Classical Physics, Quantum Mechanics and Field Theory. It must be emphasized that the Electrostatic Accelerator TANDAR allows to work with heavy ions of high energy, that opens a new field of work in PIXE (particle induced X-ray emission). This powerful analytic technique makes it possiblethe analysis of nearly all the elements of the periodic table with the same accuracy. (M.E.L.) [es

  16. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    2001-01-01

    Full text: Research at the Department of Nuclear Radiospectroscopy encompasses various aspects of nuclear magnetic resonance (NMR) and its applications to solids and to biosystems. Current research activity covers two areas: investigation of molecular dynamics and structures in solids using NMR spectroscopy, and examination of human organs, small animals and plants using MR imaging and localized spectroscopy. MAGNETIC RESONANCE IMAGING LABORATORY Biomedical applications of magnetic resonance imaging (MRI) and spectroscopy (MRS) together with development and modification of the existing hardware were our main topic of research in the year 2000. The following projects have been carried out: * Investigation of the water diffusion tensor in biological systems in vivo and in vitro; * Study of localized MR spectra in the skeletal muscles of the human limbs; * Structure and physiological processes of the tissue and organs in the normal and pathological state studied by MRI and MRS methods; * Generation of the magnetic field gradients and design of highly specialized RF coils for MR localized spectroscopy and MR Imaging. This work has been done in collaboration with Collegium Medicum of the Jagiellonian University and the Institute for Biodiagnostics in Winnipeg, Canada. As far as the hardware and the methodology side are concerned our, tasks in the year 2000 included: * Development and modifications of home-built MR Microscopy based on 8.4T magnet; * Modifications of the 4.7T magnet console; * Designing and optimizing the ergometer used in skeletal muscle research; * Implementation of the fast imaging methods based on the spin echo sequences. MAGNETIC RESONANCE LABORATORY Deuteron NMR spectroscopy was applied to the study of reorientational dynamics and tunnelling rotation of ammonium ion isotopomers. As particular achievements we point out results concerning structure refinement of structure, establishing the symmetry of the rotational potential, and detection of the

  17. Activities report in nuclear physics

    NARCIS (Netherlands)

    Jansen, J. F. W.; Scholten, O.

    1987-01-01

    Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are

  18. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2002-01-01

    Full text: Our research in 2001 can be characterized by a wide range of various subjects e.g. search for new physics in Au + Au collisions at the energy in the centre of mass per nucleon pair √ s NN = 200 GeV through hunting dibaryon formation in p + p → K + + D (dibaryon) reaction to the application of the random matrix theory taken from nuclear reaction studies in the analysis of fluctuations of the stock exchange time and space correlations. Heavy ion reactions have been studied in a broad range of energies. At low energy of the 12 C ions (E CM = 25.57 MeV), delivered by the Warsaw U200P cyclotron, the reactions induced on 11 B target were studied. Coupling effects between various reaction channels were found. At the energies corresponding to the liquid-to-gas phase transition, the onset of the flow phenomena was found in the multifragmentation of the 197 Au nuclei induced by a sequence of projectiles p, 4 He, 12 C of the energies from 1-3 GeV per nucleon. Finally, evidence of the melting of the baryonic structure of the colliding nuclei was found at the highest available energies of 200 GeV per nucleon pair, in the collision of gold nuclei studied at the Relativistic Heavy Ion Collider within the BRAHMS and PHOBOS collaboration. We entered a new collaboration HIRES with the aim to discover S = -1 dibaryonic state by studying the reaction p+p → K + +D. So far many attempts to prove experimentally the existence of a dibaryonic state failed. We hope to use the unique properties of the Big Karl spectrometer to prove the existence of a sharp peak in the energy spectra of kaons. To do so, we have to reduce strongly the background of pions. A diffusely reflective threshold Cherenkov detector made from silica aerogel was designed. Preliminary tests indicate that pionic signals can be reduced by a factor of 58. Extensive studies of the mechanism of generating collective levels and the energy gap by means of diagonalizing matrices with random elements ended up with

  19. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  20. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  1. Nuclear physics program plan

    International Nuclear Information System (INIS)

    1985-11-01

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  2. Department of Nuclear Spectroscopy and Technique: Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    1999-01-01

    Full text: During the last year, the activity of our department was spread over basic research in nuclear physics (standard spectroscopy, more exotic regions close to the elementary particle physics, theoretical studies of heavy ion interactions), high energy atomic physics, applications of and nuclear physics (environmental studies, effects of irradiation, ion production). Some effort was focused on teaching - actually, four Ph. D. students are working for their degrees. Some of us were involved in organisation and further activity of the ''Radioactive Waste'' exhibition in Swierk. Our research is performed on our facilities (C30 cyclotron, low background detection facility), and in close co-operation with the Heavy Ion Laboratory of the Warsaw University, Jagellonian University in Cracow, Military Technical Academy in Warsaw, Institute of Electronic Technology and Materials in Warsaw and some foreign centers like GSI in Darmstadt, MPI in Heidelberg and KFA in Juelich (Germany), PSI in Villigen (Switzerland), University of Notre Dame, Argonne National Lab., Lawrence Berkeley Lab. and Los Alamos National Lab. (USA). The reader is invited to find some of our recent results on the next pages; together with a list of publications. Nevertheless some activities are worth mentioning: Nuclear spectroscopic studies were concentrated on Z or N 50 nuclei - determination of excited level schemes of 182,183 Ir, 180,181,182 Os and 110 Sn and 132 Ce was continued and some new effects found. The most precise lifetime of the A hyperon in very heavy hypernuclei was measured(COSY-13 project). The search of muon number forbidden nuclear μ - e nuclear conversion was continued (SINDRUM II coll.). Heavy ion interactions leading to fusion or fission processes were studied theoretically, and the experiments are in preparation. The experimental studies of atomic effects in bare, H- and He- like very heavy atoms and X ray spectroscopy of heavy ion atomic collisions were continued at GSI

  3. WORKSHOP: Nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Sheepard, Jim; Van Dyck, Olin

    1985-06-15

    A workshop 'Dirac Approaches t o Nuclear Physics' was held at Los Alamos from 31 January to 2 February, the first meeting ever on relativistic models of nuclear phenomena. The objective was to cover historical background as well as the most recent developments in the field, and communication between theorists and experimentalists was given a high priority.

  4. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  5. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  6. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  7. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    2000-01-01

    Full text: Research at the Department of Nuclear Radiospectroscopy concerns various aspects of nuclear magnetic resonance (NMR) and its applications to solids and to biosystems. Current research activity covers two areas: investigation of molecular dynamics and structures in solids using magnetic resonance spectroscopy, and investigation of humans, small animals and plants using magnetic resonance imaging and localized spectroscopy. MAGNETIC RESONANCE LABORATORY: Molecular reorientation studies aimed at disclosing tunnelling rotation and structural research of amorphous solids were our main topics. Realisation of these projects, both supported by the grants of the State Scientific Committee, required a continuous development of our NMR pulse spectrometer and theoretical methods. Partially deuterated ammonium ions open a new field in studies of molecular mobility and crystal structure. We may point out new features observed in 2 H-NMR spectra of ammonium ion isotopomers NH 4-x D x + . Following observations and conclusions are based on recent experiments: - evidence for tunneling rotation of ND 2 H 2 + and ND 3 H + ions, - evidence for the domain structure in the ordered phase and high mobility of ammonium ions in domain walls. The application of high resolution solid state NMR spectroscopy to the studies of novel heterogeneous catalysts was continued in 1999. The static and MAS-NMR spectra of 51 V deposited on various substrates were measured. It was possible to determine the coordination, local symmetry and the type of association of vanadium complexes, and correlate this structural information with the catalytic activity and selectivity in model reactions. The short range structure and the nature of local inhomogeneities in the multicomponent polymeric oxide glasses were studied using the high resolution MAS-NMR technique. MAS-NMR spectra of 29 Si, 31 P, 11 B, and 27 AI were measured for two model glasses. The MAS-NMR has been found to be the only technique that

  8. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  9. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  10. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  11. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2001-01-01

    Full text: We have ended up 20 th century with rather encouraging results. Quantitatively it was 54 papers published in respectable journals listed by the Philadelphia Institute of Science Information. Qualitatively some of our results were paving new directions of research in the coming Millennium. First results obtained at RHIC within the PHOBOS collaboration indicate that particles emitted around 90 o in the gold-gold collisions at the energy √s=130 GeV per nucleon pair have the highest multiplicity and highest content of antiparticles as measured so far at 7 times lower energy at SPS. These effects indicate that we moved some notable step towards restoring in ultrarelativistic heavy ion collisions the conditions existing in the early Universe. Within the physics of complex systems, a field well established at our laboratory, we successfully continued to contribute to an emerging new science of econophysics. The central related issues of interest to us are those of criticality and of the dynamics of competition between collectivity and noise in the stock market. New results came from the FASA collaboration. By increasing the mass of the incident light projectiles from p to 12 C a distinct contribution of the radial velocity to the velocity distribution of the intermediate mass fragments resulting from the thermal multifragmentation of the heavy nucleus was found. This indicated on the onset of the compression phenomena. The wavelet transform was applied to study the auditory cortex activity. Strong correlation in the response of the signals from both hemispheres and the main characteristics of the range of the resulting frequencies were established. First experiment using 11 B beam from the Warsaw Cyclotron U-200P was completed. The analysis of the semi-inclusive production of pions in DIS has led to the conclusion that various non partonic effects like VDM component, exclusive ρ 0 0 production and other, influence the extraction of light quark flavour

  12. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    1979-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  13. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  14. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Sernicki, J.

    2005-01-01

    Full text:Research activities in our Department in the last year were focused on traditional domains of nuclear physics: heavy-ion reactions and nuclear spectroscopy, but also on medium-energy elementary particle physics, neutrino physics, as well as atomic physics. Along with the group of nuclear and atomic physicists, our Department encompasses a team working on medical physics and another team engaged in ecology and environmental physics. We maintain our collaboration with FZ Juelich (Germany) continuing experiments on the COSY storage ring, aimed at studying heavy hyperons produced in pp collisions. Recently, evidence for a new hyperon has been obtained. At PSI Villigen (Switzerland) rare pion- and muon decays have been studied using the large PIBETA detector. The branching ratio for the pion beta decay was measured with six times better accuracy than previously. From the precise measurements of the radiative pion decay the pion axial form factor was evaluated (four times more precisely). Some anomaly, which can not be explained by the Standard Model, was observed in this process. In the field of neutrino physics, data collected with the T600 module of the cosmic ray detector ICARUS in Pavia (Italy) have been analysed. In collaboration with the Department of Nuclear Theory, conditions to observe the fascinating process of neutrino-less double electron capture were further examined from the point of view of the fundamental question of the neutrino nature and mass. Our involvement in the CHIMERA/ISOSPIN Collaboration resulted in interesting studies of semi-peripheral nucleus-nucleus collisions at the Fermi energy range. In particular, a new method of determination of the time scale of the emission of intermediate mass fragments was developed. We continued the collaboration with LBNL Berkeley (USA) and IEP Warsaw University on a theoretical model of the synthesis of super-heavy elements. A comprehensive description of the model with extensive predictions of the

  15. Nuclear physics group report

    International Nuclear Information System (INIS)

    A brief description is given of the new cyclotron tested and inaugurated during the period under review, and its main specifications are presented. Preliminary beam measurements are reported. The computers and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear structure and nuclear reactions which are in progress, or soon to be reported are presented. Projects in theoretical nuclear physics are also described. Lists of seminars and lectures and of publications are given. (JIW)

  16. Department of Nuclear Spectroscopy and Technique: Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    2000-01-01

    Full text: Research activities of the Department in 1999 were concentrated on medium and low energy nuclear physics, atomic physics of the exotic bare or single electron atoms and on selected applications of nuclear physics. Experiments in the medium energy physics are carried out using large facilities: ANKE in KFA Juelich (Germany) and SINDRUM 2 at PSI Villigen (Switzerland). In the low energy our physicists continue collaboration with Heavy Ion Laboratory of Warsaw University, and large international gamma multidetector facilities like GAMMASPHERE. The heavy ion beams of GSI in Darmstadt (Germany) and PSI are used for studies of atomic effects. Our C-30 proton cyclotron delivers beam to study modification of optical properties of laser crystals and our low background gamma detection facility is used to measure radioactive contamination of the environment. The theoretical work is devoted to study the fusion of the heavy nuclei with the particular interest in production of new isotopes with very small probabilities. The reader is invited to find some of our recent results on the next pages, together with a list of papers published this year. Nevertheless it is worthwhile to emphasize: Observation of helium like hole states in the ionized high Z atoms; Tests of the Langevin Dynamics of Nucleus-Nucleus Collisions; Study of Radiative Electron Capture into bare U ions; First lifetime measurements using the DSAM method on Warsaw Cyclotron; Optimisation of the electron beam flue gas purification using the genetic controller. Some of us are also involved in teaching and in supervision of students and graduate students. Financial support received from the State Committee for Scientific Research and Maria Sklodowska-Curie Polish-American Foundation is acknowledged. (author)

  17. Nuclear physics I

    International Nuclear Information System (INIS)

    Elze, T.

    1988-01-01

    This script consisting of two parts contains the matter of the courses Nuclear Physics I and II, as they were presented in the winter term 1987/88 and summer term 1988 for students of physics at Frankfurt University. In the present part I the matter of the winter term is summarized. (orig.) [de

  18. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2006-01-01

    The basic activities of the Department of Nuclear Electronics in 2005 were concentrated on following areas: · studies of new scintillation techniques and their application in nuclear medicine and border monitoring, · contribution to the FWVI European projects, · scientific contracts with European industry in respect to detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus, · development of new generation State of the Art USB based and PCI based multi-channel analysers, · development, investigation and production of silicon detectors · normalisation activities. Most of the scientific achievements of the Department were summarized in 24 publications (released or being in press) and 6 publications submitted. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 11 contributions at international conferences - 5 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2005 in Puerto Rico. It should also be stressed that prof. M. Moszynski was honoured with the title of IEEE Fellow and M. Kapusta has received PhD degree. There also were normalization activities in preparation of polish versions of European Standards in the field of electronics Studies on new scintillation techniques were addressed mainly to their application in a nuclear medicine and a border monitoring, induced by the European projects, realized within FWVI. The study of new prospects for a Time-of-Flight Positron Emission Tomography, carried out within BioCare project, strongly suggested that the time-of-flight PET, based on LSO crystals, is a realistic proposition for the further development. Moreover, the comparative study of several scintillators allowed selecting LaBr 3 crystal as a potential candidate to a common PET/CT detector. A comparative study of a large NaI(Tl) and BGO crystals allowed, in turn, selecting the 5''x 5''x 10'' Na

  19. Department of Nuclear Radiospectroscopy - Overview

    International Nuclear Information System (INIS)

    Jasinski, A.

    1999-01-01

    Research at the Department of Nuclear Radiospectroscopy concerns various aspects of the NMR and its applications to solids and to biosystems. The research activity covers: investigation of molecular dynamics and structures in solids using NMR spectroscopy, and investigation of humans, animals and plants using NMR imaging and localized spectroscopy. The MR Laboratory is equipped with a 7.05 T wide bore vertical superconducting magnet (SCM) with a pulse spectrometer. It allows to measure of deuteron NMR spectra at T ≥ 5 K. NMR high resolution spectra for 29 Si, 11 B, 27 Al and 31 P nuclei can be measured using MAS-NMR probe heads. The Magnetic Resonance Imaging Laboratory is equipped with 360 MHz MR microscope based on a 8.4 T narrow bore SCM and a MRI/MRS system based on a 2 T, 31 cm horizontal bore SCM. Magnetic Resonance Laboratory: Molecular reorientation studies aimed at disclosing tunnelling rotation and structural research of amorphous solids were main topics. Realisation of these projects required a development of our NMR pulse spectrometer and theoretical methods. The spectrometer was put into operation in 1997. Recent development was done in the data acquisition by the introduction of a new A/D converter and a pulse programmer. Tunnelling and reorientations of mixed isotope rotors are currently the most interesting topics. For a given deuteration rate of an ammonium compound it was anticipating that deuteron NMR spectra consist of weighted contributions from the following isotopomers: NH 3 D + , NH 2 D 2 + , NH 3 D + and ND 4 + . Each isotopomer provides a characteristic spectral component due to its mobility. Measurements were performed for a number of partially deuterated samples of (NH 4 ) 2 S 2 O 8 , NH 4 ClO 4 , NH 4 PF 6 , (NH 4 ) 2 ZnCl 4 and (NH 4 ) 2 TeCl 6 in the T = 5-100 K. The spectra of NH 3 D + ions are particularly interesting. A new effect of an isotope ordering was observed. The structural investigations of amorphous solids by NMR

  20. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  1. Nuclear Safety Research Department annual progress report 1993

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F.

    1994-02-01

    The report describes the work of the Nuclear Safety Research Department during 1993. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au) (2 tabs., 12 ills.)

  2. Nuclear Safety Research Department annual progress report 1994

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au) (1 tab., 12 ills.)

  3. Nuclear Safety Research Department annual progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B; Brodersen, K; Damkjaer, A; Hoejerup, C F [eds.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff`s participation in international committees. (au) (1 tab., 12 ills.).

  4. Nuclear Safety Research Department. Annual progress report 1991

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Hoejerup, C.F.; Heikel Vinther, F.

    1992-03-01

    The report describes the work of the Nuclear Safety Research Department during 1991. The activities cover health physics, reactor physics, operation of the educational reactor DR 1, and waste management. Lists of staff and publications are included together with a summary of participation in international working groups etc. (au) (5 ills., 59 refs.)

  5. Nuclear Safety Research Department annual progress report 1992

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Hoejerup, C.F.; Heikel Vinther, F.

    1993-03-01

    The report describes the work of the Nuclear Safety Research Department during 1992. The activities cover health physics, reactor physics, operation of the Danish educational reactor DR1, and waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au)

  6. Nuclear Safety Research Department. Annual progress report 1990

    International Nuclear Information System (INIS)

    Heikel Vinther, F.

    1991-07-01

    The report describes the work of the Nuclear Safety Research Department during 1990. The activities cover health physics, reactor physics, operation of the educational reactor DR 1, and waste management. Lists of staff and publications are included together with a summary of participation in international working groups etc. (au) 3 ills., 30 refs

  7. United States Department of Energy Nuclear Materials Stewardship

    International Nuclear Information System (INIS)

    Newton, J. W.

    2002-01-01

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials

  8. US nuclear physics funding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Because of restrictions in the federal budget, US science spending is coming under close scrutiny, with strong implications for the evolution of the nation's physics research. Recently the Witherell subpanel of the Department of Energy's High Energy Physics Advisory Panel (HEPAP) submitted recommendations on how the US research scene could evolve pending commissioning of the SSC Superconducting Supercollider

  9. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1991-06-01

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  10. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  11. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  12. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  13. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  14. [Experimental nuclear physics]. Final report

    International Nuclear Information System (INIS)

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs

  15. [Experimental nuclear physics]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  16. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The theoretical physics program in the Physics Division at ORNL involves research in both nuclear and atomic physics. In nuclear physics there is extensive activity in the fields of direct nuclear reactions with light- and heavy-ion projectiles, the structure of nuclei far from stability and at elevated temperatures, and the microscopic and macroscopic description of heavy-ion dynamics, including the behavior of nuclear molecules and supernuclei. New research efforts in relativistic nuclear collisions and in the study of quark-gluon plasma have continued to grow this year. The atomic theory program deals with a variety of ionization, multiple-vacancy production, and charge-exchange processes. Many of the problems are selected because of their relevance to the magnetic fusion energy program. In addition, there is a joint atomic-nuclear theory effort to study positron production during the collision of two high-Z numbers, i.e., U+U. A new Distinguished Scientist program, sponsored jointly by the University of Tennessee and ORNL, has been initiated. Among the first appointments is G.F. Bertsch in theoretical physics. As a result of this appointment, Bertsch and an associated group of four theorists split their time between UT and ORNL. In addition, the State of Tennessee has established a significant budget to support the visits of outstanding scientists to the Joint Institute for Heavy Ion Research at ORNL. This budget should permit a significant improvement in the visitor program at ORNL. Finally, the Laboratory awarded a Wigner post-doctoral Appointment to a theorist who will work in the theory group of the Physics Division

  17. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  18. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  19. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2008-01-01

    Full text: The activities of the Department in 2007 continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma technology of surface engineering: · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF) and RPI-IBIS facilities; · Development of selected methods for high-temperature plasma diagnostics; · Research on plasma technologies; · Selected problems of plasma theory and computational modelling. As for the experimental studies particular attention was paid to the analysis of the correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions from different Plasma-Focus (PF) facilities. A collisional-radiative model, taking into account the Stark effect and strong electric fields in the so called '' hot- spot '' regions of a pinch, was applied in those analyses. The main aim of these studies was to identify the physical phenomena responsible for the emission during the PF-type discharges. The emitted protons were also measured with nuclear track detectors. The measurements made it possible to obtain images of the regions, where the D-D fusion reactions occurred, as well as to determine the angular distribution of the emitted protons. Pulsed plasma streams were also investigated by means of time-resolved optical spectroscopy and corpuscular diagnostics. In a frame of the EURATOM program, efforts were devoted to the development of diagnostic methods for tokamak-type facilities. Such studies include the design and construction of the 4-channel Cherenkov-type detection system for the TORE-SUPRA tokamak at CEA-Cadarache. In the meantime in order to collect some experience a new measuring head was especially prepared for experiments within small facilities. Other fusion- oriented efforts are connected with the application of the solid-state nuclear track detectors for investigation of protons from tokamak plasma and high-energy beams emitted from laser produced plasmas

  20. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 1020 eV/particle), · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g.: · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. Back in 2004 we started realisation of the Roland Maze Project, the network of EAS detectors

  1. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  2. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  3. Department of Detectors and Nuclear Electronics: Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2003-01-01

    Full text: The basic activities of the Department of Nuclear Electronics were concentrated on the following areas: - studies of new scintillation techniques, - contribution to the big European projects, - electronics for experiments in High Energy Physics, - development, investigation and production of silicon detectors, - development of γ-ray spectrometry apparatus, - development of new generation state of the art PCI based multi-channel analysers, - technical support for the Institute as the whole with special emphasis on networking, - normalisation activities. Most of the scientific achievements concerning the Department were summarized in 20 publications (released or being in press). The papers were published mainly in IEEE Trans. on Nucl. Sci. and Nucl. Instr. and Methods. Besides that, our scientists presented 6 contributions at international conferences (such as IEEE Nuclear Science Symposium 2002 in Norfolk, USA). The Department was involved in scientific collaborations with a number of international centers, such as CERN, Royal Institute of Technology in Stockholm, FZR Rossendorf, IKF Juelich, GSI Darmstadt and companies as Advanced Photonix, Inc in California, Scionix in Holland and Photonis in France. The collaboration with High Energy Physics Department of our Institute was focused on LHCb experiment in CERN. In the studies of new scintillation techniques large area avalanche photodiodes were used successfully to tests numerous scintillators at liquid nitrogen temperature. The study of pure (undoped) NaI showed some intriguing effects dealing with non-proportionality of the light yield versus energy of γ-quanta and intrinsic energy resolution of the crystals, which may provide a deeper insight into origin of intrinsic resolution. A very high-energy resolution of 3.8% was measured for 662 keV γ-rays from a 137 Cs source. Moreover, very promising properties of pure NaI at room temperature were shown for the first time. The study of Hamamatsu avalanche

  4. Nuclear physics II

    International Nuclear Information System (INIS)

    Elze, T.

    1988-01-01

    This script consisting of two parts contains the matter of the courses Nuclear Pyhsics I and II, as they were presented in the winter term 1987/88 and summer term 1988 for students of physics at Frankfurt University. In the present part II the matter of the summer term is summarized. (orig.) [de

  5. Fundamentals in nuclear physics

    International Nuclear Information System (INIS)

    Diserbo, Michel

    2014-01-01

    The author proposes an overview of the main notions related to nuclear physics. He first addresses the atom and the nucleus: brief history, their constituents, energetic aspects for electrons and nucleus. The second part deals with radioactivity: definitions, time law and conservation law, natural and artificial radio-elements, α, β and γ radiations. Nuclear reactions (fission and fusion) are then presented as well as their application to nuclear reactor operation. The next part concerns interactions between radiations and matter, more precisely between charged particles and matter, neutrons and matter, X rays or γ rays and matter. The last chapter presents the various quantities used to characterise a source, the radiation field and the physical action, and quantities and units used in radiobiology and in radiation protection

  6. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  7. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in laboratories). - Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students is a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering the EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In our Lodz Department we run an Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz's budget to make a pilot project and equip 10 high schools, each with

  8. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · The nature of the physical and astrophysical processes responsible for the high energies of the particles (up to about 1020 eV/particle), · An estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. · 'cosmic weather' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run the Extensive Air Shower array where EAS are being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004, we started realisation of the Roland Maze Project, the network of EAS detectors placed on roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1 m

  9. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  10. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2007-01-01

    The basic activities of the Department of Nuclear Electronics in 2006 were concentrated on the following areas: · studies of new scintillation techniques and their application to nuclear medicine and border monitoring, · contribution to FWVI European projects, · scientific contracts with European industry in respect to detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus, · development of new generation State of the Art USB based multi-channel analyzers supplied with Ethernet port and wireless connection, · development, investigation and production of silicon detectors, · normalization activities. Most of the scientific achievements of the Department were summarized in 27 publications (released or in press) and 8 submitted publications. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 20 contributions at international conferences - 6 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2006 in San Diego, USA. Five invited talks were presented at International Conferences. Also normalization activities in preparation of the Polish versions of European Standards in the field of electronics were supported. In the study of new scintillation techniques, the tests of energy resolution and non-proportionality were carried out for LGSO and CsI(Tl) scintillators, and in the case of NaI(Tl) at reduced temperatures down to -40 o C It shows more precisely an interesting observation of dependences of energy resolution and non-proportionality on a shaping time constant of the amplifier for scintillators with the light pulse consisting of two components. Within the studies addressed to the BioCare European project, realized within FWVI, the proposition of a new common PET/CT detector was developed. The further study of detectors for a Time-of-Flight Positron Emission Tomography was also performed. In the frame of

  11. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1997-01-01

    In 1996 the main activities of Department P-5 (until December 1996 known as the Department of Thermonuclear Research) were concentrated on 5 topics: 1. Selected problems of plasma theory, 2. Studies of phenomena within high-current plasma concentrators, 3. Development of plasma diagnostic methods, 4. Studies in the field of fusion technology, 5. Research on new plasma-ion technologies. Theoretical studies mainly concerned elementary processes occurring within a plasma, and particularly those within near-electrode regions of microwave discharges as well as those within near-wall layers (SOL) of tokamaks. We also developed computational packages for parameter identification and modelling of physical phenomena in pulse plasma coaxial accelerators. Experimental studies were concentrated on the generation of a dense magnetized plasma in different high-current PF (Plasma Focus) facilities and small Z-Pinch devices. We carried out investigations of X-rays, relativistic electron beams (REBs), accelerated primary ions, and fast products of fusion reactions for deuterium discharges. Research on plasma diagnostics comprised the development of methods and equipment for studies of X-ray emission, pulsed electron beams, and fast ions, using special Cherenkov-type detectors of electrons and solid-state nuclear track detectors (SSNTDs) of ions. New diagnostic techniques were developed. Studies in the field of fusion technology concerned the design, construction, and testing of different high-voltage pulse generators. We also developed special opto-electronic systems for control and data transmission. Research on plasma-ion technology concentrated on the generation of pulsed high-power plasma-ion streams and their applications for the surface modification of semiconductors, pure metals and alloys. The material engineering studies were carried out in close collaboration with our P-9 Department and other domestic and foreign research centers

  12. Advances in nuclear physics

    CERN Document Server

    Vogt, Erich

    1975-01-01

    Review articles on three topics of considerable current interest make up the present volume. The first, on A-hypernuclei, was solicited by the editors in order to provide nuclear physicists with a general description of the most recent developments in a field which this audience has largely neglected or, perhaps, viewed as a novelty in which a bizarre nuclear system gave some information about the lambda-nuclear intersection. That view was never valid. The very recent developments reviewed here-particularly those pertaining to hypernuclear excitations and the strangeness exchange reactions-emphasize that this field provides important information about the models and central ideas of nuclear physics. The off-shell behavior of the nucleon-nucleon interaction is a topic which was at first received with some embarrassment, abuse, and neglect, but it has recently gained proper attention in many nuclear problems. Interest was first focused on it in nuclear many-body theory, but it threatened nuclear physicists'comf...

  13. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2006-01-01

    The activities of the Department are centered around experiments performed at large accelerator laboratories: I. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - Data taking experiments: COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies of the gluon polarization in the nucleon; - Experiments that finished data taking but continue the analysis: NA49 and WA98 - heavy ion experiments, study hadronic and nuclear interactions, searching for the quark-gluon plasma. II. The 'Pi of the Sky' experiment, searching for optical flashes associated with Gamma Ray Bursts takes data with a set of CCD cameras mounted in the Chile Observatory Station, and works on an extension of the system. III. WASA experiment, recently transferred from the CELSIUS storage ring in Uppsala to Juelich, studies near threshold resonance production. IV. ZEUS experiment at HERA in Hamburg - studies of proton structure functions and diffractive interactions. V. Neutrino experiments at SuperKamiokande and K2K in Japan - studies of the neutrino oscillations. VI. Preparations for future experiments: a) ICARUS - in preparation for the neutrino beam from CERN, to study neutrino oscillations, b) Experiments at the future Large Hadron Collider at CERN: CMS - Compact Muon Solenoid, LHCb - study of b-quark production, ALICE - study of heavy ion collisions. A team of physicists, engineers and technicians, using our well equipped mechanical workshop, with 'clean room' (class 100 000) facilities has performed a large scale production of straw tube modules for the LHCb experiment. Preparations for LHC physics requires an active participation of the teams involved in the computer GRID implementation. There is also a small group involved in theoretical work on the phenomenology of quark-gluon plasma formation and the low energy hadronic reactions. Several physicists from our department are actively involved in science popularization. A close

  14. Physics through the 1990s: Nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the report of the Panel on Nuclear Physics of the Physics Survey Committee, established by the National Research Council in 1983. The report presents many of the major advances in nuclear physics during the past decade, sketches the impacts of nuclear physics on other sciences and on society, and describes the current frontiers of the field. It concludes with a chapter on the recommended priorities for this discipline

  15. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    connected off-line using internet infrastructure and precise time registration. Students of high schools in Lodz are involved in construction of the array. We participate in work of EuroCosmics, the European network of school-based Cosmic Ray experiments. In the underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. The international collaborations are very important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with University Paris-VII, Institute for Nuclear Research of the Russian Academy of Sciences and JINR, Dubna. In the area of high energy particle physics Department participates in ZEUS experiment at DESY (Hamburg, Germany), and in WASA(at)COSY Collaboration in Juelich, Germany. (author)

  16. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  17. Panel report: nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

    2010-01-01

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that

  18. Department of Detectors and Nuclear Electronics: Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2004-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2003 were concentrated on following areas: - studies of new scintillation techniques, - contribution to the big European projects, - scientific contracts with European industry in respect to detection techniques - electronics for experiments in High Energy Physics, - development, investigation and production of silicon detectors - development of γ-ray spectrometry apparatus, - development of new generation State of the Art PCI based and USB based multi-channel analysers, - technical support for the Institute as the whole with special emphasis on networking, - normalisation activities. Most of the scientific achievements of the Department were summarized in 18 publications (released or in press). These papers were published mainly in IEEE Trans. on Nucl. Sci. and Nucl. Instr. and Methods. Besides that, our scientists presented 14 contributions at international conferences (such as IEEE Nuclear Science Symposium 2003 in Portland, USA or 3 th IEEE Real Time Conference in Montreal, Canada). Particularly, two papers were presented at IEEE NSS Conference in Portland presenting the first in-beam study of LSO/APD array detectors for PET in hadron therapy - this work was performed in the collaboration with FZR Rossendorf in Germany. Studies on new scintillation techniques were concentrated mainly on energy resolution investigations in scintillation detectors. The study of pure CsI and BGO at liquid nitrogen temperature showed some important observations concerning non-proportionality of the light yield versus energy of γ-quanta and intrinsic energy resolution of the scintillators. It suggested that a modification of scintillators by additional doping may improve their proportionality and in consequence, their energy resolution. The Department was involved in scientific collaborations with a number of international centers, such as CERN, the Royal Institute of Technology in Stockholm, FZR

  19. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  20. Nuclear medical physics

    International Nuclear Information System (INIS)

    Williams, L.E.

    1987-01-01

    This three-volume set covers the physical basis of nuclear medicine, and is intended as a source of data for practicing scientists and physicians as well as those beginning their careers or simply studying nuclear medical physics. It leads the reader from quantum theory to the production and attenuation of ionizing radiation; considers dosimetry and the most recent assessment of biological effects of such particles; describes in detail detector materials, signal analysis, and gamma cameras; includes extensive discussions of bone mineral measurement as well as magnetic resonance imaging; covers limited angle, rotating camera, and positron tomography; presents quality assurance and statistical theory with an eye toward enhanced departmental operations; and features descriptions of functional imaging and the psychophysical basis of diagnosis

  1. Particle and nuclear physics

    International Nuclear Information System (INIS)

    Ning, H.; Chong-shi, W.

    1986-01-01

    This book contains the proceedings of the September symposium. There are two parts to this book divided according to particle physics and nuclear physics. Some of the titles of the papers are as follows: Bifurcation and Dynamical Symmetry Breaking, Negative Binomial Distribution for the Multiplicity Distributions in e/sup +/e/sup -/ Annihilation, Variational Study of Lattice QCD, Rescaling for Kaon Structure Function, SDG Boson Model and its Application, The Pair-Aligned Intrinsic Wave Function in Single-j Configuration, and The Short Range Effective Interaction and the Spectra of Calcium Isotopes in (f-p) Space

  2. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  3. Nuclear Physics Review

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  4. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    2 detectors and GPS. The network is connected off-line using internet infrastructure and precise time registration. Students of the high schools in Lodz are involved in the construction of the array. International collaborations are very important: the Department is a member of the KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We also became a member of the JEM-EUSO satellite experiment collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with University Paris-VII, Institute for Nuclear Research of the Russian Academy of Sciences and JINR Dubna. In the area of high-energy particle physics the Department participates in the ZEUS experiment at DESY (Hamburg, Germany), and in the WASA(at)COSY Collaboration in Juelich, Germany. (author)

  5. Strangeness nuclear physics

    International Nuclear Information System (INIS)

    Imai, Kenichi

    1999-01-01

    A simple review of strangeness nuclear physics is stated in the order of introduction, generation, structure and decay of hyper-nucleus and S=-2 nuclear physics. Strangeness nuclear physics investigate the structure and nuclear force of new created nucleus by introducing strangeness to the nuclear matter. The fundamental problems are hyperon-nucleon and hyperon-hyperon interaction. There are many methods to generate hyper nucleus. The stopped K - reaction is the best one. Λ and S hyper and S=-2 nucleus were generated by (K - , π) and (π + , K + ) reaction, (K - , π) reaction and (K - , K + ) reaction, respectively. The elementary decay process in the nucleus is Λ - > pπ (Q=38 MeV), nπ 0 and Λp - > np (Q=176 MeV), Λn- > nn. In emulsion, mass of light nucleus less than 160 were determined. Two measurement units are stated. One of them is a double focusing type K beam line in BNL to investigate H dibaryon by (K - , K + ) reaction. The other is KEK-SKS, which is superconducting kaon spectrometer to study hyper nucleus by (π + , K + ) reaction. The various kinds of binding energy of Λ single-particle states are displayed as a function of A -2/3 . These experimental data fit well with DWIA calculation using Woods-Saxon type one-body potential. A spectrum of 12C (π + , K + ) reaction showed small peak without main two peaks, which was a hyperfine structure between the exited state of 11 C core and couple of s 1/2 Λ. Although γ-ray was detected by three nucleuses such as 4 HΛ, 7 Li Λ and 9 Be Λ , γ-ray spectrometry of hyper nucleus remains unexplored. E hyper nucleus is detected by 4He(K-, t) and not by 4 He (K - , π + ). The binding energy of 4He Σ is 4.4 + 1 MeV and the width 7.0 + 0.7 MeV. Λ hyper nucleus decay is occurred by weak interaction. The elementary processes are a mesonic decay of Λ - > pπ - and Λ - > nπ 0 and a nonmesonic decay of Λn - > nn and Λp- > np. The lifetime of hyper nucleus is shorter than free Λ. Subject of S=-2 nuclear

  6. Nuclear physics for nuclear fusion

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Wei Qingming; Ren Xianzhe

    2004-01-01

    The D-T fusion cross-section is calculated using quantum mechanics with the model of square nuclear potential well and Coulomb potential barrier. The agreement between ENDF data and the theoretically calculated results is well in the range of 0.2-280 keV. It shows that the application of Breit-Wigner formula is not suitable for the case of the light nuclei fusion reaction. When this model is applied to the nuclear reaction between the charged particles confined in a lattice, it explains the 'abnormal phenomena'. It implies a prospect of nuclear fusion energy without strong nuclear radiations

  7. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    1999-01-01

    Full text: The main activity of our Department is experimental high energy physics with accelerators. Experiments are carried using large facilities: - at CERN, the European Laboratory for Particle Physics in Geneva, - at Celsius Storage Ring in Uppsala and - in DESY laboratory in Hamburg, where several groups of physicists from our Department are members of international collaborations. They are listed below together with the main physics interests: At CERN - Delphi at LEP - tests of the Standard Model, b-quark physics, SUSY search, - NA48 - CP-violation in K 0 decays, rare decays, - SMC - spin dependent nucleon structure function, the Bjorken sum, - NA49 and WA98 - heavy ion physics. At CELSIUS - WASA - threshold production of light mesons, rare meson decays. At DESY - ZEUS - proton and photon structure functions, diffractive production. In most of these experiments our Department also contributed to the instrumentation of detectors and is presently involved in data collection, detector supervision and in data analysis. At the same time the Department is also involved in preparation of new experiments: - CMS (Compact Muon Solenoid) and ALICE at the LHC (Large Hadron Collider) at CERN, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - an upgrade of the present detector at Celsius, - hyperfragment experiment at JINR, Dubna. The department has small workshop which was recently involved in an upgrade of the WASA detector. In our Department there are also two physicists working on the phenomenology of a quark-gluon plasma and on the low energy hadron-hadron interactions. Physicist from our Department collaborate with the Department of the Experimental Physics of Warsaw University. They are also involved in teaching and in supervision of diploma students. There is a group of 9 PhD students. (author)

  8. Nuclear Physics in Poland

    International Nuclear Information System (INIS)

    Wroblewski, A.K.

    2004-01-01

    Full text: This will be a short presentation of low and high energy nuclear physics in Poland, its history, essential results, and the present status. Nuclear physics in Poland has a tradition of hundred years. Research started just after the discovery of radium and polonium by Polish-born Maria Sklodowska-Curie and her husband Pierre Curie. Maria Sklodowska-Curie employed numerous Polish assistants in her Paris laboratory and supported radioactivity studies in Warsaw, her birth place, then under the occupation of tsarist Russia. In the first decades of the XXth century Poland was one of the leading countries in radioactivity studies. In the late 1930-ies a cyclotron was constructed in Warsaw and an ambitious 'Star of Poland' project was launched to study the cosmic rays. Unfortunately, the Second World War stopped all scientific activity in Poland. A large fraction of Polish physicists perished in the period 1939-1945. After the World War nuclear physics of low and high energy was rebuilt in Warsaw and Krakow. Already in 1952 Marian Danysz and Jerzy Pniewski discovered the first hypernucleus. This important discovery was essential to understand the properties of numerous new particles found in cosmic rays. Polish physicists entered intensive collaboration with both CERN and Dubna and took part also in research at other centers in Europe (DESY, GSI, GANIL, Julich, SACLAY) and the United States (Fermilab). At present the research is concentrated in Warsaw and Krakow (the two largest centers), and smaller teams, mostly theorists, are also in Bialystok, Katowice, Kielce, Lublin, Lodz and Wroclaw. Several years ago a heavy ion cyclotron was built in Warsaw. Among the important discoveries made by Polish nuclear physicists one may mention the theoretical works on superheavy elements and the recent discovery of the two-proton radioactivity

  9. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  10. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  11. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  12. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1993-06-01

    The authors report on recent progress of research at the interface of nuclear physics and astrophysics. During the past year, the authors continued to work on Big Bang and stellar nucleosynthesis, the solar neutrino problem, the equation of state for dense matter, the quark-hadron phase transition, and the origin of gamma-ray bursts; and began studying the consequences of nuclear reaction rates in the presence of strong magnetic fields. They have shown that the primordial production of B and Be cannot explain recent detections of these elements in halo stars and have looked at spallation as the likely source of these elements. By looking at nucleosynthesis with inhomogeneous initial conditions, they concluded that the Universe must have been very smooth before nucleosynthesis. They have also constrained neutrino oscillations and primordial magnetic fields by Big Bang nucleosynthesis. On the solar neutrino problem, they have analyzed the implications of the SAGE and GALLEX experiments. They also showed that the presence of dibaryons in neutron stars depends weakly on uncertainties of nuclear equations of state. They have started to investigate the consequences of strong magnetic fields on nuclear reactions and implications for neutron star cooling and supernova nucleosynthesis

  13. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  14. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2010-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2009 were concentrated in the following areas: · studies of new scintillation techniques and their application to nuclear medicine and border monitoring, · realization of the A(and)D project, · scientific contracts with European industry with respect to detection techniques, · electronics for experiments in high energy Physics, · development of γ-ray spectrometry apparatus and new generation State of the Art multi-channel analysers, · development, investigation and production of silicon detectors, · normalisation activities. Most of the scientific- achievements of the Department were summarized in 25 refereed publications, published mainly iu IEEE Trans. Nucl. Sci. and in 3 non reviewed publications. In addition, our scientists presented 28 contributions at international conferences - 8 presentations at the IEEE Nuclear Science Symposium and Medical Imaging Conference 2009 in Orlando, USA. Normalization activities in preparation of Polish versions of European Standards in the field of electronics were also supported. The observed discrepancy in the light output measured by different PMTs for a number of LSO/LYSO and BGO scintillators triggered studies which showed that the characterization of scintillators by modern photomultipliers may bring a new source of errors related to the space charge effect in PMTs. It enables the right number of the light output of LSO/LYSO scintillator to be given and methods which permit the correct measurement of the photoelectron number and the photon number to be proposed. The further study of new scintillation techniques covered a development of the method to measure the energy resolution of Compton electrons in scintillators. measurements of the non-proportionality of CdWO 4 and ZnWO 4 at liquid nitrogen temperatures and studies of CsI(Na) scintillators. Last year the Department began development of methods and apparatus for border monitoring

  15. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2010-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2010 were concentrated in the following areas: · studies of new scintillation techniques and their application to nuclear medicine and border monitoring, · realization of the A(and)D project, · scientific contracts with European industry in respect of detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus and new generation State-of-the-Art multi-channel analysers, · development, investigation and production of silicon detectors · normalisation activities. Most of the scientific achievements of the Department were summarized in 20 reviewed publications, published mainly in IEEE Trans. Nucl. Sci. and in 1 non-reviewed publication. Besides that, our scientists presented 19 contributions at international conferences - 8 presentations at the IEEE Nuclear Science Symposium and Medical Imaging Conference 2010 in Knoxville, USA. Also normalization activities in preparation of the Polish versions of European Standards in the field of electronics were supported. Wide studies of silicon photomultipliers in gamma spectrometry and fast timing with scintillators were carried out in a quantitative way related to the measured number of photoelectrons. They showed that it is possible to get a comparable resolution to those measured with photomultipliers. The study of non-proportionality of electron response and energy resolution of Compton electrons in scintillators in comparison to those measured with gamma rays confirmed finally that the scintillator contribution to the energy resolution is the effect of scattering of electrons produced in the scintillator by gamma rays. In the last year, the Department started development of the methods and apparatus for border monitoring against smuggling of explosive and radioactive materials within the A(and)D project supported by EU Structural Funds Project no POIG.01.01.02-14-012/08-00. A

  16. Yukawa Tomonaga and nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi

    2006-01-01

    Yukawa and Tomonaga made epoch-making contributions to the development of elementary particle physics; Yukawa proposed the meson theory of the nuclear force and Tomonaga developed renormalization theory in QED. The nuclear force is, of course, the basis of all nuclear physics. In this sense, Yukawa's work set the foundations for nuclear physics. Tomonaga worked in his late years on problems of collective motion appearing in many many-particle-systems, nuclear systems being one of the examples. Yukawa and Tomonaga were also deeply involved in founding the Institute of Fundamental Physics and Institute for Nuclear Study, through which they made invaluable contributions to the development of the field of nuclear physics. It is almost impossible to report in this short article on all of what they have achieved and thus I would like to discuss here their contributions to nuclear physics only in a limited scope, based on my personal reminiscence of them. (author)

  17. Nuclear physics and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-12-01

    Nuclear physics has provided one of the 2 critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. This paper reviews the standard Big Bang Nucleosynthesis arguments. The primordial He abundance is inferred from He--C and He--N and He--O correlations. The strengthened Li constraint as well as 2 D plus 3 He are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N ν , is delineated using the new neutron lifetime value of τ n = 890 ± 4s (τ 1/2 = 10.3 min). The formal statistical result is N ν = 2.6 ± 0.3 (1σ) providing a reasonable fit (1.3σ) to 3 families but making a fourth light (m ν approx-lt 10 MeV) neutrino family exceedingly unlikely (approx-gt 4.7σ) (barring significant systematic errors either in D + 3 He, and Li and/or 4 He and/or τ n ). It is also shown that uncertainties induced by postulating a first-order quark-hadron phase transition do not seriously affect the conclusions. 21 refs., 3 figs

  18. Nuclear physics and cosmology

    Science.gov (United States)

    Schramm, David N.

    1989-01-01

    Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.

  19. Manchester nuclear physics report

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the experimental research of the Manchester University Nuclear Physics Group for the period August 1987 - December 1988. The experiments have been performed at the Daresbury Nuclear Structure Facility, mostly using the gamma-ray arrays and the Recoil Separator. However, experiments using the Daresbury Isotope Separator, the Oxford Folded Tandem and the new charged particle detector array are also reported. Studies of gamma decaying states in 21 Ne and 23 Na are reported. The spectroscopy of medium mass nuclei includes the investigation of the Gamow-Tellar decay of 98 Cd. Fourteen studies of the spectroscopy of nuclei with A ≥ 100 are reported. Fission studies and instrumentation and computer developments are also included. (U.K.)

  20. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  1. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  2. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  3. Nuclear physics mathematical methods

    International Nuclear Information System (INIS)

    Balian, R.; Gervois, A.; Giannoni, M.J.; Levesque, D.; Maille, M.

    1984-01-01

    The nuclear physics mathematical methods, applied to the collective motion theory, to the reduction of the degrees of freedom and to the order and disorder phenomena; are investigated. In the scope of the study, the following aspects are discussed: the entropy of an ensemble of collective variables; the interpretation of the dissipation, applying the information theory; the chaos and the universality; the Monte-Carlo method applied to the classical statistical mechanics and quantum mechanics; the finite elements method, and the classical ergodicity [fr

  4. Summary of Research 1998, Department of Physics

    OpenAIRE

    Faculty of the Department of Physics, Naval Postgraduate School

    1998-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Physics. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  5. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  6. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2008-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2007 were concentrated on the following areas: ·studies of new scintillation techniques and their application to nuclear medicine and border monitoring, ·contribution to the FWVI European projects, ·scientific contracts with European industry in respect to detection techniques ·electronics for experiments in High Energy Physics, ·development of γ-ray spectrometry apparatus, ·development of new generation State of the Art USB based multi-channel analysers supplied with Ethernet port and wireless connection, ·development, investigation and production of silicon detectors ·normalisation activities. Most of the scientific achievements of the Department were summarized in 24 publications (released or in press) and 8 submitted publications. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 20 contributions at international conferences - 7 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2007 in Honolulu, Hawaii, USA. Also, normalization activities in preparation of Polish versions of European Standards in the field of electronics were supported. The study of new scintillation techniques covered measurements of non-proportionality of organic scintillators in comparison to BGO, a study of the light pulse decays of CsI(T1) at low energies and its relation to the non-proportionality and the summary of earlier measurements showing an influence of slow components of light pulses on the intrinsic resolution of scintillators. Within the studies addressed to the BioCare European project, realized within FWVI, studies analysing the influence of different parameters of fast photomultipliers and scintillators on time resolution of PET detectors for TOF PET were performed. The study was also supported by a contract with Photonis, France. Further study of the common PET/CT detector based on APD array was

  7. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  8. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  9. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  10. Panorama of the nuclear physics

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1981-01-01

    A summary of the topics covered by the nuclear physics, as disciplinary basis of the nuclear engineering, is presented, including from the fundamentals of modern physics used in nuclear physics, to the methods and more important applications, with the nucleus structure as central topic of the nuclear physics. In addition to a survey of the essential historical development in the different areas, this survey summarizes the basic concepts, postulates, laws and processes, which are the starting points, as in every scientific discipline for the understanding, interpretation and prediction of the variety of nuclear phenomena observed by methods increasingly improved and more complex, although such experimental methods are not discussed. (author) [es

  11. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1989-08-01

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1990-06-01

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  13. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  14. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1991-10-01

    The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas

  15. Overview. Department of Nuclear Spectroscopy. Section 2

    Energy Technology Data Exchange (ETDEWEB)

    Styczen, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The 1994 year activity in the Nuclear Spectroscopy Department was like in previous years spread over large variety of subjects concerned with the in-beam nuclear spectroscopy and many nucleon transfer reactions, properties of high excited nuclear states, and the applied nuclear spectroscopy. The studies in the first two groups were mostly carried out in a vast international collaboration which enabled us to carry out experiments on highly sophisticated experimental facilities abroad like EUROGAM, GASP, HECTOR or OSIRIS, and others. Some preparations for `home` experiments have been carried out on the very much looked forward and recently obtained heavy ion beam from the cyclotron at the Warsaw University. The applied nuclear spectroscopy works, on the other hand, were based on using our own installations: an elaborated set-up for perturbed angular correlations, the RBS and PIXE set-ups at the Van de Graaff accelerator, the implanter, an atomic force microscope and several others. Much of the effort manifests itself in several valuable results which are summarized in the following pages. It is to be underlined that those results, as well as some new instrumentation developments were possible due to additional support via special grants and the promotion of the international cooperation by the State Committee for Scientific Research (KBN). (author).

  16. Overview. Department of Nuclear Spectroscopy. Section 2

    Energy Technology Data Exchange (ETDEWEB)

    Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The 1994 year activity in the Nuclear Spectroscopy Department was like in previous years spread over large variety of subjects concerned with the in-beam nuclear spectroscopy and many nucleon transfer reactions, properties of high excited nuclear states, and the applied nuclear spectroscopy. The studies in the first two groups were mostly carried out in a vast international collaboration which enabled us to carry out experiments on highly sophisticated experimental facilities abroad like EUROGAM, GASP, HECTOR or OSIRIS, and others. Some preparations for `home` experiments have been carried out on the very much looked forward and recently obtained heavy ion beam from the cyclotron at the Warsaw University. The applied nuclear spectroscopy works, on the other hand, were based on using our own installations: an elaborated set-up for perturbed angular correlations, the RBS and PIXE set-ups at the Van de Graaff accelerator, the implanter, an atomic force microscope and several others. Much of the effort manifests itself in several valuable results which are summarized in the following pages. It is to be underlined that those results, as well as some new instrumentation developments were possible due to additional support via special grants and the promotion of the international cooperation by the State Committee for Scientific Research (KBN). (author).

  17. Fundamentals of nuclear physics

    International Nuclear Information System (INIS)

    Jelley, N.A.

    1990-01-01

    The book is aimed at undergraduates in their final year, to give the student a thorough understanding of the principal features of nuclei, nuclear decays and nuclear reactions. Several models are described and used to explain nuclear properties with many illustrative examples. Sections follow on α-, β- and γ-decay, fission, thermonuclear fusion, reactions, nuclear forces and nuclear collective motion. (author)

  18. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing

  19. Nuclear physics and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  20. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  1. International Nuclear Physics Conference

    CERN Document Server

    2016-01-01

    We are pleased to announce that the 26th International Nuclear Physics Conference (INPC2016) will take place in Adelaide (Australia) from September 11-16, 2016. The 25th INPC was held in Firenze in 2013 and the 24th INPC in Vancouver, Canada, in 2010. The Conference is organized by the Centre for the Subatomic Structure of Matter at the University of Adelaide, together with the Australian National University and ANSTO. It is also sponsored by the International Union of Pure and Applied Physics (IUPAP) and by a number of organisations, including AUSHEP, BNL, CoEPP, GSI and JLab. INPC 2016 will be held in the heart of Adelaide at the Convention Centre on the banks of the River Torrens. It will consist of 5 days of conference presentations, with plenary sessions in the mornings, up to ten parallel sessions in the afternoons, poster sessions and a public lecture. The Conference will officially start in the evening of Sunday 11th September with Registration and a Reception and will end late on the afternoon of Fri...

  2. Orbach urges renewed commitment to nuclear physics work

    CERN Multimedia

    Jones, D

    2002-01-01

    According to US Office of Science director Raymond Orbach, the Energy Department plans to issue a background paper in the coming months that will make the case for supporting the department's accelerator program for nuclear physics research (1 page).

  3. New perspectives from nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-11-15

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications.

  4. New perspectives from nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications

  5. Security in the nuclear medicine department

    International Nuclear Information System (INIS)

    Bassingham, S.; Gane, J.; Chan, P.S.; Heenan, S.; Gulliver, N.; McVey, J.

    2005-01-01

    The current threat from terrorism highlights the need for awareness of adequate security of radioactive sources by health bodies to prevent the opportunistic access to, theft of. or accidental loss of sources, together with stringent security measures in place to prevent the international misuse of radioactive sources as a weapon by unauthorised access. This presentation discusses the processes undertaken to ensure the safety and security of radioactive materials within the nuclear medicine department in line with current regulations and guidelines. These include risk assessments, security systems, audit trails, restricted access and personnel background checks

  6. Plasma Physics Department annual report, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The main fields in which researches have been carried out during 1990 at the Wills Plasma Physics Department are briefly discussed. These include investigations of shear Alfven waves at frequencies above the ion cyclotron frequency; the use of submillimetre lasers to detect by far forward scattering density fluctuation associated with waves in Tortus during Alfven wave heating experiments; basic physics of laser induced fluorescence in plasma and in particular the process which determine the population of excited states, as well as magnetron discharge studies and application of the vacuum arc as ion sources for accelerators and as sputtering device for producing thin film coating. A list of publications and papers presented at various conferences by the members of the Department is given in the Appendix

  7. Theoretical nuclear physics. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    As the three-year period FY93-FY96 ended, there were six senior investigators on the grant full-time: Bulgac, Henley, Miller, Savage, van Kolck and Wilets. This represents an increase of two members from the previous three-year period, achieved with only a two percent increase over the budget for FY90-FY93. In addition, the permanent staff of the Institute for Nuclear Theory (George Bertsch, Wick Haxton, and David Kaplan) continued to be intimately associated with our physics research efforts. Aurel Bulgac joined the Group in September, 1993 as an assistant professor, with promotion requested by the Department and College of Arts and Sciences by September, 1997. Martin Savage, who was at Carnegie-Mellon University, jointed the Physics Department in September, 1996. U. van Kolck continued as research assistant professor, and we were supporting one postdoctoral research associate, Vesteinn Thorssen, who joined us in September, 1995. Seven graduate students were being supported by the Grant (Chuan-Tsung Chan, Michael Fosmire, William Hazelton, Jon Karakowski, Jeffrey Thompson, James Walden and Mitchell Watrous)

  8. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2007-01-01

    In 2006 research activity of the P-V Department was concentrated on the continuation of previous studies in the field of plasma physics and controlled nuclear fusion (CNF), but several new topics concerning plasma technology were also investigated. The main tasks of the research activities were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. In a frame of the first task particular attention was paid to studies of X-ray pulses and fast electron beams emitted from different Plasma-Focus (PF) facilities. The correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions (i.e. accelerated primary ions and fusion reaction products) was investigated in the PF-360 device in Swierk. The X-ray and corpuscular emission was also studied in a PF-1000 facility at IPPLM in Warsaw. Separate efforts were devoted to the investigation of fast electrons escaping from Tokamak-type facilities. Such studies were carried out in a frame of the EURATOM program, using special Cerenkov-type detectors within the CASTOR tokamak, operated at IPP in Prague. Signals from the Cerenkov detector were recorded and interpreted. Other studies concerned the design and construction of a new 4-channel Cerenkov detection system for a TORE-SUPRA facility at CEA-Cadarache. Since thermal loads upon the Cerenkov probe within the TORE SUPRA facility can amount to 1 MW/cm 2 , it was necessary to perform detailed computations of heat transfer in various materials (i.e. diamond-radiators and the probe body). Some efforts were devoted to the calibration of new nuclear track detectors (NTD) and their application for measurements of fusion-produced protons emitted from PF-360 and PF-1000 facilities. In frame of the EURATOM program the calibrated NTD were also applied for measurements of fusion-protons in a TEXTOR

  9. The Relevance of Nuclear Physics

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1969-01-01

    I am asked what nuclear physics is about, that is, nuclear physics as distinct from particle physics and other parts of physics. I see three trends in this science. One is the discovery of new phenomena, phenomena of nature which we have not seen or observed, of which we did not know anything before. The second trend, I would say, is towards the solution of fundamental problems, the answers to certain basic questions in physics; I shall give some details later on. The third is the construction of new concepts in physics necessary to deal with the problems not only in nuclear physics but also in the rest of physics. The order of these three items is unimportant. This meeting should be concerned not only with the factual questions of science, but also with the, let me say, philosophic and practical questions of nuclear physics. Why do we do nuclear physics, what is the sense of it, what is the meaning of it and, most importantly, how can we defend the support of nuclear physics, how can we convince the governments to spend money on such a thing, which to a certain extent is our pleasure? And so we will have to be quite clear among ourselves that this is a very important matter

  10. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2002-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: * At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. * At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. * At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. * Super-Kamiokande and Icarus - neutrino mass and oscillations study. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department, participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now

  11. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2003-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. - At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. - Super-Kamiokande and Icarus - neutrino mass and oscillation studies. The groups of our Department participated in the construction phase of the experiments, both in hardware and in the development of the software used in data analysis. Presently they take part in data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - the study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now a

  12. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2004-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA4B - the CP-violation and rare K 0 decays; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon; - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At RHIC - study of pp elastic scattering. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-photon interactions. - Super-Kamiokande and K2 K - a study of neutrino oscillations. The groups from our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - search for optical flashes of cosmic origin: ''π of the sky'' project - search for optical counterparts of γ ray bursts, - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our

  13. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    2000-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: 1. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation in rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition to the quark-gluon plasma state. 2. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - the production of light mesons near threshold and their rare decays. 3. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data acquisition, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - a new version of the WASA detector at CELSIUS in Uppsala, - relativistic hyperfragment production experiment in Dubna, Russia. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of the WASA - Promice

  14. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2001-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation and rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition in the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold production of light mesons, and their decays. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN; - ALICE - experiment to study the heavy ion interactions at the LHC; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN; - WASA- 4π - commissioning of a new version of the WASA detector at CELSIUS in Uppsala; - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of

  15. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  16. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2006-01-01

    In 2005 research activities in Department P-V were concentrated on the continuation of previous studies in the field of plasma physics and CNF, but new investigations were also undertaken, particularly in the field of plasma technology. The main tasks were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. As to the first task, particular attention was paid to studies of X-ray pulses and pulsed electron beams, by means of different diagnostic techniques. Measurements of the polarization of the selected X-ray spectral lines and their correlation with pulsed e-beams were performed in the MAJA-PF facility. Taking into account microscopic irreproducibility of so-called 'hot-spots', particular efforts were devoted to the correlation of the X-ray emission from a single hot-spot with corresponding non-thermal electron pulses. Some observations of X-rays were performed also at the PF-1000 facility at IPPLM in Warsaw. Other studies concerned the correlation of fast-neutron pulses with X-rays and other corpuscular emissions. Results of experimental studies carried out in the IPJ-IPPLM collaboration were analyzed and summarized. New measurements, carried out in the MAJA-PF facility, determined the temporal correlation of X-rays pulses, fusion-neutrons, fast electron beams and high-energy ion beams. Other efforts concerned studies of fast (ripple-born) electrons in tokamaks. An analysis of the capability of special Cerenkov-type detectors (based on diamond-crystal radiators) was performed, and measuring heads for the CASTOR and TORE-SUPRA facilities have been designed. Concerning the development of plasma diagnostic techniques, characteristics of PM-355 nuclear track detectors were analyzed and the calibrated detectors (with appropriate absorption filters) were used for measurements of fast (> 3 Me

  17. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  18. Theoretical nuclear and subnuclear physics

    CERN Document Server

    Walecka, John Dirk

    1995-01-01

    This comprehensive text expertly details the numerous theoretical techniques central to the discipline of nuclear physics. It is based on lecture notes from a three-lecture series given at CEBAF (the Continuous Electron Beam Accelerator Facility), where John Dirk Walecka at the time was Scientific Director: "Graduate Quantum Mechanics", "Advanced Quantum Mechanics and Field Theory" and "Special Topics in Nuclear Physics". The primary goal of this text is pedagogical; providing a clear, logical, in-depth, and unifying treatment of many diverse aspects of modern nuclear theory ranging from the non-relativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. Four key topics are emphasised in this text: basic nuclear structure, the relativistic nuclear many-body problem, strong-coupling QCD, and electroweak interactions with nuclei. The text is designed to provide graduate students with a basic level of understanding of modern nuclear physics so that they in turn can...

  19. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  20. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  1. Progress report 1986-1987 Department of Physics

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report 1986-1987 deals with the first two years operation of the TANDAR electrostatic accelerator and also describes the research work in the following fields: nuclear physics (nuclear structure, nuclear reactions, intermediate energies, applied nuclear physics); solid state physics (crystallography and phase transitions, Mossbauer spectroscopy, condensed matter theory, crystals growth, instrumentation); atomic physics and computational physics. Finally, the staff, a list of publications and activities related to international agencies is included [es

  2. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  3. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2003-01-01

    Full text: The main activities of the Accelerator Physics and Technology Department were focused on following subjects: - contribution to development and building of New Therapeutical Electron Accelerator delivering the photon beams of 6 and 15 MeV, - study of the photon and electron spectra of narrow photon beams with the use of the BEAM/EGSnrc codes, - design and construction of special RF structures for use in CLIC Test Facility in CERN, - design and construction of 1:1 copper, room temperature models of accelerating superconducting 1.3 GHz structures for TESLA Project in DESY. In spite of drastic reduction of scientific and technical staff (from 16 to 10 persons) the planned works were successfully completed, but requested some extraordinary efforts. In realisation of 6/15 MeV Accelerator Project, the Department was responsible all along the project for calculations of all most important parts (electron gun, accelerating structure, beam focusing, achromatic deviation) and also for construction and physical modelling of some strategic subassemblies. The results of scientific and technical achievements of our Department in this work are documented in the Annex to Final Report on realisation of KBN Scientific Project No PBZ 009-13 and earlier Annual Reports 2000 and 2001. The results of Monte Carlo calculations of narrow photon beams and experimental verification using Varian Clinac 2003CD, Simens Mevatron and CGR MeV Saturn accelerators ended up with PhD thesis prepared by MSc Anna Wysocka. Her thesis: Collimation and Dosimetry of X-ray Beams for Stereotactic Radiotherapy with Linear Accelerators was sponsored by KBN scientific Project Nr T11E 04121. In collaboration with LNF INFN Frascati the electron beam deflectors were designed for CERN CLIC Test Facility CTF3. These special type travelling wave RF structures were built by our Department and are actually operated in CTF3 experiment. As the result of collaboration with TESLA-FEL Project in DESY, the set of RF

  4. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  5. Nuclear physics: Macroscopic aspects

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1993-12-01

    A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions ℎ → 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses

  6. Health Physics Department. Annual progress report 1 January - 31 December 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The report describes the work of the Health Physics Department at Risoe during 1988. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The emphasis in the report has been placed on basic research and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  7. Health Physics Department. Annual progress report 1 January - 31 December 1987

    International Nuclear Information System (INIS)

    1988-08-01

    The report describes the work of the Health Physics Department at Risoe during 1987. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  8. Growth points in nuclear physics

    CERN Document Server

    Hodgson, Peter Edward

    1980-01-01

    Growth Points in Nuclear Physics, Volume 2 covers the progress in the fields of nuclear structure and nuclear reactions. This book is composed of three chapters. The first chapter is devoted to nuclear forces and potentials, in particular the optical model potential that enables the elastic scattering of many particles by nuclei to be calculated in a very simple manner. This chapter also deals with the three-body forces and the spin dependence of the nuclear potential. The second chapter describes higher order processes involving two or more stages, specifically their intrinsic interest and th

  9. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  10. Lepton probes in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Arvieux, J. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1994-12-31

    Facilities are overviewed which use the lepton probe to learn about nuclear physics. The lepton accelerating methods out some existing facilities are considered. The ELFE project is discussed in detail. (K.A.). 43 refs., 15 figs., 4 tabs.

  11. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1991-01-01

    This report discusses: Imaginary Optical Potential; Isospin Effects; Scattering and Charge Exchange Reactions; Pairing Effects; bar K Interactions; Momentum Space Proton Scattering; Computational Nuclear Physics; Pion-Nucleus Interactions; and Antiproton Interactions

  12. Nuclear physics in the UK

    International Nuclear Information System (INIS)

    1994-12-01

    Nuclear physics is the study of the heavy but tiny nucleus that lies at the centre of all atoms and makes up 99.9 per cent by weight of everything we see. There are many applications of nuclear physics including direct contributions to medicine and industry, such as the use of radioactive isotopes as diagnostic tracers, or of beams of nuclei for tailoring the properties of semiconductors. More indirectly, ideas and concepts of nuclear physics have influence in many corners of modern science and technology. Physicists in the UK have a long tradition in nuclear physics, and have developed a world-wide reputation for the excellence of their work. This booklet explains more about this rich field of study, its applications, its role in training, and its future directions. (author)

  13. Computers in Nuclear Physics Division

    International Nuclear Information System (INIS)

    Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.

    1997-01-01

    Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems

  14. Lepton probes in nuclear physics

    International Nuclear Information System (INIS)

    Arvieux, J.

    1994-01-01

    Facilities are overviewed which use the lepton probe to learn about nuclear physics. The lepton accelerating methods out some existing facilities are considered. The ELFE project is discussed in detail. (K.A.). 43 refs., 15 figs., 4 tabs

  15. Serber says: About nuclear physics

    International Nuclear Information System (INIS)

    Serber, R.

    1986-01-01

    This book is a distillation of a set of lecture notes used by the author at Columbia. Written with a pedagogical aim it emphasizes topics of current interest not only in nuclear physics but also in other branches of physics such as atomic physics and solid state physics. Contents: Some Arguments Concerning Nuclear Forces; The Neutron-Proton Force; Low Energy Neutron-Proton Scattering Experiments; Photo-Effect of the Deuteron; The Slowing Down and Diffusion of Neutrons; Nucleon Magnetic Moments and Quadrupole Moment of the Deuteron; Proton-Proton and Neutron-Neutron Interactions; Isotopic Spin Invariance; High Energy Reactions; Resonance Levels

  16. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    1990-04-01

    This report contains brief discussion on the following tapes: giant resonances; nucleus-nucleus reactions; nuclear astrophysics; polarization; fundamental symmetries and interactions; accelerator mass spectrometry; instrumentation; accelerators and in sources; and computer systems

  17. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-02-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1983. Commissioning of the EN-tandem electrostatic accelerator continued, with the first proton beam produced in June. Many improvements were made to the vacuum pumping and control systems. Applications of the nuclear microprobe on the 3MV accelerator continued at a good pace, with applications in archaeometry, dental research, studies of glass and metallurgy

  18. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  19. Department of Nuclear Spectroscopy and Technique - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Departamental at activity was concentrated on two different regions according to the Department`s name: ``spectroscopy`` (basic research) and ``technology`` (applications). Simultaneously, some effort was focused on teaching. Our research was activated by cooperation with several Polish, European and USA centres and by access to their experimental facilities like the C200 heavy ion cyclotron of the Warsaw University, the heavy ion accelerator complex at GSI in Darmstadt (Germany), PSI cyclotrons in Villigen (Switzerland), NORDBALL, ANL-UND BALL and GAMMASPHERE detectors. However, some results were also obtained using our C30 proton cyclotron, the crystal X-ray spectrometer installed on the SINS EAK electron accelerator and our low background gamma detection facility. On-line radioactive ion sources are under preparation in cooperation with our Department. Nevertheless, it is worthwhile to stress some highlights of 1996. i) Calculations of heavy ion collision dynamics were performed in cooperation with the SINS Theory Department and LBL at Berkeley (USA). It has been shown that the experimental data on the mean kinetic energies of fission fragments are not sufficient to distinguish between one-and two-body dissipation. The mass flow seems to be more sensitive to the dissipation mechanism. ii) A final analysis of the NORDBALL experiments on the excited states of nuclei in the vicinity of {sup 100}Sn. The level structures of {sup 90,101,} {sup 102,103}Cd, {sup 101,103,1O5}In and {sup 105}Sn are reasonably well described by the shell model. iii) The discovery of two high spin isomers in {sup {sup 1}83}Ir and two superdeformed bands in {sup 149}Tb in experiments at LBL on ANL-UND BALL and GAMMASPHERE detectors. iv) Determination of radionuclide concentration in the air, some plants and soil. In particular, the map of concentration of {sup 210}Pb in our soil is an unique achievement. v) Participation in the project of the flue gas treatment plant using the electron beam

  20. Nuclear physics with electroweak probes

    International Nuclear Information System (INIS)

    Benhar, Omar

    2009-01-01

    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects

  1. Nuclear physics on the lattice?

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1985-01-01

    The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)

  2. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi.

    1990-10-01

    The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas

  3. Quarklei: nuclear physics from QCD

    International Nuclear Information System (INIS)

    Goldman, T.

    1985-01-01

    The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei

  4. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2004-01-01

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  5. Fundamental aspects of nuclear physics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1987-01-01

    I am pleased to be able to attend this symposium in honor of D. Allan Bromley and to see the new accelerator of the Yale University Nuclear Structure Laboratory. My talk on symmetry tests seems appropriate for this occasion: so much of the progress in this field depends on detailed knowledge of nuclear structure. The nuclear ''tricks'' that are played to filter and amplify interactions are possible because the nuclear spectroscopists have cataloged nuclear levels and determined their properties. I will describe how such nuclear structure studies may help to provide a window on physics beyond the standard model. My talk is not a summary of this subfield of nuclear physics. There is simply too much happening today to make a summary talk feasible. Instead, I have chosen four topics that I hope are representative of the field as a whole: parity mixing of nuclear states, time-reversal-odd nuclear moments, the Mikheyev-Smirnov enhancement of solar neutrino oscillations, and a nuclear experiment to monitor the long-term rate of stellar collapse in the galaxy. 39 refs., 5 figs., 1 tab

  6. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2009-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities At CERN SPS: The Compass experiment, ' a flagship of the CERN fixed target program ', studies the structure of the nucleon. Gluon polarization analysis was the main subject this year. Compass is an active experiment, and there is an ongoing effort in data taking and detector development. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. In 2008, important results on transverse momentum spectra were published. At COSY: The WASA experiment works with low energy (up to 3.7 GeV) beams of protons and deuterons, studying rare decays of eta mesons. New limits on branching ratios for such decays have been determined. This information is important for the theory of C and CP symmetry, and chiral perturbation theory. II. Preparations for soon-to-be-operating experiments at the LHC Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on resistive plate chambers RPC, has been installed and tested using cosmic ray muons. Simulations of physical processes predicted by some extensions of the Standard Model were performed. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with a P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations of neutral pion reconstruction were performed. Preparation of the computing base for future large experiments - work within the Worldwide LHC Computing Grid was actively pursued by a dedicated team. In 2008, many activities were directed at information and popularization of LHC physics. Our department members actively

  7. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  8. Nuclear power and physics

    International Nuclear Information System (INIS)

    Xu Mi

    2006-01-01

    During the 30s and 40s of the last century atomic physicists discovered the fission of uranium nuclei bombarded by neutrons and realized the first self-sustaining controlled fission chain reaction, which ushered in the atomic age. After 50 years of electricity production, in 2003 nuclear power plants were generating 16% of the total electricity in the world. Of these, thermal neutron reactors make up over 99%. For the large scale production of nuclear power, say up to hundreds of GWe, it is very important to speed up the development and deployment of fast breeder reactors to avoid the future lack of uranium resources. (authors)

  9. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  10. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Wronka, S.

    2010-01-01

    Full text: The activity of the P-10 department is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. Our team is able to perform all kind of calculations of research, medical and industrial accelerator components, including accelerating cavities, magnets, transfer lines, sources and targets, collimators and applicators. The main topic of the 2010 was the realization of the ' Accelerators and Detectors ' project. All results of this work are included in detailed descriptions of the particular machines. The other tasks are summarized below: 1) WP-06 Task in the European XFEL Project As part of the EXFEL preparatory phase, IPJ is developing HOM and Pickup output lines from superconducting cavities antennas, and Beam Line Absorbers of travelling HOM. This abridged WP-06 task is wholly realized by IPJ and belongs to WPG-1 (Work Package Group 1- Cold linac). The HOM couplers are used to extract and to dissipate Radio Frequency ('' RF '') energy present in the cavity due to the excitation of the HOMs by the electron beam bunches. The low frequency part of the HOM spectrum (below the cut-off frequency of the beam tube) will be extracted by HOM couplers and transmitted via coax lines to external loads. Each 9-cell cavity is equipped with two HOM couplers placed close to the end cells and working in a 2K environment. The propagating HOM power will be ca. 5.4 W/cryomodule for operation with 40000 bunches/s of a nominal charge of 1 nCoulomb. Power dissipated in BLA will be transferred to the 70 K environment by a copper stub brazed directly to the absorbing ceramic ring. The stub holds the ring in a stainless steel vacuum chamber thermally isolated from the 2K region by a flexible bellows. In 2010 the wakefields excited by beam bunches down to 40 microns were calculated, and the related wake potential and frequency spectrum of HOMs evaluated. The absorbing material (CA137 of Ceradyne Enterprice

  11. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    1997-01-01

    Departamental at activity was concentrated on two different regions according to the Department's name: ''spectroscopy'' (basic research) and ''technology'' (applications). Simultaneously, some effort was focused on teaching. Our research was activated by cooperation with several Polish, European and USA centres and by access to their experimental facilities like the C200 heavy ion cyclotron of the Warsaw University, the heavy ion accelerator complex at GSI in Darmstadt (Germany), PSI cyclotrons in Villigen (Switzerland), NORDBALL, ANL-UND BALL and GAMMASPHERE detectors. However, some results were also obtained using our C30 proton cyclotron, the crystal X-ray spectrometer installed on the SINS EAK electron accelerator and our low background gamma detection facility. On-line radioactive ion sources are under preparation in cooperation with our Department. Nevertheless, it is worthwhile to stress some highlights of 1996. i) Calculations of heavy ion collision dynamics were performed in cooperation with the SINS Theory Department and LBL at Berkeley (USA). It has been shown that the experimental data on the mean kinetic energies of fission fragments are not sufficient to distinguish between one-and two-body dissipation. The mass flow seems to be more sensitive to the dissipation mechanism. ii) A final analysis of the NORDBALL experiments on the excited states of nuclei in the vicinity of 100 Sn. The level structures of 90,101, 102,103 Cd, 101,103,1O5 In and 105 Sn are reasonably well described by the shell model. iii) The discovery of two high spin isomers in 1 83 Ir and two superdeformed bands in 149 Tb in experiments at LBL on ANL-UND BALL and GAMMASPHERE detectors. iv) Determination of radionuclide concentration in the air, some plants and soil. In particular, the map of concentration of 210 Pb in our soil is an unique achievement. v) Participation in the project of the flue gas treatment plant using the electron beam method for the 'Pomorzany' coal power plant

  12. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  13. Nuclear physics and biology

    International Nuclear Information System (INIS)

    Valentin, L.

    1994-01-01

    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  14. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  15. Radioprotection in nuclear medicine department of 'Porto Alegre Clinical Hospital'

    International Nuclear Information System (INIS)

    Dias, T.M.; Pinto, A.L.; Bacelar, A.L.; Dytz, A.S.; Bernasiuk, M.E.; Baptista, I.S.

    1996-01-01

    The use of ionizing radiation in medicine allows great benefits. Nuclear Medicine uses ionizing radiation for medical diagnostic, such as: tumor, cancer, and dysfunctions location. However the use of ionizing radiation must be controlled in order to avoid likely biological effects in human beings. In order to extremely minimize that these effects appear, the Medical Physics Department of the Porto Alegre Clinical Hospital has implemented some procedures to assure that handling and use of radioactive material are in a safe way. This preoccupation is considered in all the places of nuclear medicine sector since the moment when the radioactive material is brought into including its manipulation and retirement, the exam process being accompanied. (authors). 4 refs

  16. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  17. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    Full text: The main activities of the Department can be grouped into three parts: I. An ongoing analysis of data from large accelerator facilities. At CERN SPS: In the COMPASS experiment, the Warsaw team participated in the data taking and analysis related to the structure of the nucleon. 5 publications were prepared. The result concerning the polarization distribution of quarks and antiquarks in the nucleon with the flavour separation is new, important, and obtained with a significant contribution from the team. The collaboration is preparing for the next stage of the experiment, COMPASS , which will be realized in 2011. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. 4 publications have been published and one submitted. The wide purpose NA61 experiment has taken data, and the IPJ team worked on the measurement of the production cross sections of pions and kaons, which are important for the neutrino program. At COSY: The WASA experiment is dedicated to the search for a signal of the violations of basic chiral symmetries and testing perturbative theories in the light mesons decays produced in proton-proton, proton-deuteron and deuteron-deuteron collisions at different energies. A new limit of the extremely rare decay eta → e + e - within MS is being searched for. The branching ratio of the pi0→e + e - decay should be determined with better precision. 3 publications have been published and one submitted. II. Data taking and first analysis by the LHC experiments. Three teams work on LHC experiments: CMS, LHCb and ALICE. In 2010, the LHC accelerator provided proton-proton and Pb-Pb data and all LHC collaborations prepared dozens of publications on the detector performance and physics analysis, which have been published or submitted for publication. The CMS team worked on the muon trigger system, based on the resistive plate chamber RPC. The system was optimized and synchronized during data taking with high precision. The

  18. Current puzzles in nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    A meeting on ''Current puzzles in nuclear physics'' was held at Research Center for Nuclear Physics, Osaka University, on June 27 - 28, 1984. The meeting put emphasis on several puzzles which have not been solved for a long time in nuclear physics, and also on the puzzles. This collective report is composed of following eleven papers presented at the meeting. Almost all the papers are witten in English : (1) M1, GT excitations and configuration mixing (in Japanese). (2) Hadronic excitation of pionic states. (3) Microscopic analyses of 28 Si(α,α') 28 Si scattering and single particle strength in A = 29 nuclei. (4) Few-body physics and its incentives to nuclear physics. (5) Is it necessary to introduce three body interactions ? (in Japanese). (6) Puzzles in the neutron-deuteron elastic scattering. (7) Puzzles in NN, NΔ, πN and Nanti N interactions. (8) Problems in Hadron-Nucleus interaction. (9) Unified approach to the meson- and quark- theory of nuclear forces and currents. (10) Pion photoproduction in two Chiral bag models. (11) The dynamic bag model : The electromagnetic properties of nucleon. (Aoki, K.)

  19. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Bastos, M.A.V.

    1987-01-01

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.) [pt

  20. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2006-01-01

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  1. 36th Brazilian Workshop on Nuclear Physics

    CERN Document Server

    Brandão de Oliveira, José Roberto; Barbosa Shorto, Julian Marco; Higa, Renato

    2014-01-01

    The Brazilian Workshop on Nuclear Physics (RTFNB, acronym in Portuguese) is organized annually by the Brazilian Physics Society since 1978, in order to: promote Nuclear Physics research in the country; stimulate and reinforce collaborations among nuclear physicists from around the country; disseminate advances in nuclear physics research and its applications; disseminate, disclose and evaluate the scientific production in this field.

  2. Nuclear physics with hyperons

    International Nuclear Information System (INIS)

    Povh, B.

    1981-01-01

    Results of hypernuclear spectroscopy and their interpretations are presented. The kinematical properties and, in particular, the distortion in strangeness exchange reactions are considered and experimental methods developed for hypernuclear spectroscopy discussed. The present understanding and knowledge of the Λ-nucleus interaction obtained from classical emulsion work on the ground state of light hypernuclei and the systematic study of the (K - , π - ) reaction on nuclei in more recent counter experiments are reviewed. The problem of the quasiparticle behaviour in nuclear matter is considered in the light of interactions. Finally recent results on the Σ-nucleus interactions are presented. (U.K.)

  3. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kunz, P.D.

    1990-10-01

    This report contains small papers on the following topics: ground state correlations of nuclei in relativistic random phase approximation; instability of infinite nuclear matter in the relativistic hartree approximation; charge density differences for nuclei near 208 Pb in relativistic models; meson exchange current corrections to magnetic moments in quantum hadro-dynamics; analysis of the O + → O - reaction at intermediate energies; contributions of reaction channels to the 6 Li(p,γ) 7 Be Reaction; deformed chiral nucleons; vacuum polarization in a finite system; second order processes in the (e,e'd) reaction; sea contributions in Dirac RPA for finite nuclei; and momentum cutoffs in the sea

  4. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  5. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  6. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    The activities of Department P-10 in 2006 were as follows: - continuation of development of radiographic 5-6 MeV electron accelerator, - study of very compact accelerating standing wave RF structures for electrons and ions, - Monte Carlo simulations applied to ion radiotherapy. The compact 6 MeV electron linac constructed in Department P-10 were further developed. Some equipment (low input impedance amplifier for beam transformer, up-to-date power supplies for beam position steering coils, magnetron frequency control unit) was added or replaced. The old control racks were replaced by a new single more compact control console. This will allow us to introduce a PLC based control system of accelerator (when money for necessary PLCs is granted). After additional amelioration of radiation shielding followed by Radiological Inspection, the permanent permission No D-15917 for routine operation of this accelerator in electron and X-ray mode was issued by the National Atomic Energy Agency. This allows us to render services to external customers. As it was already reported in 2005, two regimes of operation are actually possible: with X ray output beam or electron beam, depending on user demand. The triode gun, originally thought of as a part of the 6/15 MeV medical accelerator is still showing excellent performance on experimental stand; it was opened to air for about 2 hours to repair the broken wire of the beam scanner. This confirms the possibility of repeated formation of gun dispenser cathode. A new pulse modulator was routinely used in these tests. The special set-up, designed and made in our Department for the TiN coating of accelerator components, was routinely used for coating of various types of RF high power vacuum windows for conventional and superconducting 1.3 GHz accelerating structures. Cooperation with foreign enterprises is promising. Accel Instruments GmbH ordered the coating of two sets (in total 18 pieces) of coaxial and cylindrical vacuum windows for

  7. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    1983-04-01

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  8. Processing multidimensional nuclear physics data

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Modern Ge detector arrays for gamma-ray spectroscopy are producing data sets unprecedented in size and event multiplicity. Gammasphere, the DOE sponsored array, has the following characteristics: (1) High granularity (110 detectors); (2) High efficiency (10%); and (3) Precision energy measurements (Delta EE = 0.2%). Characteristics of detector line shape, the data set, and the standard practice in the nuclear physics community to the nuclear gamma-ray cascades from the 4096 times 4096 times 4096 data cube will be discussed.

  9. Nuclear physics annual report 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The paper is the annual report of Manchester University Nuclear Physics Group, 1985/6. The bulk of the work has been carried out at the Nuclear Structure Facility, often in collaboration with other groups. The research programme topics include: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects, and technical developments. The experiments associated with these topics are described, together with the results of the investigations. (UK)

  10. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    within the Worldwide LHC Computing Grid - was actively pursued by a dedicated team. In 2009 many activities were directed at information and popularization of LHC physics. III. Preparations for the neutrino physics experiments: The neutrino team works on preparations for the T2K experiment which will study neutrino oscillations. Local work concentrates on the Side Muon Range Detector, part of the near detector ND28O. This involves calculations of the trigger rates, simulations for the multi pixel photon counters and participation in the electronics tests and installation. IV. There is an opening into future diffraction physics experiment at RHIC, starting with participation in test runs of polarized proton beams. A future oriented project is an involvement in the studies of the MAPS vertex detector, for the ILC collider. 12 PhD students work under the supervision of our department members. (author)

  11. XXXIX Symposium on Nuclear Physics

    International Nuclear Information System (INIS)

    Acosta, Luis; Bijker, Roelof

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “XXXIX Symposium on Nuclear Physics”, that was held from January 5-8, 2016 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 20 contributions that were presented as plenary talks at the meeting. The abstracts of all contributions, invited talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 39th in a row. The scientific program consisted of 29 invited talks and a poster session on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure and nuclear reactions to radioactive beams, nuclear astrophysics, hadronic physics, fundamental symmetries and relativistic heavy ions, as well as progress reports of large international projects like the HAWC Observatory in Puebla, Mexico, and the ATLAS and ALICE Collaborations of the LHC accelerator at CERN, Switzerland. In addition, there were several contributions highlighting interesting new results from foreign laboratories like Notre Dame, RIKEN, Jefferson Lab, Oak Ridge, INFN-Legnaro and INFN-LNS, as well as Mexican laboratories at ININ, LEMA and the Carlos Graef Laboratory at IF-UNAM. On the theoretical side there were talks on recent developments in nuclear structure, weakly bound nuclei, cluster models

  12. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Rost, E.; Shephard, J.R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the triangle-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to bar pp → bar Λ Λ reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field

  13. Theoretical nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, P.D.

    1990-10-01

    This report contains small papers on the following topics: ground state correlations of nuclei in relativistic random phase approximation; instability of infinite nuclear matter in the relativistic hartree approximation; charge density differences for nuclei near {sup 208}Pb in relativistic models; meson exchange current corrections to magnetic moments in quantum hadro-dynamics; analysis of the O{sup +} {yields} O{sup {minus}} reaction at intermediate energies; contributions of reaction channels to the {sup 6}Li(p,{gamma}){sup 7}Be Reaction; deformed chiral nucleons; vacuum polarization in a finite system; second order processes in the (e,e{prime}d) reaction; sea contributions in Dirac RPA for finite nuclei; and momentum cutoffs in the sea.

  14. Theoretical nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Rost, E.; Shephard, J.R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

  15. Nuclear physics in the cosmos

    International Nuclear Information System (INIS)

    Bertulani, Carlos

    2011-01-01

    Nuclear astrophysics studies the physics of atomic nuclei, gravity, and thermodynamics in the early universe, stars and stellar explosions. Seventy years of nuclear science has allowed us to infer the origin of the chemical elements out of which our bodies and the Earth are made. We now believe that the lightest elements were created in nuclear reactions in the first three minutes after the big bang, and all the rest were made in nuclear reactions inside the stars and distributed throughout interstellar space via stellar winds and giant stellar explosions. I will show how a new generation of theoretical developments and experiments can shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. (author)

  16. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-07-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1984. Commissioning of the EN-tandem accelerator was completed. The first applications included the production of 13 N from a water target and the measurement of hydrogen depth profiles with a 19 F beam. Further equipment was built for tandem accelerator mass spectrometry but the full facility will not be ready until 1985. The nuclear microprobe on the 3 MV accelerator was used for many studies in archaeometry, metallurgy, biology and materials analysis

  17. Nuclear Physics from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  18. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The experimental activities of the nuclear physics group at the University of Oslo have in 1983 as in the previous years mainly been centered around the SCANDITRONIX MC-35 cyclotron. The cyclotron has been in extensive use during the year for low-energy nuclear physics experiments. In addition it has been used for production of radionuclides for nuclear medicine, for experiments in nuclear chemistry and for corrosion and wear studies. After four years of operation, the cyclotron is still the newest nuclear accelerator in Scandinavia. The available beam energies (protons and alpha-particles up to 35 MeV and *sp3*He-particles up to 48 MeV, makes it a good tool for studies of highly excited low-spin states. The well developed on-line computer system has added to its usefulness. Most of the nuclear experiments during the year have been connected with the study of nuclear structure at high temperature. Experimens with the *sp3*He beam have given very interesting results. Theoretical studies have continued in the same field, and there has been a fruitful cooperation between experimental and theoretical physicists. Most of the experiments are performd as joint projects where physicists from two or three Nordic universities take part. (RF)

  19. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  20. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  1. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  2. Nuclear energy system department annual report. April 1, 2001 - March 31, 2002

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Ohnuki, Akira; Kunii, Katsuhiko

    2003-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2001 (April 1, 2001 - March 31, 2002). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  3. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1998-01-01

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  4. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1998-01-01

    (full text) In 1997, theoretical studies mainly concerned the verification of physical models on the basis of experimental data, an analysis of plasma behaviour within regions close to electrode surfaces during quasi-continuous discharges induced by microwaves , as well as modelling of a discharge development within coaxial plasma injectors. Another direction of theoretical studies concerned elementary processes of importance for plasma research, and in particular those taking into consideration the role of spin within a classical model of proton - hydrogen atom collisions. Experimental studies comprised measurements of pulsed electron beams and effects of the polarization of X-rays emitted from Plasma Focus (PF) facilities, research on emission characteristics of different PF devices, as well as measurements of pulsed electron and ion-beams emitted from various devices of the PF and Z-Pinch type. An important direction of experimental studies concerned X-ray and ion measurements at a large PF-1000 facility. In the field of plasma diagnostics, efforts were devoted to an analysis of the results obtained from time-resolved measurements of nitrogen ions and deuterons within PF-type devices. Within a frame of diagnostics, a substantial achievement was also the design and construction of a new measuring equipment for studies of plasma dynamics and X-ray emissions. Particular attention was also paid to studies connected with the calibration of various solid-state nuclear track detectors (NTDs), particularly modern plastic detectors of the CR-39, PM-355 and PM-500 type. Studies in the field of fusion technology concerned the design and construction of a special pulse generator for the simulation of electromagnetic interference, as well as other efforts connected with research on electromagnetic compatibility of electronic and electrotechnical devices. Research on new types of HV pulse generators were carried out partially under contracts with industrial laboratories. In

  5. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  6. Nuclear physics experiment at INS

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo.

    1981-02-01

    Present activities at the Institute for Nuclear Study (INS) are presented. Selected topics are from recent experiments by use of the INS cyclotron, experiments at the Bevalac facility under the INS-LBL collaboration program, and preparatory works for the Numatron project, a new project for the high-energy heavy-ion physics. (author)

  7. Overview of strangeness nuclear physics

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1998-01-01

    Novel as well as puzzling aspects of strangeness (S = -1 and S = -2) nuclear physics are highlighted. Opportunities to gain new insights into hypernuclear spectroscopy, structure, and weak decays and to contribute to the continuing effort to understand the fundamental baryon-baryon force are outlined. Connections to strangeness in heavy-ion reactions and astrophysics are noted

  8. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  9. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Miller, G.A.

    1983-01-01

    A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references

  10. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  11. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    Status of research works on experimental nuclear physics in Vietnam is reviewed. Vietnam institutions and main instruments for nuclear research are listed. The results on physics and technology of nuclear reactor, neutron physics, nuclear reactions, radiological safety are mentioned. (N.H.A). 6 tabs, 4 figs

  12. Experimental nuclear physics

    Science.gov (United States)

    An earlier study of unusual electromagnetic decays in (sup 86)Zr was extended in order to make comparisons with its isotone (sup 84)Sr and with (sup 84)Zr. The K=14 (t(sub 1/2) = 70 ns) high-spin isomer in (sup 176)W was found to have a 13 percent branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for (sup 14)O+(alpha) and (sup 17)F+p reactions was completed and a coincidence experiment measuring the (sup 19)F ((sup 3)He,t) (sup 19)Ne(alpha) (sup 15)O and (sup 19)F ((sup 3)He,t) (sup 19)Ne(p) (sup 18)F reactions in order to determine the rates of the (sup 18)F(p,(alpha)) (sup 15)O and (sup 18)F(p,(gamma)) (sup 19)Ne reactions was begun. Experimental measurements of (beta)n(alpha) coincidences from the (sup 15)N(d,p) (sup 16)N((beta)- (nu)) (sup 16)O((alpha)) (sup 12)C reaction have also been completed and are currently being analyzed to determine the rate of the (sup 12)C((alpha),(gamma)) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e(sup +) triggers by detecting their back-to-back annihilation quanta were completed. The HI@AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed.

  13. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    1992-01-01

    An earlier study of unusual electromagnetic decays in 86 Zr was extended in order to make comparisons with its isotone 84 Sr and with 84 Zr. The K=14 (t 1/2 = 70 ns) high-spin isomer in 176 W was found to have a 13% branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for 14 O+α and 17 F+p reactions was completed and a coincidence experiment measuring the 19 F( 3 He,t) 19 Ne(α) 15 O and 19 F( 3 He,t) 19 Ne(p) 18 F reactions in order to determine the rates of the 18 F(p,α) 15 O and 18 F(p,γ) 19 Ne reactions was begun. Experimental measurements of βnα coincidences from the 15 N(d,p) 16 N(β - ν) 16 O(α) 12 C reaction have also been completed and are currently being analyzed to determine the rate of the 12 C(α,γ) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e + triggers by detecting their back-to-back annihilation quanta were completed. The HI at sign AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed

  14. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  15. Electron accelerators and nuclear physics

    International Nuclear Information System (INIS)

    Frois, B.

    1989-01-01

    The operating electron accelerators and their importance in the nuclear and in the particle physics developments, are underlined. The principles of probing the nucleus by applying electron scattering techniques and the main experimental results, are summarized. In order to understand hadron interactions and the dynamics of quark confinement in nuclei, the high energy electrons must provide quantitative data on the following topics: the structure of the nucleon, the role of non nucleonic components in nuclei, the nature of short-range nucleon correlations, the origin of the short-range part of nuclear forces and the effects of the nuclear medium on quark distributions. To progress in the nuclear structure knowledge it is necessary to build a coherent strategy of accelerator developments in Europe

  16. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1999-01-01

    ' laboratory. Additional radiation shielding was constructed and the computer assisted system for dosimetric monitoring was installed. Three experimental set-ups for electron and photon beam diagnostics are in course of installation and running -at: 4-5 MeV, 10-15 MeV, and 20 MeV. The 20 MeV unit will also be used for generation and metrology of narrow photon beams applicable in stereotactic radiosurgery. Preliminary design works are advanced, oriented, undertaken on an important project - high-power electron accelerators for radiation technology (10 MeV, 20-50 kW). Financial support for this task is still pending. A substantial part of the Department's activity was oriented to an international collaboration with accelerator physics centres. Two works completed in 1997 were extended in 1998: microwave pulsed generator destined for short beam bunches diagnostics was installed and put in operation at INFN-Frascati; 27 pieces of polarized ''door-knob'' r.f. couplers for superconducting cavities in HERA ring were installed and put in operation. In the course of 1998 we got the message from DESY, that couplers are working well and brought desirable improvement in operation reliability. The new item of collaboration with DESY, is design, construction and r.f. measurements of a copper model of accelerating ''superstructure'' for TESLA collider. If successful, the use of niobium ''superstructure'' can shorten by about a few kilometres the length of the TESLA linear accelerator. First four 1 m sections of model structures were sent to DESY at the end of 1998. The next four are in preparation. Some results of work done in 1998 were presented at conferences in Caen, Stockholm and Cracow

  17. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Fueloep, Zs.

    2005-01-01

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  18. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2004-01-01

    Full text: In 2003, research activities in Dept. P-V embraced the continuation of previous studies in the field of high - temperature plasma physics and controlled nuclear fusion. Some new investigations were developed, particularly in the field of plasma technology. The main topics of the research activities were as follows: 1. Selected problems of plasma theory; 2. Investigation of plasma phenomena in pulse discharges of the Plasma-Focus (PF) and Z-Pinch type; 3. Development of selected methods of plasma diagnostics; 4. Research on experimental facilities for basic studies and industrial applications; 5. Modification of material surfaces by means of pulsed plasma-ion streams. Theoretical studies concerned the numerical modeling of discharges in a coaxial plasma accelerator of the IPD type. The modification of a 2-D model concerned mainly a plasma flow along the current sheath surface, taking into consideration the development of Rayleigh-Taylor instabilities. Several series of computations were performed and different parameters of the system were determined. As for experimental studies, we studied plasma phenomena which occur in high-current discharges of PF and Z-Pinch type. Measurements of pulsed electron beams, and their correlation with other plasma phenomena, were performed within the MAJA-PF device in Swierk and PF-1000 facility at IPPLM in Warsaw. Use was made of Cerenkov-type detectors and magnetic analyzers. It was confirmed that separate e-beams are generated in different hot-spots, and the electron energy spectrum ranges up to several hundreds keV (i.e. above the interelectrode voltage during the radial collapse phase). We also presented papers presenting results of previous research on polarization of X-ray lines emitted from the pinch column. Experimental studies of high-temperature plasma were also carried out within the PF-360 facility in Swierk. Several papers, describing the most important characteristics of this device and results of research

  19. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.

    1990-05-01

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  20. Health Physics Department annual progress report 1 January - 31 December 1985

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the work of the Health Physics Department at Risoe during 1985. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. Of lesser importance, but still quite significant, are the service functions. (author)

  1. Health Physics Department annual progress report 1 January - 31 December 1984

    International Nuclear Information System (INIS)

    1985-05-01

    The report describes the work of the Health Physics Department at Risoe during 1984. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. Of lesser importance, but still quite significant, are the service functions. (author)

  2. Computational atomic and nuclear physics

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; McGrory, J.B.

    1990-01-01

    The evolution of parallel processor supercomputers in recent years provides opportunities to investigate in detail many complex problems, in many branches of physics, which were considered to be intractable only a few years ago. But to take advantage of these new machines, one must have a better understanding of how the computers organize their work than was necessary with previous single processor machines. Equally important, the scientist must have this understanding as well as a good understanding of the structure of the physics problem under study. In brief, a new field of computational physics is evolving, which will be led by investigators who are highly literate both computationally and physically. A Center for Computationally Intensive Problems has been established with the collaboration of the University of Tennessee Science Alliance, Vanderbilt University, and the Oak Ridge National Laboratory. The objective of this Center is to carry out forefront research in computationally intensive areas of atomic, nuclear, particle, and condensed matter physics. An important part of this effort is the appropriate training of students. An early effort of this Center was to conduct a Summer School of Computational Atomic and Nuclear Physics. A distinguished faculty of scientists in atomic, nuclear, and particle physics gave lectures on the status of present understanding of a number of topics at the leading edge in these fields, and emphasized those areas where computational physics was in a position to make a major contribution. In addition, there were lectures on numerical techniques which are particularly appropriate for implementation on parallel processor computers and which are of wide applicability in many branches of science

  3. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Heeringa, W.; Voss, F.

    1988-02-01

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  4. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    2001-01-01

    Full text: In 2000 the research activity in the Dept. P-V was concentrated upon studies in the field of high-temperature plasma physics, nuclear fusion, and plasma technology. The main topics were as follows: l. Analysis of selected problems of plasma theory, 2. Investigation of phenomena in high-current pulse discharges of the Plasma-Focus (PF) and Z-Pinch type, 3. Development of the selected methods and equipment for plasma diagnostics, 4. Research on technology of experimental facilities for basic studies and applications, 5. Studies of the modification of material surfaces by means of pulse plasma-ion streams. In a frame of theoretical studies the numerical modeling was continued for discharges in coaxial plasma accelerators. The second theoretical aim was the description of some elementary atomic processes in the quasi- classical approach. A paper on the electron scattering on the atoms and molecules was published. In the quasi- classical model, the electron spin was taken into account and trajectories of 2 electrons in the helium atom were analyzed. In the frame of experimental studies, various phenomena were investigated in PF and Z-Pinch systems. The emission of pulse electron beams and ions as well as polarized X-rays were investigated in the MAFA-PF facility. New data about polarization of selected X-ray lines were obtained (2 papers at conferences and 2 publications). Ion emission measurements performed in small-scale PF-devices at INFIP and IFAS (Argentina), and in the Micro-Capillary device at Ecole Politechnique (France), were elaborated (5 papers at conferences and 2 publications). New measurements were also performed in the Capillary Z-Pinch device at IPP in Prague. With partial support of a US research contract, studies of the optimization of a neutron yield were performed in the PF-360 facility with special cryogenic targets (made of h eavy ice'' layers) or deuterium-gas targets (10 presentations at conferences, 2 reports for EOARD, and 7 papers

  5. Nuclear physics annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the annual report of the Schuster Laboratory, Manchester University Nuclear Physics Group, United Kingdom, 1986-7. Much of the work has been carried out at the Daresbury Nuclear Structure Facility, often in collaboration with other U.K. groups and with foreign participation. The report contains the work on: studies of light nuclei, spectroscopy of medium mass nuclei, low and high spin spectroscopy of nuclei with A ≥ 100, and the fission process. Technical developments carried out at the Laboratory are also described. (U.K.)

  6. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1986-06-01

    The experimental activities have in 1985 as in the previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV have continued, and valuable information regarding the cooling process in highly excited nuclei has been obtained. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  7. Health physics department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The report describes the work of the Health Physics Department at Risoe during 1983. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. A great deal of the work in the department is of minor interest to people outside Risoe as it represents service functions. Therefore, the main emphasis in the report has been placed on scientific and contractual work. (author)

  8. Department of nuclear physics annual report:1974

    International Nuclear Information System (INIS)

    1975-01-01

    The operation of the 14 UD tandem accelerator and other research equipment is outlined. Research programs are proceeding in the following topics: direct reactions, heavy ion reactions, spectroscopy of light nuclei, radiative capture of alpha particles, neutron capture of gamma rays, Coulomb excitation, heavy-ion xn reactions, and ion-solid interaction. (R.L.)

  9. Progress report of the Nuclear physics department

    International Nuclear Information System (INIS)

    1979-01-01

    These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MeV tandem Van de Graaff, with the 600 MeV electron linac, and with different accelerators belonging to other laboratories [fr

  10. Department of nuclear physics annual report 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Research equipment including the 14 UD accelerator is described. Research programs are proceeding into the following topics: 1) reaction mechanisms; 2) direct reactions; 3) spectroscopy of light nuclei; 4) giant multipole resonances; 5) Coulomb excitation; 6) heavy ion transfer reactions; 7) (heavy ion, xn) reactions and 8) ion-solid interactions. (R.L.)

  11. Nuclear energy system department annual report. April 1, 1999 - March 31, 2000

    International Nuclear Information System (INIS)

    2001-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 1999 (April 1, 1999 - March 31, 2000). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of a future nuclear energy system. The research activities of the fiscal year cover basic nuclear and atomic and molecular data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committee to which the Department takes a role of secretariat are also summarized in this report. (author)

  12. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  13. Main Achievements 2003-2004 - Nuclear Physics

    International Nuclear Information System (INIS)

    2005-01-01

    Two Departments of our Institute are engaged in nuclear studies, in the following areas: studies of the nuclear reaction mechanism at low, intermediate and high energies, studies of nuclear structure by means of gamma spectroscopy, and theoretical research concerning nuclear structure and reaction mechanisms. Most of these studies are carried out in the form of international collaborations with the world-leading nuclear physics experimental facilities. Our physicists usually play an important role in these collaborative projects and often lead them. Nuclear structure experiments were performed mainly within the following European Large Scale Facilities: ALPI-INFN-Legnaro, VIVITRONIReS-Strasbourg, UNILAC/SIS-GSI-Darmstadt, K100-Cyclotron-Jyvaeskylea with the use of the GASP, GARFIELD, EUROBALL, ICARE, RISING + FRS, RITU+JUROGAM systems and with the application of RFD, HECTOR, DIAMANT, EUCLIDES ancillary detectors. Experimental data were also obtained at the Argonne National Laboratory, USA, with the GAMMASPHERE array and the ATLAS accelerator. In addition, we are involved in planning the experiments for the project of international accelerator facility of the next generation FAIR (Facility for Antiproton and Ion Research) at GSI. The nuclear reaction experiments were performed at the Joint Institute of Nuclear Physics in Dubna (collaborations FASA and COMBAS), in GANIL in Caen, in the Forschungszentrum Juelich at the accelerator COSY in the framework of collaboration PISA, as well as at the Warsaw Laboratory of Heavy Ions. The hadronic nuclear physics experiments were carried out exclusively at the Forschungszentrum Juelich where we have participated in international collaborations COSY11, GEM and HIRES. Recently, we have joined international detector project WASA planned at Forschungszentrum Juelich and plan to participate in the project PANDA, being constructed in GSI Darmstadt. Both detectors will be devoted to low and intermediate hadronic physics. We also

  14. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-01-01

    This report contains papers on High Energy Physics and Nuclear Physics research. Some of areas covered are: antiproton physics; detectors and instrumentation; accelerator facilities; hadron physics; mesons and lepton decays; physics with electrons and muons; physics with relativistic heavy ions; physics with spin; neutrinos and nonaccelerator physics. The individual paper have been indexed separately elsewhere

  15. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  16. Introducion to Nuclear Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Atomic nuclei are made of nucleons, protons and neutrons, composed by quarks strongly interacting via gluons. How such complex objects as particles and nuclei are built? remains a fundamental question. A new "frontier" of subatomic physics is the exploration of exotic nuclei, elements and isotopes not stable enough to have survived on Earth. Exotic nuclei populated vast unknown regions of the nuclear chart where many unexpected structures have recently been discovered. Exotic nuclei synthesized in laboratory allow large variation of the neutron and proton chemical composition of nuclear systems needed to uncover the true nature of the subatomic structures and to understand the origin of elements in the Universe. This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter.

  17. Photonics applied to nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    This was the second workshop held at the Council of Europe in the Nucleophot series. Its purpose was to bring together specialists from the fields of photonics and nuclear physics to discuss the application of modern optical techniques to current problems in experimental nuclear or particle physics research. Two techniques are particularly relevant and offer the possibility of major progress in the detection of extremely short-lived particles: holographic imaging of particle tracks and the development of scintillating-optical-fibre detectors. The discussions were mainly concerned with (a) the applications of holography to the large bubble chambers operating at Fermilab and (b) the development of high-resolution fibre-optic systems into high-rate microvertex detectors using scintillating core glass for both fixed-target and collider experiments in Europe and the USA. See hints under the relevant topics. (orig./HSI)

  18. Laser applications in nuclear physics

    International Nuclear Information System (INIS)

    Murnick, D.E.

    1985-01-01

    A large fraction of the International Workshop on Hyperfine Interactions was devoted to various aspects of 'laser applications in nuclear physics'. This panel discussion took place before all of the relevant formal presentations on the subject were complete. Nevertheless, there had been sufficient discussions for the significance of this emerging area of hyperfine interaction research to be made clear. An attempt was made to identify critical and controversial aspects of the subject in order to critically evaluate past successes and indicate important future directions of research. Each of the panelists made a short statement on one phase of laser-nuclear physics research, which was followed by general discussions with the other panelists and the audience. In this report, a few areas which were not covered in the formal presentations are summarized: extensions of laser spectroscopy to shorter lifetimes; extension of laser techniques to nuclei far off stability; interpretation of laser spectroscopic data; sensitivity and spectral resolution; polarized beams and targets. (Auth.)

  19. Quark nuclear physics at JHF

    International Nuclear Information System (INIS)

    Toki, H.

    2000-01-01

    We discuss the research fields to be studied by the Japan Hadron Facility being planned in the site of JAERI as a joint project with Neutron Science Project. We would expect to reveal the most microscopic structure of matter using the intensity frontier proton machine. In particular, we would like to develop Quark Nuclear Physics to describe hadrons and nuclei in terms of quarks and gluons. (author)

  20. Exchange currents in nuclear physics

    International Nuclear Information System (INIS)

    Truglik, Eh.

    1980-01-01

    Starting from Adler's low-energy theorem for the soft pion production amplitudes the predictions of the meson exchange currents theory for the nuclear physics are discussed. The results are reformulated in terms of phenomenological lagrangians. This method allows one to pass naturally to the more realistic case of hard mesons. The predictions are critically compared with the existing experimental data. The main processes in which vector isovector exchange currents, vector isoscalar exchange currents and axial exchange currents take place are pointed out

  1. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  2. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  3. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  4. Nuclear physics at the KAON factory

    International Nuclear Information System (INIS)

    Kitching, R.

    1989-05-01

    The author surveys the range of nuclear physics issues which can be addressed with a high intensity hadron facility such as the KAON factory. He discusses hadron spectroscopy, kaon scattering, hypernuclear physics, spin physics, and nuclear physics with neutrinos. Nuclear Physics is defined rather broadly, encompassing the study of strongly interacting systems, and including the structure of individual hadrons, hadron-hadron interactions, hadronic weak and electromagnetic currents (in nuclei too), conventional nuclear structure, and exotic nuclei. The basic theme is how the KAON Factory can shed light on non-perturbative QCD and its relation to conventional nuclear physics

  5. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2002-01-01

    Full text:Due to financial shortages, the Extensive Research Program ''Isotopes and Accelerators'' did not come into effect. This in consequence limited the scope of new design and construction works. As the most important topic remained the continuation of work on Ordered Project for new therapeutical accelerator ''6/15''. It has to be emphasized that during realization of this task, several significant modifications were introduced to get a final solution better matched to future implementation of the prototype. The initially adopted ''classical'' solution of accelerating structure with separate bunching and accelerating sections, was replaced by a single mechanical unit with both incorporated functional subsystems. This solution is more convenient for future production and servicing, but in order to cover the broad range of energy variation is was necessary to recalculate the beam dynamics and to find the method for internal phase correction. Another important feature was an additional design of two possible injection systems, the first with a diode gun for 40 keV energy, and the second one with triode gun 15-20 keV. These solutions provide a contingency for - two production versions of an accelerator equipped with different RF power systems - klystron or magnetron. Substantial effort was directed to completion and operation of an experimental facility for testing accelerating structures. This facility is equipped with a RF high - power source in the form of 6 MW klystron, and high-vacuum pumping system. External apparatus connected to the facility are - magnetic spectrometer and computerized water phantom, which enable the diagnostics of accelerated electron beam. Several structure models were tested, and for the first time an electron energy in the vicinity of 15 MeV was registered. Other important subjects in (he Department's activity were: * Implementation of new versions of MC codes, for analysis of electron and photon beams distribution at the output of

  6. Study of the calibration of the medical physics department - radon dosimeter in a radon facility

    International Nuclear Information System (INIS)

    Nikololpoulos, D.; Louizi, A.; Papadimitriou, D.; Proukakis, C.

    1997-01-01

    Several techniques have been developed to measure radon indoors.The use of a Solid State Nuclear Track Detector closed in a cup, has turned out to be the most appropriate for long term measurements. The Medical Physics Department of the Athens University is carrying out radon measurements in dwellings, apartments, outdoor air and mines since 1996. For this purpose a simple device, the so called Medical Physics Department radon dosimeter, has been constructed, which measures the radon concentration averaged over a long period of time. In the present paper the calibration technique introduced and the results of the calibration of the Medical Physics Department. (authors)

  7. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Bunce, G.M.

    1988-01-01

    This report contains papers from an AIP conference on the intersections between particle and nuclear physics. Some of the general topics covered are: Accelerator physics; Antiproton physics; Electron and muon physics; Hadron scattering; Hadron spectroscopy; Meson and lepton decays; Neutrino physics; Nonaccelerator and astrophysics; Relativistic heavy-ion physics; and Spin physics. There are 166 papers that will be processed separately

  8. Nuclear methods in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    2003-01-01

    A common ground for both, reactor and medical physics is a demand for high accuracy of particle transport calculations. In reactor physics, safe operation of nuclear power plants has been asking for high accuracy of calculation methods. Similarly, dose calculation in radiation therapy for cancer has been requesting high accuracy of transport methods to ensure adequate dosimetry. Common to both problems has always been a compromise between achievable accuracy and available computer power leading into a variety of calculation methods developed over the decades. On the other hand, differences of subjects (nuclear reactor vs. humans) and radiation types (neutron/photon vs. photon/electron or ions) are calling for very field-specific approach. Nevertheless, it is not uncommon to see drift of researches from one field to another. Several examples from both fields will be given with the aim to compare the problems, indicating their similarities and discussing their differences. As examples of reactor physics applications, both deterministic and Monte Carlo calculations will be presented for flux distributions of the VENUS and TRIGA Mark II benchmark. These problems will be paralleled to medical physics applications in linear accelerator radiation field determination and dose distribution calculations. Applicability of the adjoint/forward transport will be discussed in the light of both transport problems. Boron neutron capture therapy (BNCT) as an example of the close collaboration between the fields will be presented. At last, several other examples from medical physics, which can and cannot find corresponding problems in reactor physics, will be discussed (e.g., beam optimisation in inverse treatment planning, imaging applications). (author)

  9. 1 November 2012 - Signature of the Co-operation Agreement between the Administrative Department of Science, Technology and Innovation (COLCIENCIAS) of Colombia and the European Organization for Nuclear Research (CERN) concerning Scientific and Technical Co-operation in High-Energy Physics and related technologies by CERN Director-General R. Heuer, witnessed by Ambassador of Colombia to Switzerland C. Turbay Quintero.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    1 November 2012 - Signature of the Co-operation Agreement between the Administrative Department of Science, Technology and Innovation (COLCIENCIAS) of Colombia and the European Organization for Nuclear Research (CERN) concerning Scientific and Technical Co-operation in High-Energy Physics and related technologies by CERN Director-General R. Heuer, witnessed by Ambassador of Colombia to Switzerland C. Turbay Quintero.

  10. Department of Nuclear Equipment 'High Technology Center - HITEC' - Overview

    International Nuclear Information System (INIS)

    Kopec, J.

    2009-01-01

    Full text: The main activities of the Department for Nuclear Equipment High Technology Centre in 2008 were focused on the development of specialized systems using linear accelerators for medical applications, realized within the frame of the Innovative Economy Operational Program: · Calculations, simulations and design of accelerator structures and beam shaping devices · Design of a model of carrying structures · Building stands for carrying out critical component examinations and tests A new evolutionary algorithm has been implemented in a three-dimensional treatment planning system for intensity modulated radiotherapy (IMRT) planning optimization. A design for a multi leaf collimator, second model, was worked out. The Department received an Award for the Polkam TBI therapeutic table in the first edition of the '' Teraz-Polska '' national contest for the best Polish innovative product. Equipment manufactured by the High Technology Centre and especially for total body irradiation techniques was presented for the first time during the Biennial Meeting of the European Society for Therapeutic Radiology and Oncology in Goeteborg, Sweden. The second edition of the School of Medical Accelerator Physics organized in October 2008 was well received by medical physicists and physicians. (author)

  11. Atlas of atomic and nuclear physics

    International Nuclear Information System (INIS)

    Brocker, B.

    2002-01-01

    This book presents the main notions of nuclear physics in a very pedagogical way, many drawings and the use of colors make easier the understanding. The aim of this work is to give a general background in nuclear physics to all people interested in sciences. The text is divided into 14 themes: 1) first discoveries, 2) quantum physics, 3) the electronic cloud around atoms and molecules, 4) measurement methods, 5) nuclear physics, 6) nuclear models, 7) elementary particles, 8) interactions, 9) radiation detection, 10) radiation sources, 11) nuclear reactors, 12) atomic bombs, 13) radiation protection, 14) isotope table and physics constants. (A.C.)

  12. The physics of nuclear reactors

    CERN Document Server

    Marguet, Serge

    2017-01-01

    This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: •   The slowing-down of neutrons in matter •   The charged particles and electromagnetic rays •   The calculation scheme, especially the simplification hypothesis •   The concept of criticality based on chain reactions •   The theory of homogeneous and heterogeneous reactors •   The problem of self-shielding �...

  13. OSIRIS Nuclear Reactors and Services Department

    International Nuclear Information System (INIS)

    2008-01-01

    OSIRIS is an experimental reactor with a thermal power of 70 megawatts. It is a light-water reactor, open-core pool type, the principal aim of which is to carry out tests and irradiate the fuel elements and structural materials of nuclear power stations under a high flux of neutrons, and to produce radioisotopes. Located within the French Atomic Energy Commission (CEA) centre at Saclay, it is close to many research teams and inspection laboratories and has a large-scale technological infrastructure. After a presentation of the characteristics of the reactor, the document presents its irradiation positions and experimental conditions (Geometry, Neutron flux, Gamma heating) and its experimental devices (CHOUCA, IRMA, PHAETON, GRIFFONOS, ISABELLE loops, MERCI, IRIS, Instrumentation of the devices, Qualification of the instrumentation). A forth part presents the facilities that are provided to guarantee the quality of the irradiations carried out in the reactor: ISIS reactor model, hot cells, non-destructive inspection means, chemical control of the water, tools for on-line data acquisition and follow-up of experiments, and the calculation and modelling group. A last part is devoted to the hot labs associated to OSIRIS: the LECI, a hot laboratory located on the Saclay site and mainly designed for the study of irradiated materials, and the LECA and STAR facilities, located on the CEA site in Cadarache in the south of France, and which supplement those of Saclay for fuel studies

  14. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Borie, E.; Doll, P.; Rebel, H.

    1982-11-01

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  15. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1993-01-01

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm 3 . Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important is reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA

  16. Lattice QCD for nuclear physics

    CERN Document Server

    Meyer, Harvey

    2015-01-01

    With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities.  The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics.  A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...

  17. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1985-04-01

    The experimental activities have in 1984 as in previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. The available beam energies (protons and alpha-particles to 35 MeV and 3 He-particles up to 48 MeV) make it an excellent tool for studies of highly excited low-spin states, and also for other experiments with light ions in an intermediate energy range. During the year the accelerator has been in extensive use for low-energy nuclear physics experiments. Most of the experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV, have given some interesting results, which, it is hoped, will contribute to a better understanding of the cooling process in highly excited nuclei

  18. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  19. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  20. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  1. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  2. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  3. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  4. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  5. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In April 2009 the Department of Materials Studies was united with the Department of Plasma Physics and Technology, This action followed twenty years of close cooperation in the implementation of high-intensity ion-beam pulses for the implantation of materials. In 2009 the activities of the new Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges at the Plasma-Focus and RPI-IBIS facilities; · Research on plasma technologies, search for new methods of surface engineering; · Selected problems of plasma theory and computational modelling. In the framework of the EURATOM program. efforts were devoted to the development of diagnostics methods for tokamak-type facilities. Such studies included the elaboration of a special detection system based on a Cherenkov-type detector. Other fusion-oriented efforts were connected with the application of activation methods to the investigation of neutrons from the JET tokamak. Also. solid-state nuclear track detectors of the PM-355 type were used for measurements of energetic protons emitted from ultra-intense laser produced plasmas. In our continuing experimental studies, particular attention was paid to the development and application of optical spectroscopy for diagnostics of high-temperature plasma within the RPI-IBIS device and Plasma-Focus facilities. Fast ions escaping from the plasma were studied with nuclear track detectors, The interaction of plasma-ion streams with different targets was also investigated. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers. c.g. pure niobium film on the surface of copper resonant cavities of accelerators. The vacuum arc deposition technique was also applied to

  6. Physical Protection of Nuclear Safeguards Technology

    International Nuclear Information System (INIS)

    Hoskins, Richard

    2004-01-01

    IAEA's Nuclear Security Plan is established to assist Member States in implementing effective measures against nuclear terrorism. Four potential threats were identified: theft of nuclear weapon, nuclear explosive device, radiological dispersal device and an attack on radiation facility. In order to achieve effective protection of nuclear materials and facilities, the IAEA sponsored the Convention of the Physical Protection of Nuclear Materials which focuses on the protection of nuclear materials 'in international transport. The IAEA also promoted INFCIRC/255 entitled the Physical Protection of Nuclear Materials and Nuclear Facilities and published TECDOC/967 for the protection of nuclear materials and facilities against theft and sabotage and during transport. Assistance is available for the Member States through the International Physical Protection Advisory Service (IPPAS) and the International Nuclear Security Advisory Service (INSServ). (author)

  7. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  8. Department of Accelerator Physics And Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2009-01-01

    Full text: The activity of department P-10 is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. In 2008, the following topics were investigated and/or realized: 1. A linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy). Basically a proton linac of modified Alvarez type working at 3000 MHz frequency and delivering beams in the energy range from 65 MeV to 200 MeV. In 2005, a contract was signed between ENEA and SINS-Swierk for the design, manufacture and delivery to Frascati of the input section of a 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 16 MeV. In 2008, the field distribution in the manufactured structure was measured and optimized using available universal test stand. Measurements were also performed in ENEA/Frascati in October; a small difference in results, around 0.25%, is under investigation. Beam dynamics calculations using 3D codes have been started in parallel. 2. Preparation for participation in the international X-FEL project. Calculations of the parasitic Higher Order Modes (HOMs) induced in superconducting accelerating structures by very short electron bunches have been continued. Thanks to the special research grant received by department P-10 the design and completion of the HOM elements has been started for two accelerating modules, where each module consists of eight superconducting accelerating structures and focusing/correcting elements. 3. Superconducting layers; studies in INFN-Roma. Within the European CARE/JRA1/WP4-2 project, serious modification of the Nb-coating stand for the 1.3 GHz single-cell copper resonators using a vacuum arc was performed. Thanks to this stand the internal surface of the resonator was successfully coated. 4. TiN coating vacuum stand for RF components. At this stand the analysis of the TiN layer thickness as a function of reactive atmosphere pressure

  9. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2000-01-01

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  10. Dose measurements in laboratory of Physics department, University of Khartoum

    International Nuclear Information System (INIS)

    Hamid, Maria Mohammed

    1999-05-01

    Personal monitoring in University of Khartoum is being conducted using thermoluminescent dosimetry. The purpose of the study is to measure the dose of radiation in laboratory of Physics in physics department. TL phosphors LiF: Mg, Ti (card) and LiF Mg, Cu, P (GR-200) and mini-rad dosimeter are used to measure the dose in laboratory. The total dose for students form the laboratory bu using card, GR-200 and mini-rad dosimeter was found to be 2.2μ sv/year. 2.5 μ sv/year and 2.6 μ sv respectively, and for the teacher about 4.0 μ sv/year, 5.8 μ sv/year and 13.6 μ sv/year respectively, and for the dose near junk room about 3.9 μ sv/year, 2.9 μ sv/year and 2.8 μ sv/year by using card, GR-200 and mini-rad dosimeter respectively. There is just a background radiation in the main library and the applied nuclear.(Author)

  11. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2003-01-01

    investigations were carried out in the PF-360 facility equipped with nuclear targets made of D 2 O-ice. The use of a high-speed framing camera enabled legible VR pictures and X-ray images to be obtained. These demonstrated some details of filamentary and spiral microstructures. Particular attention was paid to temporal changes in anisotropy of the fusion neutron emission. Another experimental aim concerned the development of plasma diagnostics. In the collaboration with Dept. P-I at IPJ and the Laboratory of Heavy Ions at Warsaw University, the calibration of selected solid-state nuclear track detectors (PM-355) was performed for energetic sulphur- and argon-ions. Also investigated was the influence of intense X-rays and electron beams on responses of the PM-355 detectors. Another task was an analysis of optical spectra recorded within the wavelength range from 200 nm to 1100 nm. Detailed optical measurements within the RPI-IBIS facility made it possible to investigate a dependence of intensities of the selected spectral lines and their FWHM values on the initial gas conditions. Particular attention was also paid to spectroscopic studies of early stages of a decay of pulsed plasma streams within the RPI-type devices. As for technological studies, there was continued research on plasma technology of different materials. In particular the erosion of some reversible getters was investigated in collaboration with the IPP KIPT in Kharkov (Ukraine). The use of vacuum arc discharges to the deposition of super-conductor (Nb) layers upon surfaces of RF accelerator cavities was investigated within the collaboration with the Tor-Vergata University in Rome (Italy) and DESY in Hamburg (Germany). A new UHV set-up with two planar arc sources was investigated in Rome, and a new UHV experimental stand was designed and constructed in Swierk. Other studies of plasma-ion techniques for the material engineering were carried out in collaboration with Dept. P-IX (another chapter of this report). The

  12. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In 2010 the activities of the Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF), RPI-IBIS, and Impulse Plasma Deposition (IPD) facilities; · Research on plasma technologies; · Selected problems of plasma theory and computational modeling. In the frame of the EURATOM program, efforts were devoted to the development of diagnostics methods for tokamak-type facilities. In 2010 Cherenkov detectors were applied in the ISTTOK and TORE SUPRA facilities to detect energetic electrons (of energy > 60 keV), to determine their spatial and temporal behavior and to estimate their energy spectra. Attention was also paid to measurements of hard X rays emitted from ISTTOK and to their correlations with run-away electrons. The new data on fast electrons, collected within the TORE-SUPRA machine in 2010, confirmed the appearance of intense electron streams (possible ripple-born and runaway ones), which have a similar character to the electron signals recorded by means of other diagnostic techniques. Other fusion-oriented efforts are connected with the application of solid-state nuclear track detectors to detect fast alpha particles in tokamak experiments. As for experimental studies, particular attention was paid to the investigation of fast ion- and electron-beams emitted from high-current plasma discharges in PF and RPI facilities. Ion streams from discharges were studied by means of nuclear track detector, corpuscular diagnostic techniques, and particularly of a miniature Thompson-type mass-spectrometer. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers, e.g. pure niobium film on the surface of copper resonant cavities

  13. Physics department annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    Moller, H.B.; Lebech, B.

    1978-12-01

    Research in the Physics Department at Riso covers three main fields: Solid-state physics, Plasma physics, Meteorology. The principal activities in these fields are presented in this report that covers the period from 1 January to 31 December 1978. (Auth.)

  14. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1999-01-01

    In 1998 research activities were mostly continuations of previous studies, but we also undertook some new research aims. Theoretical studies comprised a development of the model of processes occurring at electrodes within a plasma system with magnetron discharges. Also developed was an improved model of phenomena within coaxial plasma injectors. Within a framework of the collaboration with the Warsaw Technical University we analyzed plasma dynamics in the coaxial gun used for the IPD process. We also carried out theoretical studies of proton-atom collisions, different atomic experiments, and X-ray spectra. It was shown that some effects, interpreted so far on the basis of quantum mechanics, could be explained by the interaction of electrons moving along ''rosette-type'' trajectories. Experimental studies of phenomena within PF-type discharges were concentrated on measurements of particle emission and polarization effects within the MAJA-PF device in Swierk (in cooperation with the Kurchatov Institute). Also performed were studies of ions, neutrons, fast electrons and X-rays within the PF-360 facility in Swierk, an analysis of low-energy deuterons within PF-II device at INFIP in Buenos Aires, as well as studies of ion beams with the PACO-PF device at IFAS in Tandil. Within the framework of studies within the large PF-1000 facility at IFPiLM in Warsaw, we continued experiments with a thin liner compressed by a collapsing current sheath, optimization tests of PF discharges and measurements of emission characteristics. We performed measurements of VR with high-speed cameras, studies of X-rays with pinhole cameras and crystal spectrometers, as well as high-energy ion measurements with nuclear track-detectors (NTDs). In collaboration with the CVUT and IPP CzAS in Prague we initiated new Filamentary Z-Pinch experiments within the large PF-1000 facility. Studies connected with the development of plasma diagnostic methods concerned the calibration of new types of NTDs with

  15. Nuclear matter physics at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-08-15

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)

  16. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  17. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  18. Department of Energy: Nuclear S&T workforce development programs

    International Nuclear Information System (INIS)

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly; Steele, Carolyn; Sattelberger, Alfred P.; Bruozas, Meridith A.

    2016-01-01

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) and the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.

  19. Second Mexican School of Nuclear Physics: Notes

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Chavez L, E.R.; Hess, P.O.

    2001-01-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  20. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    Science.gov (United States)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  1. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  2. 3.International conference 'Nuclear and Radiation Physics'

    International Nuclear Information System (INIS)

    2001-01-01

    The 3-rd International Conference 'Nuclear and Radiation Physics' was held in Almaty (Kazakhstan) 4-7 June 2001. The primary purpose of the conference is consolidation of the scientists efforts in the area of fundamental and applied investigations on nuclear physics, radiation physics of solids and radioecology. In the conference more than 350 papers were presented by participants from 17 countries

  3. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  4. Intriguing Trends in Nuclear Physics Articles Authorship

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-11-06

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  5. 28 November 2013 - N. N. Kudryavtsev, Russian Rector of the Moscow Institute of Physics and Technology signing an Agreement and the Guest Book with CERN Director-General R. Heuer; visiting the ATLAS cavern with ATLAS Deputy Spokesperson B. Heinemann and visiting the LHC tunnel at Point 1 with AGH University of Science and Technology A. Erokhin. M. Savino, Physics Department, Joint Institute for Nuclear Research also present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    28 November 2013 - N. N. Kudryavtsev, Russian Rector of the Moscow Institute of Physics and Technology signing an Agreement and the Guest Book with CERN Director-General R. Heuer; visiting the ATLAS cavern with ATLAS Deputy Spokesperson B. Heinemann and visiting the LHC tunnel at Point 1 with AGH University of Science and Technology A. Erokhin. M. Savino, Physics Department, Joint Institute for Nuclear Research also present.

  6. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  7. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1983-07-01

    Summaries are given of work on nuclear data and technology for nuclear power; nuclear reactions and nuclear properties; applications of nuclear and associated techniques in a variety of fields, particularly with the use of ion beams; accelerator operation and development. (U.K.)

  8. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  9. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Scholten, O.

    1990-01-01

    The magnitude of the quark effect for low-energy nuclear physics is investigated. Coulomb energy is studied in the A=3 system in order to determine the effect of the composite structure of the nucleon. In the actual calculations a non-relativistic quark-cluster model description has been used. A nucleon size b=0.617 fm, the width of the relative wave function Φ of the quarks in the nucleon, has been assumed. It is concluded that the contribution to Coulomb energies due to quark effects are significant compared to the observed Nolen-Schiffer anomaly. However these do not provide the long searched for 'smoking gun'. When the free parameters that appear in the calculation are adjusted to reproduce the same charge form factor, the calculated anomalies are not significantly different. 2 figs., 2 tabs., 8 refs.2

  10. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  11. U.S. Department of Energy facilities needed to advance nuclear power.

    Science.gov (United States)

    Ahearne, John F

    2011-01-01

    This talk is based upon a November 2008 report by the U.S. Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC). The report has two parts, a policy section and a technology section. Here extensive material from the Technical Subcommittee section of the NEAC report is used. Copyright © 2010 Health Physics Society

  12. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  13. Nuclear physics in Cuba: a historical outline

    International Nuclear Information System (INIS)

    Castro Díaz-Balart, Fidel

    2015-01-01

    The present article summarizes an historical perspective of the national experience in Nuclear Physics development, with particular emphasis on its relationship with the Cuban Nuclear Program, its scientific and technological achievements, and its social and economic impact. Multiple peaceful applications introduced in the country and specifically those related to the Nuclear Power Program are also included. In order to support nuclear energy as well as nuclear power plants, specialized institutions were created, in addition to the training of professionals and interdisciplinary research groups in theoretical and experimental nuclear physics, engineering and in other different specialties. (author)

  14. France: New horizons for nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The increasing realization that the underlying mechanisms of nuclear physics are controlled by the inner quark structure of nucleons rather than the nucleons themselves is blurring the once fairly distinct frontier between nuclear and particle physics. Thus nuclear physicists are awaiting new high energy machines, notably CEBAF, the US Continuous Electron Beam Accelerator Facility now under construction in Newport News, Virginia, while particle physics facilities such as the LEAR low energy antiproton ring and the high energy muon beams at CERN are gaining popularity with the nuclear physics community

  15. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  16. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  17. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  18. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  19. Nuclear energy system department annual report. April 1, 2000 - March 31, 2001

    International Nuclear Information System (INIS)

    Osugi, Toshitaka; Takase, Kazuyuki; Kunii, Katsuhiko

    2002-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2000 (April 1, 2000 - March 31, 2001). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear and atomic and molecular data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, study of nuclear transmutation systems, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  20. Nuclear and atomic physics at one gigaflop

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, J.B.

    1989-01-01

    A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems

  1. Nuclear Energy System Department annual report. (April 1, 2002 - March 31, 2003)

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Shibata, Keiichi; Kugo, Teruhiko

    2003-09-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2002 (April 1, 2002 - March 31, 2003). The Department has carried out researches and developments (R and Ds) of innovative nuclear energy system and their related fundamental technologies to ensure the long-term energy supply in Japan. The report deals with the R and Ds of an innovative water reactor, called Reduced-Moderation Water Reactor (RMWR), which has the capability of multiple recycling and breeding of plutonium using light water reactor technologies. In addition, as basic studies and fundamental researches of nuclear energy system in general, described are intensive researches in the fields of reactor physics, thermal-hydraulics, nuclear data, nuclear fuels, and materials. These activities are essential not only for the R and Ds of innovative nuclear energy systems but also for the improvement of safety and reliability of current nuclear energy systems. The maintenance and operation of reactor engineering facilities belonging to the Department support experimental activities. The activities of the research committees to which the Department takes a role of secretariat are also summarized. (author)

  2. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  3. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems....... The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danishand international organisations on wind energy and atmospheric environmental impact. A sum......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  4. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  5. The case for biophysics super-groups in physics departments.

    Science.gov (United States)

    Hoogenboom, Bart W; Leake, Mark

    2018-06-04

    Increasing numbers of physicists engage in research activities that address biological questions from physics perspectives or strive to develop physics insights from active biological processes. The on-going development and success of such activities morph our ways of thinking about what it is to 'do biophysics' and add to our understanding of the physics of life. Many scientists in this research and teaching landscape are homed in physics departments. A challenge for a hosting department is how to group, name and structure such biophysicists to best add value to their emerging research and teaching but also to the portfolio of the whole department. Here we discuss these issues and speculate on strategies. Creative Commons Attribution license.

  6. 3. Mexican school of nuclear physics

    International Nuclear Information System (INIS)

    Chavez L, E.R.; Hess, P.O.; Martinez Q, E.

    2002-01-01

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  7. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    International Nuclear Information System (INIS)

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  8. Proceedings of the 9. Workshop on Nuclear Physics - Communications of basic nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    The abstracts of researches on basic nuclear physics of 9. Workshop on Nuclear Physics in Brazil are presented. Mathematical models and experimental methods for nuclear phenomenon description, such as nuclear excitation and disintegration of several nuclei were discussed. (M.C.K.) [pt

  9. Assessing the physical service setting: a look at emergency departments.

    Science.gov (United States)

    Steinke, Claudia

    2015-01-01

    To determine the attributes of the physical setting that are important for developing a positive service climate within emergency departments and to validate a measure for assessing physical service design. The design of the physical setting is an important and contributing factor for creating a service climate in organizations. Service climate is defined as employee perceptions of the practices, procedures, and behaviors that get rewarded, supported, and expected with regard to customer service and customer service quality. There has been research conducted which identifies antecedents within organization that promotes a positive service climate which in turn creates service-oriented behaviors by employees toward clients. The antecedent of the physical setting and its impact on perceptions of service climate has been less commonly explored. Using the concept of the physical service setting (which may be defined as aspects of the physical, built environment that facilitate the delivery of quality service), attributes of the physical setting and their relationship with service climate were explored by means of a quantitative paper survey distributed to emergency nurses (n = 180) throughout a province in Canada. The results highlight the validity and reliability of six scales measuring the physical setting and its relation to service. Respondents gave low ratings to the physical setting of their departments, in addition to low ratings of service climate. Respondents feel that the design of the physical setting in the emergency departments where they work is not conducive to providing quality service to clients. Certain attributes of the physical setting were found to be significant in influencing perceptions of service climate, hence service quality, within the emergency department setting. © The Author(s) 2015.

  10. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  11. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  12. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  13. 9. Biennial session of nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    As every two years the 9th biennial session of nuclear physics shall try to make a survey of the recent experimental developments as well as the evolution of the theoretical ideas in Nuclear Physics. Communications are indexed and analysed separately

  14. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Beck, R.; Bueche, G.; Fluegge, G.

    1982-02-01

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.) [de

  15. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1991-04-01

    The report summarizes the research and development activities of the Section for nuclear physics and energy physics at the University of Oslo in 1990. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. The experimental activities in nuclear physics have, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Using the CACTUS multidetector system, several experiments in collaboration with the nuclear physics group at the University of Bergen have been completed. Some results have been published and were also presented at the international conference in Oak Ridge, USA, while more data remains to be analyzed

  16. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    It is really difficult to determine the exact date for the starting of nuclear physics research in Vietnam. Serious research on experimental nuclear physics began only since 1972 with the installation of such nuclear instrument like microtron accelerator, neutron generator, etc. During the past 20 years, hundred of research works have been published in local and foreign scientific journals. In the 5th national conference in Physics held in Hanoi in October 1993, at the Nuclear Physics section, 62 reports were presented reflecting the situation of nuclear physics research in the recent years, especially in the past five years. This review introduces its main results and formulates some perspectives of development in the late nineties in Vietnam. (K.A.). 27 refs., 4 figs., 6 tabs

  17. Nuclear Physics Laboratory: Annual report

    International Nuclear Information System (INIS)

    1987-05-01

    Topics covered in this annual report are: astrophysics and cosmology, giant resonances in excited nuclei, heavy ions, fundamental symmetries, nuclear reactions, accelerator mass spectrometry, accelerators and ion sources, nuclear instrumentation, computer systems and the booster linac project

  18. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  19. Mesonic effects in nuclear physics

    International Nuclear Information System (INIS)

    Johnson, M.

    1978-01-01

    The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references

  20. Nuclear Energy System Department annual report (April 1, 1998 - March 31, 1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 1998 (April 1, 1998 - March 31, 1999). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy system. The research activities of the fiscal year cover basic nuclear and atomic and molecular data evaluation, conceptual design of reduced-moderation water reactor, development of reactor analysis code, reactor physics study on fast neutron system, control and sensing technology development for nuclear reactor, experiment and analysis of thermal-hydrodynamics, development of advanced material for reactor, lifetime reliability assessment on structural material for advanced reactor, development of advanced nuclear fuel, design of marine reactor and the research for nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committee to which the Department takes a role of secretariat are also summarized in this report. The 98 papers are indexed individually. (J.P.N.)

  1. Qualifying works of the Department of nuclear chemistry (1963 - 2006)

    International Nuclear Information System (INIS)

    Kuruc, J.

    2007-01-01

    In this review qualifying works (theses - bachelor, master, PhD., DrSc., habilitation and inauguration theses) elaborated at the Department of nuclear chemistry, Faculty of Natural Chemistry, Comenius University in Bratislava during forty years (from origin of the Section of Nuclear chemistry in 1963 up to 2006 are presented. During this time, in totally, 3 bachelor theses, 265 master theses, 24 PhD. (CSc.) and 10 PhD. dissertanions, 2 DrSc. dissertanions as well as 8 habilitation and one inauguration these were defended (author)

  2. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  3. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  4. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  5. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  6. Educational, research and implementation activities in the Department of Atomic Physics at Plovdiv University

    International Nuclear Information System (INIS)

    Balabanov, N.; Antonov, A.; Hristov, H.

    2004-01-01

    The Department of Atomic Physics at Plovdiv University has 40 year long experience in educating students in Atomic and Subatomic Physics. We aim at making the knowledge gained in nuclear physics part of the culture of our students. At the core of our educational activities lies our long and successful experience in studying the characteristics of atomic nuclei. In cooperation with JINR-Dubna we have studied the nuclei of approximately 40 percent of the periodic table elements. These studies also serve as a basis for the diverse implementation activities of the Department, which have an impressive geographical spread. In recent years our research has been focusing more specifically on radio-ecological issues with the valuable support of the Nuclear Regulatory Agency (NRA). Future more intense support on behalf of NRA's together with more dynamic links with other specialized units, such as the Kozloduy NPP in the first place, would considerably contribute to optimizing the effect of our overall activity. (authors)

  7. Reduction of doses to staff in a nuclear medicine department

    International Nuclear Information System (INIS)

    Van Every, B.

    1982-01-01

    Data relating to the radiation protection of staff working in the Department of Nuclear Medicine, Alfred Hospital, Victoria during the period 1977 to 1981 are examined. No member of staff received more than one tenth of the annual whole body dose limit of 5x10 4 μSv. The reduction in the total whole body dose of staff and in the technologist's individual dose is due to relocating the department, using appropriate radiation monitoring equipment, using a staff roster and making staff aware of previous doses

  8. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  9. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  10. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  11. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  12. 4. Mexican School of Nuclear Physics. Papers

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  13. 4. Mexican School of Nuclear Physics

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.G. -mail: svp@nuclear.inin.mx

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, taken place from June 27 to July 8, 2005 in the Institute of Nuclear Sciences and the Institute of Physics of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided to the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the subject to whom we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University of Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to those 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Institute of Nuclear Sciences, UNAM, Institute of Physics, UNAM, Coordination of the Scientific Research, UNAM, National Institute of Nuclear Research, Nuclear

  14. Physics teachers' nuclear in-service training in Hungary

    International Nuclear Information System (INIS)

    Ujvari, Sandor

    2005-01-01

    Teaching of science subjects, specifically physics among others, is important in Hungarian schools. The paper starts with some historical aspects on how the modern physics reached Hungarian schools, what kinds of methods the physics teachers use for their in-service training and what is their success. In 1985 Hungarian Government introduced the system of physics teacher's in-service training for a year. The courses end with a thesis and examination. Teachers have a possibility to join the nuclear physics intensive course of Nuclear Physics Department at Eottvos University. Curriculum and topics of laboratory practice are given together with some dissertations of the course. Moreover, several competition (Leo Szilard competition) is mentioned with starting that in each year the 5 best students get free entrance to the Hungarian universities. (S. Ohno)

  15. Experience acquired in health physics at Saclay Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Fitoussi, L.; Joffre, H.

    1963-06-15

    Description is given of the general organization and functions of the Health Physics Department of Saclay Nuclear Research Establishment. The means employed for the various installations covered and the general rules adopted for health physics are presented. From an overall survey of the results obtained in 1962, conclusions were drawn from past experience and to foresee improvements for the future are foreseen. (P.C.H.)

  16. Reactor physics in support of the naval nuclear propulsion programme

    International Nuclear Information System (INIS)

    Lisley, P.G.; Beeley, P.A.

    1994-01-01

    Reactor physics is a core component of all courses but in particular two postgraduate courses taught at the department in support of the naval nuclear propulsion programme. All of the courses include the following elements: lectures and problem solving exercises, laboratory work, experiments on the Jason zero power Argonaut reactor, demonstration of PWR behavior on a digital computer simulator and project work. This paper will highlight the emphasis on reactor physics in all elements of the education and training programme. (authors). 9 refs

  17. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  18. R and D in Ciemat Nuclear Fission Department

    International Nuclear Information System (INIS)

    Diaz, J. L.; Diaz Arocas, P.; Gomez Briceno, D.; Gonzalez de la Huebra Gordo, A.; Gonzalez Romero, E.; Herranz Puebla, L. E.; Sola Farre, R.

    2000-01-01

    The technologically developed countries count on nuclear fission as a durable energy resource to produce electricity, facing the future by establishing research programmes to enhance the safety and extend the lifetime of the current power plants and to achieve the adequate management of radioactive waste. At the same time, the progress in the development of a new generation of reactors based in innovative safety concepts. The Nuclear fission Department has the ultimate objective of providing technical support to the Spanish nuclear reactors through applied research and development focused on improving the safety and performance of the operating power plants, and cooperating in the activities related to radioactive waste. In this context, the Departament has been organised in four R and D project covering the areas of Safety, Materials, Radioactive. (Author)

  19. Nosocomial Infections in Nuclear Medicine Departments: some considerations

    International Nuclear Information System (INIS)

    Metello, L.F.; Cunha, L.; Martins, M.; Isabel, O.; Ribeiro, G.

    2002-01-01

    Aim: Surveillance for Nosocomial Infection has become an integral part of hospital practice. Studies conducted more than 30 years ago by the Centers for Disease Control and Prevention (CDC) documented the efficacy of these surveillance activities in reducing Nosocomial Infection occurrence. It is clear that surveillance for Nosocomial Infection involves more than just documenting infection rates. However, many times the professionals involved have tended to stop at the point where rates are reported and fail to complete the task of implementing changes based on the analysis of rates or disseminating information. Moreover specific documentation regarding Nuclear Medicine Departments is not available. We therefore decided to produce this work based in the recognition of this specific need. Methods and Conclusions: Having previously defined the 'state-of-the-art' from science and technology concerning Nosocomial Infection Control and after particular study regarding technical/clinical reality of Nuclear Medicine Departments, namely introducing the radioactivity as a factor that must be taken into account with all its implications and interactions, we have obtained a group of considerations and/or recommendations to be considered in order to accomplish the maximum Quality and Efficiency regarding the Control of Nosocomial Infection in Nuclear Medicine Departments

  20. Digital nuclear medicine department: Is a filmless environment conceivable?

    International Nuclear Information System (INIS)

    Hacker, M.; Bauerschaper, B.; Dresel, S.; Weiss, M.; Heiss, D.; Hahn, K.; Muenchen Univ.

    2000-01-01

    Recent hardware improvements, the installation and development of fast networks and new technologies for storage of large data volumes all contribute to the propagation of digital reading and reporting of nuclear medicine studies. Thus, the vision of a fully digitized nuclear medicine department becomes reality. The high costs of purchasing hardware- and software-components are compensated by saving costs of films and by the improvement of the work flow in the long run. Independently from these issues, filmless reporting proves to be advantageous over conventional film reading in many facts that justify to switch to a digital department. Problems that occur in the process of becoming film-free are mainly based on compatibility issues and demand strong cooperation between the user and the manufacturer of the imaging devices in order to integrate all systems into one reading and reporting tool. The departments of nuclear medicine and radiology of the University of Munich, Innenstadt, now are reviewing a one-year process of being film-free, which makes a return to conventional film reading unconceivable. (orig.) [de

  1. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  2. Internal Contamination by 131I in nuclear medicine department

    International Nuclear Information System (INIS)

    Chahed, N.; Mtimet, S.; Hammami, H.; Mhiri, A.

    1998-01-01

    Therapeutic applications in nuclear medicine use high activities of 131 I in sodium iodine liquid from which is volatile at ambient temperature. Besides external exposure there is, for the nuclear medicine personnel, an internal exposure risk induced by 131 iodine inhalation. So we tried to assess this risk among the personnel in a nuclear medicine department. We used direct method for measuring 131 radioactivity in vivo by external counting. Gamma ray detector with a Nal ( TI ) probe positioned near the thyroid gland allows investigation of 131 radioactivity. We realised 34 measurements among the personnel, two times at an interval of one month. The results indicate that an 131 iodine internal contamination is found. Estimated thyroid activities were ranging from 35 to 132 Bq. The highest activities has been found in the thyroid of the technicians involved in the administration of 131 iodine therapy. Therefore this values are lower than norms. This study must lead to the implementation control of the 131 iodine internal contamination in order to optimise the personnel protection in nuclear medicine departments (author)

  3. Student Scientific Conference - Nuclear Physics, 2008. Proceedings of contributions

    International Nuclear Information System (INIS)

    2008-01-01

    The conference included the following sections: (i) Biophysics and medicine physics; (ii) Experimental physics and theoretical physics; (iii) Nuclear physics; (iv) Informatics; (v) Mathematics; (vi) Theoretical graphics. Contributions of nuclear physics have been inputted to INIS.

  4. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  5. Annual progress report of the Department of Solid State Physics

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1992-01-01

    Research in the department covers the field of condensed matter physics. The principal activities of the department are presented in the Progress Report covering the period from 1 January to 31 December 1991. The condensed matter physics research is predominantly experimental utilizing diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy femions, high T c superconductivity, phase transitions in model systems to studies of precipitation phenomena and nano-scale structures in various materials. The major interest of the department is in basic research, but projects of more applied nature are often taken up, prompted by the applicability of the developed technique and expertise. (au) 2 tabs., 94 ills., 82 refs

  6. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    Tsapaki, V.; Koutelou, M.; Theodorakos, A.; Kouzoumi, A.; Kitziri, S.; Tsiblouli, S.; Vardalaki, E.; Kyrozi, E.; Kouttou, S.

    2002-01-01

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  7. Nuclear Physics studies at ELI-NP

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    The mission of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility is to use extreme electromagnetic fields for nuclear physics research. At ELI-NP, high-power lasers together with a very brilliant γ-ray beam are the main research tools. Their targeted operational parameters are described. The emerging experimental program of the facility in the field of nuclear physics is reported and the main directions of the research envisioned are presented. The experimental instrumentation, which will operate at ELI-NP for the realization of the research program, is discussed. The expected impact of ELI-NP on the future advance of the field is summarized

  8. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  9. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  10. Nuclear physics on a hypersphere

    International Nuclear Information System (INIS)

    Rho, M.

    1989-01-01

    This lecture covers three (related) topics: a hidden gauge symmetric (HGS) formulation of low-energy effective theories of the strong interaction, a modelling of dense nuclear matter by putting skyrmions (and instantons) on a hypersphere and a description in terms of skyrmions of the chiral phase transition at high nuclear matter density

  11. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    International Nuclear Information System (INIS)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  12. Proceedings of the 9. Workshop on Nuclear Physics - Communications of applied nuclear physics and instrumentation

    International Nuclear Information System (INIS)

    1986-01-01

    The communications of applied nuclear physics and intrumentation of 9. Workshop on Nuclear Physics in Brazil are presented. Several intruments for radiation measurements, such as detectors, dosemeters and spectrometers were developed. Techniques of environmental monitoring and instrument monitoring for nuclear medicine are evaluated. (M.C.K.) [pt

  13. Physics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1991-01-01

    Research in the Physics Department covers the field of condensed matter physics. The principal activities of the department are presented in this Progress Report for the period from 1 January to 31 December 1990. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applie nature. In the field high T c superconductors neutron and X-ray diffraction are used both for studying the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses of the materials. (author) 9 tabs., 79 ills., 104 refs

  14. PREFACE: XXXIV Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof

    2011-10-01

    In the present volume of the Journal of Physics: Conference Series we publish the proceedings of the 'XXXIV Symposium on Nuclear Physics', which was held from 4-7 January 2011 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 19 contributions that were presented as invited talks at the meeting. The abstracts of all contributions, plenary talks and posters were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. From the first meeting in Oaxtepec in 1978, the Symposium has been organized every year without interruption, which makes the present Symposium the 34th in a row. The scientific program consisted of 27 invited talks and 17 posters on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure (Draayer, Pittel, Van Isacker, Fraser, Lerma, Cejnar, Hirsch, Stránský and Rath) and nuclear reactions (Aguilera, Gómez-Camacho, Scheid, Navrátil and Yennello) to radioactive beams (Padilla-Rodal and Galindo-Uribarri), nuclear astrophysics (Aprahamian, Civitarese and Escher), hadronic physics (Bijker, Valcarce and Hess), fundamental symmetries (Liu, Barrón-Palos and Baessler) and LHC physics (Menchaca-Rocha and Paic). The high quality of the talks, the prestige of the speakers and the broad spectrum of subjects covered in the meeting, shows that nuclear physics is a very active area at the frontier of scientific research which establishes bridges between many different disciplines. Libertad Barr

  15. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  16. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  17. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  18. Physics department annual progress report, 1 Jan - 31 Dec 1975

    International Nuclear Information System (INIS)

    Bjeerum Moeller, H.; Lebech, B.

    1975-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics, nuclear spectroscopy and meteorology are presented. The main experimental and theoretical work in solid-state physics has involved: investigation of the static and dynamic properties of magnetic solids; studies of various kinds of phase transitions in solids and liquid-like systems; electronic energy band calculations of metals; and investigations of the structure and lattice dynamics of molecular crystals and adsorbed monolayers. The work of the plasma physics section is centered on technology of interest for future fusion reactors and on basic plasma physics. The technological aspects of plasma phsics are undertaken with one of the possible refuelling schemes for fusion reactors in mind. The main object of the basic research is investigations of waves and instabilites in a relatively cold steady state plasma. The activites in the field of nuclear spectroscopy have concerned an attempt to form the 236 U fission isomer with thermal neutrons and studies of the fine structure in the mass distribution for fission fragments. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  19. Atlas of atomic and nuclear physics

    International Nuclear Information System (INIS)

    2001-01-01

    This atlas covers the overall domains of nuclear physics. It uses concrete examples and explanations and takes into consideration the recent research discoveries. A chronological list of main discoveries, scientists and Nobel prices is included. (J.S.)

  20. 1932: ''annus mirabilis'' for nuclear physics

    International Nuclear Information System (INIS)

    Hughes, J.

    1998-01-01

    1932 was an extraordinary year for nuclear physics: J. Chadwick discovered the neutron, C.D.Anderson identified the positron and the first artificial disintegration was realised with a particle accelerator by J.Cockcroft and E.Walton. These 3 discoveries transformed nuclear physics by providing basis on which any new research could be led. The neutron allowed the discovery of artificial radioactivity by Joliot-Curie in 1934 and later the discovery of nuclear fission by O. Hahn, F. Strassman and L. Meitner. The positron brought new concepts about cosmic radiation and drew the way to the discovery of new particles. Artificial disintegration paved the way to the ever-bigger machines. It was the beginning of the era of breaking nuclei. 1932 deserves its title of ''annus mirabilis'' of physics. This article presents the quick evolution of ideas, concepts in nuclear physics in the thirties. (A.C.)

  1. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  2. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  3. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  4. From the history of nuclear physics

    International Nuclear Information System (INIS)

    Brunfelt, Arild O.

    2000-01-01

    The article describes the development within nuclear physics from the discovery of the radioactivity in 1895 to the discovery of element number 118 in 1999. The nature of radioactivity and status in atom research is briefly outlined

  5. Relativistic nuclear physics and quantum chromodynamics. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The data of investigations on problems of high energy physics are given. Special attention pays to quantum chromodynamics at large distances, cumulative processes, multiquark states and relativistic nuclear collisions

  6. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  7. Evaluation of radiation protection in some nuclear medicine department

    International Nuclear Information System (INIS)

    Abdelrahim, Yassir Mohammed

    2015-12-01

    This study was carryout to evaluate the radiation protection in nuclear medicine department in Sudan, accordance with the standards international recommendation and code of practice for radiation protection in nuclear medicine, the evaluation was done for three nuclear medicine departments, included direct measurement of dose rate and the contamination level in some areas, were radiation sources, radiation workers and public are involved. The data was collected and analyzed from the results for three nuclear medicine departments that the average reading of ambient dose rate in : outside the door of imaging room (SPECT) 0.18μSv/h in hospital (1)& and 0.19μSv/h in hospital(2) and 0.19μSv/h hospital(3), inside control of imaging room (SPECT) 27.8μSv/h in hospital(1)& 0.14μSv/h in hospital(2)& 14μSv/h in hospital(3), inside the injection room 28.81μSv/h in hospital(1), 0.36μSv/h in hpspital(2), 0.06μSv/h in hospital(3) outside the door of lap, 0.65μSv/h in hospital(1), 0.13μSv/h in hospital(2) & 0.12μSv/h in hospital(3), inside the hot lap, 9.68μSv/h in hospital(1) & 0.30μSv/h in hospital(2) & 0.85 μSv/h in hospital(3), in outsidee the door of waiting room of injected patient 1.41μSv/h in hospital(1)& 0.16μSv/h in hospital(2) & 1.08μSv/h in hospital(3). Avaerge reading of contamination in: Floor of hot lap 44.50 B/cm"2 hospital(1) & 4.42B/cm"2in hospital(2) & 6.22 B/cm"2 in hospital (3) . on the bench tap 186.30 B/cm"2 hospital(1), 19.91 B/cm"2 in hospital(2) & 8.77B/cm"2 in hospital(3) floor of injection room 12.60 B/cm"2 in hospital(1) & 11.70 B/cm"2 in hospital(2) & 13.73 B/cm"2 hospital(3) & table of injection room 13.00 B/cm"2 in hospital(1)& 11.70 B/cm"2in hospital(2)& 13.73 B/cm"2 in hospital & tble of injection room 13.00 B/cm"2 in hospital(1) & 20.40 B/cm"2 in hospital(2) & 23.23 B/cm"2 B/cm"2 in hospital(3) on the shield of working surface 144.30 B/cm in hospital(1)& 47.00 B/cm"2 in hospital(2) & 52.33 B/cm"2 in hospital(3) , and makes check

  8. Nuclear physics with electromagnetic probes

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.

    1986-09-01

    The potentiality of electron accelerators for investigating nuclear structures is presented. Several examples of electron scattering in coincidence and their principal characteristics, are discussed. (M.C.K.) [pt

  9. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1991-01-01

    This report discusses research in nuclear theory in the following areas: Isospin effects and charge exchange; inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; and antiproton studies. 14 refs

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1990-01-01

    Research programs in nuclear theory are discussed in this paper. The topics discussed are: neutron stars and pulsars; transverse momentum distribution; intermittency and other correlations; photon and delepton production; electroweak theory at high temperature; and fractional statistics

  11. Trends in nuclear physics. 100 years later

    International Nuclear Information System (INIS)

    Nifenecker, H.; Blaizot, J.P.; Bertsch, G.F.; Weise, W.; David, F.

    1998-01-01

    In the first years after the discovery of radioactivity it became clear that nuclear physics was, by excellence, the science of small quantum systems. Between the fifties and the eighties nuclear physics and elementary particles physics lived their own lives, without much interaction. During this period the basic concepts were defined. Recently, contrary to the specialization law often observed in science, the overlap between nuclear and elementary particle physics has become somewhat blurred. This Les Houches Summer School was set up with the aim of fighting off the excessive specialization evident in many international meetings, and return to the roots. The twofold challenge of setting up a fruitful exchange between experimentalists and theorists in the first place, and between nuclear and hadronic matter physicists in the second place was successfully met. The volume presents high quality, up-to-date reviews starting with an account of the birth and first developments of nuclear physics. Further chapters discuss the description of the nuclear structure, the physics of nuclei at very high spin, the existence of super-heavy nuclei as a consequence of shell structure, liquid-gas transition, including both a description and a review of the experimental situation. Other topics dealt with include the interactions between moderately relativistic heavy ions, the concept of a nucleon dressed by a cloud of pions, the presence of pions in the nucleus, the subnucleonic phenomena in nuclei and quark-gluons deconfinement transition, both theoretical and experimental aspects. Nuclear physics continues to influence many other fields, such as astrophysics, and is also inspired by these same fields. This cross-fertilisation is illustrated by the treatment of neutron stars in one of the final chapters. The last chapter provides an overview of a recent development in which particle and nuclear physicists have cooperated to revitalize an alternative method for nuclear energy

  12. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  13. Status report of the US Department of Energy's International Nuclear Safety Program

    International Nuclear Information System (INIS)

    1994-12-01

    The US Department of Energy (DOE) implements the US Government's International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program's activities that have been completed as of September 1994 and discusses those activities currently in progress

  14. Department of Nuclear Equipment '' High Technology Center - HITEC '' - Overview

    International Nuclear Information System (INIS)

    Krawczyk, P.

    2010-01-01

    Full text: The Department of Nuclear Equipment specializes in applications of accelerator technologies in medicine and industrial radiography. It combines research and development with manufacturing activities. The year 2009 was an important and busy period for the Department. We expect to observe already its full results in the coming year. In 2009, the Department concentrated on developing technologies, solutions and elements for use in the new generation of medical accelerators. Design, manufacturing and tests of a model of a new accelerating structure were conducted. The overall mechanical and electrical design of the accelerator was reworked and partially tested. Major efforts were devoted to creating an efficient software environment for the accelerators: new concepts for the control system were developed and tested, and a recording and verification system based on the DICOM standard was completed. A new imaging system was designed and manufactured and work on the associated imaging software was initiated. Design work on a multileaf collimator, begun in 2008, was continued. In effect, an operational model of the device was manufactured which allowed a practical verification of the design ideas. A lull scale prototype is scheduled for manufacture in 2010. The 2009 edition of the HITEC School on Medical Accelerators was directed to Medical Technicians. Very positive feedback from the participants proves the correctness of that decision. The year 2009 was also important for the manufacturing capabilities of the Department of Nuclear Equipment: a new Precision Machining Workshop was established and equipped with modern CNC milling machines. Also, the Vacuum Technologies Laboratory significantly extended the range of its machinery. In 2009 HITEC underwent deep organizational changes. The Quality Management System that governs all aspects of the Department's activities was also substantially redesigned. In December 2009, the new System was successfully audited and

  15. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    Tom Loennroth

    2005-01-01

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  16. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  17. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  18. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1988-04-01

    The experimental activities have in 1987, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  19. Physical protection of nuclear operational units

    International Nuclear Information System (INIS)

    1981-07-01

    The general principles of and basic requirements for the physical protection of operational units in the nuclear field are established. They concern the operational units whose activities are related with production, utilization, processing, reprocessing, handling, transport or storage of materials of interest for the Brazilian Nuclear Program. (I.C.R.) [pt

  20. Introduction to Nuclear Physics (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  1. Introduction to Nuclear Physics (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  2. Introduction to Nuclear Physics (3/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  3. Introduction to Nuclear Physics (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  4. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  5. Research in experimental nuclear physics

    International Nuclear Information System (INIS)

    Moore, C.F.

    1989-09-01

    Our program concentrates on pion physics experimental results obtained using the Energetic Pion Channel and Spectrometer (EPICS), Pion and Particle Physics channel (P 3 ), and the Low Energy Pion physics channel (LEP). These facilities are unique in the world in their intensity and resolution. Two classes of experiments can be done best with this equipment: scattering (elastic and inelastic) and double charge exchange (DCX). Several coincidence experiments are in progress and are discussed in this paper

  6. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  7. Improving Climate and Gender Equity in Physics Departments

    Science.gov (United States)

    Yennello, Sherry

    2010-02-01

    We need to open the door of science to women and minorities. We need to invite them in and encourage them to succeed. We need to teach them the secret handshake and transfer all the writing on the men's room walls and all-white country clubs into accessible places. We need to promote them to positions of national prominence. We need to do this out of respect to our mothers and the pioneering scientists who have come before us. We need to do this for our daughters and sons, so that our grandchildren may only know this discrimination as a piece of history. We need to do this now -- for the sake of our country, our science, our technical workforce, our economy and because it is the right thing to do. The Committee on the Status of Women in Physics (CSWP) has been helping physics departments improve their climate as a means to enhance gender equity. The CSWP site visit program has been giving departments valuable feedback on their climate for many years. In May 2007, a workshop on ``Gender Equity: Enhancing the Physics Enterprise in Universities and National Laboratories'' was held to address the issue of underrepresentation of women in physics by engaging the stake holders. This fall a new ``Conversation on Gender Equity'' has begun. Successful strategies for improving the climate and increasing the representation of women in physics will be presented. )

  8. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  9. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  10. Physics department annual progress report, 1 Jan - 31 Dec 1976

    International Nuclear Information System (INIS)

    Bjerrum Moeller, H.; Lebech, B.

    1976-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics and meteorology are presented in this report that covers the period 1 January to 31 December 1976. In addition, research on nuclear spectroscopy was carried out up until March 31, 1976. The experimental and theoretical work in solid-state physics is roughly divided into the following main subject fields: investigations of the dynamic and static properties of magnetic and superconducting solids; studies of various kinds of phase transitions in magnetic and molecular systems; and investigations of the dynamic and static properties of molecular crystals and adsorbed monolayers. The main object of basic research in plasma physics is to investigate waves and instabilities in a relatively cold steady state plasma (produced in a Q-machine). Turbulence, ion cyclotron waves, and ion-acoustic waves in the presence of electron plasma waves are the chief phenomena investigated. Work on nuclear spectroscopy was concentrated on problems relating to fission. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  11. COMMUNICATION STRATEGY FOR A PHYSICAL EDUCATION AND SPORT DEPARTMENT

    OpenAIRE

    Cristiana Pop

    2013-01-01

    Communication strategy of physical education and sports departments in an institution of higher education is, ultimately, a form of adaptation to new and changing environmental conditions (legal, political, internal organization and financial) in which they operate. Developing a communication strategy is an approach that is based on the research group aims to be influenced and on the effort to build a message, an image and emotional state to determine a change in perception, attitude and beha...

  12. Nuclear physics with polarized heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Grawert, G.; Turkiewicz, I.M.

    1992-01-01

    Polarized heavy ion beams ( 6 Li, 7 Li, 23 Na) have been in use as tools for the investigation of nuclear scattering and nuclear reactions for almost two decades. This review attempts to survey the research activities in this field with reference to nuclear structure, nuclear dynamics and reaction mechanisms. Besides reviewing the results from full quantum mechanical coupled channels analyses of data, special attention is paid to handwaving arguments and semiclassical pictures as a complementary way of obtaining a better understanding of the relevant physics. (orig.)

  13. A long range plan for nuclear physics

    International Nuclear Information System (INIS)

    Morrison, G.C.

    1983-01-01

    The report is in two parts. The first part reviews the current understanding of nuclear physics and indicates areas of significant interest for future work. It briefly discusses the special contributions of nuclear physics in other sciences. The second part considers new facilities which would be particularly relevant to the future development of nuclear physics in the UK. The present position of UK nuclear physics with respect to the wider nuclear community is considered. In conclusion the report establishes priorities for UK nuclear physics and makes recommendations for future action for the provision of facilities and also for future funding and manpower levels. The working party seeks to build on the valuable base provided by the NSF and Oxford accelerators. The principal recommendation of the Working Party is that a new 600MeV continuous beam electron accelerator should be built at the Daresbury Laboratory. For higher energy heavy ion beams the Working Party suggests these should be sought at overseas laboratories. (author)

  14. Nuclear physics and ideas of quantum chaos

    International Nuclear Information System (INIS)

    Zelevinsky, V.G.

    2002-01-01

    The field nowadays called 'many-body quantum chaos' was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented

  15. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  16. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  17. Data acquisition in nuclear and particle physics

    International Nuclear Information System (INIS)

    Renk, B.

    1993-01-01

    An introduction to the methodics of the measurement data acquisition in nuclear and particle physics for students of physics as well as experimental physicists and engineers in research and industry. The contents are: Obtaining of measurement data, digitizing and triggers, memories and microprocessors, bus systems, communication and networks, and examples for data acquisition systems

  18. Physical aspects of nuclear ventriculography

    International Nuclear Information System (INIS)

    Alpert, N.M.; Chesler, D.A.; Burnham, C.A.; McKusick, K.A.; Pohost, G.; Dinsmore, R.E.; Brownell, G.L.

    1976-01-01

    The use of edge enhancement and computer motion display improves the detection of regional wall motion abnormalities in the LV. Improved gating and processing techniques should improve the accuracy of ventricular volume vs time measurements. It is hoped that the simulations described will aid in the development of new instrumentation for the collection and analysis of nuclear ventriculographie data

  19. Chemistry aided nuclear physics studies

    NARCIS (Netherlands)

    Even, Julia

    2016-01-01

    Studies of the superheavy elements bring several challenges through low production yields, short half-lives, and high background rates. This paper describes the possibilities of chemical separations as techniques to overcome the background problematic and to investigate the nuclear properties of the

  20. Nuclear physics at small distances

    Indian Academy of Sciences (India)

    We report on the study of meson and resonance production in nuclear collisions near the threshold. Because of the large momentum transfer, these reactions occur at length scales less than the size of the hadrons. We explore whether they are best described in terms of the quark–gluon picture or the meson-exchange ...