WorldWideScience

Sample records for nuclear organization maintain

  1. How Does Nuclear Organization Maintain Normal Mammary Phenotype?

    National Research Council Canada - National Science Library

    Lelievre, Sophie

    2004-01-01

    .... Using non-neoplastic human breast epithelial S1 cells that differentiate into acini in the presence of extracellular matrix, we have shown a link between the nuclear organization of the protein NuMA...

  2. Developing and maintaining nuclear competencies

    International Nuclear Information System (INIS)

    Gobert, C.

    2004-01-01

    The paper discusses the following aspects on the nuclear knowledge management: assimilation of knowledge management, recognition of the nuclear specificity, attracting young talents. Another feature which, possibly, differentiates nuclear from other high-tech industries is that time constraints in some nuclear development may very well exceed the duration of a generation of professionals. That means, not only maintaining scientific and technical knowledge, which, as a minimum, leads to maintain: a rigorous supervision of human resources in quality and quantity; anticipatory planning of human resources, with a special focus on succession planning concerning expertise positions; a steady and continuous effort in training and retraining programs. Maintaining the safety culture is also one of the major managerial duties. Taking full account of the nuclear specificity in knowledge maintenance and development in the AREVA group, requests a multifunctional approach, which combines efforts of Research and Innovation, and Human Resources departments, plus the group Nuclear inspectorate. It is acknowledged that the industry, basically, would readily rely on the capabilities of the academic world and research centers in ensuring that training and education in nuclear science and technologies are attuned to the evolving needs of the industry, in maintaining the proper educational programs and in fostering fruitful cooperations between them

  3. The Challenges of Maintaining Nuclear Cultures. US and UK Perspectives

    International Nuclear Information System (INIS)

    Brooks, Linton; McKane, Tom

    2016-01-01

    After the world entered the nuclear age, civilian and military organizations have witnessed the slow emergence of nuclear cultures, defined as the set of values and knowledge, shared among the national security community, about the relative importance of nuclear weapons in the country's defense posture, the distinctive features of nuclear weapons in terms of security, safety and operational requirements, and the workings of deterrence. Nuclear cultures have helped to ensure some level of coherence in policy-making and, most importantly, to maintain safe and effective deterrents. At a national level, however, each nuclear culture is confronted with significant challenges, such as generational change, decreasing levels of understanding or attention among the political and military leadership, insufficient funding or a growing inability to meet manpower requirements in both the nuclear weapons complexes and the armed forces. This paper looks at the United States and United Kingdom's recent efforts to maintain their nuclear culture, and at the key challenges these two countries face while pursuing this aim. (authors)

  4. Improving versus maintaining nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The concept of improving nuclear safety versus maintaining it has been discussed at a number of nuclear regulators meetings in recent years. National reports have indicated that there are philosophical differences between NEA member countries about whether their regulatory approaches require licensees to continuously improve nuclear safety or to continuously maintain it. It has been concluded that, while the actual level of safety achieved in all member countries is probably much the same, this is difficult to prove in a quantitative way. In practice, all regulatory approaches require improvements to be made to correct deficiencies and when otherwise warranted. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of current nuclear regulatory philosophies and approaches, as well as insights into a selection of public perception issues. This publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  5. Maintaining knowledge, training and infrastructure for research and development in nuclear safety - INSAG-16. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  6. Maintaining knowledge, training and infrastructure for research and development in nuclear safety. INSAG-16. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  7. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  8. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  9. The Centralized Reliability Data Organization (CREDO); an advanced nuclear reactor reliability, availability, and maintainability data bank and data analysis center

    International Nuclear Information System (INIS)

    Knee, H.E.

    1991-01-01

    The Centralized Reliability Data Organization (CREDO) is a data bank and data analysis center, which since 1985 has been jointly sponsored by the US Department of Energy's (US DOE's) Office of Technology Support Programs and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC). It focuses on reliability, availability and maintainability (RAM) data for components (e.g. valves, pumps, etc.) operating in advanced nuclear reactor facilities. As originally intended, the purpose of the CREDO system was to provide a centralized source of accurate, up-to-date data and information for use in RAM analyses necessary for meeting DOE's data needs in the areas of advanced reactor safety assessments, design and licensing. In particular, creation of the CREDO system was considered an essential element needed to fulfill the DOE Breeder Reactor Safety Program's commitment of 'identifying and exploiting areas in which probabilistic methods can be developed and used in making reactor safety Research and Development choices and optimizing designs of safety systems'. CREDO and its operation are explained. (author)

  10. Nuclear Criticality Safety Organization qualification program. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program

  11. How to maintain nuclear competence and knowledge management in Europe

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Paraschiva, M. V.; Banutoiu, Maria; Popescu, C.

    2002-01-01

    In the next decades, the tasks in nuclear activities will remain important in Europe irrespective of the different energy options decided by the Member State Governments. Radiation protection, safe nuclear plant operation and nuclear waste management where existing, rely on highly skilled people. There are serious concerns about their replacement from the coming generation. Reasons for concern occur now in several reports. Knowledge Management has evolved from an information technology buzzword, into a domain with a wide spectrum of practical applications in a rapidly growing number of organizations. In the information society, knowledge management techniques are seen as the decisive means in concentrating and preserving a company's knowledge, offering easy and fast access to this knowledge (particularly the experts 'implicit' knowledge as opposed to 'explicit' documents), ensuring its efficient use, thus keeping up the company's competitiveness. The variety of techniques employed by a knowledge management such as knowledge portals for easy access and navigation of the knowledge, document management systems for administration of arbitrary documents formats, content managers with extended classification, search and retrieval capabilities, yellow pages connecting the knowledge domain with the knowledgeable persons in the field, and inclusion of existing databases might help overcome the difficulties which are foreseen for the near future. As a consequence, the chances and benefits offered by knowledge management in the nuclear field should not be neglected. First projects use are under way in several countries to investigate these aspects. An efficient knowledge management should have those coming from other domains to enter easily into the nuclear sector. In the end, however, successful recruitment of skilled nuclear personnel will depend mostly on the attractiveness of the sector. In view of enlargement of the European Union, a major additional aspect is that all

  12. Maintaining the design integrity of nuclear installations throughout their operating life. INSAG-19. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. this INSAG report discusses the problem of maintaining the integrity of design of a nuclear power plant over its entire lifetime in order to achieve a continuous high level of safety. A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's operating lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. The purpose of this report is to identify the issues and some of the principles that should be addressed, discuss some of the solutions to the problem, and highlight the specific responsibilities of designers, operators and regulators. The issues and principles discussed here are also applicable to other nuclear installations (for example, research reactors and fuel cycle facilities). This INSAG report is directed at senior executives who are responsible for: the overall safety of nuclear installations; the operation, maintenance and

  13. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  14. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  15. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  16. Maintaining nuclear competence and expertise in Japan

    International Nuclear Information System (INIS)

    Fujii, Y.

    2004-01-01

    The fundamental law of atomic energy, which strictly restricts the application of atomic energy to the peaceful use, was established in 1955 in Japan. Since then, during the past five decades, great efforts were made to develop atomic energy. So far 52 units of light water reactors, 29 BWRs and 23 PWRs, have been built and in operation, 5 units are under construction and 6 units are planed to be built. Total capacity of presently operated NPPs amounts to 45.7 Gwe and the nuclear energy shares 30 % of the total electricity generation in Japan. During the past 10 years, several accidents occur in the nuclear facilities of electric power companies, and JNC ( previously PNC ). In spite of these accidents, including the accident of Kansai Electric Power Co. this year, the important role of nuclear energy to sustain the lives of people in Japan is intact. In the nuclear energy projection, the construction of NPPs continues till 2010. Thereafter reconstructions of NPPs are foreseen in the decade 2030's for the replacement of present NPPs in operation after 60 years services. Attention has been directed to the technology preservation: how competence and expertise of nuclear engineering can be maintained till the next period of replacement construction, in particular, the period between years 2010 and 2030. The present paper reviews the status of nuclear engineering programs in universities in Japan. The nuclear education programs started in graduate schools in 1957 and expanded to undergraduate schools of major national universities. Presently nine universities are providing systematic nuclear education programs in their graduate schools, although the corresponding department have been changed their names from 'nuclear' to more broaden terms of 'quantum', 'energy' and 'system' in several universities. Under the conditions of shrinking nuclear industries, how to maintain the present education system is seriously concerned matter in the universities. The present paper

  17. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  18. Establishing a code of ethics for nuclear operating organizations

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel (TWG-T and Q) recommended that the IAEA develop a publication on improving the performance of nuclear facility operating organizations through focusing on the ethics and professionalism of personnel at all levels of such organizations. This publication has been prepared in response to that recommendation. The TWG-T and Q made its recommendation based upon an understanding that an organization's code of ethics should apply to behaviours at all levels of the organization; from the Board Room to the working level. The TWG-T and Q also recognized that having the technical competencies related to nuclear technology is not enough to ensure that an operating organization's performance is at the high standards needed for a sustainable nuclear industry. The values and ethics of individuals and organizational units play an equally important role. This publication is addressed primarily to senior managers of operating organizations, as experience has shown that, in order to succeed, such initiatives need to come from and be continually supported by the highest levels of the organization. This publication was developed under an IAEA project in its 2006-7 programme entitled Achieving Excellence in the Performance of Nuclear Power Plant Personnel. The principal objectives of this project were: - To enhance the capability of Member States to utilize proven practices accumulated, developed and transferred by the Agency for improving personnel performance and maintaining high standards, and - To demonstrate how positive attitudes and professionalism, appropriate performance management, adherence to a systematic approach to training, quality management and the use of effective information and knowledge management technologies contribute to the success in achieving organization objectives in a challenging business environment

  19. French nuclear organization

    International Nuclear Information System (INIS)

    Naudet, G.

    1993-01-01

    The French nuclear organization is characterized by two main features: the small number of firms involved and the role of the Government. In this text we give the French organization for nuclear industry and the role of Government and public authorities. 7 figs

  20. Maintaining knowledge, training and infrastructure for research and development in nuclear safety. A note by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    International Nuclear Safety Advisory Group

    2001-01-01

    The purpose of this INSAG Note is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained

  1. Nuclear Criticality Safety Organization training implementation. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program

  2. Nuclear Criticality Safety Organization training implementation. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program.

  3. Maintaining the design Integrity of nuclear installations throughout their operating life. INSAG-19. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. this INSAG report discusses the problem of maintaining the integrity of design of a nuclear power plant over its entire lifetime in order to achieve a continuous high level of safety. A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's operating lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. The purpose of this report is to identify the issues and some of the principles that should be addressed, discuss some of the solutions to the problem, and highlight the specific responsibilities of designers, operators and regulators. The issues and principles discussed here are also applicable to other nuclear installations (for example, research reactors and fuel cycle facilities). This INSAG report is directed at senior executives who are responsible for: the overall safety of nuclear installations; the operation

  4. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  5. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants

  6. Evaluation of knowledge loss risk in nuclear industry and research organizations

    International Nuclear Information System (INIS)

    Constantin, Marin; Apostol, Minodora; Balaceanu, Victoria

    2007-01-01

    Institutional knowledge is defined as a collective knowledge of all employees in an organization or institution. The necessity to maintain organizational competency for nuclear power has been widely recognized given the nature of the business and the life cycle of 100 years or more. Our paper is intended to perform the first step in the knowledge loss risk assessment in nuclear organizations in Romania. Generally a three step procedure is needed for the evaluation process: - conducting the knowledge loss risk assessment; - determination of the approach needed to capture critical knowledge; - monitoring and evaluation. Taking into account the specificity of problems at organizational/institutional level, the difficulty of finding of a common approach, and the necessity to harmonize different interests at national level, a National Nuclear Knowledge Strategy is compulsory needed. (authors)

  7. Risk management of knowledge loss in nuclear industry organizations

    International Nuclear Information System (INIS)

    2006-07-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  8. Nuclear Criticality Safety Organization guidance for the development of continuing technical training. Revision 1

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in nuclear criticality safety at the Oak Ridge Y-12 Plant and throughout the DOE complex. Continuing technical training is training outside of the initial qualification program to address identified organization-wide needs. Typically, this training is used to improve organization performance in the conduct of business. This document provides guidelines for the development of the technical portions of the Continuing Training Program. It is not a step-by-step procedure, but a collection of considerations to be used during the development process

  9. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  10. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    International Nuclear Information System (INIS)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-01-01

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed

  11. Nuclear energy and international organizations

    International Nuclear Information System (INIS)

    Lindemann, B.

    1975-01-01

    The historical perspectives of the international organizations' role concerning the development and spreading of the peaceful uses of nuclear energy, taking into account the national interests within and towards these organizations, are portrayed. The difference in political status between the so-called nuclear and non-nuclear States, lodged in Articles I and II of the Non-Proliferation Treaty is an important factor. The effects so far of these differences in status on the interest of nuclear States to participate in organizations and on factors which might possibly lead to conflict between these two groups are presented. The author skirts the cooperation between organizations (international bureaucracies, group-formation of states). (HP/LN) [de

  12. The role of international atomic energy agency in maintaining nuclear safety competence

    International Nuclear Information System (INIS)

    Aro, I.; Mazour, T.

    2000-01-01

    This paper provides information how International Atomic Energy Agency can assist Member States in maintaining and developing nuclear safety competence. The topics covered include the development of safety standards, organisation of nuclear safety related conferences, provision of safety reviews, organisation of training courses and topical workshops and publication of training related documents. Usefulness of these activities for competence development is discussed. (author)

  13. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  14. Risk management of knowledge loss in nuclear industry organizations (Russian edition)

    International Nuclear Information System (INIS)

    2012-08-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  15. Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins.

    Science.gov (United States)

    Kozono, Takuma; Tadahira, Kazuko; Okumura, Wataru; Itai, Nao; Tamura-Nakano, Miwa; Dohi, Taeko; Tonozuka, Takashi; Nishikawa, Atsushi

    2018-06-06

    Jaw1/LRMP is characterized as a type II integral membrane protein that is localized to endoplasmic reticulum (ER), however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with KASH proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with SUN proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.

  16. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  17. Promoting a learning culture to maintain the nuclear safety competence of AECB staff

    International Nuclear Information System (INIS)

    Omar, A.; Belisle, N.; Grant, I.

    2000-01-01

    In the Canadian regulatory approach, the safe operation of a nuclear installation is primarily the responsibility of the operator. The mission of the Atomic Energy Control Board (AECB) is to ensure that the use of nuclear energy does not pose unnecessary risk to workers, the general public and the environment. The AECB fulfills this responsibility through a comprehensive licensing framework in which compliance with regulatory standards and requirements is assured through systematic safety assessments, inspection and enforcement. These responsibilities require regulatory staff with specialized academic backgrounds and work experience related to the industry. In the past, the AECB readily attracted and retained the qualified personnel needed to ensure nuclear safety competence. However, several factors are now altering this situation. Anticipated retirement in the years ahead among the current generation of staff will result in significant losses of corporate knowledge and experience. In addition, the stagnation of the domestic nuclear power industry has impacted significantly on the recruitment of suitably qualified replacement candidates. Many Canadian universities have had to reduce their nuclear programmes as fewer undergraduate and postgraduate students choose a nuclear career option. In these circumstances, maintaining the AECB's nuclear safety competence requires a more systematic and deliberate approach. This paper describes the measures that the AECB has taken and is planning to take to promote a learning environment, and to assist staff in establishing and maintaining their knowledge and skills. (author)

  18. Knowledge management as an approach to strengthen safety culture in nuclear organizations

    International Nuclear Information System (INIS)

    Karseka, T.S.; Yanev, Y.L.

    2013-01-01

    In the last 10 years knowledge management (KM) in nuclear organizations has emerged as a powerful strategy to deal with important and frequently critical issues of attrition, generation change and knowledge transfer. Applying KM practices in operating organizations, in technical support organizations and regulatory bodies has proven to be efficient and necessary for maintaining competence and skills for achieving high level of safety and operational performance. The IAEA defines KM as an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objectives. KM focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and assimilate knowledge and to make it readily accessible in a manner which will allow people to work together even if they are not located together. A main objective of this paper is to describe constructive actions which can sponsor knowledge sharing and solidarity in safety conscious attitude among all employees. All principles and approaches refer primarily to Nuclear Power Plant (NPP) operating organizations but are also applicable to other institutions involved into nuclear sector. (orig.)

  19. Knowledge management as an approach to strengthen safety culture in nuclear organizations

    Energy Technology Data Exchange (ETDEWEB)

    Karseka, T.S.; Yanev, Y.L. [International Atomic Energy Agency, Vienna (Austria). Nuclear Energy Dept.

    2013-04-15

    In the last 10 years knowledge management (KM) in nuclear organizations has emerged as a powerful strategy to deal with important and frequently critical issues of attrition, generation change and knowledge transfer. Applying KM practices in operating organizations, in technical support organizations and regulatory bodies has proven to be efficient and necessary for maintaining competence and skills for achieving high level of safety and operational performance. The IAEA defines KM as an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objectives. KM focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and assimilate knowledge and to make it readily accessible in a manner which will allow people to work together even if they are not located together. A main objective of this paper is to describe constructive actions which can sponsor knowledge sharing and solidarity in safety conscious attitude among all employees. All principles and approaches refer primarily to Nuclear Power Plant (NPP) operating organizations but are also applicable to other institutions involved into nuclear sector. (orig.)

  20. Organizing irresponsibility? The (inter)national management of a nuclear accident damages as discursive regime

    International Nuclear Information System (INIS)

    Topcu, Sezin

    2014-01-01

    This article analyzes the historical process related to the international organization of responsibilities and the management of the damages in case of a nuclear disaster. The author shows that the political and legal settings on which the discourse of an 'international regime of civil responsibility' (that emerged in the 1960's) relies, have globally aimed at maintaining a 'historical and spectacular gap' between the damages the nuclear operators are taking responsibility for, and the real and extensive damages engendered by a major accident. She argues that the existence of such a 'gap' is inherent to the nuclear sector, that it is a form of government (both of economic affairs and of the public space) which was historically constructed, and that the existence of such a gap is crucial for the survival of the nuclear industry itself. Thus the notion of 'responsibility' in the nuclear sector appears to serve mainly as a discursive regime, as a means to organize not only responsibilities but also irresponsibilities, whatever the geographic scale (national or international) at which they should be managed

  1. Modernizing and Maintaining Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Naser, Joseph; Torok, Raymond; Shankar, Ramesh

    2003-01-01

    Deregulation of the electric utilities has made a major impact on nuclear power plants. To be competitive, more emphasis is being put on cost-effective production of electricity with a more critical look at whether a system should be modernized due to obsolescence, reliability, or productivity concerns. Instrumentation and control (I and C) systems play an important role in reducing the cost of producing electricity while maintaining or enhancing safety. Systems that are well designed, reliable, enhance productivity, and are cost-effective to operate and maintain can reduce the overall costs. Modern technology with its ability to better provide and use real-time information offers an effective platform for modernizing systems. At the same time, new technology brings new challenges and issues, especially for safety systems in nuclear power plants. To increase competitiveness, it is important to take advantage of the opportunities offered by modern technology and to address the new challenges and issues in a cost-effective manner. The Electric Power Research Institute (EPRI) and its member utilities have been working together with other members of the nuclear industry since 1990 to address I and C modernization and maintenance issues. The EPRI I and C Program has developed a life-cycle management approach for I and C systems that involves the optimization of maintenance, monitoring, and capital resources to sustain safety and performance throughout the plant life. Strategic planning methodologies and implementation guidelines addressing digital I and C issues in nuclear power plants have been developed. Work is ongoing in diverse areas to support the design, implementation, and operation of new digital systems. Technology transfer is an integral part of this I and C program

  2. Activities to maintain, strengthen and hand down the nuclear technology base

    International Nuclear Information System (INIS)

    Uchida, Makoto; Oketani, Koichiro

    2009-01-01

    The recent worldwide 'Nuclear Renaissance' is encouraging the globalization of our nuclear business and making us aware of the increasing importance of the human education and trainings for it. The basic concept of MHI's human resource development and its improvement is 'The improvement in the skills and motivation of each employee leads to the strengthening of the company-wide technology base'. Under this concept we are improving our job efficiency continuously by means of information technology, institutionalizing the means to improve the individual skills and motivation and investing for the effective succession of the skills. In order to take real advantage of those efforts for maintaining, strengthening and effectively handing down the nuclear technology base, it is imperative to keep the volume of actual jobs. So, we have to keep in mind that having actual business continuously is extremely important to keep the sound and solid technology base. (author)

  3. Maintaining non-nuclear weapon status

    International Nuclear Information System (INIS)

    Muller, H.

    1991-01-01

    Among the some 170 sovereign states in the world, five are legally recognized as nuclear weapon states (NWS) under the terms of the 1968 Non-Proliferation Treaty (NPT). Six countries (Argentina, Brazil, India, Israel, Pakistan, and South Africa) are counted as threshold states: they possess sizeable unsafeguarded nuclear facilities or have passed the brink of a nuclear test or of clandestine weapon production. Six other countries (Iran, Iraq, Libya, Taiwan, and North and South Korea) have been suspected periodically of either considering the nuclear weapon option or of working secretly on the development of weapons. Thus, about 150 non-nuclear weapon states (NNWS) remain which neither possess nuclear weapons nor strive to acquire them. These states are distributed throughout the globe and encompass highly industrialized as well as underdeveloped countries, liberal democracies, socialist states, sheikdoms and dictatorships. Some NNWS face acute military threats; other are far removed from the quarrels of the world, as in the case of some remote fortunate islands. Furthermore, NNWS may be members of nuclear-umbrella alliances or may have opted for a policy of neutrality or non-alignment

  4. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  5. Research on the organization of equipment of nuclear emergency

    International Nuclear Information System (INIS)

    Li Xiaoming; Yang Jun

    2012-01-01

    The emergency rescue operation on major accident of nuclear facilities contains four kinds of abilities that are command and control, radiation protection, radiation monitoring and radioactive decontamination, so it needs to organize some equipment of nuclear emergency to enhance the efficiency of nuclear emergency operation. The organization of equipment of nuclear emergency should accord to the reality of the development in our country. It should have extractive structure, brief variety and advance capability, and also should be convenient, useful and adequate. The method of organization can first accord to the organization of group and organize the facilities accord to the organization of group of the emergency rescue force. (authors)

  6. Maintaining a balanced electricity supply favours increased nuclear capacity in Finland

    International Nuclear Information System (INIS)

    Ahti, Toivola

    2001-01-01

    Finland's electricity supply is based on a balanced mix of energy sources to maximize the security of supply and to keep the volatility of electricity price at a minimum. One third of electricity is obtained from domestic sources hydro, wood and peat. Nuclear power provides one quarter and fossil fuels slightly over one fifth. Electricity imports from neighbour countries cover the rest of the consumption. It is important to maintain this balanced structure also when electricity supply is being increased. Domestic renewable sources are not enough to cover the predicted future needs, and increasing imports would risk the security of supply. Increasing the proportion of fossil fuels is not a generally desired option. Therefore, balanced increase of nuclear capacity has to be included among the choices of future electricity generation. (author)

  7. Organic analyses of mixed nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lucke, R.B.; Lechner-Fish, T.J.; Hendren, D.J.; Myers, R.B.

    1987-04-01

    Analytical methods are being developed for the organic analysis of nuclear wastes. Our laboratory analyzed the organic content of three commercial wastes and an organic-rich, complex concentrate waste. The commercial wastes contained a variety of hydrophobic and hydrophilic organics, at concentrations ranging from nanomolar to micromolar. Alkyl phenols, chelating and complexing agents, as well as their degradation products, and carboxylic acids were detected in the commercial wastes. The complex concentrate waste contained chelating and complexing agents, as well as numerous degradation products, at millimolar concentrations. 75.1% of the complex concentrate waste's total organic carbon content has been identified. The presence of chelator fragments in all of the wastes analyzed, occasionally at elevated concentrations, indicates that organic diagenesis, or degradation, in nuclear wastes is both widespread and quite vigorous. 23 refs., 3 tabs

  8. MHI's activities to maintain, strengthen and hand down the nuclear technology base

    International Nuclear Information System (INIS)

    Suzuki, Shigemitsu; Kanda, Makoto; Oketani, Koichiro; Hamasaki, Manabu; Uchida, Makoto

    2008-01-01

    The recent worldwide 'Nuclear Renaissance' is encouraging the globalization of our nuclear business and making us aware of the increasing importance of the human education and trainings for it. The basic concept of MHI's human resource development and its improvement is 'The improvement in the skills and motivation of each employee leads to the strengthening of the company-wide technology base'. Under this concept we are improving our job efficiency continuously by means of information technology, institutionalizing the means to improve the individual skills and motivation and investing for the effective succession of the skills. In order to take real advantage of those efforts for maintaining, strengthening and effectively handing down the nuclear technology base, it is imperative to keep the volume of actual jobs. So, we have to keep in mind that having actual business continuously is extremely important to keep the sound and solid technology base. (author)

  9. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  10. Governmental organization for the regulation of nuclear power plants. A code of practice

    International Nuclear Information System (INIS)

    1978-01-01

    This Code of Practice recommends requirements for a regulatory body responsible for regulating the siting, construction, commissioning, operation and decommissioning of nuclear power plants for safety. It forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to land-based stationary thermal neutron power plants. This Code has been prepared to provide recommendations for Member States embarking on a nuclear power programme and covers: (1) Establishing and maintaining a regulatory body to which is assigned the responsibility for authorizing the siting, construction, commissioning, operation and decommissioning of nuclear power plants after appropriate review and assessment (2) Organizing for and conducting the review and assessment of the safety of nuclear power plants (3) Conducting the necessary regulatory inspections and taking necessary enforcement actions during all stages of the licensing process in order to ensure that the limits and conditions of the licences are being complied with by the applicants/licensees and their contractors (4) Establishing regulations and criteria for nuclear-related health, safety and environmental protection

  11. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes `IAEA Handbook`, which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author).

  12. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    International Nuclear Information System (INIS)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes 'IAEA Handbook', which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author)

  13. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  14. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  15. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  16. Position paper on maintaining nuclear competence

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The ENS Higher Scientific Council (HSC) is concerned about the current negative developments within some Member States of the EU and the consequential reduced perspectives in the field of nuclear energy technology, education, research and development. The HSC believes that the use of nuclear energy provides an essential contribution to the secure, clean and affordable energy supply for electricity generation, and that this will remain for at least the rest of this century. The HSC, therefore, strongly recommends that within the EU the resources that are allocated to nuclear education and training and to nuclear R and D reflects the increasing globalization of nuclear power and the needs of Member States that will have nuclear power or decommissioning programmes for decades to come. In addition, the HSC recommends that the nuclear industry should actively encourage the setting up of knowledge transfer mechanisms to ensure that the knowledge, know-how and experiences of the current generation of professionals within the industry is not lost to the young people entering nuclear careers. Mobility programmes to support and encourage young professionals to work across the EU to gain wider experience of nuclear power operations should be set up. These activities should help young professionals working in the nuclear technology field to expand long-life networks and business connections and thereby be better prepared for the challenges of the 21{sup st} century. (orig.)

  17. Position paper on maintaining nuclear competence

    International Nuclear Information System (INIS)

    2013-01-01

    The ENS Higher Scientific Council (HSC) is concerned about the current negative developments within some Member States of the EU and the consequential reduced perspectives in the field of nuclear energy technology, education, research and development. The HSC believes that the use of nuclear energy provides an essential contribution to the secure, clean and affordable energy supply for electricity generation, and that this will remain for at least the rest of this century. The HSC, therefore, strongly recommends that within the EU the resources that are allocated to nuclear education and training and to nuclear R and D reflects the increasing globalization of nuclear power and the needs of Member States that will have nuclear power or decommissioning programmes for decades to come. In addition, the HSC recommends that the nuclear industry should actively encourage the setting up of knowledge transfer mechanisms to ensure that the knowledge, know-how and experiences of the current generation of professionals within the industry is not lost to the young people entering nuclear careers. Mobility programmes to support and encourage young professionals to work across the EU to gain wider experience of nuclear power operations should be set up. These activities should help young professionals working in the nuclear technology field to expand long-life networks and business connections and thereby be better prepared for the challenges of the 21 st century. (orig.)

  18. Quality assurance organization for nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Safety Guide provides requirements, recommendations and illustrative examples for structuring, staffing and documenting the organizations that perform activities affecting quality of a nuclear power plant. It also provides guidance on control of organization interfaces, and establishment of lines for direction, communication and co-ordination. The provisions of this Guide are applicable to all organizations participating in any of the constituent areas of activities affecting quality of a nuclear power plant, such as design, manufacture, construction, commissioning and operation

  19. Designing the owner's nuclear project management organization

    International Nuclear Information System (INIS)

    Cooke, T.C.; Peck, B.H.

    1976-01-01

    Few decisions are more important to an electric utility company than the one to build a nuclear generating facility. This decision will require continuous management attention to the nuclear project for periods of up to ten years on the part of the utility. Effective management of such a large, complex project requires an owner's organization skilled in such areas as engineering, heavy construction, procurement, and project control. The paper describes a method for designing the owner's nuclear organization. Factors considered include the identification of milestone events and phases of the project and identification of key organizational groups and their degree of involvement. A series of important decision milestones is also identified for structuring the organization. A step-by-step analysis involving a set of evaluation criteria results in a recommended organization that can be staffed by the owner according to the degree of involvement desired. This technique of analysis could also be performed using different evaluation criteria resulting in other options for the owner's organization

  20. Organic diagenesis in commercial nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied

  1. International and national organizations within nuclear energy

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1975-03-01

    A survey is given of the organization, objective and action of international and national organizations working with nuclear energy. Five types of organizations are treated: international governmental organizations, international non-governmental organizations, international organizations dealing with ionizing radiation, nordic organizations, and Swedish organizations. Special attention is payed to the Swedish participation in the different organizations. (K.K)

  2. Managing organizational change in nuclear organizations

    International Nuclear Information System (INIS)

    2014-01-01

    It is widely recognized that engineering changes, if not properly considered and controlled, can have potentially major safety implications; however, organizational changes can also have potentially major safety implications. This publication is intended to assist the management of nuclear organizations in identifying, planning and implementing organizational change. The driving force for the change may be internal or external. Based on the assumption that any change made within a facility applying nuclear technology has the potential to impact safety and effectiveness, the publication provides a description of the basic principles for managing and implementing the organizational change effectively while remaining focused on safe and reliable operation. The guidance contained in the publication is relevant to all organizational changes within nuclear organizations

  3. International nuclear energy organizations; Internationale Organisationen auf dem Gebiet der Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The publication on International nuclear energy organizations describes the scope of work of the following organizations: IAEA, EURATOM, OECD-NEA, ENSREG, WANO, INSCEAR and ICRO. The issues covered by the organizations include nuclear electricity generation, radiation protection, nuclear safeguards, nuclear liability, public information, reactor safety, radioactive waste management, non-proliferation, marketing, safety technology, utility requirements, effects of nuclear radiation.

  4. Nuclear lamins: laminopathies and their role in premature ageing

    NARCIS (Netherlands)

    Broers, J.L.V.; Ramaekers, F.C.S.; Bonne, G.; Yaou, R.; Hutchison, C.J.

    2006-01-01

    It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of

  5. Nuclear-related training and education offered by nonacademic organizations (preliminary)

    International Nuclear Information System (INIS)

    Howard, L.

    1981-11-01

    The results of a survey of nuclear-related training and education provided by nonacademic training organizations are presented in this report. The survey instrument was distributed by the Institute of Nuclear Power Operations to 136 training organizations. The scope of the survey was not intended to be comprehensive, but rather to include the primary sources of nonacademic nuclear-related training and education offered to utility personnel. The survey universe was compiled from training organizations listed in the 1981 Nuclear News Buyer's Guide. Forty-three percent of the survey population (59 organizations) responded to the questionnaire of which 31 percent (42) reported they offered nuclear-related training programs and 12 percent (17) reported they did not offer any nuclear-related training

  6. Reliability and maintainability

    International Nuclear Information System (INIS)

    1994-01-01

    Several communications in this conference are concerned with nuclear plant reliability and maintainability; their titles are: maintenance optimization of stand-by Diesels of 900 MW nuclear power plants; CLAIRE: an event-based simulation tool for software testing; reliability as one important issue within the periodic safety review of nuclear power plants; design of nuclear building ventilation by the means of functional analysis; operation characteristic analysis for a power industry plant park, as a function of influence parameters

  7. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  8. Nuclear Knowledge Management: the IAEA Approach

    International Nuclear Information System (INIS)

    Sbaffoni, M.; De Grosbois, J.

    2015-01-01

    Knowledge in an organization is residing in people, processes and technology. Adequate awareness of their knowledge assets and of the risk of losing them is vital for safe and secure operations of nuclear installations. Senior managers understand this important linkage, and in the last years there is an increasing tendency in nuclear organizations to implement knowledge management strategies to ensure that the adequate and necessary knowledge is available at the right time, in the right place. Specific and advanced levels of knowledge are clearly required to achieve and maintain technical expertise, and experience must be developed and be available throughout the nuclear technology lifecycle. If a nuclear organization does not possess or have access to the required technical knowledge, a full understanding of the potential consequences of decisions and actions may not be possible, and safety, security and safeguards might be compromised. Effective decision making during design, licencing, procurement, construction, commissioning, operation, maintenance, refurbishment, and decommissioning of nuclear facilities needs to be risk-informed and knowledge-driven. Nuclear technology is complex and brings with it inherent and unique risks that must be managed to acceptably low levels. Nuclear managers have a responsibility not only to establish adequate technical knowledge and experience in their nuclear organizations but also to maintain it. The consequences of failing to manage the organizations key knowledge assets can result in serious degradations or accidents. The IAEA Nuclear Knowledge Management (NKM) sub-programme was established more than 10 years ago to support Nuclear Organizations, at Member States request, in the implementation and dissemination of the NKM methodology, through the development of guidance and tools, and by providing knowledge management services and assistance. The paper will briefly present IAEA understanding of and approach to knowledge

  9. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.

    Science.gov (United States)

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J; Han, Yu; Li, Jing

    2017-09-07

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH 3 I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag 0 @MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  10. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan

    2017-09-01

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  11. The nature of expertise and human resource functions supporting expertise in nuclear industry organizations

    International Nuclear Information System (INIS)

    Rintala, N.; Katri, S.; Eila, J.; Pahkin, K.; Anneli, L.

    2007-01-01

    . Altogether approximately 25 interviews for experts will be conducted. The aim of these interviews is to disclose e.g. how the experts themselves describe their expertise and their expert role, what kind of support they need in maintaining and developing their expertise as well as what skills and skill sets they consider to be critical in the future. Approximately 5 interviews are carried out for managers. These interviews set out to explore the managers' role in allocating and designing human resources and their insights on the current HR practices supporting the development and preservation of expertise. About 3 HR representatives will be interviewed to uncover how HR functions, such as recruiting and training, operate currently. The HR functions that are used in the nuclear power organizations are then compared to HR process models and designs from the human resources management (HRM) literature. The study contributes to the HRM body of knowledge from a functional, micro level perspective, exploring the impacts of HR practices on individuals rather than on corporations or business units (a strategic, macro level perspective). Furthermore, rather than studying one individual HR practice, we treat multiple HR practices as a system in order to uncover how individual practices complement, substitute for, or even conflict with other practices. As a result, we expect to produce new understanding about the nature of expertise in the nuclear industry and discover new innovative ways to support the development, preservation and sharing of expertise. (author)

  12. Training Activities to Maintain Competences in Nuclear Safety and Security: A Case Study of the Belgian Nuclear Research Centre

    International Nuclear Information System (INIS)

    Kesteloot, N.; Clarijs, T.; Coeck, M.; Vermeersch, F.

    2016-01-01

    Full text: The Belgian Nuclear Research Centre, SCK•CEN, is one of the largest research centers in Belgium. More than 700 employees advance research into nuclear energy and ionizing radiation for civilian use, and develop nuclear technologies for socially valuable purposes. Next to independent fundamental and applied research SCK-CEN provides advice, training, services and products. This paper describes the general approach towards the continuous professional development of all SCK-CEN personnel. The objective of these training activities is to maintain and increase the required competences, in order to optimize the output and the wellbeing on the work floor. Given the nature of the SCK-CEN activities, special attention is given to themes like radiation protection, security and industrial safety. A combination of classical face-to-face training, e-learning and on-the-job training is offered during the onboarding and further career path of an SCK-CEN employee. (author

  13. Nuclear Renaissance in Italy: Maintaining Momentum

    International Nuclear Information System (INIS)

    Iaccarino, F.

    2010-01-01

    Following the adoption of Law No.99 of July 209, Italy is on threshold of returning to nuclear power, even though there are many more challenges yet to overcome. It should be recalled that Law No. 99/2009 includes enabling provisions empowering the government to issue one or more implementing decrees providing rules for the sitting of new nuclear power plants, the licensing process for the construction, operation and dismantling of those plants, as well as rules for interim storage and the final disposal of nuclear waste. On 15 February 2010, upon the proposal of the Ministry of economic development, the Italian council of ministers issued legislative decree No. 31/2010 implementing the enabling provisions. This paper will analyse the strengths and weaknesses of the implementing decree in order to assess if it is able to provide Italy with a sound national nuclear legislative framework which is an essential precondition to the Italian nuclear resurgence. (N.C.)

  14. World Health Organization on nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A report published by the World Health Organization in cooperation with, and at the instigation of, the Belgian authorities, is summarised. The report was prepared by an international multidisciplinary working group, and concentrated on the somatic and genetic risks from ionising radiation, the environmental effects of nuclear power from the mining of uranium to the disposal of waste and the probability and consequences of accidents, sabotage and theft of nuclear materials. In general positive to nuclear power, the report nevertheless recommends for RESEARCH AND EVALUATION IN SEVERAL SECTORS: The duties of the authorities in providing full and open information on the consequences of the exploitation of nuclear power are emphasised. (JIW)

  15. Organization and competences of nuclear supervision in Poland

    International Nuclear Information System (INIS)

    Sowinski, M.

    1989-01-01

    Organization and tasks of nuclear supervision are presented. All supervised nuclear installations are listed. The rights of the president of the National Atomic Energy Agency and the chief inspector of nuclear supervision are given. Licensing and cooperation with the IAEA are described. (A.S.)

  16. Knowledge management for nuclear industry operating organizations

    International Nuclear Information System (INIS)

    2006-10-01

    research facilities to reduce operating costs and a decline in support to the universities to reduce overheads. The above factors have led to a reduction in technical innovation and a potential loss of technical competences that have drawn the attention of many concerned parties to the need for effective strategies and policies for nuclear knowledge management. The Director General of the IAEA, Mohamed ElBaradei, in his statement to the forty-seventh regular session of the IAEA General Conference 2003, said: 'Whether or not nuclear power witnesses an expansion in the coming decades, it is essential that we preserve nuclear scientific and technical competence for the safe operation of existing facilities and applications. Effective management of nuclear knowledge should include succession planning for the nuclear work force, the maintenance of the 'nuclear safety case' for operational reactors, and retention of the nuclear knowledge accumulated over the past six decades'. This report is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information that can be used to improve knowledge management (KM) in such organizations. The information provided in this report is based upon actual experiences of Member State operating organizations as well as other related industries. The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation, IAEA-TECDOC-1399, highlighted some of the knowledge management issues in Member States resulting from the large number of retiring NPP personnel who had been involved with the commissioning and initial operation of NPPs. This report complements that publication by broadening the scope of KM strategic issues, methods and techniques for nuclear industry operating organizations

  17. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J.; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J.; Han, Yu; Li, Jing

    2017-01-01

    capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li

  18. Sustainable Transformation & Effective Competency Management Practices in Nuclear Organizations

    International Nuclear Information System (INIS)

    Gardelliano, S.

    2016-01-01

    Full text: Managing essential knowledge as a strategic organizational asset is a factor of upmost relevance in today’s nuclear organizations. The author considers evident that competencies are critical carriers of knowledge. As such the use of an appropriate competency model could be the most effective way to capture the present reservoir of explicit and tacit Knowledge of specific functions or organizational areas. Besides, we could use them for new or other redesigned functions or determine the needs of specific competencies for future positions. Therefore, appropriate competency models or systems have to be developed or updated in each nuclear organization since these are fundamental for managing more effectively and efficiently the present nuclear human capital and to forecast the evolving competence required in management, technical, scientific and safety areas to continuously ensure a highly competent nuclear workforce. On the other hand, competency based management models or systems would not achieve the expected results if they are not fully designed and integrated within the strategic organizational infrastructure of the related nuclear organization. This paper is expected to provide a wider view and practical reflections on organizational transformation issues and the benefits of using an integrative competency model in the nuclear industry. Particularly, the paper give an insight of an empiric model for strategic organizational transformation processes and integrative management practices, and on how to realign strategic issues with top management processes and build organizational capacity through effective competency based management for the sustainable transformation of nuclear organizations. (author

  19. History and Organizations for Radiological Protection.

    Science.gov (United States)

    Kang, Keon Wook

    2016-02-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.

  20. Long noncoding RNAs as Organizers of Nuclear Architecture.

    Science.gov (United States)

    Cheng, Lu; Ming, Hui; Zhu, Minzhe; Wen, Bo

    2016-03-01

    In the eukaryotic cell nucleus, chromatin and its associated macromolecules must be organized into a higher-ordered conformation to function normally. However, mechanisms underlying the organization and dynamics of the nucleus remain unclear. Long noncoding RNAs (lncRNAs), i.e., transcripts longer than 200 nucleotides with little or no protein-coding capacity, are increasingly recognized as important regulators in diverse biological processes. Recent studies have shown that some lncRNAs are involved in various aspects of genome organization, including the facilitation of chromosomal interactions and establishment of nuclear bodies, suggesting that lncRNAs act as general organizers of the nuclear architecture. Here, we discuss recent advances in this emerging and intriguing field.

  1. Knowledge Management for Nuclear Research and Development Organizations

    International Nuclear Information System (INIS)

    2012-05-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R and D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles and nuclear applications in medicine, industry and agriculture. It highlights aspects including transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management to R and D project managers and other workers from nuclear R and D organizations.

  2. The IAEA, nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2001-01-01

    In the framework of one of the fundamental objectives of the IAEA mandate to enhance the contribution of nuclear technologies towards meeting the needs of Member States, the present status, all the aspects, and the future of nuclear power are reviewed. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and when safely handled has little impact on ecosystems. This means that it could meet the central goal of sustainable development, considering that it covers maintaining or increasing the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems

  3. Best practices in the organization, management and conduct of an effective investigation of events at nuclear power plants

    International Nuclear Information System (INIS)

    2008-09-01

    IAEA Safety Standards Series No. SF-1 entitled Fundamental Safety Principles: Safety Fundamentals states the need for operating organizations to establish a programme for the feedback and analysis of operating experience in nuclear power plants. Such a programme ensures that operating experience is analysed, events important to safety are reviewed in depth, lessons learned are disseminated to the staff of the organization and to the relevant national and international organizations, and corrective actions are effectively implemented. This publication has been developed to provide advice and assistance to nuclear installations, and related institutions including contractors and support organizations to strengthen and enhance their own feedback process through the implementation of best practices in organization, management and conduct of an effective investigation of events. Conducting an effective investigation of events is essential in supporting a proactive safety management approach of preventing events from occurring. Event investigation is the heart of the operating experience feedback programme and in an operating organization it is essential to develop and maintain necessary expertise in this area. Experience has shown that it is not sufficient to identify only the direct causes of an event and the event is bound to recur unless all the root causes and casual factors for an event are identified and necessary corrective actions are developed and implemented. The present publication is the outcome of a coordinated effort involving the participation of experts of nuclear organizations in several Member States. It was developed to further elaborate on how to implement the event investigation requirements in the area of feedback of operating experience, as specified in the IAEA Safety Requirements publication NS-R-2 on Safety of Nuclear Power Plants: Operation. This document will also complement the publication IAEA Services Series No. 10 - PROSPER Guidelines

  4. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2002-01-01

    A central goal of sustainable development is to maintain or increase the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and, when safely handled, has little impact on ecosystems. Energy is essential for sustainable development. With continuing population and economic growth, and increasing needs in the developing world, substantially greater energy demand is a given, even taking into account continuing and accelerated energy efficiency and intensity improvements. Today, nuclear power is mostly utilized in industrialized countries that have the necessary technological, institutional and financial resources. Many of the industrialized countries that are able and willing to use nuclear power are also large energy consumers. Nuclear power currently generates 16% of the world's electricity. It produces virtually no sulfur dioxide, particulates, nitrogen oxides, volatile organic compounds or greenhouse gases. Globally, nuclear power currently avoids approximately 600 million tonnes of carbon emissions annually, about the same as hydropower. The 600 MtC avoided by nuclear power equals 8% of current global greenhouse gases emissions. In the OECD countries, nuclear power has for 35 years accounted for most of the reduction in the carbon intensity per unit of delivered energy. Existing operating nuclear power plants (NPPs) for which initial capital investments are largely depreciated are also often the most cost-effective way to reduce carbon emissions from electricity generation. In fact in the United States in 2000, NPPs were the most cost-effective way to generate electricity, irrespective of avoided carbon emissions. In other countries the advantages of existing nuclear generating stations are also increasingly recognized. Interest

  5. European Nuclear Education Network Association - Support for nuclear education, training and knowledge management

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2009-01-01

    Developed in 2002-2003 the FP5 EURATOM project 'European Nuclear Engineering Network - ENEN' aimed to establish the basis for conserving nuclear knowledge and expertise, to create an European Higher Education Area for nuclear disciplines and to facilitate the implementation of the Bologna declaration in the nuclear disciplines. In order to ensure the continuity of the achievements and results of the ENEN project, on 22 September 2003, the European Nuclear Higher Education Area was formalized by creating the European Nuclear Education Network Association. ENEN Association goals are oriented towards universities by developing a more harmonized approach for education in the nuclear sciences and engineering in Europe, integrating European education and training in nuclear safety and radiation protection and achieving a better cooperation and sharing of resources and capabilities at the national and international level. At the same time it is oriented towards the end-users (industries, regulatory bodies, research centers, universities) by creating a secure basis of knowledge and skills of value to the EU. It maintains an adequate supply of qualified human resources for design, construction, operation and maintenance of nuclear infrastructures and plants. Also it maintains the necessary competence and expertise for the continued safe use of nuclear energy and applications of radiation in industry and medicine. In 2004-2005, 35 partners continued and expanded the started in FP 5 ENEN Association activities with the FP6 project 'NEPTUNO- Nuclear Education Platform for Training and Universities Organizations'. Thus ENEN established and implemented the European Master of Science in Nuclear Engineering, expanded its activities from education to training, organized and coordinated training sessions and pilot courses and included in its activities the Knowledge Management. At present, the ENEN Association gathers 45 universities, 7 research centers and one multinational company

  6. Academic portfolio in the digital era: organizing and maintaining a portfolio using reference managers.

    Science.gov (United States)

    Bhargava, Puneet; Patel, Vatsal B; Iyer, Ramesh S; Moshiri, Mariam; Robinson, Tracy J; Lall, Chandana; Heller, Matthew T

    2015-02-01

    The academic portfolio has become an integral part of the promotions process. Creating and maintaining an academic portfolio in paper-based or web-based formats can be a cumbersome and time-consuming task. In this article, we describe an alternative way to efficiently organize an academic portfolio using a reference manager software, and discuss some of the afforded advantages. The reference manager software Papers (Mekentosj, Amsterdam, The Netherlands) was used to create an academic portfolio. The article outlines the key steps in creating and maintaining a digital academic portfolio. Using reference manager software (Papers), we created an academic portfolio that allows the user to digitally organize clinical, teaching, and research accomplishments in an indexed library enabling efficient updating, rapid retrieval, and easy sharing. To our knowledge, this is the first digital portfolio of its kind.

  7. Human performance improvement in organizations: Potential application for the nuclear industry

    International Nuclear Information System (INIS)

    2005-11-01

    This publication is primarily intended for managers and specialists in nuclear facility operating organizations working in the area of human performance improvement. It is intended to provide them with practical information they can use to improve human performance in their organizations. While some of the information provided in this publication is based upon the experience of nuclear facility operating organizations, most of it comes from human performance improvement initiatives in non-nuclear organizations and industries. The nuclear industry has a long tradition of sharing good management practices in order to foster continuous improvement. However, it is not always realized that many of the practices that are now well established initially came from non-nuclear industries and were subsequently adapted for application to nuclear power plant operating organizations. There is, therefore, good reason to periodically review non-nuclear industry practices for ideas that might have direct or indirect application to the nuclear industry in order to potentially gain benefits such as the following: new approaches to certain problem areas, insights into new or impending challenges, improvements in existing practices, benchmarking of opportunities, development of learning organizations and avoidance of collective blind spots. The preparation of this report was an activity of the project on Effective Training to Achieve Excellence in the Performance of NPP Personnel. The objective of this project is to enhance the capability of Member States to utilize proven practices developed and transferred by the IAEA for improving personnel performance. The expected outcome from this project is the increased use by organizations in Members States of proven engineering and management practices and methodologies developed and transferred by the IAEA to improve personnel performance

  8. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  9. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  10. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  11. Organizational aspects of recruiting, training, maintaining the level of professional skills and retraining of NPP operations personnel in Russia

    International Nuclear Information System (INIS)

    Veltchinsky, V.

    1993-01-01

    The organization of personnel work during WWER-1000 operation is presented as recommended by the Russian operating organization. The system is described of recruiting, training control of professional activities, maintaining of professional skills and retraining of the Russian nuclear power plant operation personnel (PKPO system). The basic documentation of the PKPO system is listed. (Z.S.) 1 fig

  12. Responsibilities and capabilities of a nuclear energy programme implementing organization

    International Nuclear Information System (INIS)

    2009-01-01

    An appropriate infrastructure is essential for the efficient, safe, reliable and peaceful use of nuclear power. The IAEA was encouraged by its Member States to provide assistance to those considering the introduction of nuclear power. These countries face the challenge of building a national nuclear infrastructure to support a first nuclear power plant. The IAEA is responding to their needs through increased technical assistance, missions and workshops, and with new and updated technical publications in the IAEA Nuclear Energy Series. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (NG-G-3.1), provides detailed guidance on a holistic approach to national nuclear infrastructure development, over three phases. Nineteen issues are identified in this guide, ranging from development of a government's national position on nuclear power to planning for procurement related to the first NPP. An important element of the holistic approach is an entity that can help prepare the decision makers in a country to make a knowledgeable commitment to nuclear power, and then to coordinate infrastructure development efforts among various implementing organizations so that they arrive at the point of readiness to issue a bid tender at the same time. In the Milestones guide, this entity is called a nuclear energy programme implementing organization (NEPIO). As a growing number of Member States started to consider the nuclear power option, they asked for guidance from the IAEA on how to launch a nuclear power programme. In particular, Member States requested additional information on how to establish a NEPIO, especially in the earliest phases of a programme. This report has been prepared to provide information on the responsibilities and capabilities of a NEPIO, as well as to give an indication on how it relates to other key national organizations in the implementation of a nuclear power programme, such as the owner

  13. Ways to maintain nuclear safety competence in Finland

    International Nuclear Information System (INIS)

    Vanttola, T.; Mattila, L.; Reiman, L.

    2000-01-01

    In mid-1990's, both Finnish nuclear power operators started extensive plant modernization. National surveys indicated that the present age distribution of nuclear power experts implies shortage of resources through retirement within 10 years, unless education is timely enhanced. The current rate of nuclear energy specific education, about 10 master's degrees per year, will be too low, particularly if construction of new nuclear capacity were started. The problem is recognised, and some measures have been initiated. In Finland continued public funding for nuclear energy research is judged important to assure impartial expertise for the safety authorities. This research has been organised as national research programmes, where the requirement to raise experts is emphasised. Challenging tasks have proved to be important in motivating the students and the permanent personnel. The specific features of the VVER reactors, participation in international R and D projects and, recently, design and assessment of ALWR concepts have offered such possibilities. The image of nuclear energy affects the interest of young generation when choosing a career. One way to improve the situation is to increase communication with the public and direct information to the potential students. The need for other than technical skills is also reflected in the latest work programme of the Young Generation Network, organised by the Finnish Nuclear Society. (authors)

  14. Maintaining Nuclear Competence within the EU

    International Nuclear Information System (INIS)

    Slugen, V.

    2013-01-01

    In this presentation author deals with the activities of European Nuclear Society in scientific and education areas. Education and scientific orientation in the Slovak University of Technology are reviewed.

  15. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  16. Maintainability effectiveness evaluations and enhancement

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    In the mid-seventies EPRI initiated a research project to review the human factors aspects of nuclear power plant control rooms. In the course of investigating operator-control room interfaces in five operational control rooms, it became evident that many plant outages had either been caused or prolonged by human factors problems associated with maintenance activities. Consequently, as one of several follow-on projects, EPRI sponsored a review of nine power plants (five nuclear and four fossil) to examine the human factors aspects of plant maintainability. This survey revealed a wide variety of generic human factors problems that could negatively impact the effectiveness of plant maintenance personnel. It was clear that plant maintainability features deserved no less attention to human factors concerns than the operational features of the control room. This paper describes subsequent EPRI-initiated efforts to assist the utilities in conducting self-reviews of maintainability effectiveness and effect needed enhancements

  17. Management and organization in nuclear power plant safety

    International Nuclear Information System (INIS)

    Osborn, R.N.

    1983-08-01

    In the immediate aftermath of the Three Mile Island accident, the Nuclear Regulatory Commission-sponsored investigations of the relation between human issues and safety tended to focus on individual and, at most, group level phenomena. This initial bottom up view of organizational safety has continued to be investigated by the Nuclear Regulatory Commission, as evidence by the four previous papers. Recently, however, work has begun which adopts a top down management/organization approach to nuclear power plant safety. This paper reports on the research, to date, on this focus

  18. Knowledge Management for Nuclear Research and Development Organizations (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R&D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles, and nuclear applications in medicine, industry and agriculture. It highlights aspects such as transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management for R&D project managers and other workers from nuclear R&D organizations.

  19. What Pacemakers Can Teach Us about the Ethics of Maintaining Artificial Organs.

    Science.gov (United States)

    Hutchison, Katrina; Sparrow, Robert

    2016-11-01

    One day soon it may be possible to replace a failing heart, liver, or kidney with a long-lasting mechanical replacement or perhaps even with a 3-D printed version based on the patient's own tissue. Such artificial organs could make transplant waiting lists and immunosuppression a thing of the past. Supposing that this happens, what will the ongoing care of people with these implants involve? In particular, how will the need to maintain the functioning of artificial organs over an extended period affect patients and their doctors and the responsibilities of those who manufacture such devices? Drawing on lessons from the history of the cardiac pacemaker, this article offers an initial survey of the ethical issues posed by the need to maintain and service artificial organs. We briefly outline the nature and history of cardiac pacemakers, with a particular focus on the need for technical support, maintenance, and replacement of these devices. Drawing on the existing medical literature and on our conversations and correspondence with cardiologists, regulators, and manufacturers, we describe five sources of ethical issues associated with pacemaker maintenance: the location of the devices inside the human body, such that maintenance generates surgical risks; the complexity of the devices, which increases the risk of harms to patients as well as introducing potential injustices in access to treatment; the role of software-particularly software that can be remotely accessed-in the functioning of the devices, which generates privacy and security issues; the impact of continual development and improvement of the device; and the influence of commercial interests in the context of a medical device market in which there are several competing products. Finally, we offer some initial suggestions as to how these questions should be answered. © 2016 The Hastings Center.

  20. Technical Support Organization Knowledge Management for Nuclear Regulatory Support

    International Nuclear Information System (INIS)

    Kohut, P.; Ramsey, J.; Katsenelenbogen, S.

    2016-01-01

    Full text: Knowledge management awareness has increased through the nuclear industrial and regulatory community leading to better understanding of the handling of critical information. Utilizing, managing and regulating the application of nuclear power require an extensive system of expertise and associated research through established organizations. The long term maintenance of the specific expertise is only viable by using scientific knowledge management principles all through the national nuclear infrastructure involving regulatory, industrial, academic and other research institutions. National governments in countries operating or planning to establish nuclear facilities have instituted regulatory regimes on the use of nuclear materials and facilities to insure a high level of operational safety. (author

  1. Nuclear Data Unit correspondents for the exchange of nuclear data information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-04-15

    This list serves as a basis for the distribution of documents originated by or for the International Nuclear Data Committee, and includes the names of all INDC members, liaison officers and correspondents of the Nuclear Data Unit. The IAEA Nuclear Data Unit tries to maintain this list up-to-date in order to facilitate an efficient interchange of information on nuclear data topics. The recipients of this list are encouraged to inform the Nuclear Data Unit of any corrections, additions and deletions deemed necessary. Because of the variety of document origins and functions, and the number of countries served by this list, each addressee is assigned a seven-letter distribution code, shown to the left of each name, which indicates the categories of documents he receives. The names appear under three categories, member states, international organizations and non-member states, and are listed in alphabetical order within each state or organization. The main list is followed by seven shorter lists, indicating the names of individuals in each distribution category, and the total number of individuals in each category.

  2. Nuclear Data Unit correspondents for the exchange of nuclear data information

    International Nuclear Information System (INIS)

    1968-04-01

    This list serves as a basis for the distribution of documents originated by or for the International Nuclear Data Committee, and includes the names of all INDC members, liaison officers and correspondents of the Nuclear Data Unit. The IAEA Nuclear Data Unit tries to maintain this list up-to-date in order to facilitate an efficient interchange of information on nuclear data topics. The recipients of this list are encouraged to inform the Nuclear Data Unit of any corrections, additions and deletions deemed necessary. Because of the variety of document origins and functions, and the number of countries served by this list, each addressee is assigned a seven-letter distribution code, shown to the left of each name, which indicates the categories of documents he receives. The names appear under three categories, member states, international organizations and non-member states, and are listed in alphabetical order within each state or organization. The main list is followed by seven shorter lists, indicating the names of individuals in each distribution category, and the total number of individuals in each category

  3. FAPIG's activities for public acceptance of nuclear energy. Analytical results of questionnaire executed at organized visits to nuclear power stations

    International Nuclear Information System (INIS)

    Yoneda, Masaaki

    2010-01-01

    The First Atomic Power Industry Group (FAPIG) organized eighteenth visit of woman employees to nuclear power stations. They would have few chance of such a visit and to unfamiliar with mechanism of nuclear power generation as well as radiation and radioactivity. Participants were required to have a lecture on energy in general and basic understanding of nuclear energy and then had a visit to nuclear power stations to learn nuclear energy as correct knowledge. They also filled out the same questionnaire before the lecture and after the visit to express their ideas or comments on nuclear energy. This paper described analytical results of the questionnaire and significance of the organized visit for public acceptance of nuclear energy. (T. Tanaka)

  4. Nuclear power plants - Quality assurance

    International Nuclear Information System (INIS)

    1980-01-01

    This International Standard defines principles for the establishment and implementation of quality assurance programmes during all phases of design, procurement, fabrication, construction, commissioning, operation, maintenance and decommissioning of structures, systems and components of nuclear power plants. These principles apply to activities affecting the quality of items, such as designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling and modifying and eventually decommissioning. The manner in which the principles described in this document will be implemented in different organizations involved in a specific nuclear power project will depend on regulatory and contractual requirements, the form of management applied to a nuclear power project, and the nature and scope of the work to be performed by different organizations

  5. Constructability and maintainability

    International Nuclear Information System (INIS)

    Hart, R.S.

    1985-01-01

    A set of principles for minimizing the construction schedule was established at the outset of the CANDU 300 programme. Consideration of these principles and other factors led to the development of the unique CANDU 300 station layout. The paper discusses the CANDU 300 station layout and construction methods. In summary, the station layout provides 360 deg. construction access to all buildings, separation of nuclear and non-nuclear systems, precise and minimal physical interfaces between buildings, accommodation of many contractors and construction activities without interference, and maximum flexibility in terms of constructional, financial and supply arrangements. The CANDU 300 further employs modularization, shop fabrication and advanced instrumentation (multiplexers, remote processors, data highways) to minimize construction time. Many of the CANDU 300 features that enhance constructability also contribute to maintainability. These include the 360 deg. access to all principal buildings, the uncluttered and spacious building layouts, the simplification of systems and the high level of modularization. The CANDU 300 has also been designed to facilitate the replacement of all key components, thereby offering an essentially unlimited station life. A prime example is a reduction in the fuel channel inlet end-fitting diameter such that the fuel channels can be shop assembled and easily replaced after the initial 40 years of operation, without an extended unit outage. Maintainability within the reactor building has been given particular attention in the CANDU 300 design; key features of other CANDU reactors (the ability to replace a heat transport system pump motor at power, for example) have been incorporated, while accessibility and maintainability of all systems and components have been enhanced. These and other aspects of maintainability are discussed. (author)

  6. Role of a national research organization in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad, Ishaq

    1977-01-01

    Nuclear technology holds great promise for developing countries because it can contribute to national development. The developing countries, however, lack the resources and expertise to develop nuclear technology through their own efforts. A national research organization devoted to the promotion and utilization of nucler technology can provide an effective channel for the transfer of nuclear technology. The problems which the national research organization is likely to face in executing its tasks as an agent for the transfer of technology are discussed. An appreciation of these problems would enable the organization to restructure its priorities so as to achieve maximum effectiveness. The various ways by which the national research organization can speed up the task of transfer of technology are also discussed

  7. Quantification of the spatial organization of the nuclear lamina as a tool for cell classification

    NARCIS (Netherlands)

    Righolt, C.H.; Zatreanu, D.A.; Raz, V.

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and

  8. Threedimensional imaging of organ structures by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Waters, W.; Smolorz, J.; Wellner, U.

    1985-01-01

    A simple method for threedimensional imaging of organ structures is presented. The method is based on a special acquisition mode in a nuclear resonance tomograph, exciting layers of 20 cm thickness at different angulations. The display is done by cinematography (which is usually used in nuclear cardiology) projecting the structures in a rotating movement. (orig.) [de

  9. Guidebook on training to establish and maintain the qualification and competence of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1994-03-01

    Since the IAEA published its Guidebook on the Qualification of Nuclear Power Plant Operations Personnel in 1984 (Technical Reports Series 242) there have been important developments in the approach to training adopted by many operating organizations in different countries. It is now accepted that developing training programmes based solely on experience is inappropriate for the nuclear power industry, and that a systematic approach to training is necessary. It has been recognized that inadequate knowledge and skills may lead to human errors, and it is therefore necessary to review and improve the development and implementation of initial and continuing training programmes. The present Guidebook proposes an approach which is comprehensive and systematic in its methodology and also cost effective in its implementation. This Guidebook is mainly intended for management and training staff of nuclear power plant operating organizations. Relevant examples of current training practices are presented in the Appendices, which constitute an integral part of the Guidebook. Ref, figs and tabs

  10. Guidebook on training to establish and maintain the qualification and competence of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1989-11-01

    Since the IAEA published its Guidebook on the Qualification of Nuclear Power Plant Operations Personnel in 1984 (Technical Reports Series 242) there have been important developments in the approach to training adopted by many operating organizations in different countries. It is now accepted that developing training programmes based solely on experience is inappropriate for the nuclear power industry, and that a systematic approach to training is necessary. It has been recognized that inadequate knowledge and skills may lead to human errors, and it is therefore necessary to review and improve the development and implementation of initial and continuing training programmes. The present Guidebook proposes an approach which is comprehensive and systematic in its methodology and also cost effective in its implementation. This Guidebook is mainly intended for management and training staff of nuclear power plant operating organizations. Relevant examples of current training practices are presented in the Appendices, which constitute an integral part of the Guidebook. Refs, figs and tabs

  11. Fuel operation of EDF nuclear fleet presentation of the centralized organization for operational engineering at the nuclear generation division

    International Nuclear Information System (INIS)

    Paulin, Ph.

    2006-01-01

    The main feature of EDF Nuclear Fleet is the standardization, with 'series' of homogeneous plants (same equipment, fuel and operation technical documents). For fuel operation, this standardization is related to the concept of 'fuel management scheme' (typical fuel reloads with fixed number and enrichment of fresh assemblies) for a whole series of plants. The context of the Nuclear Fleet lead to the choice of a centralized organization for fuel engineering at the Nuclear Generation Division (DPN), located at UNIPE (National Department for Fleet Operation Engineering) in Lyon. The main features of this organization are the following: - Centralization of the engineering activities for fuel operation support in the Fuel Branch of UNIPE, - Strong real-time link with the nuclear sites, - Relations with various EDF Departments in charge of design, nuclear fuel supply and electricity production optimization. The purposes of the organization are: - Standardization of operational engineering services and products, - Autonomy with independent methods and computing tools, - Reactivity with a technical assistance for sites (24 hours 'hot line'), - Identification of different levels (on site and off site) to solve core operation problems, - Collection, analysis and valorization of operation feedback, - Contribution to fuel competence global management inside EDF. This paper briefly describes the organization. The main figures of annual engineering production are provided. A selection of examples illustrates the contribution to the Nuclear Fleet performance. (authors)

  12. Young generation in Romanian nuclear system - Romanian nuclear organizations implication in nuclear knowledge management at University 'Politehnica' of Bucharest - Results and expectations

    International Nuclear Information System (INIS)

    Ghizdeanu, E.N.; Dumitrescu, M.C.; Budu, A.R.; Pavelescu, A.O.

    2004-01-01

    The knowledge management should be assumed by the major players within the nuclear community: government, industry and university. Starting from these problems this article gives an overview about Romanian nuclear knowledge management and the Young Generation implications. In Romania there are many government and non-government nuclear institutions such: CNCAN (Romanian Regulatory Body), ROMATOM (Romanian Atomic Forum), AREN (Romanian 'Nuclear Energy' Association), and companies: SNN ('Nuclearelectrica' SA National Company), CITON (Centre of Technology and Engineering for Nuclear Projects), SCN (Institute for Nuclear Research), ROMAG - PROD (Romanian Heavy Water Plant). All these institutes and companies are sustaining the national nuclear program and promoting the new technologies in the nuclear industry according with CNCAN and ROMATOM regulations. University 'POLITEHNICA' of Bucharest - Power Engineering Faculty - through Nuclear Power Plant Department is the promoter of nuclear knowledge management. It is implied in assuring and maintaining a high-quality training for young staff. Young Generation is implicated in nuclear knowledge management through University 'Politehnica' of Bucharest - Power Engineering Faculty - Nuclear Power Plant Department and AREN (Romanian 'Nuclear Energy' Association). Young Generation Department has special educational programs for attracting and supporting students. It provides adequate information and interacts with potential students. Moreover the article gives results about Romanian nuclear engineers since 1970 till now. An analysis of these data is done. Also it is discussed how University 'Politehnica' of Bucharest, the Romanian Government and the Industry work together to co-ordinate more effectively their efforts to encourage the young generation. (author)

  13. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    Blidaru, Valentin

    2008-01-01

    The paper presents the structure, missions and organizational aspects of the CNCAN, the National Commission for the control of nuclear activities in Romania. The paper addresses the following main issues: 1.General aspects; 2.Organizational structure of the NRA in Romania; 3.General description of the Division for Nuclear Safety Assessments; 4.Specific activities; 5.Regulatory approaches and practices. Under the title of 'General aspects' the following three basic statements are highlighted: 1.CNCAN is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and the licensing of nuclear facilities; 2.CNCAN is the national authority competent in exercising the regulatory activity, authorization and control in the nuclear field provided by the law No. 111/ 1996 republished in 1998; 3.The Commission exercises its functions independently of the ministries and other authorities of the public control administration being subordinated to the Romanian Government. The organizational structure is as follows: - President, the Managerial Council and the Advisory Council coordinating the four General Divisions that are responsible for: - Nuclear Safety with Division of Nuclear Safety Assessment and Division of Nuclear Objectives Surveillance; - Radiological Safety with Division of Radiological Safety Assessment and Division of Operational Radiation Protection; - Surveillance of Environmental Radioactivity with Division of Assessment and Analysis and Division of National Network; - Development and Resource with the Division of Economy and Division of Human Resources. In addition under direct coordination of the President operate the Division of Radiation Protection, Transport and Radioactive Waste and the Division of International Cooperation and Communication. Specific activities are listed describing among others the issues of: - Safety of nuclear installation; - Evaluation relating to licensing of nuclear

  14. [Nuclear matrix organization of the chromocenters in cultured murine fibroblasts].

    Science.gov (United States)

    Sheval', E V; Poliakov, V Iu

    2010-01-01

    In the current work, the structural organization of nuclear matrix of pericentromeric heterochromatin blocks (chromocenters) inside cultured murine fibroblasts was investigated. After 2 M NaCl extraction without DNase I treatment, chromocenters were extremely swelled, and it was impossible to detect them using conventional electron microscopy. Using immunogolding with anti-topoisomerase IIalpha antibody, we demonstrated that residual chromocenters were subdivided into numerous discrete aggregates. After 2 M NaCl extraction with DNase I treatment, the residual chromocenters appeared as a dense meshwork of thin fibers, and using this feature, the residual chromocenters were easily distinguished from the rest of nuclear matrix. After extraction with dextran sulfate and heparin, the chromocenters were decondensed, and chromatin complexes having rosette organization (central core from which numerous DNA fibers radiated) were seen. Probably, the appearance of these rosettes was a consequence of incomplete chromatin extraction. Thus, the nuclear matrix of pericentromeric chromosome regions in cultured murine fibroblasts differs morphologically from the rest of nuclear matrix.

  15. The nuclear knowledge management, its present status and tasks

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Yonezawa, Minoru; Sawada, Tetsuo

    2006-01-01

    Knowledge management can be defined as the integrated, systematic approach to identifying, collecting, maintaining, and sharing knowledge, and enabling the creation of new knowledge in order to achieve the objectives of the organization. Knowledge can be classified into explicit knowledge and tacit knowledge. Due to the aging of nuclear personnel, it is necessary to systematically manage nuclear knowledge within and between the organizations and to smoothly transfer or pass these down to the next generation. World's trend of nuclear knowledge management and its tasks were described referring to topics of its latest international meetings. (T.Tanaka)

  16. The Nuclear Organization and Management Analysis Concept methodology: Four years later

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.; Barriere, M.T.; Hall, R.E.

    1992-01-01

    The Nuclear Organization and Management Analysis Concept was first presented at the IEEE Human Factors meeting in Monterey in 1988. In the four years since that paper, the concept and its associated methodology has been demonstrated at two commercial nuclear power plants (NPP) and one fossil power plant. In addition, applications of some of the methods have been utilized in other types of organizations, and products are being developed from the insights obtained using the concept for various organization and management activities. This paper will focus on the insights and results obtained from the two demonstration studies at the commercial NPPs. The results emphasize the utility of the methodology and the comparability of the results from the two organizations

  17. Seminar on the organization and management of a commercial nuclear power project

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Alvis, J.M.; Chitkara, K.K.

    1986-01-01

    A main function of student branches of the American Nuclear Society (ANS) is to identify activities that contribute to the professional development and growth of its student members. Over the past several years, the ANS student branch at Texas A and M University has toured the construction site of the South Texas Nuclear Project (STNP), which is jointly owned by the Houston Lighting and Power Company (HL and P), the City of San Antonio, the Central Power and Light Company, and the City of Austin. This year, student branch organizers recognized that another aspect of a commercial nuclear power plant was not being covered either in the academic course work or the plant tours. This facet includes the organization and management required to undertake a major nuclear power project. To fill this gap, HL and P sponsored a one-day seminar that covered the various managerial functions for STNP. The seminar on the Organization and Management at a Commercial Nuclear Power Project was very interesting and beneficial. Other ANS branches and utilities may find this to be a useful model for future activities

  18. ICT in supporting Nuclear Malaysia as National Technical Support Organization

    International Nuclear Information System (INIS)

    Saaidi Ismail; Siti Nurbahyah Hamdan; Mohd Fauzi Haris

    2011-01-01

    Information and communication technology (ICT) services are basic requirements in any organization during this information age. ICT is proven as a powerful enabler in organization due to its unique characteristics that improve communication, collaboration, and the exchange of information to strengthen and create new economic and social networks. As Malaysian Nuclear Agency is moving towards Technical Support Organization (TSO), the importance of ICT cannot simply be ignored. Being a TSO for national Nuclear Power Plant (NPP), Nuclear Malaysia is responsible for providing the technical and scientific basis for decisions and activities regarding nuclear technology and radiation safety. As a TSO, Nuclear Malaysia should utilize and collaborate data and information available from it activities and programs and use it to expedite the implementation of national NPP. Technical support also responsible to contribute an excellent operation by providing technical inputs and support for optimizing NPP component (such as plant procedures, operation and maintenance, technical assistance, training etc). These tasks can be performed more effectively and efficiently with the help of appropriate ICT services and solution. Therefore, the deployment and implementation of appropriate ICT requirement shall be made to fulfill agency needs. As initial step, existing ICT facilities should be reassessed. This is because the capacity of existing ICT services is very limited in terms of manpower, infrastructure, and applications. This paper however, will briefly discuss only to the requirement gap on existing ICT manpower and infrastructure with the requirement needed for TSO. The facts then will be used to improve ICT manpower and infrastructure in Nuclear Malaysia to provide reliable and high availability of technical support for national NPP. (author)

  19. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes.

    Science.gov (United States)

    Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela

    2018-02-01

    Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres

  20. The Role of Performance Management in Creating and Maintaining a High-Performance Organization

    Directory of Open Access Journals (Sweden)

    André A. de Waal

    2015-04-01

    Full Text Available There is still a good deal of confusion in the literature about how the use of a performance management system affects overall organizational performance. Some researchers find that performance management enhances both the financial and non-financial results of an organization, while others do not find any positive effects or, at most, ambiguous effects. An important step toward getting more clarity in this relationship is to investigate the role performance management plays in creating and maintaining a high-performance organization (HPO. The purpose of this study is to integrate performance management analysis (PMA and high-performance organization (HPO. A questionnaire combining questions on PMA dimensions and HPO factors was administered to two European-based multinational firms. Based on 468 valid questionnaires, a correlation analysis was performed on the PMA dimensions and the HPO factors in order to test the impact of performance management on the factors of high organizational performance. The results show strong and significant correlations between all the PMA dimensions and all the HPO factors, indicating that a performance management system that fosters performance-driven behavior in the organization is of critical importance to strengthen overall financial and non-financial performance.

  1. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  2. Desirable factors for maintaining normal BMI of urban affluent women of Delhi.

    Science.gov (United States)

    Gupta, Anu Taneja; Siddhu, Anupa

    2015-01-01

    The study aimed to identify desirable social, familial, reproductive, dietary, and lifestyle factors for maintaining normal body mass index (BMI) of urban affluent women (25-45 years) in Delhi, India. A total of 387 urban affluent women with at least one living child participated in this cross-sectional study conducted from March 2008 to April 2010. Women were classified into four BMI categories on the basis of World Health Organization (WHO; 2004) classification for Asians. Significant factors for maintaining normal BMI were: Younger age, less parity, nuclear family, normal weight status of parents, postpartum weight gain between 2 and 3 kg, regularity in taking meals, fixed meal size, self-perceived normal weight, and shorter sitting time and television viewing time. Multivariate regression analysis identified five determining factors for maintaining BMI, which are normal weight of father, self-perceived normal weight, fixed meal size, sitting time less than 6 h/day, and television viewing time less than 1 h/day. By small lifestyle modifications, normal BMI can be maintained.

  3. US Nuclear Regulatory Commission organization charts and functional statements

    International Nuclear Information System (INIS)

    1997-01-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed

  4. US Nuclear Regulatory Commission organization charts and functional statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  5. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  6. The role of Nuclear Energy Unit in gathering, organizing and disseminating of nuclear information

    International Nuclear Information System (INIS)

    Samsurdin Ahamad

    1986-01-01

    The Nuclear Energy Unit (UTN) was established with an aim to promote the application of Nuclear Science and Technology in industries, agriculture and medicine in Malaysia. Therefore UTN represents Malaysia in INIS so as to share the available information for collection, merging and dissemination of information. In UTN a variety of activities are being carried out, especially by the Information Science Department whereby a library, equipped with reading materials and a computerized information system (SMBK) is set up as the information centre. A number of publications have also been made so as to keep the technical officers and other staff aware of the developments in Nuclear Science and Technology. To provide a better understanding of the latest techniques and nuclear technological procedures, courses, seminars and workshops for officers involved are carried out. Talks and exhibitions are also organized in order to promote Nuclear Science and Technology amongst the layman. (author)

  7. Investigation of the organic matter in inactive nuclear tank liquids

    International Nuclear Information System (INIS)

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes

  8. Large research infrastrucures and networking. Two key factors for maintaining nuclear expertise in Europe

    International Nuclear Information System (INIS)

    Cognet, G.; Iracane, D.

    2004-01-01

    Large research infrastructures are of key importance to improve the efficiency and the safety of nuclear energy production. To support present and coming power reactors and fuel cycle facilities and to develop future systems, it is necessary to optimise these infrastructures and their use by taking into account the networking of existing facilities, the access by the European researchers to conduct their own research projects and the creation of new installations when facing ageing issues. Large infrastructures include material testing reactor, hot laboratories for material and fuel under irradiation studies, fuel cycle researches and facilities dedicated to severe accident studies. For example, the CEA severe accident study platform has been recently used by a Bulgarian team to conduct its own research project with a grant provided by the European Commission. Furthermore, because present European material testing reactors are ageing, renewing the irradiation capability is an important and structuring stake for the fission research in Europe in order to continue safe and optimised operations of existing reactors, to support Generation 4 RTD and to keep alive competences. Considering that, CEA has decided to launch the project Jules Horowitz aiming at building a new research reactor. The access to the CEA facilities, including the Jules Horowitz reactor, combined with equivalent possibilities of access to other European facilities through a specific platform would help to develop a long-term vision, to create a coherent and dynamic strategy, to contribute to the stimulation of a large cooperation on nuclear fission, to enable a common approach of safety issues, to gather competencies, to promote the attractiveness of nuclear research to young scientists and to maintain European nuclear expertise at the highest level. This paper intends to provide a view of the existing and needed infrastructures, discuss the ways of access and finally open the discussion on the

  9. Nuclear organization of the rock hyrax (Procavia capensis) amygdaloid complex.

    Science.gov (United States)

    Limacher-Burrell, Aude-Marie; Bhagwandin, Adhil; Gravett, Nadine; Maseko, Busisiwe C; Manger, Paul R

    2016-07-01

    The current study details the nuclear organization of the rock hyrax amygdaloid complex using both Nissl and myelin stains, along with a range of immunohistochemical stains. The rock hyrax appears to be the least derived of the Afrotherians, a group with a huge range of body phenotypes, life histories and specialized behaviours, brain sizes, and ecological niches. In this sense, the rock hyrax represents a species where the organization of the amygdaloid complex may be reflective of that in stem Eutherian mammals. Our analysis indicates that the nuclear organization of the rock hyrax amygdaloid complex is indeed very similar to that in other mammals studied, with four major nuclear groupings (the deep or basolateral group; the superficial or cortical-like or corticomedial group; the centromedial group; and the other amygdaloid nuclei) being observed, which is typical of Eutherian mammals. Moreover, each of these groupings is composed of several nuclei, the vast majority of which were readily identified in the rock hyrax. Small nuclei identified in rodents and primates were absent in the superficial and centromedial groups, seemingly involved with olfaction. A novel shell-like nucleus of the accessory basal nuclear cluster was observed in the rock hyrax, again, likely to be involved in olfaction. The current study underlines the conserved nature of nuclear parcellation in the Eutherian mammal amygdaloid complex and indicates that across most species, the flow of information processing related to species-specific affective-laden stimuli and the resultant physiological and behavioural outcomes are likely to be similar across species.

  10. Discussion on organization structure system of nuclear power projects in China

    International Nuclear Information System (INIS)

    Wang Zhi

    2011-01-01

    With the development of the nuclear power industry in China, several AE companies were born and now play a major role in building nuclear power projects in China and overseas. After studying current organization structure systems of all nuclear power AE companies in China and comparing with successful foreign ones, this paper proposes some approaches to optimize the structure. (author)

  11. Nuclear operator emergency response: a robust and proven organisation that is an integral part of nuclear safety

    International Nuclear Information System (INIS)

    Digoin, A.; Godino, O.

    2006-01-01

    Nuclear safety, the priority number one of EDF SA, demands improvement of materials performance, maintaining and developing staff skills, improving organizations in normal or incidental situations. So far, the national crisis organization of the Nuclear Power Plant Department is a whole part of EDF SA crisis organization. It coordinates the decision field, the action field, the expertise field in local and national places. For that, it must train staff which participates in periodic drills limited to the plant and also drills which involve Public Authorities. This crisis organization can also be mobilized for foreign nuclear power plants in China or in South Africa. In anticipation of possible consequences, EDF SA does not hesitate in mobilizing the whole organization two or three times a year for technical events without environmental consequences or for climatic, social, in political issues that can involve the company. For example, the hurricane in December 1999 or for the aridity in 2003, EDF crisis organization was mobilized for several weeks without interruption. These examples show the capacity this organization has to deal with many events and allows EDF to be answerable for all of their activities. (author)

  12. INDC list of correspondents for the exchange of nuclear data information and compilation of national nuclear data committees

    International Nuclear Information System (INIS)

    1987-09-01

    This list of INDC Correspondents, including information on currently existing National Nuclear Data Committees and their memberships, is compiled and published upon the request of the International Nuclear Data Committee with the objective to promote the interaction and enhance the awareness of nuclear data activities in IAEA Member States. It also serves as a basis for the distribution of documents originated by or for the International Nuclear Data Committee and includes the names of all recipients of INDC documents. The INDC Secretariat tries to maintain this list up-to-date in order to facilitate an efficient interchange of information on nuclear data topics. The report is presented in five sections. The first section contains a detailed description of the INDC distribution categories, distribution codes and document designator codes. The second section describes the aims, organization and objectives of individual national nuclear data committees. The third section lists names and addresses in alphabetical order within each state or international organization together with the assigned INDC document distribution code(s); where applicable committee membership and/or area of specialization are indicated. This is followed by four shorter lists, indicating the names of individuals in each distribution category, sorted by country or international organization, and the total number of individuals in each category. The final section provides the names of nuclear data committee members also listed by country or international organization

  13. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation.

    Science.gov (United States)

    Dillinger, Stefan; Straub, Tobias; Németh, Attila

    2017-01-01

    Mammalian chromosomes are organized in structural and functional domains of 0.1-10 Mb, which are characterized by high self-association frequencies in the nuclear space and different contact probabilities with nuclear sub-compartments. They exhibit distinct chromatin modification patterns, gene expression levels and replication timing. Recently, nucleolus-associated chromosomal domains (NADs) have been discovered, yet their precise genomic organization and dynamics are still largely unknown. Here, we use nucleolus genomics and single-cell experiments to address these questions in human embryonic fibroblasts during replicative senescence. Genome-wide mapping reveals 1,646 NADs in proliferating cells, which cover about 38% of the annotated human genome. They are mainly heterochromatic and correlate with late replicating loci. Using Hi-C data analysis, we show that interactions of NADs dominate interphase chromosome contacts in the 10-50 Mb distance range. Interestingly, only minute changes in nucleolar association are observed upon senescence. These spatial rearrangements in subdomains smaller than 100 kb are accompanied with local transcriptional changes. In contrast, large centromeric and pericentromeric satellite repeat clusters extensively dissociate from nucleoli in senescent cells. Accordingly, H3K9me3-marked heterochromatin gets remodelled at the perinucleolar space as revealed by immunofluorescence analyses. Collectively, this study identifies connections between the nucleolus, 3D genome structure, and cellular aging at the level of interphase chromosome organization.

  14. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation.

    Directory of Open Access Journals (Sweden)

    Stefan Dillinger

    Full Text Available Mammalian chromosomes are organized in structural and functional domains of 0.1-10 Mb, which are characterized by high self-association frequencies in the nuclear space and different contact probabilities with nuclear sub-compartments. They exhibit distinct chromatin modification patterns, gene expression levels and replication timing. Recently, nucleolus-associated chromosomal domains (NADs have been discovered, yet their precise genomic organization and dynamics are still largely unknown. Here, we use nucleolus genomics and single-cell experiments to address these questions in human embryonic fibroblasts during replicative senescence. Genome-wide mapping reveals 1,646 NADs in proliferating cells, which cover about 38% of the annotated human genome. They are mainly heterochromatic and correlate with late replicating loci. Using Hi-C data analysis, we show that interactions of NADs dominate interphase chromosome contacts in the 10-50 Mb distance range. Interestingly, only minute changes in nucleolar association are observed upon senescence. These spatial rearrangements in subdomains smaller than 100 kb are accompanied with local transcriptional changes. In contrast, large centromeric and pericentromeric satellite repeat clusters extensively dissociate from nucleoli in senescent cells. Accordingly, H3K9me3-marked heterochromatin gets remodelled at the perinucleolar space as revealed by immunofluorescence analyses. Collectively, this study identifies connections between the nucleolus, 3D genome structure, and cellular aging at the level of interphase chromosome organization.

  15. Organization and development of the Brazilian nuclear programme

    International Nuclear Information System (INIS)

    Pinto, C.S.M.; Souza, J.A.M. de; Grinberg, M.; Alves, R.N.; Costa, H.M. da; Grimberg, M.

    1977-01-01

    The paper presents the Brazilian Nuclear Energy Programme, its development, the organizations and the distribution of responsibilities involved in its execution at the present time. The nuclear power policy is established at the Presidency of the Republic and is planned, executed and controlled through the Ministry of Mines and Energy. Directly subject to the Ministry is the Brazilian Nuclear Energy Commission (CNEN), which has regulatory, standardization, licensing, planning and surveillance functions. The nuclear fundamental research and manpower formation are also under CNEN responsibility. Also subject to the Ministry are two companies responsible for the execution of the Programme: the Centrais Eletricas Brasileiras S.A. - Eletrobras, which advises on the granting of permits for the construction and operation of nuclear power plants, and the Empresas Nucleares Brasileiras S.A. - Nuclebras, which holds the monopoly of the nuclear fuel cycle in the country, designs and builds nuclear power plants and provides assistance to the electric utilities and promotes the participation of Brazilian industry. Besides describing the new distribution of regulatory functions given by law to CNEN, the paper gives special emphasis to the large industrial complex in the process of being established through the setting-up of the many Nuclebras subsidiaries in joint venture with German firms under the Industrial Co-operation Agreement Between Brazil and the Federal Republic of Germany in the Field of the Peaceful Uses of Nuclear Energy. The programmes for these subsidiaries are presented and their participation in the Brazilian Nuclear Energy Programme is discussed. The technology transfer aspects of the industrial activities are also discussed. (author)

  16. A Guidebook for Evaluating Organizations in the Nuclear Industry - an example of safety culture evaluation

    International Nuclear Information System (INIS)

    Oedewald, Pia; Pietikaeinen, Elina; Reiman, Teemu

    2011-06-01

    Organizations in the nuclear industry need to maintain an overview on their vulnerabilities and strengths with respect to safety. Systematic periodical self assessments are necessary to achieve this overview. This guidebook provides suggestions and examples to assist power companies but also external evaluators and regulators in carrying out organizational evaluations. Organizational evaluation process is divided into five main steps. These are: 1) planning the evaluation framework and the practicalities of the evaluation process, 2) selecting data collection methods and conducting the data acquisition, 3) structuring and analysing the data, 4) interpreting the findings and 5) reporting the evaluation results with possible recommendations. The guidebook emphasises the importance of a solid background framework when dealing with multifaceted phenomena like organisational activities and system safety. The validity and credibility of the evaluation stem largely from the evaluation team's ability to crystallize what they mean by organization and safety when they conduct organisational safety evaluations - and thus, what are the criteria for the evaluation. Another important and often under-considered phase in organizational evaluation is interpretation of the findings. In this guidebook a safety culture evaluation in a Nordic nuclear power plant is presented as an example of organizational evaluation. With the help of the example, challenges of each step in the organizational evaluation process are described. Suggestions for dealing with them are presented. In the case example, the DISC (Design for Integrated Safety culture) model is used as the evaluation framework. The DISC model describes the criteria for a good safety culture and the organizational functions necessary to develop a good safety culture in the organization

  17. Nuclear Accidents Archive Knowledge Organization System Portal “NAAKOS”: An Application of Semantic Technologies in the Nuclear Domain

    International Nuclear Information System (INIS)

    Atieh, T.

    2016-01-01

    Full text: In line with the IAEA Action Plan on Nuclear Safety, the IAEA was requested to assist Member States enhancing transparency and effectiveness of communication among operators, regulators and various international organizations, and supporting wide dissemination of safety related technical information on nuclear safety. In this context, the IAEA was further asked to analyse and preserve lessons learned from the Fukushima Daiichi NPP accident, as well as from past major incidents and radiological events. The IAEA NKM Section has launched the Nuclear Accidents Repository Portal Knowledge Organization System “NAAKOS” initiative which aims at collecting and preserving data, information, and knowledge related to nuclear accidents and making this knowledge available through one single access point, while ensuring their long term preservation. The NKM Section has developed the Nuclear Accidents Taxonomy which will be used, along other nuclear taxonomies, to enhance information retrieval. It would also include the use of semantic technologies, data mining and linked data to support users beyond the traditional search facilities. The overall objective is to assist to find predefined measures in a timely manner that could prevent, or at least minimize the adverse effects of incidents. (author

  18. Organization of the internal dosimetry in the Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Manchena, P.; Soliet, E.

    1998-01-01

    From the beginning of the exploitation of the nuclear energy of Espanna, the nuclear facilities have had Services of Personal Dosimetry with the appropriate means to determine the dose. so much internal as external, of the personnel that mentioned facilities works. All the nuclear power stations use advanced systems of teams with object of detecting the radionuclides incorporation in the organism and calculation programs based on the recent recommendations of the International Commission of Radiological Protection (ICRP) for the determination of the derived doses

  19. Organization and development of the Brazilian nuclear program

    International Nuclear Information System (INIS)

    Pinto, C. Syllus M.; Alves, R. Nazare; Lepecki, W.; Costa, H.M. da; Grinberg, M.; Grimberg, M.

    1977-01-01

    The paper presents the Brazilian Nuclear Energy Program: its development until the present stage, as well as the organizations and the distribution of responsibilities involved in its execution at the present time. The nuclear power policy is established at the Presidency of the Republic and is planned, executed and controlled through the Ministry of Mines and Energy. Directly subject to the Ministry is the Brazilian Nuclear Energy Commission (CNEN), which has regulatory, standardization, licensing, planning and surveillance functions. The nuclear fundamental research and manpower formation are also under CNEN responsibility. Also subject to the Ministry are two companies responsible for the execution of the Programme: the Centrais Eletricas Brasileiras S.A. - ELETROBRAS, which advises on the granting of permits for the construction and operation of nuclear power plants, and the Empresas Nucleares Brasileiras S.A. - NUCLEBRAS, which holds the monopoly of the nuclear fuel cycle in the country, designs and builds nuclear power plants and provides assistance to the electric utilities as well as promotes the participation of the Brazilian industry in the nuclear field. Besides describing the new distribution of regulatory functions given by law to the CNEN, this paper gives special emphasis to the large industrial complex which is in the process of being established with the setting-up of the many NUCLEBRAS subsidiaries in joint-venture with German firms in the nuclear field, as a consequence of the Industrial Cooperation between Brazil and the Federal Republic of Germany in the Field of the Peaceful Uses of Nuclear Energy signed between the two countries on June 27, 1975. The programs for these subsidiaries are presented and their participation in the Brazilian Nuclear Energy Programme is discussed. The technology transfer aspects of the industrial activities are also discussed, based on the Government's policy on the subject [es

  20. Australian Nuclear Science and Technology Organization Act 1987 - No 3 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this Act (ANSTO Act) is to establish a successor to the Australian Atomic Energy Commission (AAEC) set up under the Atomic Energy Act 1953. The Act provides for a new Organization with functions which, according to Government policy, better reflect the directions in which Australia's principal research organization should tend in that area, namely realignment of AAEC activities away from work on the nuclear fuel cycle, towards greater emphasis on applications of radioisotopes and radiation in medicine, industry, agriculture, science, commerce, etc. ANSTO is prohibited from undertaking any R and D into the design and production of nuclear weapons or nuclear explosive devices. (NEA) [fr

  1. Communication challenges in the perspective of nuclear organizations in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tariana Brocardo, E-mail: tariana@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Comunicações e Artes

    2017-07-01

    The aim of this paper is to discuss the results of a study which reveals the communication challenges faced by organizations of the nuclear segment in Brazil towards its public acceptance. This is a descriptive study with qualitative approach based on primary data collection made through interview with non-probabilistic sample and categorical content analysis as method. The study was carried out with managers, technicians and communicators of three representative organizations of the segment in the country – CNEN, Eletronuclear and IPEN – in the period ranging from October, 2015, to March, 2016, as part of a greater study composing the author’s Master’s dissertation presented at Universidade de São Paulo in October, 2016. As results, the main communication challenges spotted by nuclear professionals in Brazil are lack of public acceptance of the nuclear energy in the country, followed by low levels of communication of the benefits of the nuclear field, lack of budget for investing in communication strategy and activities and institutional bureaucracy, as well as political motives and professionals being politically appointed for holding communication positions. Other communication-related challenges faced by the nuclear field in Brazil mentioned by interviewees include employees without adequate amount of time to dedicate to communication or unfit for this specific work, excessive use of technical language, discredit of the nuclear area within local society, lack of interest by the media and difficulty for hiring new communication professionals. This research was financially supported by CAPES. 1. (author)

  2. Communication challenges in the perspective of nuclear organizations in Brazil

    International Nuclear Information System (INIS)

    Machado, Tariana Brocardo

    2017-01-01

    The aim of this paper is to discuss the results of a study which reveals the communication challenges faced by organizations of the nuclear segment in Brazil towards its public acceptance. This is a descriptive study with qualitative approach based on primary data collection made through interview with non-probabilistic sample and categorical content analysis as method. The study was carried out with managers, technicians and communicators of three representative organizations of the segment in the country – CNEN, Eletronuclear and IPEN – in the period ranging from October, 2015, to March, 2016, as part of a greater study composing the author’s Master’s dissertation presented at Universidade de São Paulo in October, 2016. As results, the main communication challenges spotted by nuclear professionals in Brazil are lack of public acceptance of the nuclear energy in the country, followed by low levels of communication of the benefits of the nuclear field, lack of budget for investing in communication strategy and activities and institutional bureaucracy, as well as political motives and professionals being politically appointed for holding communication positions. Other communication-related challenges faced by the nuclear field in Brazil mentioned by interviewees include employees without adequate amount of time to dedicate to communication or unfit for this specific work, excessive use of technical language, discredit of the nuclear area within local society, lack of interest by the media and difficulty for hiring new communication professionals. This research was financially supported by CAPES. 1. (author)

  3. Trend of nuclear power development in main countries and perspective of nuclear industry after the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2011-01-01

    Fukushima Daiichi Accident occurred in March 11, 2011 was of highest interest in the world and had been reported worldwide from relevant Japanese organizations almost in real time just after happened. This article overviewed five month's response of government and energy related organization of each country and international agency and summarized effects of the accident on nuclear power in energy policy of each country as well as perspective of nuclear industry responded to change of market trend. After the accident, basic policy to regard nuclear power as important was maintained with enhancing reactor safety against extreme events in countries choosing nuclear power as important and requisite energy and there appeared such a trend of nuclear power phase-out in countries promoting nuclear power prudently. Choice of nuclear power would be decided on energy state of each country and was not affected before and after the accident. Trend of nuclear business was closely related with that of market and no fundamental change was observed although some industries with revenue from business in nuclear power phase-out country or cancelled project after the accident were obliged to be affected. (T. Tanaka)

  4. Present state of nuclear regulation organizations of main countries in the world. Importance of regulation staffs and requirements

    International Nuclear Information System (INIS)

    Nishida, Naoki

    2013-01-01

    After Fukushima accident, NRA (Nuclear Regulation Authority) was established in Japan as an independent organization from promotion. In order to perform effective and reliable nuclear regulation, it was important management organization such as nuclear regulation commission worked efficiently, and also requirements for nuclear regulation staffs engaged in actual regulatory works were of importance so as for appropriate decision making or judgments of management organization. Since regulation staffs needed professional expertise and technical judgment capabilities in wide areas including other than nuclear energy, various efforts had been done to get able regulation staffs in US, France and UK nuclear regulation organizations concerned, which became clarified after overseas investigation for this article. Since knowledge in nuclear industry could be used for effective regulation, mid-career recruitment had been employed in regulation organization of each country so as to take such knowledge and so it was important how to utilize industrial knowledge under appropriate conditions compatible with independence of regulation organization. (T. Tanaka)

  5. State of the art of nuclear facilities with organic cooled reactors

    International Nuclear Information System (INIS)

    Brede, O.

    1984-01-01

    USA, Canadian, and USSR activities aimed at developing nuclear facilities with organic cooled reactors are summarized. The facilities OMRE, PNPF, WR-1, and ARBUS are described, discussing in particular the problems of the chemistry of organic coolants. Finally, problems of further development and prospects of the application of organic cooled reactors are briefly outlined. (author)

  6. Europe's nuclear dominos

    International Nuclear Information System (INIS)

    Sharp, J.

    1993-01-01

    As long as the United States continues to play a leading role in NATO, the incentive for European powers to acquire independent nuclear weapons is virtually zero. Most European power, however, have relatively sophisticated nuclear establishments and could easily manufacture nuclear explosives if they judged that their security required an independent capability. They might judge so if the United States pulls out of Europe and out of NATO. It is the opinion of the author that if the United States withdraws, and if France and Britain insist on maintaining their current status as independent nuclear weapons powers, they will encourage proliferation by example. The likelihood of different countries deciding to manufacture nuclear weapons under these cicumstances is evaluated. The future of NATO is assessed. The conclusions of and future structure of the Conference on Cooperation and Security in Europe (CSCE) is discussed. The impact of United Nations involvement in preventing proliferation is evaluated. Recommendations are proposed for the utilization of existing organizations to deter proliferation in Europe

  7. The year 2000 embedded systems problem to maintain the safety of nuclear installations

    International Nuclear Information System (INIS)

    Ardisasmita, M.S.

    1999-01-01

    The Y2K problem may impact on nuclear installations in a number of ways because embedded systems are used in nuclear routine operation, monitoring and control system. The very simplest embedded systems are capable of performing only a single function or set of functions to meet a single predetermined purpose. In more complex systems the functioning of the embedded system is determined by an application program that enables the embedded system to be used for a particular purpose in a specific application. The simplest devices consist of a single microprocessor which may itself be packaged with other chips in a hybrid system or Application Specific Integrated Circuit (ASIC). Its input comes from a detector or sensor and its output goes to a switch or activator which may start or stop the operation of a positioning motors or, by operating a valve, may control the flow of cooling system to reactor core. Embedded systems in our organization are also be found in Batan security systems. These include systems for the security of buildings and premises, and in the communication systems on which these depend. In the enclosed paper we demonstrate the use of analytic model and reliability analysis. The subject of this reliability test is to detect the components of the embedded system with PLC's that could fail on Y2K problem in nuclear installation and safety system. (author)

  8. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  9. Atom's eve: ending the nuclear age - an anthology

    International Nuclear Information System (INIS)

    Reader, M.; Hardert, R.A.; Moulton, G.L.

    1980-01-01

    In this volume over forty experts and advocates examine the implications of the nuclear fuel cycle and its hazards to critical human issues. They address such matters as the link between cancer and low level radiation, the failure to find reliable ways to dispose of radioactive wastes, known genetic effects of radiation, the political repression necessary to maintain a nuclear society, and all the other politics and controversies in the growing movement against nuclear power. Included are a checklist of energy alternatives and organizations, a calendar of major nuclear events from 1945 to the present, and a nuclear bibliography of books and audiovisual material

  10. Nuclear reactor control method for maintaining an appreciably constant axial distribution of power with load variations

    International Nuclear Information System (INIS)

    Morita, Toshio.

    1975-01-01

    A nuclear reactor control method is described in which the power variations of the reactor are controlled partly by varying the concentration of the neutron absorbing element and partly by varying the positions of the control rods, in order to maintain the axial distribution of power appreciably symmetrical during the normal operation of the reactor. The control points are located in the upper and lower halves of the core. The controls are operated to maintain the output power difference between the upper and lower halves of the core, based on the total output power (axial deviation) significantly equal to a predetermined optimum figure during the entire running of the reactor, including when there are power variations. The optimum value is obtained by determining the axial deviation at full power with the xenon in balance and all the control rods withdrawn from the fuel area of the core. This optimum value is recalculated after a period appreciably equal to that of a month's operation at full power. This method applies in particular to PWR type reactors [fr

  11. Evaluated Nuclear Structure Data File (ENSDF)

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1991-01-01

    The Evaluated Nuclear Structure Data File (ENSDF), is maintained by the National Nuclear Data Center (NNDC) on behalf of the international Nuclear Structure and Decay Data (NSDD) network organized under the auspices of the International Atomic Energy Agency. ENSDF provides evaluated experimental nuclear structure and decay data for basic and applied research. The activities of the NSDD network, the publication of the evaluations, and their use in different applications are described. Since 1986, the ENSDF and related numeric and bibliographic data bases have been made available for on-line access. The current status of these data bases, and future plans to improve the on-line access to their contents are discussed. 8 refs., 4 tabs

  12. Pursuit of nuclear science and technology education

    International Nuclear Information System (INIS)

    Rangacharyulu, C.

    2009-01-01

    While it is quite encouraging to note that there is a nuclear renaissance underway around the world, there is a growing concern that the knowledge-base of nuclear technologies will be lost. Several international organizations are making concerted efforts to avert this situation by establishing collaborative workshops etc. In Western Canada, our challenges and opportunities are many-fold. As a uranium mining region, we can engage our economy in the full life-cycle of the nuclear energy industry. It is also important that we maintain and augment nuclear technologies. We need to develop the infrastructure to jump-start the education and training of the youth. We are taking a multi-prong approach to this end. We are initiating specializations in undergraduate programs which emphasize nuclear radiation physics and technology. We are collaborating with Canadian organizations such as University Network of Excellence in Nuclear Engineering (UNENE) and University of Ontario Institute of Technology (UOIT). We are organizing collaborations with our colleagues at foreign institutions in Europe and Asia to provide an international component. We are also working with local industry and health organizations to provide a wide-range of learning opportunities to students by engaging them in research projects of immediate interest to professionals. My presentation will focus on these developments and we will also seek thoughts and suggestions for future collaborations.

  13. Prestigious nuclear research organization orders Silicom's cutting-edge server adapters

    CERN Multimedia

    2003-01-01

    "Silicom Ltd today announced that one of the world's largest and most prestigious nuclear research organization has placed an initial order for its Gigabit Ethernet Server Adapters. Silicom's high-performance adapters will be deployed in the organization's state-of-the-art particle physics laboratory servers to help them attain reliable gigabit transfer rates" (1/2 page).

  14. Role of international organizations in promoting nuclear medicine in the developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Nofal, M

    1993-12-31

    Today, because of the diversity of its applications - radiation and radionuclides for medical and biological purposes are used in more countries and in more laboratories than any other application of atomic energy. International organizations, mainly the IAEA and the WHO, have played a significant role in the spread of this nuclear technology in developing countries. There are altogether 112 member states of the Agency, about 71 of them can be classified as developing countries. Out of them, nearly 56 have some kind of nuclear medicine. By that I mean there is some medical use of radioisotopes, be it imaging, radioimmunoassay or the old thyroid uptake. In most of these countries, the personnel working in nuclear medicine has been trained abroad. Training can be as short as few weeks abroad in the form of attendance at one of the four or six week training courses offered by an international organization. Occasionally it is through a fellowship offered by the same organizations. In terms of technology and training, Nuclear Medicine, in its present form, can thus be considered a high technology imported medicine in many of these countries

  15. Role of international organizations in promoting nuclear medicine in the developing countries

    International Nuclear Information System (INIS)

    Nofal, M.

    1992-01-01

    Today, because of the diversity of its applications - radiation and radionuclides for medical and biological purposes are used in more countries and in more laboratories than any other application of atomic energy. International organizations, mainly the IAEA and the WHO, have played a significant role in the spread of this nuclear technology in developing countries. There are altogether 112 member states of the Agency, about 71 of them can be classified as developing countries. Out of them, nearly 56 have some kind of nuclear medicine. By that I mean there is some medical use of radioisotopes, be it imaging, radioimmunoassay or the old thyroid uptake. In most of these countries, the personnel working in nuclear medicine has been trained abroad. Training can be as short as few weeks abroad in the form of attendance at one of the four or six week training courses offered by an international organization. Occasionally it is through a fellowship offered by the same organizations. In terms of technology and training, Nuclear Medicine, in its present form, can thus be considered a high technology imported medicine in many of these countries

  16. The epigenetics of nuclear envelope organization and disease

    International Nuclear Information System (INIS)

    Schirmer, Eric C.

    2008-01-01

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics

  17. Radiation protection organization in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Yang Maochun

    1993-01-01

    The French way of radiation protection management has been adopted by Guangdong Nuclear Power Station (GNPS) but there are some differences. In this paper author describes radiation protection organization in GNPS, special measures having been taken and the present status

  18. Organization model and formalized description of nuclear enterprise information system

    International Nuclear Information System (INIS)

    Yuan Feng; Song Yafeng; Li Xudong

    2012-01-01

    Organization model is one of the most important models of Nuclear Enterprise Information System (NEIS). Scientific and reasonable organization model is the prerequisite that NEIS has robustness and extendibility, and is also the foundation of the integration of heterogeneous system. Firstly, the paper describes the conceptual model of the NEIS on ontology chart, which provides a consistent semantic framework of organization. Then it discusses the relations between the concepts in detail. Finally, it gives the formalized description of the organization model of NEIS based on six-tuple array. (authors)

  19. Maintaining ancient organelles: mitochondrial biogenesis and maturation.

    Science.gov (United States)

    Vega, Rick B; Horton, Julie L; Kelly, Daniel P

    2015-05-22

    The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart. © 2015 American Heart Association, Inc.

  20. How Does Nuclear Organization Maintain Normal Mammary Phenotype?

    Science.gov (United States)

    2005-03-01

    intestinalis is considered to be one of the earliest chordates because whilst the larval stage has a notochord , it is lost in the adult stage. These...although dicated. the larval stage has a notochord , it is lost in the adult stage. These observations suggest a relatively broad phylogenetic cated at

  1. Should Organic Agriculture Maintain Its Opposition to GM? New Techniques Writing the Same Old Story

    Directory of Open Access Journals (Sweden)

    Fern Wickson

    2016-10-01

    Full Text Available Biotechnology is diversifying rapidly through the development and application of new approaches to genome editing and ongoing research into synthetic biology. Proponents of biotechnology are enthusiastic about these new developments and have recently begun calling for environmental movements to abandon their campaigns against Genetically Modified Organisms (GMOs and for organic agriculture to reconsider its exclusion of Genetic Modification (GM. In this article, we begin by describing the diversity of practices that cluster under both the terms GM and organic and show that although there is a clash of different cultures of agriculture at stake, there is also a spectrum of practices existing between these two poles. Having established the terms of the debate, we then go on to analyse whether the organic movement should reconsider its position on GM in light of new plant breeding techniques (NPBTs, using the criteria highlighted as important by the International Federation of Organic Agriculture Movements (IFOAM in their 2016 draft revised position on GMOs. Through this analysis, we suggest that given the in-context-trajectory of biotechnology development, the continued narrow framing of agricultural problems and the ongoing exclusion of important socio-economic, political and cultural dimensions, the organic movement is justified in maintaining its opposition to GM in the face of NPBTs.

  2. FAPIG's activities for public acceptance of nuclear energy. Analytical results of questionnaire executed at organized visits to nuclear power stations

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao

    1999-01-01

    FAPIG organizes a visit to nuclear power station in every November. It is an object that visitors acquire the correct knowledge of nuclear power by looking at the various facilities in the nuclear power stations. The paper showed the analytical results of questionnaire executed at organized visits to the Kashiwazaki-Kariwa nuclear power station. The visitors were 18 women. The questionnaire was carried out by the same problems before and after seminar and a conducted tour. Their impressions and opinions and the changes are analyzed. The speakers used easy words, video, OHP, pamphlet and experimental equipment. These means showed very good results to visitors. The seminar had very large effect on just recognition of safety and need of it. The change of answer proved from 3 to 6 of need and from 0 to 7 of safety of it. Nine members indicated good understanding of seminar content. The interested items in the seminar were measurement of radiation, effects of radiation, reason of decreasing average life, Chernobyl accident, difference between nuclear power and atomic bomb and nuclear power dose not generate carbon dioxide and recycle plutonium after nuclear fission of uranium. (S.Y.)

  3. Nuclear reactor fuel element containing an end piece for maintaining the column of fuel pellets

    International Nuclear Information System (INIS)

    Pajot, Jacques; Rabellino, Jacques.

    1974-01-01

    The nuclear reactor fuel element described has an end piece for maintaining the column of fuel pellets in position inside the element cladding. This end piece has a central compression spring one end of which presses against the pellets and the other against a plug shaped piece fitted with a seat for the spring, a conical piece with an elastic ring around it diverging towards the end in contact with the spring and a head at the opposite end. The connection between the compression spring and the pellets is through an application piece. A central bore provided in the end piece helps balance the pressure inside the element. This element is particularly intended for liquid metal cooled fast neutron reactors [fr

  4. Nuclear safety with operational approach: towards development organization that learn

    International Nuclear Information System (INIS)

    Campos Remiro, R.; Morales de la Cruz, O.

    2014-01-01

    The comprehensive analysis of the latest relevant events that occurred in plants Spanish nuclear, coupled with requirements and requirements imposed in the Nuclear sector, show the anticipation as a necessary tool for ensure a better and more flexible operation of the plant. Such notice must integrated into the operational focus of the units which constitute the Central; process which, in turn, must become one of the pillars of all organization focused in learning. (Author)

  5. Technical and scientific support organizations and strengthening of nuclear regulation (Case study of Moldova)

    International Nuclear Information System (INIS)

    Buzdugan, Artur; Buzdugan, Aurelian

    2010-01-01

    Authors present arguments for establishing of technical and scientific support organizations (TSO) infrastructure as obligatory components of the national radiation protection and nuclear safety infrastructure. In the small countries, like the Republic of Moldova, characterized by insufficient development of nuclear technologies, different social, economic, scientific and, why not, national peculiarities impose opportunity of efficient interaction of regulatory body with TSO. Are presents certain examples of interaction of those organizations. As mentioned, that synergy of such interaction will contribute essentially in implementation of adequate nuclear culture in the country. (author)

  6. Maintaining quality control in a nontraditional nuclear technology degree program

    International Nuclear Information System (INIS)

    DeSain, G.W.

    1989-01-01

    Regents College, created by the Board of Regents of the University of The State on New York in 1971, has been offering, since January 1985, AS and BS degrees in nuclear technology. The impetus for establishing the nuclear technology degrees came from nuclear utility management and had to do with the US Nuclear Regulatory Commission proposed rule regarding degreed operators on shift. There are a variety of ways to earn credits in Regents College degree programs: (1) college courses taken for degree-level credit from regionally accredited colleges; (2) courses sponsored by business, industry, or government that have been evaluated and recommended for credit by the New York National or American Council on Education (ACE's) Program on Noncollegiate Sponsored Instruction (PONSI); (3) military education that has been evaluated by ACE PONSI; (4) approved college-proficiency examinations; and (5) special assessment: an individualized examination of college-level knowledge gained from experience or independent study. Nuclear technology students primarily use college course work, evaluated military education, and proficiency examinations to complete degree programs. However, an increasing number of utilities are having training programs PONSI evaluated, resulting in an increased use of these courses in the nuclear technology degrees. Quality control is a function of several factors described in the paper

  7. Knowledge Loss: A Defensive Model In Nuclear Research Organization Memory

    International Nuclear Information System (INIS)

    Mohamad Safuan Bin Sulaiman; Muhd Noor Muhd Yunus

    2013-01-01

    Knowledge is an essential part of research based organization. It should be properly managed to ensure that any pitfalls of knowledge retention due to knowledge loss of both tacit and explicit is mitigated. Audit of the knowledge entities exist in the organization is important to identify the size of critical knowledge. It is very much related to how much know-what, know-how and know-why experts exist in the organization. This study conceptually proposed a defensive model for Nuclear Malaysia's organization memory and application of Knowledge Loss Risk Assessment (KLRA) as an important tool for critical knowledge identification. (author)

  8. Activities of the nuclear emergency assistance and training center. Strengthening co-operation with parties in normal circumstances

    International Nuclear Information System (INIS)

    Watanabe, Fumitaka; Matsui, Tomoaki; Nomura, Tamotsu

    2005-01-01

    The Japan Nuclear Cycle Development Institute (JNC) and the Japan Atomic Energy Research Institute (JAERI) established the Nuclear Emergency Assistance and Training Center (NEAT) in March 2002. The center aims to provide various support nuclear safety regulatory bodies, local governments and nuclear facility licenses as specialists about nuclear and radiological issues according to the role shown in the Basic Disaster Management Plan. Upon a nuclear and/or radiological disaster occurring in Japan, NEAT will send specialists to the disaster scene, and offer the use of special equipments. NEAT maintains frequent contact with related organizations in normal circumstance. NEAT also participates in nuclear emergency exercises instructed by the parties concerned, which has contributed to the brewing of mutual trust with related organizations. In October 2005, JNC and JAERI merged into a new organization named the Japan Atomic Energy Agency (JAEA). NEAT, as a section of the organization, continuously deals with nuclear emergencies. (author)

  9. Education and Training, and Knowledge Networks for Capacity-Building in Nuclear Security

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2014-01-01

    Conclusions: • Capacity Building (CB) is critical for States to establish and maintain effective and sustainable nuclear security regime. • IAEA is a worldwide platform promoting international cooperation for CB in nuclear security involving more than 160 countries and over 20 Organizations and Initiatives. • IAEA Division of Nuclear Security is ready to continue supporting States in developing their CB through: – Comprehensive Training Programme: more than 80 training events annually – International Nuclear Security Training and Support Centre Network (NSSC) – Comprehensive Education Programme – International Nuclear Security Network (INSEN)

  10. Qualification and actuation of the independent technical supervision organisms in nuclear power plants and others facilities

    International Nuclear Information System (INIS)

    1999-09-01

    This norm presents the following objectives: establishment of the Brazilian National Nuclear Energy Commission requirements for qualifying an institution as independent technical supervision organization, in a specific area of activity related to nuclear power plants and others nuclear or radioactive facilities as appropriated; regulation of the independent technical supervision and others complementary activities to be executed by an independent technical supervision organism

  11. Organization of the operating quality in EDF nuclear power stations

    International Nuclear Information System (INIS)

    Stolz, J.

    1976-01-01

    The organization of operating quality in EDF nuclear stations cover a number of planned and systematic actions of technical and management order carried on at station level and Nuclear Safety Department level. Priority is given to safety quality which has to remain the same during the whole life of the stations; the safety of a station depending from its designing, realization and starting up quality on one hand and from its operating methods on the other [fr

  12. TFIIIC bound DNA elements in nuclear organization and insulation.

    Science.gov (United States)

    Kirkland, Jacob G; Raab, Jesse R; Kamakaka, Rohinton T

    2013-01-01

    tRNA genes (tDNAs) have been known to have barrier insulator function in budding yeast, Saccharomyces cerevisiae, for over a decade. tDNAs also play a role in genome organization by clustering at sites in the nucleus and both of these functions are dependent on the transcription factor TFIIIC. More recently TFIIIC bound sites devoid of pol III, termed Extra-TFIIIC sites (ETC) have been identified in budding yeast and these sites also function as insulators and affect genome organization. Subsequent studies in Schizosaccharomyces pombe showed that TFIIIC bound sites were insulators and also functioned as Chromosome Organization Clamps (COC); tethering the sites to the nuclear periphery. Very recently studies have moved to mammalian systems where pol III genes and their associated factors have been investigated in both mouse and human cells. Short interspersed nuclear elements (SINEs) that bind TFIIIC, function as insulator elements and tDNAs can also function as both enhancer - blocking and barrier insulators in these organisms. It was also recently shown that tDNAs cluster with other tDNAs and with ETCs but not with pol II transcribed genes. Intriguingly, TFIIIC is often found near pol II transcription start sites and it remains unclear what the consequences of TFIIIC based genomic organization are and what influence pol III factors have on pol II transcribed genes and vice versa. In this review we provide a comprehensive overview of the known data on pol III factors in insulation and genome organization and identify the many open questions that require further investigation. This article is part of a Special Issue entitled: Transcription by Odd Pols. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Nuclear information services at the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Burrows, T.W.; Tuli, J.K.

    1997-01-01

    The National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory has maintained and disseminated data from several numeric and bibliographic data bases for many years. These data bases now cover most of low- and medium-energy nuclear physics and are produced by the NNDC and other groups belonging to various international and national networks. The numeric and bibliographic nuclear data bases maintained by the National Nuclear Data Center and access to these data bases is described. The U.S. Nuclear Data and Reaction Data Networks is also briefly described. (author)

  14. Medical profession and nuclear war: a social history

    International Nuclear Information System (INIS)

    Day, B.; Waitzkin, H.

    1985-01-01

    Since World War II, individual physicians and medical organizations in the US have cooperated with the federal government in preparing for nuclear war. While most physicians have maintained a neutral stance, a minority have resisted federal policies. Health professionals participated actively at the wartime laboratories that developed the atomic bomb and in the medical research that followed Hiroshima and Nagasaki. Professional organizations helped with civil defense planning for nuclear conflict during the Cold War of the late 1950s and early 1960s. Medical resistance to nuclear war began in the same period, gained wide attention with the growth of Physicians for Social Responsibility in the early 1960s, declined during the Vietnam War, and vastly increased in the early 1980s. Activism by health professionals usually has responded to government policies that have increased the perceived risk of nuclear conflict. The recent return of civil defense planning has stimulated opposition in medical circles. Ambiguities of medical professionalism limit the scope of activism in the nuclear arena. These ambiguities concern the interplay of organized medicine and government, tensions between science and politics, and the difficulties of day-to-day work in medicine while the arms race continues

  15. A concept map aiding the knowledge management to build the collective knowledge in a nuclear organization - a case study: IEN

    International Nuclear Information System (INIS)

    Cussa, Adriana L.D.; Fonseca, Marcus Vinicius de A.

    2009-01-01

    This paper's proposition is to build and apply a tool to aid the knowledge management based in the intellectual capital as a value and competitiveness aggregator for a science, technology and innovation public organization in the Brazilian's nuclear area - the 'Instituto de Engenharia Nuclear - IEN'. It will be presented the hole survey of the finalistic activities and what has been considered the intellectual capital to be developed and strategically validated in its decision making practices. It was also surveyed the inter relations between the stakeholders, hereby the maintainer (CNEN), federal government, support foundations, public employees and contributors, in many different aspects focusing the continuity of research and development (R and D) activities and its results. As it is going to be detailed, the tool has been designed based in the concept map methodology using the Cmap tools software. The hole cognitive basis used here was constructed under disclosed and recognized knowledge models about knowledge, knowledge management, knowledge transference and intellectual capital. (author)

  16. More efficient integrated safeguards by applying a reasonable detection probability for maintaining low presence probability of undetected nuclear proliferating activities

    International Nuclear Information System (INIS)

    Otsuka, Naoto

    2013-01-01

    Highlights: • A theoretical foundation is presented for more efficient Integrated Safeguards (IS). • Probability of undetected nuclear proliferation activities should be maintained low. • For nations under IS, the probability to start proliferation activities is very low. • The fact can decrease the detection probability of IS by dozens of percentage points. • The cost of IS per nation can be cut down by reducing inspection frequencies etc. - Abstract: A theoretical foundation is presented for implementing more efficiently the present International Atomic Energy Agency (IAEA) integrated safeguards (ISs) on the basis of fuzzy evaluation of the probability that the evaluated nation will continue peaceful activities. It is shown that by determining the presence probability of undetected nuclear proliferating activities, nations under IS can be maintained at acceptably low proliferation risk levels even if the detection probability of current IS is decreased by dozens of percentage from the present value. This makes it possible to reduce inspection frequency and the number of collected samples, allowing the IAEA to cut costs per nation. This will contribute to further promotion and application of IS to more nations by the IAEA, and more efficient utilization of IAEA resources from the viewpoint of whole IS framework

  17. Maintaining Gamma Spectrometer and its challenges

    International Nuclear Information System (INIS)

    Mazlipah Mohd Ramlan; Ramzah Mohamed; Saipo Bahari Abdul Ratan

    2011-01-01

    This paper discusses the activities of the Group Maintenance of Instrumentation and Automation Center. Maintenance of group activities is to provide maintenance service on equipment at the Malaysian Nuclear Agency. Category of equipment is maintained instrumentation / nuclear electronics, scientific, analytical, security, communications, audio visual and other related. Maintenance services is to support research and development and scientific services at Nuclear Malaysia. Equipment maintenance services including repair service (CM), periodic maintenance (PM), technical testing and calibration of new devices. The objective is to ensure that maintenance activities can be the hope of an equipment, extend the life of the operation of the equipment, reducing 'down time' and reduce maintenance costs. Among the challenges in managing the maintenance of equipment in Nuclear Malaysia is the lack of expertise in specific areas such as nuclear instrumentation, analytical instruments, the problem of the inability of local suppliers to provide after-sales service, lack of spares, maintenance and nothing less emphasis on preventive maintenance schedule is perfect. (author)

  18. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture.

    Science.gov (United States)

    Saad, Hicham; Cobb, Jennifer A

    2016-10-01

    The nucleus is a hub for gene expression and is a highly organized entity. The nucleoplasm is heterogeneous, owing to the preferential localization of specific metabolic factors, which lead to the definition of nuclear compartments or bodies. The genome is organized into chromosome territories, as well as heterochromatin and euchromatin domains. Recent observations have indicated that nuclear organization is important for maintaining genomic stability. For example, nuclear organization has been implicated in stabilizing damaged DNA, repair-pathway choice, and in preventing chromosomal rearrangements. Over the past decade, several studies have revealed that dynamic changes in the nuclear architecture are important during double-strand break repair. Stemming from work in yeast, relocation of a damaged site prior to repair appears to be at least partially conserved in multicellular eukaryotes. In this review, we will discuss genome and nucleoplasm architecture, particularly the importance of the nuclear periphery in genome stability. We will also discuss how the site of relocation regulates repair-pathway choice.

  19. Nuclear power: which industrial approach will preserve a French asset?

    International Nuclear Information System (INIS)

    Machenaud, H.

    2012-01-01

    France's strategic decision in favor of nuclear energy in the 1970's has given rise to an organization of this industry with clearly defined roles and responsibilities for all parties. This has led to the mastering of industrial production of the whole chain from mining to fuel reprocessing and to waste disposal. Nuclear safety was at any stage of the chain the priority number one. The French nuclear industry is present on the international scene and thus maintain its know-how and capacities despite the ups and downs of the nuclear market. Today 240.000 people work in France in the nuclear sector. France has followed a consistent energy policy during the last 50 years and benefits from an important and homogeneous fleet of reactors which has generated a rich feedback experience on reactor operation. The tasks that face the French nuclear industry are: -) to comply with the requirements of the Complementary Safety Assessments that have been performed on all French nuclear facilities, -) to maintain and upgrade the power plants (most of them are facing their 3. decennial overhaul), -) to prepare the nuclear systems of tomorrow, and -) to export the French know-how

  20. Joint submission of the Canadian Nuclear Association and the Organization of CANDU Industries to the Ontario Nuclear Safety Review

    International Nuclear Information System (INIS)

    1987-08-01

    The manufacturing company members of the Canadian Nuclear Association and the Organization of CANDU Industries are proud to have played their part in the development of the peaceful application of nuclear technology in Ontario, and the achievement of the very real benefits discussed in this paper, which greatly outweigh the hypothetical risks

  1. IAEA Perspectives and Programme on Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Grosbois, J. de

    2016-01-01

    Full text: There are many challenging issues facing Member States with respect to knowledge management. Each country’s situation and history with nuclear technology is different and strategic issues and immediate priorities are not the same. Member States recognize nuclear technology is inherently complex and requires advanced specialization and expertise. Maintaining a competent workforce is always of concern, especially in organizations with an aging workforce. Countries making major transitions such as gearing up for new build construction or decommissioning projects face particular challenges. Licensed nuclear facilities operate under a range of different organizational business models. For example, some rely heavily on outsourced and external services, and different approaches are needed to ensure critical knowledge is available and maintained. For countries phasing out nuclear power, critical knowledge must be maintained to ensure decommissioning and environmental remediation of sites is done in a responsible manner. Newcomer countries have the difficult challenge of building up their needed workforce competencies to be ready in time to support construction and commissioning schedules. The capture, preservation, transfer and overall management of design knowledge over the technology lifecycle is another important issue that is needed to ensure both the economics and safety of nuclear facilities over their lifetimes, and is especially important to ensure life extension and refurbishment projects can be implemented cost effectively. This presentation will present an overall perspective of the major knowledge management challenges and issues facing the nuclear sector and provide an overview of the IAEA’s nuclear knowledge management programme and initiatives that support Member States in addressing them. (author

  2. International conference on security of nuclear material and radioactive sources opens in Stockholm

    International Nuclear Information System (INIS)

    2001-01-01

    The IAEA develops basic guidelines that have proven to be of significant importance in the development of national physical protection systems and international agreements. The IAEA has initiated a number of activities, including training, technology transfer and peer review, to support Member States in improving their nuclear material accountancy and physical protection systems at State and facility levels. The Agency also maintains a database of reported incidents. The Conference is organized by the IAEA, hosted by Swedish Nuclear Power Inspectorate and held in co-operation with the World Customs Organization, the International Criminal Police Organization (INTERPOL) and the European Police Office

  3. Maintaining public confidence in UK nuclear safety regulation

    International Nuclear Information System (INIS)

    Williams, L.

    2001-01-01

    The key to maintaining stake holder confidence is competence and having the resources necessary to not only carry out regulatory functions effectively, but also to keep the public informed and respond to their questions. This does not come cheap but it is a price well worth paying. (N.C.)

  4. Challenges Faced by Regulators and Technical, Scientific and Support Organizations (TSOs) in Enhancing Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Travers, W.D.

    2011-01-01

    Renewed interest in new reactor build programmes, not only in countries with already established nuclear programmes but also in many other countries with limited or no workforce experienced in the design, licensing, construction and operation of nuclear power plants, has resulted in a need for technical, scientific and support organizations (TSOs) to support regulatory bodies in carrying out their mandated responsibilities. The primary function of a regulatory body, such as the Federal Authority for Nuclear Regulation (FANR) in the United Arab Emirates (UAE), is to regulate the safe use of nuclear facilities and radioactive material for peaceful civilian purposes. In so doing, the regulatory body needs to provide a clear and focused approach to: safety, security and safeguards for licensing; inspection and enforcement of reactor design; construction; commissioning; operation; decommissioning; nuclear waste management activities; and the use, possession or transfer of special nuclear materials and activities within the country. Accomplishing this goal requires a highly educated, multidisciplinary, diverse workforce with significant work experience. Recognizing that it takes several decades and a lot of resources to achieve self-sufficiency, many countries, particularly emergent nuclear countries, would have to rely on TSOs to start their programmes and to carry out their oversight responsibilities. Towards that end, FANR is working closely with international counterparts, the International Atomic Energy Agency and TSOs to exchange information, expertise, industry experience and ongoing research to ensure that high levels of safety, security and safeguards are established and maintained in reactor design and operation throughout the life of the facility, and that special nuclear material within the UAE is properly documented and controlled, is not stolen, lost or diverted to any illicit or non-peaceful activities, and does not pose unreasonable radiological risk due

  5. Contribution of International and Regional Networks in Developing and Maintaining Human Capacity Building for Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Osman, O. E.

    2015-01-01

    Capacity is defined as; the ability of individuals and organizations or organizational units to perform functions effectively, efficiently and sustainably. Capacity building is an evidence-driven process of strengthening the abilities of individuals, organizations, and systems to perform core functions sustainably, and to continue to improve and develop over time. This article will explain the contributions of knowledge networks at the national, regional and international level in developing the existing capacity building and human resources for regulatory body in Sudan, to confront the future challenges regarding to nuclear power program- safety and security. The article will compare the advantages and effectiveness of these knowledge networks (IAEA, ANNuR, FNRBA) in capacity building and enhance the infrastructure of national regulatory body. And how these networks contribute to enable the regulatory bodies in Africa and Arab countries, to establish and strengthen their regulatory infrastructure for nuclear power programme consistent with international standards and recommendations. As well as the recommendations resulting and deduced from comparative study to promote the exchange of knowledge, experience and information among its members. (author)

  6. Hungarian experience in the role of a Technical Support Organization - Expert support and R and D activities in nuclear safeguards and forensics, participation in international cooperation

    International Nuclear Information System (INIS)

    Szeles, E.; Kovacs, A.; Biro, T.

    2010-01-01

    The Institute of Isotopes (IoI) of the Hungarian Academy of Sciences has been - since the mid-fifties - engaged not only in basic and applied research related to the use of radioisotopes in Hungary but also in the production, trade and safety of radioisotopes supported by the central accountancy at national level. Based on its experience and capabilities the technical tasks of nuclear safeguards and forensics have been delegated to the Institute by governmental decrees. Thus the Institute is one of the Technical Support Organizations of the Hungarian Atomic Energy Authority (HAEA) providing expert support in the areas mentioned above and maintaining the central isotope registry. An Agreement between HAEA and IoI specifies both routine and R and D activities supporting authority functions. These include the development and application of both non-destructive (i.e. gamma spectrometry, neutron-coincidence counting and laser ablation inductively coupled plasma mass spectrometry) and destructive (i.e. inductively coupled plasma mass spectrometry) analytical methods to satisfy domestic needs as well as to explore novel methods both for safeguards and nuclear forensics purposes. Methods have been developed to identify and quantify nuclear material in fresh and spent fuel assemblies and to characterize seized or found nuclear material of unknown origin and also environmental samples. The validation of these measurement methods have been performed in inter-laboratory comparisons organized by the Joint Research Centers of the European Union and by other international organizations such as IAEA and the International Technical Working Group on Nuclear Smuggling (ITWG). The presentation describes TSO activities both at domestic level and in potential international cooperation initiatives. The need of regional cooperation is emphasized discussing advantages and difficulties. (author)

  7. Experience with nuclear safety standards development in non-governmental international organizations

    International Nuclear Information System (INIS)

    Becker, K.

    1985-01-01

    Besides the IAEA as a 'governmental' organization dealing with basic safety recommendations addressed primarily to the national regulatory bodies in developing countries, two closely related non-governmental international standards organizations have gained extensive experience in the field of nuclear standardization. Over more than 25 years since their formation, both (a) the International Organization for Standardization's (ISO) Technical Committee 85 'Nuclear Energy', in particular in its Sub-Committee 3 'Reactor Technology and Safety' and (b) the International Electrotechnical Commission's (IEC) Technical Committee 45 'Nuclear Instrumentation' have published numerous standards. A brief review is given of these, draft standards, and other documents planned to become international standards. Many of them deal with rather specialized topics typical for 'industrial' standards such as standardized procedures, instruments, methods, materials, test methods, terminology, and signs and symbols, but others are directly related to more basic safety issues. In some areas such as quality assurance, seismic aspects of siting and terminology, there has been in the past occasional overlap in the activities of the NUSS programme, IEC and ISO. Letters of Understanding have since 1981 contributed to clarifying the borderlines and to avoiding redundant efforts. Also, some experiences and problems are described arising, for example, from the harmonization of different national safety philosophies and traditions into universally accepted international standards, and the transfer of international standards into national standards systems. Finally, based on a recent comprehensive compilation of some 3300 nuclear standards and standards projects, an attempt is made to present a cost/benefit analysis and an outlook on future developments. (author)

  8. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  9. Quality assurance systems - a means for an integrating organization of nuclear power plants

    International Nuclear Information System (INIS)

    Adams, H.W.

    1984-01-01

    The operators of nuclear power plants are in the process of introducing quality assurance systems of the type required in Rule 1401 by the German Kerntechnischer Ausschuss (Nuclear Technology Committee). These systems as a cross sectional function cover most of the organizational areas of a nuclear power plant. Their introduction offers an opportunity to harmonize and supplement existing systems where necessary. Integrated quality assurance systems built up on a data base allow existing DP data and other logical data to be organized in such a way that certain sequences of events can be managed by enforced control. This relieves the personnel responsible for the safety of a nuclear power plant of routine jobs and routine decisions. Greater flexibility is created for personal decisions. Organized sequences of events can be monitored by having lists printed out in which the necessary data are combined into data sets. (orig.) [de

  10. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  11. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  12. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  13. Role of Non-Government Organizations in strengthening Kazakstan nuclear export control

    International Nuclear Information System (INIS)

    Tazhibaeva, L.; Prokhodtseva, T.

    2002-01-01

    Non-governmental organizations (NGO) are the structures that were born by the time, the time when deep changes in our society led us to new trends in the all spheres of society development, to new decisions and, as a consequence, to new structural findings that where able to govern, to support and put into reality the new ideas the could not be inserted in the structure assemblies of the former society. All non-governmental organizations in Kazakhstan are younger than ten years old, but they already could be considered highly experienced, for intensity of their activity is rather high. The main advantages of NGOs are flexibility and independent source of ideas, basic data and policy assessment. There are several non-government organizations that are working in the field of non-proliferation and export control. Kazakhstan Nuclear Technology Safety Center (NTSC) is among them. Non-proliferation and export control is only a small part of activity that NTSC is involved in. Non-governmental organizations could be of several types: NGOs that are affiliated with university or institute, independent associations, quasi-governmental structures and various foundations. NTSC complementing efforts of Kazakhstan Atomic Energy Committee (KAEC) in the field of non-proliferation and export control. The activity of NTSC in the field of non-proliferation includes: Holding conferences, seminars and workshops; Creating databases and reports; Develop proposal for legislation; Provide specialized training; Analyze data. NTSC is involved in a number of projects devoted to non-proliferation and export control. The following projects are supported by the US Department of Energy cooperation program on nuclear export controls for Russia and the Newly Independent States: System to review Kazakhstan exports (STROKE); Computerization of historical licensing data; Export control reference materials for Kazakhstan organizations; Additional Protocol. STROKE is a technical analysis database for

  14. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors

    International Nuclear Information System (INIS)

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-01-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs

  15. Maintaining competence in radiological protection in emergency situations - a challenge for the 21st century

    International Nuclear Information System (INIS)

    Weiss, W.

    2003-01-01

    Full text: State of the art radiological protection in emergency situations requires specific resources and competence in a variety of scientific and technical areas. These include e.g. nuclear and reactor physics, metrology, health sciences, radiobiology, food production, waste management, and information technology. In many of these areas a high technical standard is currently available. This standard is based on great efforts of governments, universities/research institutions and the nuclear industry during the second half of the 20 th century. Although the number of scientists and technicians in these areas may appear to be sufficient today at least in some countries, there are strong indicators that future expertise is at risk. The indicators are declining university enrolment, dilution of university course content, high retirement expectations of staff members with little or no replacement planned. During the last decade many international organizations have analyzed the current situation and identified risk areas. Many proposals of general nature are available to take appropriate steps to maintain competence in the 21 st century. These proposals include the following recommendations for governments, for the industry, and for international and supra-national organisations. Governments are encouraged to engage in long term strategic planning and funding to maintain competence; organize networks of collaboration between specialised organisations to maintain critical groups size; take responsibility for ensuring that human resources are available to meet obligations; support 'educational networks' among universities, research institutions, and the industry; provide scholarships, fellowships, and traineeships as part of their funding policy. The industry is encouraged to maintain high level training and in house education to meet their specific needs; develop research programmes which are attractive for students and employees; improve co-operation with

  16. Input of Lithuanian science into nuclear safety improvement, coordination of technical support organizations

    International Nuclear Information System (INIS)

    Maksimovas, G.

    1999-01-01

    VATESI in its activities is very much supported by Lithuanian scientific and technical organizations which are doing expertise of safety analyses of Ignalina NPP. Description of these organizations is presented. Broad international cooperation and assistance programs is underway helping Lithuanians scientific organizations to build own capacity in making nuclear safety research

  17. Contribution of IAEA, FNRBA and ANNuR as Networking in Developing and Maintaining Capacity Building for a nuclear power programme: Comparative study

    International Nuclear Information System (INIS)

    Osman, Omer E.

    2014-01-01

    It is increasingly recognised that the mobilization and exchange of knowledge between different sectors (such as academia, policymakers, Regulators and practitioners) and regions or global can be of paramount importance in the field of Capacity Building for a nuclear power programme. As a result, the number of knowledge networks in this field has risen dramatically in recent years. Some of these networks bring together actors within a specific region, such as European Nuclear Safety Regulators Group (ENSREG), Western European Nuclear Regulators Association (WENRA), The Arab Network of Nuclear Regulators (ANNuR). Still others cover entire continents such as Asian Nuclear Safety Network (ANSN), Asia Pacific Safeguards Network (APSN) and Forum of Nuclear Regulatory Bodies in Africa (FNRBA). Or even operate worldwide and globally, like IAEA Special Support Services, Global Nuclear Safety and Security Network (GNSSN), World Organization of Nuclear Operators (WANO) and International Nuclear Regulators Association (INRA)

  18. Maintaining competence in nuclear safety and waste management research by BMBF

    International Nuclear Information System (INIS)

    Ehrlich, Alexander

    2012-01-01

    Germany is to undertake a structured phasing-out of power generation from nuclear energy. Until the last nuclear power plant is shut down, safety must be guaranteed in line with the very latest developments in science and technology. The R and D work performed is in accord with the resolution for the structured phasing-out of the use of nuclear power. The Federal Ministry of Education and Research (BMBF) with its 'Basic Energy Research 2020+' funding concept supplements institutionally funded work of Helmholtz Institutes in a few core areas to further extend co-operation with universities. Close coordination between institutional and project funding will be ensured via the Alliance for Competence in Nuclear Technology in Germany ('Kompetenzverbund Kerntechnik'). In the area of nuclear safety and disposal research, R and D is carried out on the scientific and technological aspects of safety in existing nuclear reactors, the safety of nuclear disposal, the minimisation of highly radioactive substances ultimately requiring disposal and radiation research. Special attention is to be paid within this concept to the funding of young scientists. In addition to doctorate posts in research projects, special funding instruments are to be offered to promote the next generation of scientists. (orig.)

  19. Nuclear law: organization and responsibilities

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    The paper emphasizes the importance of a special legislation insuring the governmental control of nuclear applications and other related activities. This legislation must establish the authority in charge for the development of peaceful applications of nuclear energy and the specialized body legally competent to insure an independent control of nuclear activities, it must define the principles and the conditions for licensing nuclear activities insuring the physical protection of nuclear materials and installations and must establish the specific rules for nuclear liability in the case of a nuclear accident. A list of IAEA publications related to the safety of nuclear power plants is included

  20. Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body

    Directory of Open Access Journals (Sweden)

    Diana Rüthnick

    2018-05-01

    Full Text Available The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB. The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE, a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC. This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.

  1. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins

    International Nuclear Information System (INIS)

    Duchrow, M.; Schlueter, C.; Key, G.; Kubbutat, H.G.; Wohlenberg, C.; Flad, H.D.; Gerdes

    1995-01-01

    A decade of studies on the human nuclear antigen defined by monoclonal antibody Ki-67 (the 'Ki-67 proteins') has made it abundantly clear that this structure is strictly associated with human cell proliferation and the expression of this protein can be used to access the growth fraction of a given cell population. Until recently the Ki-67 protein was described as a nonhistone protein that is highly susceptible to protease treatment. We have isolated and sequenced cDNAs encoding for this antigen and found two isoforms of the full length cDNA of 11.5 and 12.5 kb, respectively, sequence and structure of which are thus far unique. The gene encoding the Ki-67 protein is organized in 15 exons and is localized on chromosome 10. The center of this gene is formed by an extraordinary 6845 bp exon containing 16 successively repeated homologous segments of 366 bp ('Ki-67 repeats'), each containing a highly conserved new motif of 66 bp ('Ki-67 motif'). The deduced peptide sequence of this central exon possesses 10 ProGluSerThr (PEST) motifs which are associated with high turnover proteins such as other cell cycle-related proteins, oncogenes and transcription factors, etc. Like the latter proteins the Ki-67 antigen plays a pivotal role in maintaining cell proliferation because Ki-67 protein antisense oligonucleotides significantly inhibit 3 H-thymidine incorporation in permanent human tumor cell lines in a dose-dependent manner. (author). 30 refs, 2 figs

  2. Maintainability design guide

    International Nuclear Information System (INIS)

    Pack, R.W.

    1985-01-01

    The Human Factors Design Guide for Maintainability provides guidance for systematically incorporating good human factors techniques into the design of power plants. The guide describes a means of developing a comprehensive program plan to ensure compliance with the human factors approaches specified by the utility. The guide also provides specific recommendations for design practices, with examples, bases, and references. The recommendations are formatted for easy use by nuclear power plant design teams and by utility personnel involved in specification and design review. The guide was developed under EPRI research project RP2166-4 and is currently being published

  3. Complex organizations: the case of the Brazilian nuclear sector

    International Nuclear Information System (INIS)

    Xavier, Roberto Salles

    2009-01-01

    The resumption of the Brazilian Nuclear Program (BNP), in the proposed size and after 20 years of paralysis, requires profound changes in the current organizational modeling of the national nuclear industry. The effectiveness of any process of organizational change is limited to three factors. The theoretical bottleneck happens when you do not know enough about a phenomenon in order to effect the desired changes. The resource bottleneck occurs when knowledge may be available to change people's behavior but the funds necessary for implementation may be lacking. The organizational bottleneck emerges when there are knowledge and resources to solve a problem, but may not able to organize the resources in order to carry out the problem-solving effort. In the case of resumption of BNP seems clear that there is the knowledge of what is needed to make policy and the intention to allocate the necessary resources. But the question is the following: the current organizational model of the Brazilian nuclear sector is consistent with the goals laid down in the scenario of resumption of BNP? That is, is there organizational ability to leverage a program of the size proposed for the nuclear area? Find answers to these questions is crucial, because the organizational model of the Brazilian nuclear sector consists of elements involving a complex interorganizational system. Thus, this article is to examine the appropriateness of the current organizational modeling of the Brazilian nuclear sector to current demands of society. As a result, the article aims to propose recommendations for a remodeling of the nuclear sector, taking into account the current national and international scenarios of nuclear energy. (author)

  4. Education and Training Activities of the SCK-CEN Academy for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Coeck, M.; Kesteloot, N.; Clarijs, T.

    2016-01-01

    Full text: In 2012, The Belgian Nuclear Research Centre SCK-CEN officially launched its “Academy for Nuclear Science and Technology”. Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear facilities, SCK-CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK-CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In order to maintain and extend a competent workforce in nuclear industry, healthcare, research, and governmental organizations, and to transfer this nuclear knowledge to the next generations, the mission of the SCK-CEN Academy comprises four main tasks: (i) providing guidance to young scientists, (ii) organizing of courses, (iii) providing policy support and (iv) caring for critical-intellectual capacities. (author

  5. Effective citizen advocacy of beneficial nuclear technologies

    International Nuclear Information System (INIS)

    McKibben, J. Malvyn; Wood, Susan

    2007-01-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  6. Transition from quality assurance to an integrated management system for nuclear organizations

    International Nuclear Information System (INIS)

    Dua, Shami

    2008-01-01

    The integrated performance- based approach to management systems is a business imperative for the nuclear industry to maintain and enhance its share in the energy sector. The compliance approach has served the industry well to protect its employed, neighbourhood and public at large. It is well recognized that industry has to build on this experience and move to the next level. The model described in this paper provides a fairly flexible approach to move towards a more integrated performance based approach to achieve both the compliance and business related goals and objectives. Compliance with quality and safety requirements must remain a key focus for the industry. The model presented provides a practical approach to develop the business and compliance processes and documentation that can be integrated at the job and project execution levels. The product and business performance objectives will be embedded into the system documentation and implementation at all levels by the responsible line units. The model can be easily adapted to meet the requirements of applicable codes and standards and lends itself to obtain ISO and other system and product based certifications. The approach is consistent with the new IAEA direction on the management system requirements as covered in its new series of standards under GS-R-3. As IAEA is planning a number of regional workshops, nuclear organizations planning to transition to the IMS approach should participate and benefit from these workshops. This will further enhance their understanding and application of the IMS concepts and methodologies. IAEA conducted a joint workshop with FORATOM in Vienna, Austria in November 2007 and another is planned in October 2008 jointly with KHNP and PNC in Busan, S.Korea. (author)

  7. Knowledge management: Preserving skills and expertise for nuclear industry

    International Nuclear Information System (INIS)

    Urjan, Daniel; Havris, Alexandru

    2003-01-01

    All healthy organizations generate and use knowledge. As organizations interact with their environments, they absorb information, turn it into knowledge and take action based on it in combination with their experiences, values and internal rules. Without knowledge, an organization could not organize itself; it would be unable to maintain itself as a functioning enterprise. Like any highly technical endeavor, the use of nuclear technology relies heavily on a vast accumulation of knowledge - volumes of scientific research, engineering analysis, operational data, regulatory reviews and many other types of technical information - combined with a complex assortment of people with the requisite educational background, expertise and acquired insight to apply that body of knowledge safely and effectively. Methods must be found to better capture this enormous body of nuclear experience. Today's nuclear workforce needs to document knowledge and then mentor the new nuclear scientists to build upon it, rather than having to re-create it. The latest studies have shown that at present NPPs cannot be replaced by other kinds of electric sources and in no case by renewable ones in an efficient manner. Therefore it is necessary to carefully manage knowledge gathered in the nuclear field during the years and to keep on the nuclear safety research, education and training to ensure and upgrade safe and reliable operation of existing and future nuclear facilities. Having in mind the complexity of this issue of global concern, this presentation tries to provide a brief overview of what knowledge management is and how it can help organizations to preserve knowledge, skills and expertise, particularly for the nuclear environment. What are the challenges of nuclear knowledge management and who should lead knowledge management efforts are also some of the issues covered in the presentation. (authors)

  8. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ.

    Science.gov (United States)

    Desset, Sophie; Poulet, Axel; Tatout, Christophe

    2018-01-01

    Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.

  9. Licensing the first nuclear power plant in the United Arab Emirates

    International Nuclear Information System (INIS)

    Grant, I.

    2013-01-01

    United Arab Emirates (UAE) has established a comprehensive legal & regulatory framework conforming to IAEA standards/guidance to regulate the nuclear sector. Federal Authority for Nuclear Regulation (FANR) is a functioning independent nuclear regulator providing controls on safety, security and non-proliferation. UAE benefits from strong international support, incl. IAEA and access to Korean organizations and practices. UAE has an active capacity building programme both human and technical. Peer reviews show UAE regulatory system is aligned with good international practices. UAE has long term commitment to develop and maintain safety culture.

  10. Public meetings on nuclear waste management: their function and organization

    Energy Technology Data Exchange (ETDEWEB)

    Duvernoy, E.G.; Marcus, A.A.; Overcast, T.; Schilling, A.H.

    1981-05-01

    This report focuses on public meetings as a vehicle for public participation in nuclear waste management. The nature of public meetings is reviewed and the functions served by meetings highlighted. The range of participants and their concerns are addressed, including a review of the participants from past nuclear waste management meetings. A sound understanding of the expected participants allows DOE to tailor elements of the meeting, such as notification, format, and agenda to accommodate the attendees. Finally, the report discusses the organization of public meetings on nuclear waste management in order to enhance the DOE's functions for such meetings. Possible structures are suggested for a variety of elements that are relevant prior to, during and after the public meeting. These suggestions are intended to supplement the DOE Public Participation Manual.

  11. Public meetings on nuclear waste management: their function and organization

    International Nuclear Information System (INIS)

    Duvernoy, E.G.; Marcus, A.A.; Overcast, T.; Schilling, A.H.

    1981-05-01

    This report focuses on public meetings as a vehicle for public participation in nuclear waste management. The nature of public meetings is reviewed and the functions served by meetings highlighted. The range of participants and their concerns are addressed, including a review of the participants from past nuclear waste management meetings. A sound understanding of the expected participants allows DOE to tailor elements of the meeting, such as notification, format, and agenda to accommodate the attendees. Finally, the report discusses the organization of public meetings on nuclear waste management in order to enhance the DOE's functions for such meetings. Possible structures are suggested for a variety of elements that are relevant prior to, during and after the public meeting. These suggestions are intended to supplement the DOE Public Participation Manual

  12. Modernisation for maintaining and improving safety at Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Hammer, L.; Wahlstroem, B.; Simola, K.

    1998-02-01

    The safety practices in Finland and Sweden are described and compared in regard of effecting modernisation for safety of the nuclear plants in the two countries, considering new technology and advancing safety requirements as proposed for new reactors. Particular attention is given to strategies for applying new safety requirements to reactors built to earlier standards, and to the interplay between the nuclear utilities and the safety authorities. Overviews are given of past and current modernisation of the nuclear power plants in Finland and Sweden. The management procedures in controlling the implementation of modifications to the nuclear power plants are described and discussed in regard of prevailing differences between Finnish and Swedish practices. A formal modelling technique (SADT) was applied for capture of the essential contents of the relevant documented procedures. Two examples of recent plant modifications in the Finnish nuclear plants in Olkiluoto and Loviisa are described and discussed in greater detail. Recommendations are given. (au)

  13. The U.S. Nuclear Regulatory Commission Thermal-Hydraulic Research Program: Maintaining expertise in a changing environment

    International Nuclear Information System (INIS)

    Sheron, B.W.; Shotkin, L.M.; Baratta, A.J.

    1993-01-01

    Throughout the 1970s and early 1980s, the U.S. Nuclear Regulatory Commission's (NRC's) thermal-hydraulic research program enjoyed ample funding, sponsored extensive experimental and analytical development programs, and attracted worldwide expertise. With the completion of the major experimental programs and with the promulgation of the revised emergency core-cooling system rule, both the funding and prominence of thermal-hydraulic research at the NRC have declined in recent years. This has led justifiably to the concern by some that the program may no longer have the minimal elements needed to maintain both expertise and world-class status. The purpose of this article is to describe the NRC's current thermal-hydraulic research program and to show how this program ensures maintenance of a viable, robust research effort and retention of needed expertise and international leadership

  14. Advanced remotely maintainable force-reflecting servomanipulator concept

    International Nuclear Information System (INIS)

    Kuban, D.P.; Martin, H.L.

    1984-01-01

    A remotely maintainable force-reflecting servomanipulator concept is being developed at the Oak Ridge National Laboratory as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world. 10 references, 4 figures, 1 table

  15. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  16. NRC - regulator of nuclear safety

    International Nuclear Information System (INIS)

    1997-01-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations

  17. Quantum self-organization and nuclear collectivities

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-02-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The outcome of the collective mode is determined basically by the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger gaps between relevant single particle states. Thus, the single-particle state and the collective mode are “enemies” each other. However, the nuclear forces are demonstrated to be rich enough so as to enhance relevant collective mode by reducing the resistance power by changing singleparticle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, when the quantum self-organization occurs, single-particle energies can be self-organized, being enhanced by (i) two quantum liquids, e.g., protons and neutrons, (ii) two major force components, e.g., quadrupole interaction (to drive collective mode) and monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger. The quantum self-organization is a general phenomenon, and is expected to be found in other quantum systems.

  18. Nuclear geyser model of the origin of life: Driving force to promote the synthesis of building blocks of life

    Directory of Open Access Journals (Sweden)

    Toshikazu Ebisuzaki

    2017-03-01

    Full Text Available We propose the nuclear geyser model to elucidate an optimal site to bear the first life. Our model overcomes the difficulties that previously proposed models have encountered. Nuclear geyser is a geyser driven by a natural nuclear reactor, which was likely common in the Hadean Earth, because of a much higher abundance of 235U as nuclear fuel. The nuclear geyser supplies the following: (1 high-density ionizing radiation to promote chemical chain reactions that even tar can be used for intermediate material to restart chemical reactions, (2 a system to maintain the circulation of material and energy, which includes cyclic environmental conditions (warm/cool, dry/wet, etc. to enable to produce complex organic compounds, (3 a lower temperature than 100 °C as not to break down macromolecular organic compounds, (4 a locally reductive environment depending on rock types exposed along the geyser wall, and (5 a container to confine and accumulate volatile chemicals. These five factors are the necessary conditions that the birth place of life must satisfy. Only the nuclear geyser can meet all five, in contrast to the previously proposed birth sites, such as tidal flat, submarine hydrothermal vent, and outer space. The nuclear reactor and associated geyser, which maintain the circulations of material and energy with its surrounding environment, are regarded as the nuclear geyser system that enables numerous kinds of chemical reactions to synthesize complex organic compounds, and where the most primitive metabolism could be generated.

  19. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Science.gov (United States)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  20. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  1. EVALUATED NUCLEAR STRUCTURE DATA FILE. A MANUAL FOR PREPARATION OF DATA SETS

    International Nuclear Information System (INIS)

    TULI, J.K.

    2001-01-01

    This manual describes the organization and structure of the Evaluated Nuclear Structure Data File (ENSDF). This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network. For every mass number (presently, A ≤ 293), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses A ≥ 44, this information is published in the Nuclear Data Sheets; for A < 44, ENSDF is based on compilations published in the journal Nuclear Physics. The information in ENSDF is updated by mass chain or by nuclide with a varying cycle time dependent on the availability of new information

  2. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  3. Evaluation of nuclear power plant concrete to maintain continued service

    International Nuclear Information System (INIS)

    McColm, E.J.; Mukherjee, P.K.; Sato, J.A.

    1997-01-01

    Nuclear power plant concrete structures in addition to satisfying structural requirements are a major part of the safety and containment systems. As a result, the structures are required to operate satisfactorily for the life of the plant and until well after decommissioning. Successful life management requires an understanding of potential degradation mechanisms that can impact on the performance of these structures, regular well planned inspection programs and the use of specialized repair and maintenance programs. These aspects of nuclear life management are discussed with an example of inspection and repair conducted at one of Ontario Hydro's nuclear generating stations. The example is discussed in terms of the performance requirements of the containment concrete. The plant referred to has been in operation for over 20 years, making it currently the oldest operating commercial nuclear power plant in Ontario, Canada. The information on the concrete containment structures included baseline construction data on the concrete material properties and the results of periodic scheduled and other interim specialized inspections. Also available were the results of laboratory testing of concrete cores obtained from the structures. The data from these inspections and laboratory testing were used to monitor the aging characteristics of the structures and to plan appropriate repair activities. (author)

  4. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Michael W. Patterson

    2008-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  5. Nuclear medicine in the monitoring of organ function and the detection of injury related to cancer therapy

    International Nuclear Information System (INIS)

    Valdes Olmos, R.A.; Hoefnagel, C.A.; Schoot, J.B. van der

    1993-01-01

    This article emphasizes the role of nuclear medicine in the monitoring of function to prevent or limit injury in organs in which toxicity related to cancer therapy may have implications for the survival and/or the quality of life of the patient. After a brief discussion of the advantages of nuclear medicine techniques in detecting organ injury, the effect of radiation therapy and chemotherapy on normal tissue is discussed, underlining the need to characterize adverse effects of cancer therapy in long-term survivors. The use of radionuclides to document organ injury and effects from cancer therapy in heart, digestive tract, kidneys, lungs major salivary glands skeleton and brain is then reviewed. In a short section the potential applicability of positron emission tomography in documenting organ toxicity during cancer therapy is discussed. Thanks to the various available radiopharmaceuticals, the ability of the tracers to document specific functional aspects, the improved methods for visualization and quantitation of organ injury and the possibilities of physiological or pharmacological intervention, nuclear medicine gives the clinician potent tools for the monitoring of organ function at risk during cancer therapy. The trend to intensify cancer treatment by combining various treatment modalities and the increasing chances of prolonged survival in a large number of patients call for effective integration of nuclear medicine methods into the recommended guidelines for grading organ injury in clinical oncology. (orig.)

  6. Nuclear information services at the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Burrows, T.W.; Tuli, J.K.

    1996-01-01

    The numeric and bibliographic nuclear data bases maintained by the National Nuclear Data Center and access to these data bases will be described. The U.S. Nuclear Data and Reaction Data Networks will also be briefly described

  7. Nuclear data and related services

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1985-01-01

    National Nuclear Data Center (NNDC) maintains a number of data bases containing bibliographic information and evaluated as well as experimental nuclear properties. An evaluated computer file maintained by the NNDC, called the Evaluated Nuclear Structure Data File (ENSDF), contains nuclear structure information for all known nuclides. The ENSDF is the source for the journal Nuclear Data Sheets which is produced and edited by NNDC. The Evaluated Nuclear Data File (ENDF), on the other hand is designed for storage and retrieval of such evaluated nuclear data as are used in neutronic, photonic, and decay heat calculations in a large variety of applications. The NNDC maintains three bibliographic files: NSR - for nuclear structure and decay data related references, CINDA - a bibliographic file for neutron induced reactions, and CPBIB - for charged particle reactions. Selected retrievals from evaluated data and bibliographic files are possible on-line or on request from NNDC

  8. Organization and methods of radiation monitoring while working at nuclear critical assemblies

    International Nuclear Information System (INIS)

    Shishkin, G.V.; Komissarov, L.A.

    1980-01-01

    The organization and methods of environmental radiation monitoring while working at nuclear critical assemblies, are described. Necessary equipment for critical assemblies (signal and Ventilation systems, devices for recording accidental radiation levels of and for measuring radiation field distribution) and the personnel program of actions in case of nuclear accident. The dosimetric control at critical assemblies is usually ensured by telesystems. 8004-01 multi-channel dosimetric device is described as an example of such-system [ru

  9. WRENDA 83/84. World request list for nuclear data

    International Nuclear Information System (INIS)

    Piksaikin, V.

    1983-11-01

    WRENDA 83/84 is the eighth edition of the World Request List for Nuclear Data. This list is produced from a computer file of nuclear data requests, maintained by the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The requests are provided by official bodies, such as national nuclear data committees, through four regional data centers serving all Member States of the IAEA. Each request included indicates: that the estimated accuracy of the nuclear data available does not satisfy the requirements encountered, and that, consequently, new data measurements and/or data evaluations with improved accuracy are highly desirable. WRENDA is intended to serve as a guide to experimentalists, evaluators and administrators when planning nuclear data measurement and evaluation programs. The requests in this edition come from 15 different countries and one international organization. (author)

  10. Organization, structure, and performance in the US nuclear power industry

    International Nuclear Information System (INIS)

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  11. Report of evaluation of organization. Japan Nuclear Cycle Development Institute

    International Nuclear Information System (INIS)

    2004-08-01

    Various activities of JNC (Japan Nuclear Cycle Development Institute) from December in 2003 to July in 2004 are evaluated on management, practice and progressing of development of research by the committee on organization evaluation. The report includes abstract, purpose of evaluation, evaluation items, deliberation process, total results of evaluation, development of projects, the spread of results, international cooperation, management system, effort to safety, responsibility of explanation, live together with community and other suggestions. Main projects consists of practice of FBR, development of uranium enrichment, nuclear fuel reprocessing and MOX fuel processing technology, reopening of MONJU, development of high-level radioactive waste and environmental protection policy. (S.Y.)

  12. Organization and liability of British regulating authorities involved in nuclear safety and radiation protection

    International Nuclear Information System (INIS)

    Harbison, S.

    1995-01-01

    In Great Britain, nuclear safety juridic basis is made of two law: HSWA (1974) for hygiene and security in working environment, and NIA (1965) specific to nuclear sites. The HSWA law created an HSC (Hygiene and Security Commission) in charge of workers and public security. HSC executive organ is HSE, whose nuclear office is NSD. Nevertheless, the general philosophy remains the one of HSWA, which results in the liability of operators in nuclear matters, as well as for any other industrial matter. (D.L.). 1 fig., 1 map

  13. Development of CSA N1600-14: general requirements for nuclear emergency management programs

    Energy Technology Data Exchange (ETDEWEB)

    Sellar, C. [Canadian Standards Association Group, Mississauga, ON (Canada); Coles, J. [Ontario Power Generation, Darlington, ON (Canada)

    2014-07-01

    CSA Group has published a new standard on General requirements for nuclear emergency management programs (CSA N1600-14). The standard establishes criteria for the emergency management programs of on- and off-site organizations to address nuclear emergencies at Canadian nuclear power plants (NPPs). It provides the requirements to develop, implement, evaluate, maintain, and continuously improve a nuclear emergency management program for prevention and mitigation, preparedness, response, and recovery from a nuclear emergency at a NPP. This paper discusses the development of the standard, and provides the key drivers, structure, scope, and outline of the standard, while highlighting key features, impacts, and benefits. (author)

  14. IT–Enabled Knowledge Management System for Nuclear R&D Organization

    International Nuclear Information System (INIS)

    Jehadeesan, R.

    2016-01-01

    Full text: A knowledge management (KM) system for codification, preservation and utilization of all multi-disciplinary knowledge assets accumulated over several decades of nuclear research, development and operation is essential for improved organizational productivity, new insights and high-levels of innovation. IGCAR’s Nuclear Knowledge Management System deployed with IT-as-enabler addresses various challenges related to people, process, technology and resources and provides a technology platform to leverage the collective knowledge of the organization. This paper describes the strategic action plan and structured approach followed for building IT-enabled knowledge management system to acquire, store, share and utilize the organizational knowledge assets in the explicit form of publications, technical reports, presentations, projects, activities, facilities etc., along with the tacit knowledge multi-media modules. It highlights the salient features of the in-house-developed advanced KM portal deployed for facilitating the creation, archival, retrieval, sharing and dissemination of knowledge assets originating from diverse domains, in an organized and secured way. The paper also underlines the application of semantic technologies, tools and standards in implementing a robust KM technology infrastructure with enhanced functionalities. (author

  15. Technical support organization of national regulators: Challenges and strategy

    International Nuclear Information System (INIS)

    Mallick, S.A.; Maqbul, N.; Kanwal, S.; Hashmi, J.A.

    2007-01-01

    Design, construction and operation of nuclear power plants has always been a complex activity and so is regulating the nuclear power plants. The rapid innovation in design of nuclear power plants with substantial increase in design life from 40 years to 60 years is now considered a norm. The public acceptability of nuclear as a clean source of energy is also on the increase but with this increase is also the demand for more safety against accidental release of radioactivity. It is therefore essential that high standards of nuclear and radiation safety should be maintained and applied all over the world. However the increase acceptability will also lead to a rapid growth in nuclear energy generation capacity both in terms of construction of new nuclear power plants as well as life extension of older nuclear power plants. This will result in an unprecedented pressure on the national regulators during the licensing process. Nuclear and radiation safety are based on technical, administrative and organizational provisions. There is, therefore, a need to separate the technical review and assessment work from the main licensing process by delegating this responsibility to the technical support organizations so that regulatory decision making is not driven by the time constraints imposed by the licensing process. The paper examines the role technical support organization can play to enhance quality of technical review and thereby the effectiveness of national regulators. For the national regulators that belong to countries that import nuclear power plants and may lack an advanced industrial infrastructure at par with other exporting countries, the establishment of technical support organization within a regulatory body or as a separate organization is gaining increased importance. Pakistan Nuclear Regulatory Authority (PNRA) has realized this importance and proposed the Government of Pakistan for allocation of Rs. 480.00 million ($ 8 million) for the establishment of

  16. Invisible nuclear; converting nuclear

    International Nuclear Information System (INIS)

    Park, Jongmoon

    1993-03-01

    This book consists of 14 chapters which are CNN era and big science, from East and West to North and South, illusory nuclear strategy, UN and nuclear arms reduction, management of armaments, advent of petroleum period, the track of nuclear power generation, view of energy, internationalization of environment, the war over water in the Middle East, influence of radiation and an isotope technology transfer and transfer armament into civilian industry, the end of nuclear period and the nuclear Nonproliferation, national scientific and technological power and political organ and executive organ.

  17. Technical organization of safety authorities in case of accident in a nuclear installation

    International Nuclear Information System (INIS)

    Scherrer, J.; Evrard, J.M.; Ney, J.

    1985-11-01

    The Central safety Service of Nuclear Facilities of the French industry Department and the CEA Protection and Nuclear Safety Institut (IPSN) are organized to estimate in real time, the evolution of an accidental situation with a sufficient margin in time to allow the local government representative to develop, in case of necessity, efficient procedures for the protection of the population. This paper presents the principles of this organization and the precautions taken to cope as well with problems of mobilization of experts as the full occupation of current telecommunication lines. The example of the organization concerning the installations of Electricite de France is detailed. The CEA IPSN has developed means widely advanced, concerning the atmospheric transfer of radioactivity. For PWRs, a method allowing to forecast releases in case of accidental situation is presented. Finally, the knowledge acquired with the accident simulations realized during the last years is described [fr

  18. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  19. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, Elizabeth; Braga, Fabiane

    2004-01-01

    Full text: The Knowledge economy moves the axis of the wealth and the development of the traditional industrial sectors - abundant in labour, raw material and capital - to areas whose products, processes and services are rich in technology and Knowledge. Even on research areas as nuclear energy where the goods are based on high technology, the capacity to transform information on Knowledge, and Knowledge on decisions and actions are extremely important. Therefore, the value of the products from these areas depends on the percentage of the innovation, technology and the intelligence attributed incorporated by them. The OECD report observes that back in 2002, more than 60% of the GDP (Gross Domestic Product) of the developed nations should be credited to the Knowledge usage. The report highlights the fact that the increasing reduction of the costs and the easy access to information show clearly a growing of the Knowledge participation in generating wealth for the organizations, regions and countries. This means that the management today shall use the organization's existent Knowledge to generate better results. The organizations, private or publics, must be productive, and the main point to determine the technological innovation and the increasing of productivity is knowledge management. Therefore, we cannot feel contented simply by generating new Knowledge, or making the research for the research itself, or, yet, by simply collecting information and saving them. Without innovation capacity, such as to create new products, new process or new services, organizations will not survive in the knowledge society. Many authors have proposed models of Knowledge management, such as Sveiby, Stewart and Edvinsson, the pioneers of Knowledge Management. For these authors, the value of the enterprises full of in Knowledge is no longer related to its tangible goods, such as buildings and machinery, but is being now quoted by its intangible goods. The models emphasizing the

  20. Phosphorylation of DEPDC1 at Ser110 is required to maintain centrosome organization during mitosis.

    Science.gov (United States)

    Chen, Dan; Ito, Satoko; Hyodo, Toshinori; Asano-Inami, Eri; Yuan, Hong; Senga, Takeshi

    2017-09-15

    DEPDC1 (DEP domain containing 1) is overexpressed in multiple cancers and is associated with cell cycle progression. In this report, we have investigated the expression, localization, phosphorylation and function of DEPDC1 during mitosis. DEPDC1 has two isoforms (isoform a and isoform b), and both of them are increased in mitosis and degraded once cells exit mitosis. DEPDC1a is localized to the centrosome in metaphase, whereas DEPDC1b is localized to the entire cell cortex during mitosis. DEPDC1a, but not DEPDC1b, was required for the integrity of centrosome and organization of the bipolar spindle. Mass spectrometry and biochemical analyses revealed phosphorylation of DEPDC1 at Ser110. The phosphorylation of Ser110 is essential for localization of DEPDC1a to the centrosome. Consistently, non-phosphorylation mutants of DEPDC1a did not rescue disruption of centrosome organization by depletion of endogenous DEPDC1. Our results show a novel role for DEPDC1 in maintaining centrosome integrity during mitosis for the accurate distribution of chromosomes. Copyright © 2017. Published by Elsevier Inc.

  1. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  2. Recycling by coverting organic waste to fertilize at Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Kubota, T.; Matsuoka, H.

    2008-01-01

    In order to cope with global- warming and Dioxin issue, we started the Project in which all kinds of organic wastes originated on site are fermented to organic fertilizer with the help of YM bacteria in 2001. And in 2006 our product was officially approved as fertilizer by regulatory body, and then we started to sell these fertilizers to farmers near-by. Among many power stations in Japan, Ikata Nuclear Power Station may be the first plant where organic wastes are totally reused as commercial-based fertilizer. (author)

  3. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  4. Technical organization of safety authorities for the event of an accident at a nuclear installation

    International Nuclear Information System (INIS)

    Scherrer, J.; Evrard, J.M.; Ney, J.

    1986-01-01

    Within the general context of nuclear safety, the Central Nuclear Installation Safety Service of the French Ministry for Industry and its technical backup, the Institute for Radiation Protection and Nuclear Safety of the CEA (Atomic Energy Commission), have established a special organization designed to provide real-time forecasts of the evolution of a nuclear accident situation with sufficient forewarning for the local representative of the Government (the Commissaire de la Republique in the Departement affected) to implement, as required, effective countermeasures to protect the population - for example, confinement indoors or evacuation. Descriptions are given of the principles of this organization and the particular precautions taken to confront the problems of mobilizing experts and of dealing with the saturation of normal telecommunications channels to be expected in the event of a nuclear accident. The organization set up for the installations belonging to Electricite de France is given as a detailed example. Particular stress is placed on the organizational arrangements of the Institute for Radiation Protection and Nuclear Safety designed to provide the emergency teams with the evaluation and forecasting tools they require to carry out their tasks. The procedures are on the whole well developed for atmospheric radioactivity transport, for which operational models already exist. Computer-backed methods with improved performance are at present being developed. A method of forecasting the behaviour of the releases resulting from nuclear accidents is set out for pressurized water reactors, based on evaluating the physical state of the installation, confinement integrity, availability of safety and backup systems, support systems and feed sources and on forecasting how this state will develop on the basis of measured and inferred physical values transmitted from the affected power station through a national network. The experience acquired during accident

  5. Maintaining the know-how after opt-out consensus: chances and limits

    International Nuclear Information System (INIS)

    Fritz, P.

    2003-01-01

    Within the next decades, nuclear safety and repository research will continue to be a necessary and integral constituent of the society's provident research. Yet, it is very difficult to maintain this competence in a politically complex environment with the scarce funds available. For its purpose, the Federal Government has appointed an evaluation commission, the chairmanship of which lies with the Federal Ministry of Economics and Technology. In its report of January 2001, the commission emphasised that efforts to adequately maintain competence in nuclear engineering, including industry-independent expert knowledge, will only meet with success, if the Federal Republic of Germany and the federal states contribute to a sufficient and stable financing of non-university research. (orig.) [de

  6. Maintaining Situational Awareness in Large, Complex Organizations

    National Research Council Canada - National Science Library

    Carreno, Jose; Galdorisi, George; Goshorn, Rebekah

    2006-01-01

    .... Another solution, gaining popularity in the business sector, is environmental scanning. Environmental scanning identifies, collects, translates and applies information about external events that influence an organization's strategic landscape...

  7. Introducing Knowledge Management into the Integrated Management System of Nuclear Organizations

    International Nuclear Information System (INIS)

    Yanev, Y.; Brandner, A.; Kosilov, A.

    2016-01-01

    Full text: The analysis for introducing knowledge management into an integrated management system in nuclear organizations, conducted by NKMI, and discussed in a number of meetings in IAEA and other organizations has shown that currently there is no full and comprehensive implementation of KM in IMS. NKMI has suggested and developed a common, systematic approach for introducing Knowledge Management in the IMS of a nuclear regulatory organization, based on the concept of competence, graded approach and continuous improvement. The approach is based on the concept of integrating an initial review of all knowledge and competence needed for effective and efficient process implementation including a gap analysis and provision of compensatory measures. Knowledge resources are represented as a knowledge resource matrix, which are necessary to complete a given process successfully. The “performance” of the available knowledge resources contribute to an efficient regulatory process is also reviewed at the end of process implementation where relevant decision for enhancement of knowledge and competence are taken, including capturing, preserving, sharing and reuse of new knowledge, gained through the process implementation. The “knowledge resource matrix” approach is fully based on IAEA recommendation and has already been applied in a number of regulatory processes. (author

  8. Organizing the Canadian nuclear industry to meet the challenge

    International Nuclear Information System (INIS)

    Lortie, Pierre.

    1983-06-01

    The CANDU reactor is struggling for a share of the dwindling reactor market against formidable and well-established competition. The Canadian nuclear industry has historically depended upon two crown corporations, Atomic Energy of Canada Ltd. and Ontario Hydro, which have taken the lead in designing and engineering the reactor. Crown corporations are not notably successful in marketing, however, and the time has come for the industry to organize itself in preparation for an aggressive export drive

  9. Nuclear scaffold organization in the X-ray sensitive Chinese hamster mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.; Fink, T.J.; Enrique, A.M.

    1994-01-01

    Nuclear organization was probed in the radiation-sensitive Chinese hamster ovary (CHO) cell line, xrs-5, and compared with parental CHO K1 cells using the resinless section technique and DNase I digestions. The resinless section data showed no gross morphological differences in core filaments from the nuclear scaffolds of unirradiated CHO K1 and xrs-5 cells. However, the nuclear scaffolds of irradiated xrs-5 cells (1 Gy) had significantly increased ground substance. Irradiated and unirradiated CHO K1 cell nuclear scaffolds were morphologically identical. These data suggest that both CHO K1 and xrs-5 cell nuclear scaffolds had internal nuclear scaffolding networks that could provide DNA attachment sites. (author)

  10. International co-operation through scientific and technical nuclear societies

    International Nuclear Information System (INIS)

    Manning Muntzing, L.

    1983-01-01

    As an international organization the American Nuclear Society (ANS) has played an active role in international co-operation of nuclear technology exchange since its establishment in 1954. The ANS has a membership of over 13,000 individuals, of whom approximately 1200 live overseas in forty countries. To carry out the goals of the Society, local sections have been established. Currently the ANS maintains 48 local sections in the United States of America and 8 overseas local sections in Africa, Asia, Europe and South America. The ANS also has formal agreements for co-operation with The Asociacion Argentina de Tecnologia Nuclear (AATN), the Israel Nuclear Society (INS), and the Chinese Nuclear Society (CNS). In 1977 the Japan Atomic Energy Society (JAES), the European Nuclear Society (ENS), and the ANS co-operation in sponsoring the First International Conference on Transfer of Nuclear Technology (ICONTT I) in Tehran, Iran. In 1982, the Second International Conference on Transfer of Nuclear Technology (ICONTT II), Buenos Aires, Argentina, was sponsored through the co-operation of the AATN, the ENS and the ANS. The ANS and its overseas sections sponsor the Pacific Basin Conference approximately every three years to discuss nuclear matters of concern to the countries around the Pacific Ocean. In 1981 the ANS held a Nuclear Technology Exhibit in Beijing, the People's Republic of China. In addition to meetings, the ANS is extensively involved in the co-operative exchange of applied nuclear research information through its publications. Nuclear Technology, a technical journal, is published monthly under joint ownership of the ENS and the ANS. The ANS has been a leader in voluntary standards development since 1958. In its dedication to the co-operation of international nuclear technology the ANS maintains a comprehensive international exchange of nuclear standards

  11. INDC correspondents for the exchange of nuclear data information

    International Nuclear Information System (INIS)

    1983-05-01

    This list serves as a basis for the distribution of documents originated by or for the International Nuclear Data Committee and includes the names of all recipients of INDC documents. The INDC Secretariat tries to maintain this list up-to-date in order to facilitate an efficient interchange of information on nuclear data topics. In this report, the names are listed in alphabetical order within each state or organization. The main list is followed by four shorter lists, indicating the names of individuals in each distribution category, and the total number of individuals in each category

  12. The small GTPase RhoA is required to maintain spinal cord neuroepithelium organization and the neural stem cell pool

    DEFF Research Database (Denmark)

    Herzog, Dominik; Loetscher, Pirmin; van Hengel, Jolanda

    2011-01-01

    ablation. We show that, in the spinal cord neuroepithelium, RhoA is essential to localize N-cadherin and ß-catenin to AJs and maintain apical-basal polarity of neural progenitor cells. Ablation of RhoA caused the loss of AJs and severe abnormalities in the organization of cells within the neuroepithelium......Dia1), does not localize to apical AJs in which it likely stabilizes intracellular adhesion by promoting local actin polymerization and microtubule organization. Furthermore, expressing a dominant-negative form of mDia1 in neural stem/progenitor cells results in a similar phenotype compared...... with that of the RhoA conditional knock-out, namely the loss of AJs and apical polarity. Together, our data show that RhoA signaling is necessary for AJ regulation and for the maintenance of mammalian neuroepithelium organization preventing precocious cell-cycle exit and differentiation....

  13. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  14. Religious organizations debate nuclear energy

    International Nuclear Information System (INIS)

    Dowell, T.

    1984-08-01

    This paper reviews the history of the religious debate on nuclear energy over the last thirty years. In the 1950s, religious statements recognized the peaceful uses of atomic energy as a blessing from God and called upon world leaders to promote its use. Nuclear energy programmes were launched in this decade. In the 1960s, there was still religious approval of nuclear energy, but questions about ethics arose. It was not until the 1970s, after the oil crisis, that serious questioning and criticism of nuclear energy emerged. This was particularly true in the United States, where the majority of statements originated - especially in 1979, the year of the Three Mile Island accident. Around this time, the World Council of Churches developed the concept of the just, participatory and sustainable society. The meaning and use of these terms in the nuclear energy debate is examined. This paper also compares the balanced debate of the World Council with the case against the plutonium economy prepared by the National Council of the Churches of Christ in the USA. Three religious statements from the 1980s are examined. A United Church of Canada resolution, critical of nuclear energy, is compared with a favourable report from the Methodist Church in England. Both use similar values: in one case, justice, participation and sustainability; in the other case, concern for others, participation and stewardship. There are not many Catholic statements on nuclear energy. One which is cautious and favourable is examined in detail. It is concluded that the use of concepts of justice, participation and sustainability (or their equivalents) has not clarified the nuclear debate

  15. Information on Nuclear Malaysia Internal Auditee Since 2012-2016

    International Nuclear Information System (INIS)

    Fazila Said; Nur Hanisah Adnan; Noor Azreen Maslan

    2016-01-01

    Audits carried out in the Quality Management System (QMS) aims to determine whether the quality management system complies with the standard requirements, assess the implementation of the system and its effectiveness in achieving organizational objectives, for improvement, as input to the management and find a loophole quality improvement. An organization must carry out a series of audits for the purpose of maintaining the certification is based on standards. To maintain and enhance the credibility of the audit, only a competent auditor selected. RMC has developed procedures for managing the activities of the Internal Audit and Internal Audit to all QMS certification in Malaysian Nuclear Agency. Effectiveness and efficiency of the internal audit activity depends on the skill and experience in addition to the availability of an internal auditor that time. The following information is shared activeness line Internal Auditors Malaysia Nuclear Agency from 2012 until 2016. (author)

  16. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  17. Review of Policy Documents for Nuclear Safety and Regulation

    International Nuclear Information System (INIS)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki

    2006-01-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies

  18. Review of Policy Documents for Nuclear Safety and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies.

  19. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    Science.gov (United States)

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  20. Knowledge Management Impacts on Organizational Proficiency in a Changing Demographic Nuclear Industry

    International Nuclear Information System (INIS)

    Heler, D.; Marco, J. A.

    2016-01-01

    Full text: The US nuclear energy industry has focused on workforce development and planning efforts over the past decade in anticipation of a large number of retirements taking place. Efforts by the US nuclear industry to replace retiring workers with younger staff to close the knowledge gap and improve organizational proficiency have started. This is resulting in a bimodal workforce distribution, which means that the industry has two workforce peaks. The 2015 Nuclear Energy Institute (NEI) Workforce Pipeline Survey results illustrate a significant number of experienced and young professionals, with fewer employees in the mid-career age group. This workforce distribution can pose a challenge for US nuclear industry to ensure it has effectively implemented knowledge management elements (People, Process, and Technology) to improve organizational proficiency and maintain critical skill sets. This technical brief will examine how one US nuclear plant performance dropped, which in part was a result of a significant demographic shift in their organizations. In addition, the paper will explore the challenge organizations may have as they undergo demographic changes without proper knowledge management programmes in place. (author

  1. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    Chalbot, Marie-Cecile G.; Kavouras, Ilias G.

    2014-01-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1 H- and 13 C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  2. Applications of computer based safety systems in Korea nuclear power plants

    International Nuclear Information System (INIS)

    Won Young Yun

    1998-01-01

    With the progress of computer technology, the applications of computer based safety systems in Korea nuclear power plants have increased rapidly in recent decades. The main purpose of this movement is to take advantage of modern computer technology so as to improve the operability and maintainability of the plants. However, in fact there have been a lot of controversies on computer based systems' safety between the regulatory body and nuclear utility in Korea. The Korea Institute of Nuclear Safety (KINS), technical support organization for nuclear plant licensing, is currently confronted with the pressure to set up well defined domestic regulatory requirements from this aspect. This paper presents the current status and the regulatory activities related to the applications of computer based safety systems in Korea. (author)

  3. Nuclear operations summary Engineering organization for Plowshare nuclear operations

    Energy Technology Data Exchange (ETDEWEB)

    Broadman, Gene A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The availability of nuclear explosives for peaceful projects has given the engineer a new dimension in his thinking. He can now seek methods of adapting Plowshare to a variety of industrial applications. The full potential of the Plowshare Program can only be attained when industry begins to use nuclear explosives on a regular basis, for economically sound projects. It is the purpose of this paper to help the engineer familiarize himself with Plowshare technology to hasten the day when 'Plowsharee goes commercial'. An engineering project utilizing nuclear exposives ordinarily involves three main phases: Phase I (a) The theoretical and empirical analysis of effects. (b) Projected economic and/or scientific evaluation. (c) A safety analysis. Phase II (a) Field construction. (b) Safe detonation of the nuclear explosive. (c) Data acquisition. Phase III The evaluation and/or exploitation of the results. This paper will be restricted to Phase II, referred to collectively as the 'nuclear operation'.

  4. OCRWM International Cooperation in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Jackson, R.; Levich, R.; Strahl, J.

    2002-01-01

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste

  5. Planning and execution of knowledge management assist missions for nuclear organizations

    International Nuclear Information System (INIS)

    2008-05-01

    problems. The IAEA is implementing a special subprogram on Nuclear Knowledge Management with a focus on the development of guidance for KM, on networking nuclear education and training and on the preservation of nuclear knowledge. Knowledge management consists of three fundamental components: people, processes and technology. Knowledge management focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and make knowledge accessible which will allow people to work together without being located together. People are the most important component. Managing knowledge depends upon people's willingness to share and reuse knowledge. In 2005, the IAEA introduced the concept of KM missions. The missions were established to: Facilitate the transfer of pragmatic KM methodologies and tools; Assist Member States considering implementation of nuclear power programmes to integrate KM in their management system from the very beginning; Provide specific consultancy services to address emergent problems and long term issues related to KM and associated issues; Assist organizations formulate detailed requirements and action plans related to KM; Help organizations identify, by self-assessment, their own KM maturity levels against a set of pre-defined criteria. This document is written to provide a common framework for KM missions and to provide general guidance for all mission participants. This document has been prepared to provide a basic structure and common reference for KM missions. As such, it is addressed, principally, to the team members of KM missions and also to the Counterpart requesting a mission. Although not mandatory, the guidelines provided in this document should be used as the basis for all future KM missions

  6. Organization of the German nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Corporate ownership within the German nuclear industry has evolved constantly during the last decade, and recent acquisitions and mergers, reunification of the country, as well as preparation for a unified European power market, have led to many significant changes during the past two years. The country's nuclear industry continues to struggle under an increasingly anti-nuclear political environment, yet nuclear power provided more than one-third of Germany's total electricity generation in 1991. As in many countries, particularly in western Europe, many German companies involved in different facets of the nuclear industry are interrelated. Usually as a means of horizontal or vertical integration, the country's nuclear utilities own, directly or indirectly, shares in uranium mining projects; conversion, enrichment, and fabrication companies; or other utilities' nuclear power plants. The utilities own partial interests in companies in supporting industries as well, including transportation firms, waste management companies, uranium broker/traders, and nuclear equipment manufacturers. While the majority of the companies owned are German, numerous investments are made in non-German firms also

  7. Organization and conduct of IAEA fire safety reviews at nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The importance of fire safety in the safe and productive operation of nuclear power plants is recognized worldwide. Lessons learned from experience in nuclear power plants indicate that fire poses a real threat to nuclear safety and that its significance extends far beyond the scope of a conventional fire hazard. With a growing understanding of the close correlation between the fire hazard in nuclear power plants and nuclear safety, backfitting for fire safety has become necessary for a number of operating plants. However, it has been recognized that the expertise necessary for a systematic independent assessment of fire safety of a NPP may not always be available to a number of Member States. In order to assist in enhancing fire safety, the IAEA has already started to offer various services to Member States in the area of fire safety. At the request of a Member State, the IAEA may provide a team of experts to conduct fire safety reviews of varying scope to evaluate the adequacy of fire safety at a specific nuclear power plant during various phases such as construction, operation and decommissioning. The IAEA nuclear safety publications related to fire protection and fire safety form a common basis for these reviews. This report provides guidance for the experts involved in the organization and conduct of fire safety review services to ensure consistency and comprehensiveness of the reviews

  8. International conference on challenges faced by technical and scientific support organizations in enhancing nuclear safety. Contributed papers and presentations

    International Nuclear Information System (INIS)

    2007-01-01

    Over the past two decades, the IAEA has conducted a series of major conferences that have addressed topical issues and strategies critical to nuclear safety for consideration by the world's nuclear regulators. More recently, the IAEA organized the International Conference on Effective Nuclear Regulatory Systems - Facing Safety and Security Challenges, held in Moscow in 2006. The Moscow conference was the first of its kind, because it brought together senior regulators of nuclear safety, radiation safety and security from around the world to discuss how to improve regulatory effectiveness with the objective of improving the protection of the public and the users of nuclear and radioactive material. The International Conference on Challenges Faced by Technical and Scientific Support Organizations in Enhancing Nuclear Safety was held in Aix-en-Provence, France, from 23 to 27 April 2007. This conference, again, was the first of its kind, because it was the first to address technical and scientific support organizations (TSOs), the role they play in supporting either the national regulatory bodies or the industry in making optimum safety decisions and the challenges they face in providing this support. This conference provided a forum for the TSOs to discuss these and other issues with the organizations to which they provide this support - that is, the regulators and the operators/industry - as well as with other stakeholders such as research organizations and public authorities. This conference can also be considered to have a link to the Moscow conference. The Moscow conference concluded that effective regulation of nuclear safety is vital for the safe use of nuclear energy and associated technologies, both now and in the future, and is an essential prerequisite for establishing an effective Global Nuclear Safety Regime. The Moscow conference also highlighted the importance of continued and improved international cooperation in the area of nuclear safety. These

  9. Organizations putting in place in case of accident in a french nuclear power plant

    International Nuclear Information System (INIS)

    Noc, B.; Queniart, D.

    1987-01-01

    In case of accident entraining radiological consequences on or near the site of nuclear power reactor, organizations are putting in place. These organizations include as well as side of operating authority (generally Electricite de France) or public organizations including safety organizations (Service Central de Surete des Installations Nucleaires, Institut de Protection et de Surete Nucleaire), one local organization and one centralized national organization. Informations exchange and coordination necessary between these organizations are governed by protocols. These protocols include particularly, the problems of mobilizing experts and of dealing with the saturation of normal telecommunications channels. The lessons acquired during accident simulation exercises carried out in recent years are progressively put in place in these protocols [fr

  10. Preservation of knowledge: general principals, methodology and application in nuclear industry. Working material. Report prepared within the framework of the Programmes: C.3. Nuclear Knowledge Management and A.2. Improving Quality Assurance, Technical Infrastructure and Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    There is an immediate need to preserve existing knowledge in nuclear science and technology for peaceful applications for future generations, as it represents a valuable human capital asset. The development of an exciting vision for nuclear technology is prerequisite for attracting young scientists and professionals to seek careers in nuclear science and technology. Irrespective of current national energy policies, the need to maintain or even enhance the nuclear knowledge base and national capability will persist. In this way, the knowledge base will be available to meet requirements for evolving policy development. A number of IAEA advisory committees and technical meetings stressed the importance of preserving and further enhancing nuclear science and technology for socio-economic development. For nuclear science and technology to contribute to sustainable development requires knowledge and capacity on three levels: (a) basic nuclear science, (b) technology, (c) engineering and operation. There was unanimous consensus that IAEA has an obligation to lead activities towards preservation and enhancement of nuclear knowledge by complementing, and as appropriate supplementing, activities by governments, industry, academia and international organizations. International co-operation is of vital importance. Unless action is taken now, invaluable assets in critical nuclear knowledge and capacity will soon be lost. The IAEA is developing guidance documents on nuclear knowledge management including knowledge preservation and knowledge transfer in nuclear sector. This activity would assist nuclear organizations in MS to effectively apply this guidance, and to assist them in benchmarking their practices against those of other industry organizations. The present Working Material provides general principals for knowledge preservation in nuclear sector, which could be applied in different nuclear organization and in particular in Nuclear Power Plants.

  11. Preservation of knowledge: general principals, methodology and application in nuclear industry. Working material. Report prepared within the framework of the Programmes: C.3. Nuclear Knowledge Management and A.2. Improving Quality Assurance, Technical Infrastructure and Human Performance

    International Nuclear Information System (INIS)

    2005-01-01

    There is an immediate need to preserve existing knowledge in nuclear science and technology for peaceful applications for future generations, as it represents a valuable human capital asset. The development of an exciting vision for nuclear technology is prerequisite for attracting young scientists and professionals to seek careers in nuclear science and technology. Irrespective of current national energy policies, the need to maintain or even enhance the nuclear knowledge base and national capability will persist. In this way, the knowledge base will be available to meet requirements for evolving policy development. A number of IAEA advisory committees and technical meetings stressed the importance of preserving and further enhancing nuclear science and technology for socio-economic development. For nuclear science and technology to contribute to sustainable development requires knowledge and capacity on three levels: (a) basic nuclear science, (b) technology, (c) engineering and operation. There was unanimous consensus that IAEA has an obligation to lead activities towards preservation and enhancement of nuclear knowledge by complementing, and as appropriate supplementing, activities by governments, industry, academia and international organizations. International co-operation is of vital importance. Unless action is taken now, invaluable assets in critical nuclear knowledge and capacity will soon be lost. The IAEA is developing guidance documents on nuclear knowledge management including knowledge preservation and knowledge transfer in nuclear sector. This activity would assist nuclear organizations in MS to effectively apply this guidance, and to assist them in benchmarking their practices against those of other industry organizations. The present Working Material provides general principals for knowledge preservation in nuclear sector, which could be applied in different nuclear organization and in particular in Nuclear Power Plants

  12. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors; Determinacion espectrografica de impurezas metalicas en refrigerantes organicos para reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Martin Munoz, M; Alvarez Gonzalez, F

    1969-07-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs.

  13. Evaluating safety-critical organizations - emphasis on the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Oedewald, Pia (VTT, Technical Research Centre of Finland (Finland))

    2009-04-15

    An organizational evaluation plays a key role in the monitoring, as well as controlling and steering, of the organizational safety culture. If left unattended, organizations have a tendency to gradually drift into a condition where they have trouble identifying their vulnerabilities and mechanisms or practices that create or maintain these vulnerabilities. The aim of an organizational evaluation should be to promote increased understanding of the sociotechnical system and its changing vulnerabilities. Evaluation contributes to organizational development and management. Evaluations are used in various situations, but when the aim is to learn about possible new vulnerabilities, identify organizational reasons for problems, or prepare for future challenges, the organization is most open to genuine surprises and new findings. It is recommended that organizational evaluations should be conducted when - there are changes in the organizational structures - new tools are implemented - when the people report increased workplace stress or a decreased working climate - when incidents and near-misses increase - when work starts to become routine - when weak signals (such as employees voicing safety concerns or other worries, the organization 'feels' different, organizational climate has changed) are perceived. In organizations that already have a high safety level, safety managers work for their successors. This means that they seldom see the results of their successful efforts to improve safety. This is due to the fact that it takes time for the improvement to become noticeable in terms of increased measurable safety levels. The most challenging issue in an organizational evaluation is the definition of criteria for safety. We have adopted a system safety perspective and we state that an organization has a high potential for safety when - safety is genuinely valued and the members of the organization are motivated to put effort on achieving high levels of safety

  14. Evaluating safety-critical organizations - emphasis on the nuclear industry

    International Nuclear Information System (INIS)

    Reiman, Teemu; Oedewald, Pia

    2009-04-01

    An organizational evaluation plays a key role in the monitoring, as well as controlling and steering, of the organizational safety culture. If left unattended, organizations have a tendency to gradually drift into a condition where they have trouble identifying their vulnerabilities and mechanisms or practices that create or maintain these vulnerabilities. The aim of an organizational evaluation should be to promote increased understanding of the sociotechnical system and its changing vulnerabilities. Evaluation contributes to organizational development and management. Evaluations are used in various situations, but when the aim is to learn about possible new vulnerabilities, identify organizational reasons for problems, or prepare for future challenges, the organization is most open to genuine surprises and new findings. It is recommended that organizational evaluations should be conducted when - there are changes in the organizational structures - new tools are implemented - when the people report increased workplace stress or a decreased working climate - when incidents and near-misses increase - when work starts to become routine - when weak signals (such as employees voicing safety concerns or other worries, the organization 'feels' different, organizational climate has changed) are perceived. In organizations that already have a high safety level, safety managers work for their successors. This means that they seldom see the results of their successful efforts to improve safety. This is due to the fact that it takes time for the improvement to become noticeable in terms of increased measurable safety levels. The most challenging issue in an organizational evaluation is the definition of criteria for safety. We have adopted a system safety perspective and we state that an organization has a high potential for safety when - safety is genuinely valued and the members of the organization are motivated to put effort on achieving high levels of safety - it is

  15. Nuclear Power Newsletter, Vol. 11, No. 2, May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    Some 300 international experts, decision makers, government officials, regulators and industry representatives are expected for this event, which follows the first major con-ference on human resource development for introducing and expanding nuclear power programmes, held in Abu Dhabi, United Arab Emirates, in 2010. Capacity building is a major first step in the process of ensuring that a qualified work-force is available and ready to assume the responsibility for safe, responsible and sus-tainable use of nuclear technologies. Capacity building needs to be sustained throughout the life of a nuclear power programme. The IAEA Action Plan on Nuclear Safety (2011) underlined the importance of capacity building: one of the actions calls upon both oper-ating and 'newcomer' Member States to strengthen, develop, maintain and implement their capacity building programmes. Also, the critical role of human resources and ca-pacity building in developing and maintaining nuclear infrastructure was reiterated by subsequent international experts' meetings related to this topic. The IAEA is pleased to announce that Mr Pal Kovacs, Minister of State for Energy Affairs at the Ministry of National Development of Hungary has accepted the role of President of the 2014 Conference. Individual session chairs will represent newcomer and operating countries, heads of organizations leading nuclear power programmes, regulatory bodies, technical support organizations and nuclear power plants. Interest has been high in the international community, which is evident from the high number of expected participants as well as from the 137 papers submitted. The conference focuses on the global challenges of capacity building, human resource development, education and training, nuclear knowledge management and establishing and maintaining knowledge networks. In particular, the conference reviews developments in the global status of human resource development since the 2010 international conference

  16. Quality assurance for the maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Modemann, G.

    1985-01-01

    In order to maintain the quality of a nuclear power plant, it is essential that the numerous participants involved in maintenance work consistently fulfil their specified tasks, and that the quality control circuit is closed and functions smoothly. First of all, the report briefly explains the significance of the operational organization of a nuclear power plant and the role of the supervisory authority with the consulted experts. The quality control circuit for maintenance illustrates the tasks and cooperation of the participants. An idea is given of the testing and monitoring criteria which are implemented to assure the quality of the different types of maintenance and the procurement of supplies. (orig.) [de

  17. Improved reliability, maintainability and safety through elastomer upgrading

    International Nuclear Information System (INIS)

    Wensel, R.; Wittich, K.C.

    1995-01-01

    Equipment in nuclear plants has historically contained whatever elastomer each component supplier traditionally used for corresponding non-nuclear service. The resulting proliferation of elastomer compounds, many of which are far from optimal for the service conditions (e.g., pressure, temperature, radiation, etc.), has multiplied the costs to provide station reliability, maintainability and safety. Cost-effective improvements are being achieved in CANDU plants by upgrading and standardizing on a handful of high performing elastomer compounds. These upgraded materials offer significant gains in service life over the materials they replace (often by factors of 2 or more). This rationalization of elastomer compounds also facilitates the EQ process for safety-related equipment. Detailed test data on aging is currently being generated for these specific elastomers, encompassing the conditions and media (air, water, oil) common in CANDU service. Two key elements characterize this testing. First, each result is specific to the compound used in the test, and second, it is specific to the tested failure mode (e.g., compression set, extrusion, fracture, etc.). Having fewer, but more thoroughly tested compounds, avoids the penalty (associated with poorly characterized materials) of having to replace parts prematurely because of conservatism, while maintaining safe, reliable service. This paper provides an overview of this approach covering: the benefits of compound rationalization; and the how and why of establishing relevant failure criteria; appropriate quality assurance to maintain EQ; procurement, storage and handling guidelines; and monitoring and predicting in-service degradation. (author)

  18. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  19. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  20. Acceptance of the institutions and the organs of inspection for the nuclear under pressure equipment

    International Nuclear Information System (INIS)

    2006-05-01

    The candidate companies in the acceptance have to justify their competence in inspection on one hand, in nuclear pressure equipment on the other hand. The guide defines the conditions of the acceptance (competence and modes of proof), the contents of the demand of acceptance, the procedure of instruction as well as the conditions of the preservation of the acceptance. The general direction of the nuclear safety and the radiation protection implements the control of the companies and the organs of inspection for their activities in nuclear equipment under pressure. (N.C.)

  1. Legal aspects of nuclear and radiological accidents

    International Nuclear Information System (INIS)

    El-baroudy, M.M.

    2005-01-01

    Aiming at preventing nuclear and radiological accidents and maintaining safety and security, the State extends its jurisdiction over nuclear and radiological activities through the promulgation of regulatory legislations and providing criminal protection to these activities. The State, in its legislation, defines an authority responsible for the planning of preparedness for emergency situations. That Authority cooperates with other competent authorities in the State as well as with other relevant international organizations and other States in a coordinated way aiming at dealing effectively with and mitigating the consequences of nuclear and radiological accidents through promulgating relevant international conventions and plans for reinforcement of international cooperation in accidents situations. Moreover, the International Atomic Energy Authority (IAEA) can provide specialized consultations and offer assistance in case of accidents. The present study is divided into an introduction and two chapters. In the introduction, the nature of nuclear or radiological accidents is defined. The first chapter deals with the national legal system for preventing the occurrence of nuclear and radiological accidents and mitigating their consequences. The second chapter deals with the international cooperation for facing nuclear or radiological accidents and mitigating their consequences

  2. Educational Approach to Maintain a Suitable Knowledge and Expertise in Nuclear Field: Case of Morocco

    International Nuclear Information System (INIS)

    Choukri, A.; Hakam, O.K.

    2016-01-01

    Full text: Nuclear knowledge management has become an increasingly important element of the nuclear sector in recent years, resulting from a number of challenges and trends. The development of any national nuclear energy programme is dependent on the successful development of the workforce, through a sustainable nuclear educational and training programme supported by government and industry. Morocco has continuously provided educational programmes in nuclear field at its universities since 1967. These academic programmes focused on nuclear sciences, nuclear engineering, radiation protection, etc., and were intended to undergraduate and postgraduate students. Nuclear techniques have known also an increased contribution to medicine, agriculture, industry and research in Morocco. Some educational and training programmes have been elaborated to develop human resources needed in different domains. University of Ibn Tofail, has launched, since september 2010, a national master’s programme in the field of nuclear sciences which aims to provide knowledge directly used in the various sectors using nuclear techniques and requiring radiation protection, nuclear safety and security including notions on nuclear knowledge management. For an effective management of nuclear knowledge, the educational didactic has been improved increasingly. Some new techniques, materiel and styles have been employed such as demonstrations, group exercises, e-learning, visio-conferences. (author

  3. Innovations shape the nuclear services of tomorrow

    International Nuclear Information System (INIS)

    Apel, Frank

    2008-01-01

    The worldwide renaissance of nuclear energy production is getting up to speed. Thus Nuclear Services has the unique chance to develop and to implement exciting innovations. The driver for future innovations is the area of new builds as new customers are demanding new service solutions. Such are e.g. high availability concepts, full scope services and fully computerized datasets. AREVA NP Services. organization is prepared best to deliver innovative solutions, learning form being the first company building a new generation nuclear power plant, the EPR in OL3. AREVA involved Services in a very early stage to the design of the EPR to optimize plants maintainability. The newly developed tools and IT-solutions for new builds will as well support existing plants in improving their maintenance activities. Additionally AREVA takes advantage of being a global player in exchanging consequently experiences between all regions. (orig.)

  4. The ISWI chromatin remodeler organizes the hsrω ncRNA-containing omega speckle nuclear compartments.

    Directory of Open Access Journals (Sweden)

    Maria C Onorati

    2011-05-01

    Full Text Available The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA.

  5. Nuclear matrix - structure, function and pathogenesis.

    Science.gov (United States)

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  6. Peaceful nuclear explosions as a provocation and tasks of international organizations

    International Nuclear Information System (INIS)

    Welck, S. Freiherr von

    1975-01-01

    First there is a brief survey on how to make use of peaceful nuclear explosions and on the present state of technological development. Before their use on an international level materializes, a number of political, technical, legal, and ecological problems have to be solved at least provisionally. The extent to which international organizations can help to find these solutions is examined in detail. (HP/LN) [de

  7. Nuclear knowledge management strategies in Canada

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Aly, A.M.M.; Shalaby, B.

    2004-01-01

    An effective knowledge management strategy must encompass three basic elements; a sound resource management and training strategy to maintain nuclear competency in the face of accelerated retirements of current generation of experts and the development of advanced products, effective engineering tools to preserve the current technology and design basis and effective information management systems to facilitate pooling and sharing of information amongst different entities. The Canadian Nuclear Industry and its regulatory agency, the Canadian Nuclear Safety Commission (CNSC) recognized the importance of nuclear knowledge management and have already implemented a number of initiatives, in order to maintain competency, capture and preserve existing knowledge, advance the nuclear technology, develop future nuclear workers and maintain a critical R and D capability. The paper describes activities and initiatives undertaken or in progress in Canada in order to ensure a smooth transition of nuclear knowledge to the next generation of nuclear workers. Although this paper intends to address the Canadian scene in general, special emphasis will be placed on activities currently underway at Atomic Energy of Canada Limited (AECL) as the design authority and guardian of the CANDU technology. (author)

  8. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  9. The human factor and organization to support nuclear power plant operators

    International Nuclear Information System (INIS)

    Naumov, V.I.

    1993-01-01

    Analysis reveals three basic factors which affect the safety of nuclear power reactors: (1) Internal physical properties of the reactor which provide self protection under breakdown and accident conditions; (2) The reliability of technical systems which provide monitoring, control, accident prevention, heat release, and localization of hazardous products during accidents; (3) Reliability of the reactor control personnel. The last of these factors is usually called the human factor. From published data, this factor makes a large contribution to the downtime and accident statistics at nuclear power plants: from 30 to 80% in various countries. Today the importance of the human factor in operating a nuclear power units is rather well recognized. Current ideas on how to increase the reliability of a human operator are reflected in IAEA recommendations and domestic official documents. The concept of 'a culture of safety' is introduced. Basic types of actions to increase the reliability of personnel who control a nuclear reactor are discussed, including: (1) The qualifying and psychological selection and the training of candidates on the operator's obligations. (2) The automation of routine operations which do not require the operator's intellect. (3) Perfecting the work place, information input to the operator, and the organization of the controls

  10. The NEA data bank - an international service centre for computer programs and nuclear data

    International Nuclear Information System (INIS)

    Nordborg, C.

    2000-01-01

    The Nuclear Energy Agency (NEA) is a specialized agency of the Organization for Economic Co-operation and Development (OECD) based in Paris. The most important purpose of NEA is the promotion of international cooperation in the peaceful uses of nuclear power. Within the Agency a special unit, the so-called Database, allows the 21 member countries to have direct access to nuclear data, chemical data, and computer codes. These countries are Austria, Belgium, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Japan, Korea, Mexico, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, and the United Kingdom. Special agreements cover exchanges of data and codes with Canada, the United States of America, and IAEA. The NEA Database - maintains those databases which contain basic experimental and evaluated nuclear data, integral nuclear data, computer codes, and chemical thermodynamic data, - uses procedures of assured quality to store and maintain data and codes, - supplies as products internationally validated and licensed data and codes, - offers direct access to these products to scientists and engineers in national laboratories, universities, and in the nuclear industry. The services are available free of charge, and the databases can be accessed via the NEA web site (http://www.nea.fr). (orig.) [de

  11. Strategy for maintaining cleanliness in the secondary part of Steam Generators of French PWRs fleet

    International Nuclear Information System (INIS)

    Prin, C.

    2012-01-01

    Between 2004 and 2006, EDF noticed primary / secondary leakages on Steam Generators (SG) of a French nuclear plant. Further studies have shown that fouling by iron oxides and clogging of the quatrefoils broached holes of the Tubes Support Plates (TSP) are aggravating factors of the risk of cracking by vibration-induced fatigue of the SG's tubes. EDF then initiated a program of chemical cleaning of steam generators to restore and maintain an acceptable state of cleanliness of the secondary part of SG. This paper presents EDF's strategy to achieve this goal. It is organized as follows : first, fouling and clogging phenomenon and associated estimation means are explained. Then the strategy of chemical cleaning and its evolution are presented. The implemented processes as well as process monitoring and plants requalification are also described. Finally, the operations performed, the continuous improvement process conducted in connection with the French Nuclear Safety Authority (ASN) and the control of environmental impact are reviewed. This paper was written with the support of AREVA and Westinghouse, the two operators of chemical cleaning in France. (author)

  12. Nuclear education and training in OECD member countries

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi

    2001-01-01

    Mankind now enjoys many benefits from nuclear-related technologies. There is, however, growing concern in many OECD countries that nuclear education and training is decreasing, perhaps to problematic levels. This report conveys the results of a pioneering survey on nuclear education and training in almost 200 organizations in 16 countries. In most countries there are now fewer comprehensive, high-quality nuclear technology programs at universities than before. Facilities and faculties for nuclear education are aging, and the number of nuclear programs is declining. The principal reason for the deterioration of nuclear education is the downward spiral of budgetary cut and low enrolment of student whose perception is affected by the educational circumstances, negative public perception, the downsizing of the industry, and reductions in government-funded nuclear programmes, where little strategic planning is occurring. Unless something is done to arrest it, this downward spiral of declining student interest and academic opportunities will continue. Failure to take appropriate steps now will seriously jeopardize the provision of adequate expertise tomorrow. We must act now on the following recommendations: strategic role of governments; the challenges of revitalizing nuclear education by university; vigorous research and maintaining high-quality training; and benefits of collaboration and sharing best practices. (author)

  13. Organization of public authorities in France for the event of an incident or accident involving nuclear safety: Simulation of a nuclear crisis

    International Nuclear Information System (INIS)

    Cartigny, J.; Majorel, Y.

    1986-01-01

    The French nuclear safety regulations lay down the action to be taken in the event of an incident or accident involving the types of radiological hazard that could arise in a nuclear installation or during the transport of radioactive material. The organization established for this purpose is designed to ensure that the technical measures taken by the authorities responsible for nuclear safety, radiation protection, public order and public safety are fully effective. The Interministerial Nuclear Safety Committee (Comite interministeriel de la securite nucleaire), which reports to the Prime Minister, co-ordinates the measures taken by the public authorities. The public authorities and the operators together organize exercises designed to verify the whole complex of measures foreseen in the event of an incident or accident. These exercises, which have been carried out in a systematic manner in France for some years, are based on scenarios which are as realistic as possible and enable the following objectives to be achieved: (1) analysis of the crisis apparatus (ORSECRAD plans, individual intervention plans, information conventions); (2) uncovering gaps or inadequacies; (3) arrangements for interchange of information between the various participants whose responsibilities involve them in the emergency; and (4) allowance for the information requirements of the media and the population. The information drawn from these exercises enables the various procedures to be improved step by step. (author)

  14. Nuclear safety policy statement in korea

    International Nuclear Information System (INIS)

    Kim, W.S.; Kim, H.J.; Choi, K.S.; Choi, Y.S.; Park, D.K.

    2006-01-01

    Full text: Wide varieties of programs to enhance nuclear safety have been established and implemented by the Korean government in accordance with the Nuclear Safety Policy Statement announced in September 1994. The policy statement was intended to set the long-term policy goals for maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It has been recognized as very effective in developing safety culture in nuclear-related organizations and also enhancing nuclear safety in Korea. However, ageing of operating nuclear power plants and increasing of new nuclear facilities have demanded a new comprehensive national safety policy to cover the coming decade, taking the implementation results of the policy statement of 1994 and the changing environment of nuclear industries into consideration. Therefore, the results of safety policy implementation have been reviewed and, considering changing environment and future prospects, a new nuclear safety policy statement as a highest level national policy has been developed. The implementation results of 11 regulatory policy directions such as the use of Probabilistic Safety Assessment, introduction of Periodic Safety Review, strengthening of safety research, introduction of Risk Based Regulation stipulated in the safety policy statement of 1994 were reviewed and measures taken after various symposia on nuclear safety held in Nuclear Safety Days since 1995 were evaluated. The changing international and domestic environment of nuclear industry were analysed and future prospects were explored. Based on the analysis and review results, a draft of new nuclear safety policy statement was developed. The draft was finalized after the review of many prominent experts in Korea. Considering changing environment and future prospects, new policy statement that will show government's persistent will for nuclear safety has been

  15. Effectively managing nuclear risk through human performance improvement

    International Nuclear Information System (INIS)

    Coe, R.P.

    2004-01-01

    Full text: The US commercial nuclear industry has just completed an outstanding decade of plant performance. Safety levels and electric production are at unprecedented high levels and continue to exceed even high industry goals. Nuclear energy continues to keep the highest priority on performance improvement programs and highly trained/qualified people that maintain its record setting safety and reliability of operations. While the industry has maintained a consistently high level of performance, the advent of deregulation and the consolidation of NPP ownership, as well as the current climate of concern about both rising energy costs and availability of power, has raised the standard for nuclear energy's level of competitiveness in today's market place. The resulting challenge is how to more effectively manage risk and improve performance even further in a generally high performing organization. Newer technology and more training by themselves are not the answer. Rather, the answer will lie in the human side of the organization and management's ability to tap into the unused potential of employee commitment and productivity. It is people who offer the greatest potential for organizational success. Given the fact that human performance has been demonstrated to yield higher rates of return than physical capital, it makes good business sense to determine how to encourage the behaviors in the workplace to manage the risk that will accompany efforts to boost the nuclear industry to new heights of excellence. This means effectively developing a performance improvement culture through identifying measurable performance indicators and determining how behaviors can best be influenced to improve those indicators. It also means seeing a culture of performance improvement and risk management as a strategic planning tool rather than a solution to a particular problem. One of the most effective ways to develop this culture of performance improvement and effectively managing risk

  16. Third International Conference on Nuclear Knowledge Management: Challenges and Approaches. Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    Appropriate technical expertise and experience, along with a strong safety culture, must be developed and kept available throughout the nuclear technology life cycle. Nuclear equipment, installations and facilities may have long life cycles with changing operational conditions. Advanced and specialized knowledge in nuclear engineering and science is required for the safe and effective design, construction, licensing, commissioning, operation, maintenance, and decommissioning of nuclear technology-based systems. The safe use of licensed nuclear facilities and technologies is reliant on the ongoing availability and maintenance of suitable knowledge and expertise, and an adequate understanding of related safety issues. The ability of organizations that operate or utilize nuclear technology to take safe decisions and actions can be affected by knowledge gaps or knowledge loss. Appropriate methods and supporting technology are needed to establish and manage nuclear competencies, information and records, work processes, analysis and verification techniques, and the interpretation of data. Through the presentation and discussion of issues and solutions related to building, collecting, transferring, sharing, maintaining, preserving and utilizing knowledge, the conference will aim to improve awareness of the importance of knowledge management (KM) in the nuclear sector. Member States will have the opportunity to strengthen their capabilities in this area by learning from the experiences of other Member States and other stakeholders. The conference is a follow-up to the first and second conferences organized by the IAEA on nuclear knowledge management (NKM), held in 2004 in Saclay, France (Proceedings in PDF), and in 2007 in Vienna, Austria (Web Archive), respectively. It also builds on the outcomes of the IAEA organized conferences on human resource development held in 2010 in Abu Dhabi, United Arab Emirates (Proceedings website), and in 2014 in Vienna, Austria (Web Archive

  17. Evaluation of the nuclear security culture

    International Nuclear Information System (INIS)

    Spitalnik, Jorge

    2003-01-01

    The security culture of an organization resides in its workers and it is expressed by the way the personnel that works in a particular organization practice daily its activities. The security culture can be practice in a high or in a low level, but it always exists and it can always be improved. It is based on the security condition and procedures that have been established in the planning phase and in the implementation of a project. After its implantation, in order to avoid deterioration, basically it is necessary to maintain and to bring updated those conditions and procedures through strategies of follow up and control. This process establishes the basis of a program of maintenance and improvement of the Security Culture. Many self-evaluations that have been accomplished at nuclear organizations based on workers perception concerning working conditions and management environment, have permitted objectively determine if the security doctrine, which the organization assure to follow rigorously into its dally activities, is really so (LS)

  18. The Versatility of an Online Database for Spent Nuclear Fuel Management

    International Nuclear Information System (INIS)

    Canas, L.R.

    1997-12-01

    A vast and diverse database on spent nuclear fuel (SNF) supports the mission of the Westinghouse Savannah River Company's (WSRC) Spent Fuel Storage Division (SFSD) at the Department of Energy's (DOE) Savannah River Site (SRS) chemical-nuclear complex. Prior to 1994, this documentation resided in multiple files maintained by various organizations across SRS. Since that time, in an attempt to improve the efficiency of SNF data retrieval upon demand, the files have been substantially rearranged and consolidated. Moreover, selected data have been captured electronically in a web-style, online Spent Nuclear Fuel Database (SNFD) for quick and easy access from any personal computer on the SRS intranet. Originally released in August 1996, the SNFD has continued to expand at regular intervals commensurate with the SFSD mission

  19. Qualitative analysis of the man-organization system in accident conditions for nuclear installations

    International Nuclear Information System (INIS)

    Farcasiu, Mita; Prisecaru, Ilie

    2010-01-01

    In this paper a model of the human performance investigation of accident conditions in the operation of the nuclear installation is developed. A framework for analyses of the human action in the man-organization system context is achieved. The goal of this model is to identify the possible roots causing human errors which could occur during the evolution of the accident by the qualitative analysis of the interfaces in man-organization system. These interfaces represent the main elements which characterize the implication of the organization in human performance. The results of this paper are the interfaces of the man-organization and their circumstances in which human performance could fail. Also, another result is a pre-designed framework which could help in the investigation of an accident. (authors)

  20. Maintaining the safe operation of U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Skavdahl, R.E.

    1991-01-01

    The more than one hundred nuclear power plants in the U.S. are a vital resource that provides about 20% of the electrical power production. Although about half the plants are more than 15 years old, there is no evidence of age-related deterioration in any of the key indicators of industry performance; indeed, the continuing improvement in all these indicators shows the industry is maturing, not growing old. The Institute for Nuclear Power Operations's performance assessment and training programs have spurred a heavy industry-wide commitment to improved training. These efforts are the key to excellence in the performance of operations and maintenance personnel. The interface between the reactor and the operator has been improved through control room design reviews, the implementation of a Safety Parameter Display System, and emergency procedure guidelines. These improvements ensure that the operators will be able to perform their functions under any circumstances they may encounter. Led by NUMARC, the industry initiative to improve plant maintenance programs incorporates such elements as the INPO performance standards, enhanced monitoring through the use of the Nuclear Plant Reliability Data System, Reliability Centered Maintenance, and improvements in plant technical specifications. These elements bring the latest available technology to plant maintenance programs. Equipment replacements are frequently made to take advantage of improvements in technology. Aside from the performance enhancements they offer, such replacements also serve to keep the plants young. By leveraging their resources through the owners groups, utilities are able to quickly and efficiently solve problems together that they could not afford to attack individually. Even the highly unlikely hypothetical severe accidents are addressed in a systematic fashion through the application of Probabilistic Risk Assessments. 15 figs

  1. Recycling of Organic Wastes to Achieve the Clean Agriculture Approach with Aid of Nuclear Techniques

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2012-01-01

    The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. This desirtatation has the following targets: - Amendment and improving sandy soil properties - Utilization of farm wastes (Recycling) in safe mode -Benefits form organic matter decomposition. - Follow up the fate of same nutrients (Nitrogen) released in soil media after organic matter (O.M) decomposition and Impact on plant nutrition status.-saving the environment on short and long run.

  2. Two billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.

    2002-01-01

    Two billion years ago, the increase of oxygen in atmosphere and the high 235 U/ 238 U uranium ratio (> 3%) made possible the occurrence of natural nuclear reactors on Earth. These reactors are considered to be a good natural analogue for nuclear waste disposal. Their preservation during such a long period of time is mainly due to the geological stability of the site, the occurrence of clays surrounding the reactors and acting as an impermeable shield, and the occurrence of organic matter that maintained the environment in reducing conditions, favourable for the stability of uraninite. Hydrogeochemical studies and modelling have shown the complexity of the geochemical system at Oklo and Bangombe (Gabon) and the lack of precise data about uranium and fission products retention and migration mechanisms in geological environments. (author)

  3. Measures geared to maintain the competence of operating personnel at Grohnde nuclear power plant

    International Nuclear Information System (INIS)

    Bohr, H.

    1986-01-01

    Organizational structure of the German power plant 'Gemeinschaftskernkraftwerk Grohnde GmbH'. The plant characteristics of the tasks and duties and definition of competence. Measures to maintain competence. The experience by the realization of training programs to maintain competence. (orig.)

  4. Common Practices of Transparency in the Nuclear Regulatory Organizations

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Hah, Yeon Hee; Oh, Kju Myeng

    2010-01-01

    Along with greater access to information, particularly through the Internet, there is the increasing demand of the public for transparency, particularly in matters and decisions affecting their lives. The public demands to know more about Nuclear Regulatory Organization's (NROs) and their activities resulting in more interactions with the public to help make nuclear safety activities more understandable and transparent. As a general concept, 'transparency' means literally that something can be seen through. The definition tells us that it is, more actively, to provide the public with factual information about our activities, and to respond promptly to 'the public's right to know' about the information acquired by NROs. NROs around the world recognize the importance of openness and transparency to the success of their programs to protect public health and safety. All agree that good practice in transparency and being proactive with information help to protect against perceptions of secrecy and to instil public confidence and accountability in what they do. On the other hand, NROs face many challenges in their quest to be open and transparent with their stakeholders. government, nuclear operators, NGOs, media, our colleagues, and particularly with the general public. The most frequently identified challenge was striking the right balance between openness and security-related considerations with many responders citing the need to protect proprietary information whilst still accommodating the public's desire to be well informed. Other challenges include deciding how much transparency is needed to satisfy the public and how information, that is often highly technical and complex, can be presented in a meaningful way through the use of clear and simple language. In this paper, we summarize the survey results done by WGPC on relevant practices of NRO's flux of work concerning public communication matters. By comprehensively searching the international status, we may have

  5. Assessing the optimism-pessimism debate: Nuclear proliferation, nuclear risks, and theories of state action

    International Nuclear Information System (INIS)

    Busch, Nathan Edward

    2001-01-01

    This dissertation focuses on the current debate in international relations literature over the risks associated with the proliferation of nuclear weapons. On this subject, IR scholars are divided into roughly two schools: proliferation 'optimists,' who argue that proliferation can be beneficial and that its associated hazards are at least surmountable, and proliferation 'pessimists,' who believe the opposite. This debate centers upon a theoretical disagreement about how best to explain and predict the behavior of states. Optimists generally ground their arguments on rational deterrence theory and maintain that nuclear weapons can actually increase stability among states, while pessimists often ground their arguments on 'organization theory,' which contends that organizational, bureaucratic, and other factors prevent states from acting rationally. A major difficulty with the proliferation debate, however, is that both sides tend to advance their respective theoretical positions without adequately supporting them with solid empirical evidence. This dissertation detailed analyses of the nuclear programs in the United States, Russia, China, India, and Pakistan to determine whether countries with nuclear weapons have adequate controls over their nuclear arsenals and tissue material stockpiles (such as highly enriched uranium and plutonium). These case studies identify the strengths and weaknesses of different systems of nuclear controls and help predict what types of controls proliferating states are likely to employ. On the basis of the evidence gathered from these cases, this dissertation concludes that a further spread of nuclear weapons would tend to have seriously negative effects on international stability by increasing risks of accidental, unauthorized, or inadvertent use of nuclear weapons and risks of thefts of fissile materials for use in nuclear or radiological devices by aspiring nuclear states or terrorist groups. (author)

  6. Nuclear technology centre. Preserving and developing competence and resources

    International Nuclear Information System (INIS)

    Tiren, I.

    1995-01-01

    The Royal Institute of Technology in Stockholm provides one third of Sweden's capacity for engineering studies and technical research at the post-high-school level. Altogether, the institute includes about 8000 students and 900 active postgraduate students and has a staff of nearly 2500. The research activities cover a broad spectrum of the natural sciences and technology, as well as architecture, industrial economics, urban planning, work science and environmental technology. In 1993, a Nuclear Technology Centre was established at the institute. The purpose of this Centre is to stimulate education and research in nuclear technology in order to contribute to the preservation and development of competence in the nuclear field. The formation of the Centre should be regarded as one of several recent initiatives aimed at maintaining a high level of safety and reliability in the operation of nuclear power plants at a time when there are political manoeuvres to phase out nuclear energy in Sweden. The paper summarizes the motives that led to the formation of the Centre, its goals and organization, and its initial activities and results. The paper may be of interest to similar organizations in other countries which are also faced with uncertainties regarding the future of existing nuclear power plants or of current programmes, and which consider that co-operation between the industry and universities is an important factor in ensuring the quality of technological development. (author). 4 refs

  7. Non Proliferation of Nuclear

    International Nuclear Information System (INIS)

    Bambang S Irawan

    2004-01-01

    Non-Proliferation Treaty of Nuclear Weapons is the international community's efforts to maintain the security of the world, in order to prevent the spread of nuclear technology and the use of nuclear weapons, promoting cooperation for the use of nuclear peaceful purposes, build mutual trust (Confidence Building Measures) as well as to achieve the ultimate goal of disarmament overall (General and Complete Disarmament). Addressing the post-WTC tragedy, 11 September 2001, the Indonesian government should set up a National Measures (National Action Plan), among others formed the National Security Council and NBC Counter Proliferation Unit, or the National Authority for Nuclear Treaty, preparing national legislation, to prevent the abuse nuclear materials for terrorist acts, prevent Illicit Trafficking of Nuclear materials, developed a National Preparedness and Emergency Response Management in the event of a nuclear accident or attack by the use of nuclear terrorism. Importance of a National Action Plan meant the existence of a national commitment in the context of compliance with treaties and conventions which have been ratified relating to safety, security, safeguards towards a general and complete disarmament, to safeguard national security and maintain peace (safeguards) international

  8. Structural and functional adaptations of the mammalian nuclear envelope to meet the meiotic requirements.

    Science.gov (United States)

    Link, Jana; Jahn, Daniel; Alsheimer, Manfred

    2015-01-01

    Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.

  9. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  10. Medical activities at nuclear disaster. Experience in the accident of Fukushima nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, Arifumi

    2013-01-01

    The Great East Japan Earthquake brought multiple disaster resulting nuclear accident at Fukushima. Existing medical system for emergency radiation exposure did not work well. Present medical system for the nuclear disaster is maintained temporary with supports by teams from regions other than Fukushima Pref. The radiation protection action must be both for the public and the medical persons. Medical activities for nuclear disaster are still in progress now. Medical system for radiation exposure should be maintained in future for works of decommissioning of reactors. Problems, however, may exist in economy and education of medical personnel. (K.Y.)

  11. Combating nuclear terrorism in India: preventive nuclear forensic perspectives

    International Nuclear Information System (INIS)

    Raghav, N.K.; Lad, J.S.; Deshmukh, A.V.; Jagtap, S.S.

    2014-01-01

    Nuclear terrorism is constant threat to India by many terrorist organization and neighboring country. These organizations are directly or indirectly aided with nuclear material by terrorism supporting country. Such organization has a significant potential source for acquiring nuclear and other radioactive material. Possibility of leakage is widely feared because of the deteriorating law and order condition, great spur of nuclear proliferation after the cold war and disintegration of USSR. Terrorist could gain access to Nuclear and radioactive material and smuggle to India through porous borders. Preventive forensic approach in screening and searching nuclear and radioactive material will play cardinal role to prevent nuclear disaster happening in India. Future plans could be extracted from terrorists through their narco-tests, brain fingerprinting and a data base on this could be prepared, which could later be used to help prevent any attacks. In present paper authors strongly recommend setting up Preventive Forensic Units in India so that any internal or external nuclear attack could be aborted. (author)

  12. Executive summary of the guidebook on training to establish and maintain the qualification and competence of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1990-01-01

    Since the IAEA published its guidebook on the qualification of nuclear power plant operation personnel in 1984 (Technical Reports Series no. 242) there have been important developments in the approach for training adopted by many operating organizations in different countries. The guidebook, described in this report, proposes an approach which is comprehensive and systematic in its methodology and cost effective in its implementation. 5 refs. 1 fig

  13. Executive summary of the guidebook on training to establish and maintain the qualification and competence of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1989-01-01

    Since the IAEA published its Guidebook on the Qualification of Nuclear Power Plant Operations Personnel in 1984 (Technical Reports Series No. 242) there have been important developments in the approach for training adopted by many operating organizations in different countries. The Guidebook, described in this report, proposes an approach which is comprehensive and systematic in its methodology and cost effective in its implementation. 5 refs, 1 fig

  14. Resolution establishing the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization. Adopted on 19 November 1996

    International Nuclear Information System (INIS)

    1996-11-01

    The document reproduces the text of the Resolution on the Establishment of a Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization which was adopted on 19 November 1996 at a meeting of the States Signatories of the Comprehensive Nuclear Test-Ban Treaty

  15. Inside CERN European Organization for Nuclear Research

    CERN Document Server

    Pol, Andri; Heuer, Rolf

    2013-01-01

    For most people locations that hold a particular importance for the development of our society and for the advancement of science and technology remain hidden from view. CERN, the European Organization for Nuclear Research, is best known for its giant particle accelerator. Here researchers take part in a diverse array of fundamental physical research, in the pursuit of knowledge that will perhaps one dayrevolutionize our understanding of the universe and life on our planet. The Swiss photographer Andri Pol mixed with this multicultural community of researchers and followed their work over an extended period of time. In doing so he created a unique portrait of this fascinating “underworld.” The cutting-edge research is given a human face and the pictures allow us to perceive how in this world of the tiniest particles the biggest connections are searched for. With an essay by Peter Stamm.

  16. ASME nuclear codes and standards risk management strategic planning

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Balkey, Kenneth R.; Erler, Bryan A.; Wesley Rowley, C.

    2007-01-01

    This paper is prepared in honor and in memory of the late Professor Emeritus Yasuhide Asada to recognize his contributions to ASME Nuclear Codes and Standards initiatives, particularly those related to risk-informed technology and System Based Code developments. For nearly two decades, numerous risk-informed initiatives have been completed or are under development within the ASME Nuclear Codes and Standards organization. In order to properly manage the numerous initiatives currently underway or planned for the future, the ASME Board on Nuclear Codes and Standards (BNCS) has an established Risk Management Strategic Plan (Plan) that is maintained and updated by the ASME BNCS Risk Management Task Group. This paper presents the latest approved version of the plan beginning with a background of applications completed to date, including the recent probabilistic risk assessment (PRA) standards developments for nuclear power plant applications. The paper discusses planned applications within ASME Nuclear Codes and Standards that will require expansion of the ASME PRA Standard to support new advanced light water reactor and next generation reactor developments, such as for high temperature gas-cooled reactors. Emerging regulatory developments related to risk-informed, performance- based approaches are summarized. A long-term vision for the potential development and evolution to a nuclear systems code that adopts a risk-informed approach across a facility life-cycle (design, construction, operation, maintenance, and closure) is also summarized. Finally, near term and long term actions are defined across the ASME Nuclear Codes and Standards organizations related to risk management, including related U.S. regulatory activities. (author)

  17. Creating and maintaining chemical artificial life by robotic symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin M.; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  18. Creating and Maintaining Chemical Artificial Life by Robotic Symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  19. Establishing the quality assurance programme for a nuclear power plant project

    International Nuclear Information System (INIS)

    1984-01-01

    This Safety Guide provides requirements, recommendations and illustrative examples for establishing the overall quality assurance programme, and its constituent programmes, for a nuclear power plant project. It also provides guidance on the planning and documenting of programme plans and actions that are intended to ensure the achievement of the appropriate quality throughout the design, procurement, manufacture, construction, commissioning, operation and decommissioning of the nuclear power plant. The provisions of this Safety Guide are applicable to all organizations performing activities affecting the quality of items important to safety, such as designing, purchasing, fabricating, manufacturing, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling, modifying and decommissioning

  20. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  1. Proceedings: 2001 Nuclear Asset Management Workshop

    International Nuclear Information System (INIS)

    2002-01-01

    The fourth annual EPRI Nuclear Asset Management Workshop helped decision makers at all levels of nuclear enterprises to keep informed about developing nuclear asset management (NAM) processes, methods, and tools. The goal is to operate nuclear plants with enhanced profitability, while maintaining safety

  2. Nuclear Safety Charter; Charte Surete Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and

  3. Nuclear disarmament or survival of nuclear arms?

    International Nuclear Information System (INIS)

    Stroot, J.P.

    1997-01-01

    START II has not yet been ratified by the US or Russian parliaments. Doubts may be raised over whether it will ever be. In the best case there will be more than 20,000 nuclear warheads in the arsenals of these two countries by the year 2003. All five nuclear states consider that nuclear weapons are an essential component of their national defense. It might sound childish but, the whole story is is so often childish: the five powers refuse to break their nuclear toys. They take even all possible measures to maintain and improve them and to ensure the survivability of their arsenals. To prepare for the next arms race..

  4. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyusyu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Hirata, Osamu; Shibano, Yuki [Nissan Chemical Industries, LTD, 722-1 Tsuboi, Funabashi 274-8507 (Japan)

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  5. Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin

    Energy Technology Data Exchange (ETDEWEB)

    Illner, Doris; Zinner, Roman; Handtke, Violet; Rouquette, Jacques; Strickfaden, Hilmar [Biozentrum, Department of Biology II (Chair of Anthropology and Human Genetics), Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried (Germany); Lanctot, Christian [Biozentrum, Department of Biology II (Chair of Anthropology and Human Genetics), Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried (Germany); Institute of Cellular Biology and Pathology, Charles University Prague (Czech Republic); Conrad, Marcus; Seiler, Alexander [Helmholtz Zentrum Munich, Institute of Clinical Molecular Biology and Tumor Genetics, Marchioninistr. 25, 81377 Munich (Germany); Imhof, Axel [Adolf Butenandt Institute, Department of Molecular Biology (Germany); Munich Center for Integrated Protein Sciences (CIPSM), 81377 Munich (Germany); Cremer, Thomas [Biozentrum, Department of Biology II (Chair of Anthropology and Human Genetics), Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried (Germany); Munich Center for Integrated Protein Sciences (CIPSM), 81377 Munich (Germany); Cremer, Marion, E-mail: Marion.Cremer@lrz.uni-muenchen.de [Biozentrum, Department of Biology II (Chair of Anthropology and Human Genetics), Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried (Germany)

    2010-06-10

    Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicate that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.

  6. Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin

    International Nuclear Information System (INIS)

    Illner, Doris; Zinner, Roman; Handtke, Violet; Rouquette, Jacques; Strickfaden, Hilmar; Lanctot, Christian; Conrad, Marcus; Seiler, Alexander; Imhof, Axel; Cremer, Thomas; Cremer, Marion

    2010-01-01

    Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicate that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.

  7. Preparedness of the operating organization (licensee) for emergencies at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide outlines the principal elements in devising and implementing emergency plans so that actions to be taken in accordance with the plans ensure an orderly and timely decision-making process and the availability of essential personnel, equipment, supplies and services. Principal elements included in the Guide are: (1) An outline for the basis and content of emergency planning, and the activities to be covered; (2) The responsibilities and arrangements of the operating organization (licensee) in establishing and implementing the Operating Organization Emergency Plan; (3) The liaison between the operating organization (licensee), the regulatory body, and public authorities in relation to the Operating Organization Emergency Plan; (4) Detailed measures to protect persons on-site, and guidance with respect to protection of the public off-site; (5) Facilities and equipment to cope with the emergency situation; (6) Aspects relevant to maintaining the plan and the organization in operational readiness. Although this Guide does not consider emergencies related to the off-site transportation of radioactive materials or new or irradiated fuel, many of its recommendations may be useful in planning how to cope with such emergencies

  8. Nuclear knowledge management

    International Nuclear Information System (INIS)

    2007-01-01

    The management of nuclear knowledge has emerged as a growing challenge in recent years. The need to preserve and transfer nuclear knowledge is compounded by recent trends such as ageing of the nuclear workforce, declining student numbers in nuclear-related fields, and the threat of losing accumulated nuclear knowledge. Addressing these challenges, the IAEA promotes a 'knowledge management culture' through: - Providing guidance for policy formulation and implementation of nuclear knowledge management; - Strengthening the contribution of nuclear knowledge in solving development problems, based on needs and priorities of Member States; - Pooling, analysing and sharing nuclear information to facilitate knowledge creation and its utilization; - Implementing effective knowledge management systems; - Preserving and maintaining nuclear knowledge; - Securing sustainable human resources for the nuclear sector; and - Enhancing nuclear education and training

  9. Role of the national R and D organization in the nuclear industrial infrastructure of Korea

    International Nuclear Information System (INIS)

    Duck Seung Kim

    1986-04-01

    Korea now operates five units of nuclear power plants delivering nearly 30f of her electrical energy and four more units are under construction. Korea gained gradual localization of materials and skills through first generation of power reactors (unit 1,2,3) under complete turn-key contracts and second generation (unit 5 through 10) under component approach contracts. National infrastructure in support of large scale nuclear power program is at forming stages through localization of design and engineering, manufacturing, construction, operation, services and fuel cycle activities. However, Korea is seeking full scope technology transfer along with the next ambitious nuclear project KNU 11 and 12 to be started in 1987. KAERI, the sole national nuclear R and D organization, is now deeply committed in three folds in direct support of Korea's expanding nuclear power program. KAERI is responsible for delivering NSSS system design from KNU 11 and 12, nuclear fuel design from 1989 for all Korea's PWRs as well as CANDU fuels from 1988, and responsible for radwaste management for all the power reactors. (author). 4 figs, 3 tabs

  10. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  11. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  12. Management of delayed nuclear power plant projects

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA assists the management of organizations responsible for Nuclear Power Plant Projects with significant delays with respect to the originally scheduled commercial operation. Several Member States have Nuclear Power Plant Projects with delays of five or more years with respect to the originally scheduled commercial operation. The degree of conformance with original construction schedules shows large variations due to several issues, including financial, economic and public opinion factors. Solving the special difficulties related with a delayed NPP project is problematic and dependent on the particular country situation. However it is not regarded as an isolated national problem but as a significant issue with a number of difficulties shared by several Member States. The IAEA collects information and supports the management of delayed NPP projects by identifying main common issues, gathering available experience and addressing specific needs. On this background the IAEA is in the position to provide unique impartial assistance based upon best international practices. This enables Member States to maintain readiness for resuming the project construction when the conditions permit and to strengthen management's abilities for the completion of the project. The IAEA's service is tailored to the needs and requirements of the requesting organization, implemented on-site by international experts and addresses areas such as project control measures, human resources, updating to technological and regulatory requirements, project data, nuclear safety review, physical protection and nuclear security and preparation to resume project construction and operation

  13. International conference on knowledge management in nuclear facilities. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    In recent years new issues have emerged in Member States, including ageing facilities and personnel, nuclear phase-out policies, the expectation of nuclear growth in some regions and the objective to further improve the economic competitiveness of nuclear energy while maintaining a high level of safety. Awareness of the importance of nuclear knowledge management in addressing the challenges the industry is facing has grown significantly, both in the industry and in regulatory authorities, and a large number of projects are under way. Knowledge management is becoming an important element of the organizational behaviour of the nuclear industry. In 2002, the IAEA General Conference adopted a new resolution on Nuclear Knowledge, emphasizing the importance of nuclear knowledge management. The resolution was reiterated in subsequent years. This conference is organized in response to those resolutions, also following the first conference on Nuclear Knowledge Management - Strategies, Information Management and Human Resource Development, organized by the IAEA in 2004 in France. The objectives of the conference are to: - Take stock of the recent developments in nuclear knowledge management; - Demonstrate and discuss the benefits of nuclear knowledge management in promoting excellence in operation and safety of nuclear facilities; - Promote the use of nuclear knowledge management in the nuclear industry; - Provide insights and recommendations to the nuclear community. The conference will address decision makers and professionals in the nuclear industry, including in particular all nuclear facilities in all phases of their life cycle, and from regulatory organizations, governments, academia, vendors and other bodies concerned with the topic. The conference will start with a policy forum: Policy Forum: Status, Strategic Perspectives and Key Issues Leaders from nuclear industry, governmental organizations, regulators, research institutes and international organizations will

  14. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  15. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Masson, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability for the next generation engineering oriented reactors; and long range, in developing full maintainability for the more complicated commercial concepts with their required high level of on-line time. The near-term challenge will include development of unique design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full maintainability required by commercial fusion. In addition to the purely technical challenges, the fusion community is also faced with the problem of developing programmatic means to assure that reactor maintenance issues are given proper and timely emphasis as the nuclear phase of fusion is approached

  16. Spain's nuclear components industry

    International Nuclear Information System (INIS)

    Kaibel, E.

    1985-01-01

    Spanish industrial participation in supply of components for nuclear power plants has grown steadily over the last fifteen years. The share of Spanish companies in work for the five second generation nuclear power plants increased to 50% of total capital investments. The necessity to maintain Spanish technology and production in the nuclear field is emphasized

  17. Summary of EPRI projects for improving power plant maintenance and maintainability

    International Nuclear Information System (INIS)

    Shugars, H.G.; Poole, D.N.; Pack, R.W.

    1979-01-01

    The Electric Power Research Institute is sponsoring projects to improve power plant maintenance and maintainability. Areas presently being emphasized are improvements in plant design for maintainability, improvements in performing nuclear plant refuelings, and development of on-line monitoring and diagnostic systems for various plant components. The seven projects are reviewed. They are: (1) human factors review of power plant maintainability; (2) refueling outage improvement; (3) on-line monitoring and diagnostics for power plant machinery; (4) acoustic emission and vibrati1on signature analysis of fossil fuel plant components; (5) acoustic monitoring of power plant valves; (6) on-line monitoring and diagnostics for generators; and (7) detection of water induction in steam turbines. Each project contractor and the project manager are listed for reference. 8 references

  18. Polymer physics of nuclear organization and function

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, A. [Department of Chemical Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Holcman, D., E-mail: david.holcman@ens.fr [Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Churchill College, CB30DS, Cambridge (United Kingdom); Ecole Normale Superieure, Paris (France)

    2017-03-23

    We review here recent progress to link the nuclear organization to its function, based on elementary physical processes such as diffusion, polymer dynamics of DNA, chromatin and the search mechanism for a small target by double-stranded DNA (dsDNA) break. These physical models and their analysis make it possible to compute critical rates involved in cell reorganization timing, which depend on many parameters. In the framework of polymer models, various empirical observations are interpreted as anomalous diffusion of chromatin at various time scales. The reviewed theoretical approaches offer a framework for extracting features, biophysical parameters, predictions, and so on, based on a large variety of experimental data, such as chromosomal capture data, single particle trajectories, and more. Combining theoretical approaches with live cell microscopy data should unveil some of the still unexplained behavior of the nucleus in carrying out some of its key function involved in survival, DNA repair or gene activation.

  19. Evolutionary Effects on Morphology and Agronomic Performance of Three Winter Wheat Composite Cross Populations Maintained for Six Years under Organic and Conventional Conditions

    Directory of Open Access Journals (Sweden)

    Sarah Brumlop

    2017-02-01

    Full Text Available Three winter wheat (Triticum aestivum L. composite cross populations (CCPs that had been maintained in repeated parallel populations under organic and conventional conditions from the F5 to the F10 were compared in a two-year replicated field trial under organic conditions. The populations were compared to each other, to a mixture of the parental varieties used to establish the CCPs, and to three winter wheat varieties currently popular in organic farming. Foot and foliar diseases, straw length, ear length, yield parameters, and baking quality parameters were assessed. The overall performance of the CCPs differed clearly from each other due to differences in their parental genetics and not because of their conventional or organic history. The CCPs with high yielding background (YCCPs also yielded higher than the CCPs with a high baking quality background (QCCPs; in the absence of extreme winter stress. The QCCPs performed equally well in comparison to the reference varieties, which were also of high baking quality. Compared to the parental mixture the CCPs proved to be highly resilient, recovering much better from winter kill in winter 2011/12. Nevertheless, they were out yielded by the references in that year. No such differences were seen in 2013, indicating that the CCPs are comparable with modern cultivars in yielding ability under organic conditions. We conclude that—especially when focusing on traits that are not directly influenced by natural selection (e.g. quality traits—the choice of parents to establish a CCP is crucial. In the case of the QCCPs the establishment of a reliable high-quality population worked very well and quality traits were successfully maintained over time. However, in the YCCPs lack of winter hardiness in the YCCP parents also became clearly visible under relevant winter conditions.

  20. Nuclear power in the OECD countries results and current issues

    International Nuclear Information System (INIS)

    Jones, C.F.

    1989-01-01

    The first use of nuclear power for the generation of electricity on a commercial scale occurred in the United Kingdom in 1956. Today, 13 OECD countries have 318 nuclear units in operation and 66 more in construction or on order. This outstanding achievement is the result of the successful organization, start up, and operation of an industry to design, build, equip, fuel, and maintain these facilites. Nuclear power, however, is currently troubled by a number of issues that may impair its ability to reach its full potential. The industry has acknowledged problems that can be and are being managed. But the industry also has a number of political difficulties that could be beyond its ability to resolve with its own resources. These are issues common to the introduction of new technologies into a complex world. Nevertheless, nuclear power continues to be the means by which we can provide the electric power needed to raise the living standard of everyone on the globe

  1. Military aspect of nuclear policy of Japan

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2011-01-01

    Military aspect of nuclear policy of Japan was outlined. In 1952 Prime Minister Yoshida asked to prepare production of weapons for rearmament and to establish Science and Technology Agency such as to overcome lack of science research budget and inefficiency of research and cooperation. Kaya and Fushimi proposed establishment of Atomic Energy Commission as recommendation of Science Council of Japan. In 1954 Nakasone proposed budget for nuclear energy with yen 235 million to construct reactor. In 1955 Japanese delegation participated in international conference on peaceful use of nuclear energy at Geneva and nonpartisan members proposed Atomic Energy Basic Law, which limited the use of nuclear technology to peaceful purposes, ensured three principles - democratic methods, independent management, and transparency - as the basis of nuclear research and promoted international co-operation. In 1956 Atomic Energy Commission and Science and Technology Agency were established with other organizations under this law. According to internal report in the age of Prime Minister Sato, nuclear policy in Japan would be (1) no holding nuclear weapon for the time being, (2) maintaining economic and technical potential of nuclear weapon production and (3) considering no restraint for this policy whether Japan participated in NPT or not. Fuel cycle program of Monju reactor and reprocessing for power production seemed to be deployed corresponding to (3) above. Irradiated blanket of Monju reactor could be reprocessed to produce highly purified plutonium suited for nuclear bombs. (T. Tanaka)

  2. Nuclear utility structure. Use of nuclear service companies

    International Nuclear Information System (INIS)

    Ring, L.E.

    1980-01-01

    The feasibility of utilities incorporating service companies to construct and maintain nuclear power plants is analyzed. Responsibilities of the service companies and the public opinion of the concept are discussed

  3. Safety culture in the Finnish and Swedish nuclear industries - history and present

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.; Pietikaeinen, E. (Technical Research Centre of Finland, VTT (Finland)); Kahlbom, U. (RiskPilot AB (Sweden)); Rollenhagen, C. (Royal Institute of Technology (KTH) (Sweden))

    2010-03-15

    The report presents results from an interview study that examined the characteristics of the Nordic nuclear branch safety culture. The study also tested the theoretical model of safety culture developed by the authors. The interview data was collected in Sweden (n = 14) and Finland (n = 16). Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). The study gave insight into the nature of safety culture in the nuclear industry. It provided an overview on the variety of factors that people in the industry consider important for safety. The respondents rather coherently saw such psychological states as motivation, mindfulness, sense of control, understanding of hazards and safety and sense of responsibility as important for nuclear safety. Some of the respondents described a certain Nordic orientation towards safety. One characteristic was a sense of personal responsibility for safety. However, there was no clear agreement on the existence of a shared Nordic nuclear safety culture. Sweden and Finland were seen different for example in the way the co-operation between plants and nuclear safety authorities was arranged and re-search activities organized. There were also perceived differences in the way everyday activities like decision making were carried out in the organizations. There are multiple explanations for the differences. The industry in Sweden has been driven by the strong supplier. In Finland the regulator's role in shaping the culture has been more active. Other factors creating differences are e.g. national culture and company culture and the type of the power plant. Co-operation between Nordic nuclear power organizations was viewed valuable yet challenging from safety point of view. The report concludes that a good safety culture requires a deep and wide under-standing of nuclear safety including the various accident mechanisms of the power plants as well as

  4. Safety culture in the Finnish and Swedish nuclear industries - history and present

    International Nuclear Information System (INIS)

    Reiman, T.; Pietikaeinen, E.; Kahlbom, U.; Rollenhagen, C.

    2010-03-01

    The report presents results from an interview study that examined the characteristics of the Nordic nuclear branch safety culture. The study also tested the theoretical model of safety culture developed by the authors. The interview data was collected in Sweden (n = 14) and Finland (n = 16). Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). The study gave insight into the nature of safety culture in the nuclear industry. It provided an overview on the variety of factors that people in the industry consider important for safety. The respondents rather coherently saw such psychological states as motivation, mindfulness, sense of control, understanding of hazards and safety and sense of responsibility as important for nuclear safety. Some of the respondents described a certain Nordic orientation towards safety. One characteristic was a sense of personal responsibility for safety. However, there was no clear agreement on the existence of a shared Nordic nuclear safety culture. Sweden and Finland were seen different for example in the way the co-operation between plants and nuclear safety authorities was arranged and re-search activities organized. There were also perceived differences in the way everyday activities like decision making were carried out in the organizations. There are multiple explanations for the differences. The industry in Sweden has been driven by the strong supplier. In Finland the regulator's role in shaping the culture has been more active. Other factors creating differences are e.g. national culture and company culture and the type of the power plant. Co-operation between Nordic nuclear power organizations was viewed valuable yet challenging from safety point of view. The report concludes that a good safety culture requires a deep and wide under-standing of nuclear safety including the various accident mechanisms of the power plants as well as a

  5. Security with nuclear weapons

    International Nuclear Information System (INIS)

    Karp, R.C.

    1991-01-01

    Recent improvements in East-West relations and the process of dramatic political change in Europe may result in unprecedented opportunities to reduce the global arsenal of nuclear weapons. Despite these welcome developments, the prospects for effectively controlling the spread of nuclear capability in the Third World have remained much less encouraging. The possibility of large reductions in nuclear weapons poses fundamental questions about their purpose. Why have some states chosen to acquire nuclear weapons? How and why have these decisions been maintained over time? Why have some states elected to approach, but not cross, the nuclear threshold? This book examines the commonalities and differences in political approaches to nuclear weapons both within and between three groups of states: nuclear, non-nuclear and threshold. The chapters explore the evolution of thinking about nuclear weapons and the role these weapons play in national security planning, and question the official security rationales offered by the nuclear weapon states for the maintenance of nuclear capabilities. For the non-nuclear weapon states, the book presents an analysis of alternative ways of assuring security and foreign policy effectiveness. For the threshold states, it examines the regional contexts within which these states maintain their threshold status. This book transcends traditional East-West approaches to analysis of nuclear issues by giving equal prominence to the issues of nuclear proliferation and non-nuclearism. The book also provides a comprehensive analysis of how current approaches to nuclear weapons have evolved both within and among the groups of countries under study

  6. International cooperation and nuclear development. On the approval of the Argentina - Australia co-operation agreement for the peaceful uses of the nuclear energy

    International Nuclear Information System (INIS)

    Gasol Varela, Claudia

    2005-01-01

    Argentina, with its National Atomic Energy Commission, has been maintaining during more than half a century an important activity for the development of nuclear energy and its peaceful applications. As a consequence of this tradition, it has strengthened its experience with the contribution to the international co-operation, as in the case of the Argentina-Australia co-operation agreement for the peaceful uses of nuclear energy, signed on August 8th, 2001 and ratified by the Argentine Law No. 26.014. Both countries are parties of several international treaties and conventions: physical protection of nuclear materials, nuclear non-proliferation, nuclear accidents, fuel and wastes management, and others. These legal instruments are complemented by agreements for the applications of safeguards with the International Atomic Energy Agency. On the basis of these regulations the parties agreed to establish co-operation conditions in accordance with the pledge of non-proliferation. Furthermore the agreement states that the Governments have the power to designate the governmental organizations or individuals, as well as the legal entities, which will carry out the co-operation. The co-operation covers basic and applied research, development, design, construction and operation of nuclear reactors and other installations of the nuclear fuel cycle, its related technology as well as nuclear medicine, radioisotopes, etc [es

  7. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  8. Industrial Control System Cyber Security: Questions And Answers Relevant To Nuclear Facilities, Safeguards And Security

    International Nuclear Information System (INIS)

    Anderson, Robert S.; Schanfein, Mark; Bjornard, Trond; Moskowitz, Paul

    2011-01-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  9. Planning and Execution of Knowledge Management Assist Missions for Nuclear Organizations (Russian Edition)

    International Nuclear Information System (INIS)

    2012-06-01

    As a result of the widening knowledge gap in the nuclear industry and related organizations, the IAEA is developing a series of guidance documents on knowledge management. This publication represents one such activity and provides general guidance as to the nature of the knowledge management mission and the means by which its goals are to be achieved and executed.

  10. The aims and activities of the International Network of Nuclear Structure and Decay Data Evaluators

    International Nuclear Information System (INIS)

    Nichols, A.L.; Tuli, J.K.

    2008-01-01

    The International Network of Nuclear Structure and Decay Data (NSDD) experts consists of a number of evaluation groups and data service centres in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via various media, such as the journals Nuclear Physics A and Nuclear Data Sheets, the World Wide Web, on CD-Rom, wall charts of the nuclides and Nuclear Wallet Cards. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centres including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new experts to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics. (authors)

  11. The nuclear industry in Canada

    International Nuclear Information System (INIS)

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  12. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    Science.gov (United States)

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  14. Nuclear Safety Review for 2014

    International Nuclear Information System (INIS)

    2014-07-01

    The Nuclear Safety Review 2014 focuses on the dominant nuclear safety trends, issues and challenges in 2013. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: strengthening safety in nuclear installations; improving radiation, transport and waste safety; enhancing emergency preparedness and response (EPR); improving regulatory infrastructure and effectiveness; and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards, and activities relevant to the Agency’s safety standards. The global nuclear community has made steady and continuous progress in strengthening nuclear safety in 2013, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”) and reported in Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2013/8-GC(57)/INF/5), and the Supplementary Information to that report and Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2014/2). • Significant progress continues to be made in several key areas, such as assessments of safety vulnerabilities of nuclear power plants (NPPs), strengthening of the Agency’s peer review services, improvements in EPR capabilities, strengthening and maintaining capacity building, and protecting people and the environment from ionizing radiation. The progress that has been made in these and other areas has contributed to the enhancement of the global nuclear safety framework. • Significant progress has also been made in reviewing the Agency’s safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on vitally important areas such as design and operation of NPPs, protection of NPPs against severe accidents, and EPR. • The Agency continued to

  15. Developing Sustainable Organizations for New Nuclear Power Countries through Knowledge Management

    International Nuclear Information System (INIS)

    Cain, R.; Kovacic, D.; Einwechter, M.; Reed, J.; Therios, I.

    2016-01-01

    Full text: Countries with emerging nuclear power programmes face unique challenges with respect to building competent and sustainable organizations. By nature, such organizations are dynamic and evolving, energetic, and feel a sense of mission. They are also typically preoccupied with near and mid-term objectives, may be resource–constrained, can incur high staff turnover rate, and encounter difficulties in obtaining experienced, qualified personnel. Such conditions can make it difficult to think about, much less implement, a knowledge management (KM)-based culture. The result can be missed opportunities if a KM system is not in place to collect institutional knowledge leveraged to advance the organization’s mission. Nevertheless, knowledge is perishable, and the best time to capture it is as it is being created, not at the end of a career. This paper explores some of the resource–efficient methods for knowledge capture applicable to programs/organizations early in their formation and which might be constrained in some way from instituting larger KM initiatives. The emphasis is on tools, techniques, and methods that integrate well with the day-to-day processes of the organization, reduce single points of failure, and transfer/preserve knowledge early in the lifecycle. (author

  16. Nuclear power generating station operability assurance reliability, availability, and maintainability application for maintenance management

    International Nuclear Information System (INIS)

    Cleveland, J.W.; Regenie, T.R.; Wilson, R.J.

    1985-01-01

    Environmental qualification and equipment warrantee insurance stipulations should be supplemented with a reliable maintainability program structured to identify and control fast failing subcomponents within critical equipment. Anticipation of equipment subcomponent failures can control unnecessary plant off-line occurrences. Incorporation of reliability, availability, and maintainability considerations into plant maintenance policies on power generation and safety related items have positive cost benefit advantages

  17. Australian Nuclear Science and Technology Organization (Transitional Provisions) Act 1987 - No 4 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act implements certain transitional provisions consequent to the enactment of the ANSTO Act 1987. The legislation provides for the continuation of the body corporate from its present form as the Australian Atomic Energy Commission to the new body corporate, the Australian Nuclear Science and Technology Organization. (NEA) [fr

  18. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuya Fukushima

    2015-08-01

    Full Text Available Liquid organic light-emitting diodes (liquid OLEDs are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  19. Ribonucleoprotein organization of eukaryotic RNA. XXXII. U2 small nuclear RNA precursors and their accurate 3' processing in vitro as ribonucleoprotein particles.

    Science.gov (United States)

    Wieben, E D; Nenninger, J M; Pederson, T

    1985-05-05

    Biosynthetic precursors of U2 small nuclear RNA have been identified in cultured human cells by hybrid-selection of pulse-labeled RNA with cloned U2 DNA. These precursor molecules are one to approximately 16 nucleotides longer than mature U2 RNA and contain 2,2,7-trimethylguanosine "caps". The U2 RNA precursors are associated with proteins that react with a monoclonal antibody for antigens characteristic of small nuclear ribonucleoprotein particles. Like previously described precursors of U1 and U4 small nuclear RNAs, the pre-U2 RNAs are recovered in cytoplasmic fractions, although it is not known if this is their location in vivo. The precursors are processed to mature-size U2 RNA when cytoplasmic extracts are incubated in vitro at 37 degrees C. Mg2+ is required but ATP is not. The ribonucleoprotein structure of the pre-U2 RNA is maintained during the processing reaction in vitro, as are the 2,2,7-trimethylguanosine caps. The ribonucleoprotein organization is of major importance, as exogenous, protein-free U2 RNA precursors are degraded rapidly in the in vitro system. Two lines of evidence indicate that the conversion of U2 precursors to mature-size U2 RNA involves a 3' processing reaction. First, the reaction is unaffected by a large excess of mature U2 small nuclear RNP, whose 5' trimethylguanosine caps would be expected to compete for a 5' processing activity. Second, when pre-U2 RNA precursors are first stoichiometrically decorated with an antibody specific for 2,2,7-trimethylguanosine, the extent of subsequent processing in vitro is unaffected. These results provide the first demonstration of a eukaryotic RNA processing reaction in vitro occurring within a ribonucleoprotein particle.

  20. Nuclear power plant emergency preparedness

    International Nuclear Information System (INIS)

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  1. Seamless service: maintaining momentum.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  2. Framework of orientation for the discussion of measures required to maintain and further the expert knowledge and qualification of nuclear power plant managers and supervisors

    International Nuclear Information System (INIS)

    Farber, G.

    1984-01-01

    This report is focussed on the important aspects of the training and retraining of nuclear power plant managers and supervisors. The functional levels of the onsite operating organization of nine nuclear power plants are described and analyzed in order to determine the comparability of management positions as well as the responsibilities of the job incumbents. Retraining requirements are suggested depending on position, responsibilities, and relevance to safety. The manager's role in case of emergencies leads to specific demands with regard to regular training to cope with inadequate core cooling and to mitigate accidents. (orig.) [de

  3. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  4. Holes in the US nuclear safety net

    International Nuclear Information System (INIS)

    Utroska, D.

    1987-01-01

    Contrary to popular perception, the NRC has neither the authority nor the resources to comprehensively regulate the authority nor the resources to comprehensively regulate the nuclear power industry: it cannot check and monitor every nuclear plant in detail to assure reasonable reactor safety. This is widely understood within the power industry. After the Three Mile Island accident, the nuclear industry formed a group called the Institute of Nuclear Power Operations (INPO), based in Atlanta, Georgia. Its self-proclaimed mandate is to pick up the safety initiative where NRC regulations and reviews leave off; to make sure that each nuclear plant in the United States goes beyond compliance with minimum regulations and achieves excellence in safe and efficient performance. INPO's 1986 budget was $44 million, paid to the institute by electricity ratepayers via the nuclear utilities. Among other things, the money funds INPO's development of nuclear plant operating criteria and pays for plant inspections to determine if the standards are being met. INPO has deliberately maintained a low profile. INPO does not become involved in public or media activities on behalf of the industry or in the role of promoting the nuclear power option, the organization's formal institutional plan declares. A key aspect of INPO's public noninvolvement is keeping to itself and its members the results of its nuclear plant safety evaluations. Although consumers fund INPO activities and have a stake in nuclear plant safety, the press and the public are denied access to INPO safety investigation reports. 8 references

  5. Application of nuclear technique to assess the optimization and benefits from bio and organic fertilization of some vegetables

    International Nuclear Information System (INIS)

    EL Sayed, A.F.A.A.

    2012-01-01

    Two field experiments were, conducted in the Plant Nutrition and Fertilization Unit, Soils and Water Department Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt, assessing application of N in totally organic or totally mineral or different mixtures with the rat of N (being fixed) with or without bio fertilizers carried out following design factorial complete block design with three replicates .In the first one, pea was planted and in the second cucumber was planted in the same plots. This study was planned to Determine the contribution of mineral, organic and bio fertilizers in supplying plant with nitrogen using nuclear technology 15 N and assess the optimization and benefits from bio and organic fertilization of some vegetables .Fertilization treatments indicated that the combination of 50% mineral fertilizer + 50% organic compost was superior over all other treatments. It means that half of the recommended dose of mineral fertilizer is enough to meet the requirement of pea and cucumber crops when supplemented with organic compost. This combination may have an environmental impact since it would reduce the risks of chemical fertilizers.

  6. Technical and Scientific Support Organizations Providing Support to Regulatory Functions. Companion CD-ROM

    International Nuclear Information System (INIS)

    2018-01-01

    This publication introduces the general principles underlying the provision of technical and scientific support to a regulatory body and the characteristics of organizations providing such support. It describes the services provided to support regulatory functions as well as the associated activities and processes to maintain the needed level of expertise, state of the art tools and equipment. The publication is intended for use primarily by organizations that provide technical and scientific support in the field of nuclear and radiation safety. This also includes organizations that acquire such support, and regulatory bodies and governments, as they make decisions on the model of technical and scientific support to be developed at the national level, for example in the case of a country embarking on the development of a nuclear power programme. It is the first IAEA publication dedicated to the specific practices and challenges to be met by the technical and scientific support organizations. This CD-ROM includes the annexes to the printed publication of examples of TSOs and their interactions with key stakeholders.

  7. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5). Recommendations (Spanish Edition); Recomendaciones de Seguridad Fisica Nuclear sobre la Proteccion Fisica de los Materiales y las Instalaciones Nucleares (INFCIRC/225/Rev.5). Recomendaciones

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  8. The Belgian Nuclear Higher Education Network: Your way to the European Master in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; D'haeseleer, W.; Giot, M.

    2004-01-01

    BNEN, the Belgian Nuclear Higher Education Network has been created in 2001 by five Belgian universities and the Belgian Nuclear Research Centre (SCK CEN) as a joint effort to maintain and further develop a high quality programme in nuclear engineering in Belgium. More information: http://www.sckcen.be/BNEN. (author)

  9. Nuclear Society of Russia: Ten years in the world nuclear community

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Gagarinski, A.Yu.

    2000-01-01

    nuclear energy production trends and--most importantly for relations with the mass media and the public--crisis information (latest examples: Tokaimura, the virtual Y2K crisis, etc.), have become important sources of information for the NSR. It should be emphasized that the financial participation of the Russian Minatom (maintained at the insistent request of the NSR) in the NucNet system provides sufficiently wide dissemination of operative nuclear information not only through the NSR headquarters but also via its regional branches and separate enterprises. From its side, NSR has assumed the responsibility for the adequate flow of information on Russian nuclear events to NucNet. As a living and developing organism, the NSR wants to respond to its time's challenges. Several prospective directions could be among the NSR information exchange plans: (1) Independent international analysis of the problems of the use of nuclear energy, which is presently in a stagnation period but with future large-scale development, is as possible today as it never had been before. (2) In the field of public relations, many achievements of Russian and US specialists (in the form of articles, analyzing nuclear energy on the popular and highly professional level) stay inaccessible to others because of the language barrier. A possible joint ANS/NSR project on selection, translation, and exchange of such materials, with their further wide publication, represents an obvious reserve in their societies' information activities. (3) The International Youth Nuclear Congress project (proposed by the Russian nuclear youth and supported by ANS and ENS), conceived as a bridge between generations and a forum for opinion exchange between young nuclear specialists from various countries, deserves further development and appropriation of permanent status in the activities of the world nuclear societies

  10. Achieving excellence in human performance through leadership, education, and training in nuclear power industry

    International Nuclear Information System (INIS)

    Clark, C.R.; Kazennov, A.; Kossilov, A.; Mazour, T.; Yoder, J.

    2004-01-01

    Full text: In order to achieve and maintain high levels of safety and productivity, nuclear power plants are required to be staffed with an adequate number of highly qualified and experienced personnel who are duly aware of the technical and administrative requirements for safety and are motivated to adopt a positive attitude to safety, as an element of safety culture. To establish and maintain a high level of human performance, appropriate education and training programmes should be in place and kept under constant review to ensure their relevance. As the nuclear power industry continues to be challenged by increasing safety requirements, a high level of competition and decreasing budgets, it becomes more important than ever to maintain excellence in human performance and ensure that NPP personnel training provides a value to the organization. Nuclear industry managers and supervisors bear the primary responsibility to assure that people perform their jobs safely and effectively. Training personnel must be responsive to the needs of the organization, working hand-in-hand with line managers and supervisors to ensure that human performance improvement needs are properly analyzed, and that training as well as other appropriate interventions are developed and implemented in the most effective and efficient way possible. The International Atomic Energy Agency together with its Member States has provided for coordinated information exchange and developed guidance on methods and practices to identify and improve the effectiveness NPP personnel training. This has resulted in: plant performance improvements, improved human performance, meeting goals and objectives of the business (quality, safety, productivity), and more effective training programs. This article describes the IAEA activities and achievements in the subject area for systematically understanding and improving human performance in nuclear power industry. The article also describes cooperation programmes

  11. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  12. Experiences from maintaining the reliability of a nuclear standby diesel generator system

    International Nuclear Information System (INIS)

    Tammi, P.

    1982-01-01

    The nuclear standby diesel generator system is quite complicated comprising several mechanical and electrotechnical components, on which the reliability of the system is depending. It is an important support system of the plant safety system, and like the safety system it is composed of separate redundant units. The Loviisa nuclear power station has eight diesel generators. The first four of them were taken into operation in 1976. When the frequency of some mechanical failures showed increase, a project was started at the end of 1980 with the intention to find out potential failure possibilities and means for prevention of failures. The work has been mainly concentrated on improving the reliability of the diesel engines. (Auth.)

  13. Nuclear material safeguards technology development in the new structure of BATAN organization

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2001-01-01

    Full text: The implementation of Nuclear Energy Act No. 10/97 has led to a restructuring in BATAN organization in July 1999. A new unit, Center for Nuclear Material Safeguards Technology (PTPBN), was established to be especially in charge of safeguards facilities. The main responsibility of this unit is to develop the technology of safeguards and physical protection. The function of this unit is also to analyze the operational technical aspect of the International Convention of Nuclear. The duties of Center for Nuclear Material Safeguards Technology can be seen from the various programs set up for every fiscal year. The programs for the year 2000 were: Analyses of SSAC implementation in BATAN; Development of Safeguards information system; Creation of database of physical protection technology; Physical protection simulator for Bandung reactor research; Development of detector technology for physical protection system; Identification of BATAN activities and facilities submitted to IAEA in order to be in line with the Additional Protocol to the agreement between the Republic of Indonesia and the International Atomic Energy Agency for the Application of Safeguards in connection with the Treaty on Non-Proliferation on Nuclear Weapons, which was ratified on September 29th, 1999 in Vienna, Austria; Seminar on Safeguards technology held in Jakarta in September 2000. The program of 2001 will be focusing on the continuation of the previous year's program as well as the creation of new ones, such as: Collaboration with other countries. At initial stage experts from JBC-Japan were invited to share their expertise on their safeguards information system; Development of education and training for safeguards operators by emphasizing more on the techniques of nuclear materials measurement; Seminar on Safeguards technology scheduled for December 2001 by inviting experts from IAEA and modem countries; Field survey to determine the location of radionuclide station in Indonesia in

  14. Opportunities for international cooperation in nuclear accident preparedness and management: Procedural and organizational measures

    International Nuclear Information System (INIS)

    Lathrop, J.

    1989-01-01

    In this paper we address a difficult problem: How can we create and maintain preparedness for nuclear accidents? Our research has shown that this can be broken down into two questions: (1) How can we maintain the resources and expertise necessary to manage an accident once it occurs? and (2) How can we develop plans that will help in actually managing an accident once it occurs? It is apparently beyond the means of ordinary human organizations to maintain the capability to respond to a rare event. (A rare event is defined as something like an accident that only happens once every five years or so, somewhere in the world.) Other more immediate pressures tend to capture the resources that should, in a cost/benefit sense, be devoted to maintaining the capability. This paper demonstrates that some of the important factors behind that phenomenon can be mitigated by an international body that promotes and enforces preparedness. Therefore this problem provides a unique opportunity for international cooperation: an international organization promoting and enforcing preparedness could help save us from our own organizational failings. Developing useful accident management plans can be viewed as a human performance problem. It can be restated: how can we support and off-load the accident managers so that their tasks are more feasible? This question reveals the decision analytic perspective of this paper. That is, we look at the problem managing a nuclear accident by focusing on the decision makers, the accident managers: how do we create a decision frame for the accident managers to best help them manage? The decision frame is outlined and discussed. 9 refs

  15. IAEA activities on communication of nuclear safety issues

    International Nuclear Information System (INIS)

    Wieland, P.

    2001-01-01

    The regulatory authorities in several countries have taken the initiative to overcome the renowned difficulties of communicating nuclear safety issues. They communicate with segments of the public specially in case of nuclear/radiological accidents, waste disposal, transport of radioactive material or food irradiation. This reflects the full recognition of the importance of the topic. However it is also recognized that there is hitherto a need of international assistance in order to develop a regulatory communication strategy that could be harmonized and at the same time customized to the different needs. Communications on nuclear, radiation, transport and radioactive waste safety are needed to: disseminate information on safety to the public in both routine and emergency situations ; be attentive to public concerns, and address them; maintain social trust and confidence by keeping society informed on the established safety standards and how they are enforced; facilitate the decision-making process on nuclear matters by promptly presenting factual information in a clear manner; integrate and maintain an information network at both the national and international levels; improve co-operation with other countries and international organizations; encourage the dissemination of factual information on nuclear issues in schools. A major factor in addressing all of these questions is understanding the audience(s). A two way communication process is needed to establish what particular audiences want to know and in what form they prefer to receive information. This will differ depending on the audience and circumstances. For example, the information on a routine day-to-day basis will be different from what might be needed at the time of an accident. Communication with the news media is a matter of particular importance, as they are both an audience in themselves and a channel for communicating with wider audiences. (author)

  16. Organization and safety in nuclear power plants

    International Nuclear Information System (INIS)

    Marcus, A.A.; Nichols, M.L.; Bromiley, P.; Olson, J.; Osborn, R.N.; Scott, W.; Pelto, P.; Thurber, J.

    1990-05-01

    Perspectives from industry, academe, and the NRC are brought together in this report and used to develop a logical framework that links management and organization factors and safety in nuclear power plant performance. The framework focuses on intermediate outcomes which can be predicted by organizational and management factors, and which are subsequently linked to safety. The intermediate outcomes are efficiency, compliance, quality, and innovation. The organization and management factors can be classified in terms of environment, context, organizational governance, organizational design, and emergent processes. Initial empirical analyses were conducted on a limited set of hypotheses derived from the framework. One set of hypotheses concerned the relationships between one of the intermediate outcome variables, efficiency, as measured by critical hours and outage rate, and safety, as measured by 5 NRC indicators. Results of the analysis suggest that critical hours and outage rates and safety, as measured in this study, are not related to each other. Hypotheses were tested concerning the effects on safety and efficiency of utility financial resources and the lagged recognition and correction of problems that accompanies the reporting of major violations and licensee event reports. The analytical technique employed was regression using polynomial distributed lags. Results suggest that both financial resources and organizational problem solving/learning have significant effects on the outcome variables when time is properly taken into account. Conclusions are drawn which point to this being a promising direction to proceed, though with some care, due to the current limitations of the study. 138 refs., 36 figs., 9 tabs

  17. Themes in nuclear law; Temas de Derecho Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The nuclear law was analyzed during a workshop. The main aspects were: the law of population to access to information on nuclear energy and the relationship between the Regulator Organism and the nuclear power plants managers.

  18. International conference on the operational safety performance in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    In 2001, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety'. The issues discussed during the conference were: (1) risk- informed decision-making; (2) influence of external factors on safety; (3) safety of fuel cycle facilities; (4) safety of research reactors; and (5) safety performance indicators. Senior nuclear safety decision makers reviewed the issues and formulated recommendations for future actions by national and international organizations. In 2004, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety' in Beijing China. The issues discussed during the conference were: (1) changing environment - coping with diversity and globalization; (2) operating experience - managing changes effectively; (3) regulatory management systems - adapting to changes in the environment; and (4) long term operations - maintaining safety margins while extending plant lifetimes. The results of this conference confirmed the importance of operators and regulators of nuclear facilities meeting periodically to share experience and opinion on emerging issues and future challenges of the nuclear industry. Substantial progress has been made, and continues to be made by Member States in enhancing the safety of nuclear installations worldwide. At the same time, more attention is being given to other areas of nuclear safety. The safety standards for research reactors are being updated and new standards are planned on the safety of other facilities in the nuclear fuel cycle. The Agency has taken a lead role in this effort and is receiving much support from its Member States to gain international consensus in these areas. The objective of the conference is to foster the exchange of information on operational safety performance and operating experience in nuclear installations, with the aim of consolidating an international consensus on: - the present status of these issues; - emerging issues with international implications

  19. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  20. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  1. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function

    Directory of Open Access Journals (Sweden)

    Carola Dewitz

    2018-02-01

    Full Text Available Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed.

  2. Nuclear education and international nuclear university

    International Nuclear Information System (INIS)

    Kang, C.S.

    2000-01-01

    In this paper author deals with the concept of establishing the International Nuclear University (INU) would be one of the most viable options. The INU would provide young professionals with not only university-level education but also high-skill training in the fields of nuclear technology. The program will emphasize on global and multi- disciplinary perspectives, which should offer our young generation broader opportunities of advanced education and motivate professional staffs in the enhancement of their knowledge and skills. The 'World Council of Nuclear Education' could be formed to steer the INU for close international cooperation under the auspices of the IAEA. The INU would organize a world network of existing nuclear- related educational organizations and training centers which already exist in Member States. Existing facilities and can be utilized at maximum. Use of cyber-lecturing through Internet, cross-approval of credits among educational organizations in degree work, certification of credits by the authorized body like IAEA, human resources placement services, etc. are some of the activities that the INU could provide in addition to its professional training and higher education. (authors)

  3. Australian Nuclear Science and Technology Organisation strategy review recommendations. Final Report

    International Nuclear Information System (INIS)

    1994-01-01

    In May 1994 the Australian Nuclear Science and Technology Organization (ANSTO)'s Board initiated a comprehensive five month review which purpose was to develop a mission for ANSTO and thus define its role both domestically and internationally. The review took into account the needs of ANSTO stakeholders, analysed ANSTO capabilities as well as available international opportunities. Outcomes of the review included an assessment of the priorities and needs of stakeholders, an understanding of how these needs can be meet, and the resulting resource implications. ANSTO's major mission objectives, as defined in the consultants's report should be: to support the Government's nuclear policies (this objective is paramount), support industrial competitiveness and innovation through technology transfer, as well as to maintain a high quality nuclear science base and to enable academic institutions and other science organizations to perform research by providing access to unique facilities and expertise. The consultants also made recommendations on appropriate management arrangements for ANSTO, an implementation plan, progress milestones and operational targets. Details of the relevance-excellence analysis, commercial customer analysis and justification for recommended activity action imperatives are presented in the appendices. 48 figs

  4. Nuclear safety culture in Finland and Sweden - Developments and challenges

    International Nuclear Information System (INIS)

    Reiman, T.; Pietikaeinen, E.; Kahlbom, U.; Rollenhagen, C.

    2011-02-01

    The project aimed at studying the concept of nuclear safety culture and the Nordic nuclear branch safety culture. The project also aimed at looking how the power companies and the regulators view the current responsibilities and role of subcontractors in the Nordic nuclear safety culture as well as to inspect the special demands for safety culture in subcontracting chains. Interview data was collected in Sweden (n = 14) and Finland (n = 16) during 2009. Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). Results gave insight into the nature and evaluation of safety culture in the nuclear industry. Results illustrated that there is a wide variety of views on matters that are considered important for nuclear safety within the Nordic nuclear community. However, the interviewees considered quite uniformly such psychological states as motivation, mindfulness, sense of control, understanding of hazards and sense of responsibility as important for nuclear safety. Results also gave insight into the characteristics of Nordic nuclear culture. Various differences in safety cultures in Finland and Sweden were uncovered. In addition to the differences, historical reasons for the development of the nuclear safety cultures in Finland and Sweden were pointed out. Finally, results gave implications that on the one hand subcontractors can bring new ideas and improvements to the plants' practices, but on the other hand the assurance of necessary safety attitudes and competence of the subcontracting companies and their employees is considered as a challenge. The report concludes that a good safety culture requires a deep and wide understanding of nuclear safety including the various accident mechanisms of the power plants as well as a willingness to continuously develop one's competence and understanding. An effective and resilient nuclear safety culture has to foster a constant sense of

  5. Draft Law on the creation, attribution, organization and functioning of a ''Regulatory Authority and Nuclear Safety'' (ARSN)

    International Nuclear Information System (INIS)

    Issoufou, Mahamadou

    2016-08-01

    This Draft Law deals with the establishment, responsibilities, organization and functioning of an Autority Control and Nuclear Safety. Through this law, the Regulatory and Nuclear Safety Autority is responsible for regulation of nuclear and radiological activities to ensure the safety, security and protection of persons and the environment against the effects of radiation throughout the national territory. [fr

  6. Preservation and enhancement of nuclear knowledge towards Indonesia's plan to operate first nuclear power plant by 2016

    International Nuclear Information System (INIS)

    Ardisasmita, M.S.

    2004-01-01

    non-governmental organizations that have their own agenda. Therefore the public information has to be intensified in line with the dissemination of proven nuclear technology application activities already carried out for couple years in various provinces together with various research and development institutes and local governments, universities, private companies, and non-governmental organizations. The Batan nuclear workforce is aging - that is, more and more nuclear workers are approaching retirement age, without a corresponding influx of appropriately qualified younger personnel to replace them. This situation happens due to zero growth policy in government employment or more precisely negative growth policy on Batan employment. Between years 2000 and 2004, from 3704 Batan employees there are 280 retired or quitting Batan, but only 108 recruitments of newer employees have been accepted. The statistic shows a significant brain-drain flow from government research institutes to the private sectors and industrial countries. The establishment and maintenance of a formal human resources policy and nuclear knowledge management strategies are important to ensure that an organization maintains adequate numbers of competent and motivated personnel, and the availability of essential technical information (explicit knowledge) in the form of scientific research, engineering analysis, design documentation, operational data, maintenance records, regulatory reviews, and other documents and data to achieve the organization's mission. Human resources development for the design, construction, installation and safe operation of the NPP's should be inseparable from the package in the procurement of the NPP's. Polytechnic Institute of Nuclear Technology, as an educational institute under Batan, was inaugurated in August 2001. The main objective of the institute is to provide education and training facilities to support human resource development program in nuclear science and

  7. The information of the nuclear industry before and during the nuclear debate

    International Nuclear Information System (INIS)

    Borgstroem, P.

    1978-10-01

    A review of the organization and resources for information and public relations, which the nuclear industry have at its disposal in Sweden as well as in other countries. Furthermore, pre-nuclear organizations in the Northern Countries, which are not financed by the nuclear industry are discussed. (E.R.)

  8. Maintaining adequate nutrient supply - Principles, decision-support tools, and best management practices [Chapter 6

    Science.gov (United States)

    Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese

    2011-01-01

    Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...

  9. Clear-cut and practice-oriented organization - the connecting link between man and nuclear power plant operation requirements

    International Nuclear Information System (INIS)

    Steiner, E.K.

    1994-01-01

    Practice-oriented plant organization takes into account the human spheres of task and responsibility, training and qualification, communication and exchange of experience, setting of targets, management and control as well as motivation and loyalty. It constitutes the basis for meeting the demands on a safe and reliable nuclear power plant operation. This is demonstrated by the organization at the Grafenrheinfeld NPP. (DG) [de

  10. Maintaining nutritional adequacy during a prolonged food crisis. [Basic foods for post-nuclear attack use

    Energy Technology Data Exchange (ETDEWEB)

    Franz, K.B.; Kearny, C.H.

    1979-08-01

    This handbook is the first to assemble nutritional information and make recommendations on the efficient use of unprocessed grains, beans, and other elemental foods during the aftermath of a nuclear war. These basic foods would constitute the main resources to combat famine after a major nuclear attack. Such an attack would reduce and probably eliminate most commercial food processing for many months. To decision makers, this handbook should prove useful on basic aspects of nutrition in a long-term survival situation. These decision makers might range from the heads of families to government officials. Recommendations for nutrition given by organizations experienced in crisis feeding are reviewed and compared. Based on the best nutritional information available, emergency dietary recommendations are made for minimum and intermediate goals. The emergency dietary recommendations are applied to food for practical survival rations. Long-term survival rations for Americans are evaluated. These rations are (1) ten single-food rations; (2) four cereal-legume rations, ratio 4:1; (3) four cereal-legume rations, ratio 8:1; and (4) four cereal-legume-dry milk rations. The 22 different survival rations are detailed and summarized in 20 tables which list their nutritional adequacies and deficiences. Expedient procedures are given by which basic foods may be processed and cooked to provide a more healthful diet than most Americans believe possible. Special attention is given to the requirements of infants, children, and pregnant or lactating women. The eleven appendixes provide a wealth of specialized information. Among these appendixes is one that summarizes new and improved expedient methods for removing radioactive fallout and other contaminants from water. Another appendix is a comprehensive account of ways to sprout seeds to produce vitamins and improve palatability. (ERB)

  11. 29 CFR 2520.104-26 - Limited exemption for certain unfunded dues financed welfare plans maintained by employee...

    Science.gov (United States)

    2010-07-01

    ... welfare plans maintained by employee organizations. 2520.104-26 Section 2520.104-26 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR REPORTING AND... exemption for certain unfunded dues financed welfare plans maintained by employee organizations. (a) Scope...

  12. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  13. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  14. Safety organization

    International Nuclear Information System (INIS)

    Lutz, M.

    1984-06-01

    After a rapid definition of a nuclear basis installation, the national organization of nuclear safety in France is presented, as also the main organizations concerned and their functions. This report shows how the licensing procedure leading to the construction and exploitation of such installations is applied in the case of nuclear laboratories of research and development: examinations of nuclear safety problems are carried out at different levels: - centralized to define the frame out of which the installation has not to operate, - decentralized to follow in a more detailed manner its evolution [fr

  15. Companies which maintain the nuclear fleet - Information note 2015

    International Nuclear Information System (INIS)

    2015-01-01

    This publication first recalls the reasons for subcontracting the maintenance of French nuclear plants (need of specialised expertise and abilities) even though EDF keeps an industrial and technical control. It describes the framework of these subcontracted activities (a long lasting collaboration, implementation of requirements), and how multi-annual markets are subcontracted to support the development of specialised companies. It outlines to which extent the selection and certification process is rigorous, that subcontractor salaried personnel is to be specifically trained, that radiation protection is performed under the same conditions for everybody. It indicates some specific measures which have been implemented to take subcontractor personnel working conditions into account. The updating of abilities for future activities is discussed. Some key data are provided regarding jobs, contracts, training, medical expenses, and fields of activity of subcontracting companies

  16. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    binding treaties and have directives and regulations that bear on emergency response arrangements among some States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In March 2002, the IAEA issued Safety Requirements, entitled 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2), jointly sponsored by the FAO, IAEA, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the United Nations Office for the Coordination of Humanitarian Affairs (OCHA), the Pan American Health Organization (PAHO) and WHO. These safety standards imply additional expectations with regard to operational emergency response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, the IAEA, the organizations party to the Conventions, and some other international organizations that participate in the activities of the IACRNA develop and maintain this 'Joint Radiation Emergency Management Plan of the International Organizations' (the Joint Plan), which describes: the objectives of response; the organizations involved in response, their roles and responsibilities, and the interfaces among them and between them and States; operational concepts; and preparedness arrangements. The various organizations reflect these arrangements in their own emergency plans. The IAEA is the main co-ordinating body for development and maintenance of the Joint Plan. All States irrespective whether they are party to one or other of the two Conventions are invited to adopt arrangements that are compatible with those described here when providing relevant information about nuclear or radiological emergencies to relevant international organizations, in order to minimize the radiological consequences and to facilitate the

  17. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  18. Independent safety organization

    International Nuclear Information System (INIS)

    Kato, W.Y.; Weinstock, E.V.; Carew, J.F.; Cerbone, R.J.; Guppy, J.G.; Hall, R.E.; Taylor, J.H.

    1985-01-01

    Brookhaven National Laboratory has conducted a study on the need and feasibility of an independent organization to investigate significant safety events for the Office for Analysis and Evaluation of Operational Data, USNRC. The study consists of three parts: the need for an independent organization to investigate significant safety events, alternative organizations to conduct investigations, and legislative requirements. The determination of need was investigated by reviewing current NRC investigation practices, comparing aviation and nuclear industry practices, and interviewing a spectrum of representatives from the nuclear industry, the regulatory agency, and the public sector. The advantages and disadvantages of alternative independent organizations were studied, namely, an Office of Nuclear Safety headed by a director reporting to the Executive Director for Operations (EDO) of NRC; an Office of Nuclear Safety headed by a director reporting to the NRC Commissioners; a multi-member NTSB-type Nuclear Safety Board independent of the NRC. The costs associated with operating a Nuclear Safety Board were also included in the study. The legislative requirements, both new authority and changes to the existing NRC legislative authority, were studied. 134 references

  19. 3. International Conference on Nuclear Power Plant Life Management (PLiM) for Long Term Operations (LTO). Keynotes, papers, presentations, posters

    International Nuclear Information System (INIS)

    2012-01-01

    The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30-40 years, many plants will operate in excess of their design lives, provided that nuclear power plant engineers demonstrate by analysis, equipment and system upgrades, increased vigilance, testing and ageing management that the plant will operate safely. In the operation of nuclear power plants, safety should always be the prime consideration. Plant operators and regulators must always ensure that plant safety is maintained and, where possible, enhanced during its operating lifetime. Nuclear power plant life management (PLiM) has gained increased attention over the past decade, and effective ageing management of systems, structures and components (SSCs) is a key element in PLiM for the safe and reliable long term operation of nuclear power plants. A PLiM programme is an effective tool that allows an operator to safely and cost effectively manage ageing effects in SSCs for long term operation (LTO). A PLiM programme helps facilitate decisions concerning when and how to repair, replace or modify SSCs in an economically optimized way, while assuring that a high level of safety is maintained. The option for extended nuclear power plant operation has been recognized by operators and regulators alike, as evidenced in the number of licence renewal programmes that are being developed by Member States. After the severe accident at the Fukushima Daiichi nuclear power plant, the safe operation of nuclear power plants has become even more important; not only in terms of technical or ageing issues, but also in terms of management system and qualified workforce related issues. Application of an integrated management system and structured workforce planning are needed throughout the plant life in order to ensure effective plant organization and management. The IAEA organized the first and second International Conference on Nuclear

  20. Development and organization of scientific methodology and information databases for nuclear technology calculations

    International Nuclear Information System (INIS)

    Gritzay, O.; Kalchenko, O.

    2010-01-01

    Full text: Scientific support of NPPs has to cover several important aspects of scientific and organization activity, namely:1.Training for group of high skilled specialists to do the following work: o nuclear data generation for engineer calculations; o engineer calculations to ensure the safety operation of NPPs; o experimental-calculation support of fluence dosimetry at NPP. 2.Development of up-to-date computer base, equipped with necessary program packages for nuclear data generation and engineer calculations. 3.The updated Libraries of Evaluated Nuclear Data (ENDF), such as ENDF/B-VII (USA), JENDL-3.3 (Japan) and JEFF-3.1 (Europe), RUSFOND ( Russia) and as a result the generation of specialized nuclear data multi-group libraries for special purpose engineer calculations.To reach these purposes, the Ukrainian Nuclear Data Center (UKRNDC) was organized and developed for more, than 10 years (since 1996).The capabilities of the UKRNDC are detailed below. o Modern ENDF libraries, first of all the general purpose libraries, such as ENDF/B-7.0, -6.8, JEFF-3.1.1, JENDL-3.3, etc. These databases contain recommended, evaluated cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with emphasis on neutron induced reactions.o Codes for processing these data, updated to the last versions of ENDF and other libraries. First of all these are PREPRO 2007 package (Updated March 17, 2007) and NJOY package updated to versions NJOY-158 and NJOY-253 (in 2009). These codes may give the possibilities to produce the multi-group data for needed spectrum of interacting particles (neutrons, protons, gammas) and temperatures.o Computer base of several specialized server stations, such as ESCALA- S120 (analogous to IBM -240 with RISC 6000 processor) operating under OS under OS UNIX (version AIX 5.1) and IBM PC operating under Linux Red Hat 7.2.o The set of PC computers joined in UKRNDC network, operating mainly in OS Windows

  1. Thirty years nuclear energy. 240,000 years of nuclear waste. Why Greenpeace campaigns against nuclear energy

    International Nuclear Information System (INIS)

    Teule, R.

    2004-01-01

    A brief overview is given of the arguments that Greenpeace has against nuclear energy, and why this environmental organization campaigns against the processing of nuclear waste and transportation of Dutch nuclear waste to France [nl

  2. Project for export system construction of nuclear equipment to IAEA; survey on current market status of the nuclear related international organizations and the domestic possible suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Min, T S; Cho, H K; Kim, H J [Korea Atomic Industrial Forum, Seoul (Korea)

    2001-05-01

    Republic of Korea are keeping the dynamic activities in IAEA as the 8th advanced nuclear country over the world but has occupied very low late less than 0.01% in supplying the equipments to IAEA. About 6,000 nuclear equipment suppliers are registered in IAEA Supply Roster over the world but only 3 Suppliers of our country are registered in IAEA Supply Roster. The supply of nuclear industrial products equivalent to about 100 million dollars into IAEA market will endorse not only the international authorization for our technology and products but also give contribution to activate the domestic nuclear industries in order to increase its expert. The explanation for IAEA procurement market to the 53 nuclear companies will be made on May 16, 2001, and the participants for the export of their goods will be selected. And then we will do all possible supports by the government and related organizations for them to register in IAEA Supply Roster. 21 refs. (Author)

  3. The nuclear emergency plans

    International Nuclear Information System (INIS)

    Fuertes Menendez, M. J.; Gasco Leonarte, L.; Granada Ferrero, M. J.

    2007-01-01

    Planning of the response to emergencies in nuclear plants is regulated by the Basic Nuclear Emergency Plan (PLABEN). This basic Plan is the guidelines for drawing up, implementing and maintaining the effectiveness of the nuclear power plant exterior nuclear emergency plans. The five exterior emergency plans approved as per PLABEN (PENGUA, PENCA, PENBU, PENTA and PENVA) place special emphasis on the preventive issues of emergency planning, such as implementation of advance information programs to the population, as well as on training exercises and drills. (Author)

  4. A nuclear community's perspective

    International Nuclear Information System (INIS)

    1987-09-01

    This submission delineates a perspective derived from the experience of a community which has lived with the nuclear industry since its beginnings in Canada, 45 years ago. Much has been accomplished in both basic and applied research in that time, and the industry continues to be recognized worldwide as a leader in solving high-technology problems. However, recent funding cuts have seriously jeopardized the industry's ability to maintain this high standard. Current anti-nuclear attitudes among our elected and appointed officials respond more to today's political fashions than tomorrow's evident needs. The town of Deep River believes that the industry has demonstrated a superb safety record in the past. If common sense prevails in matters of safety, and if appropriate levels of funding are maintained, the nuclear industry will continue to be a source of pride for all concerned

  5. Current trends in codal requirements for safety in operation of nuclear power plants

    International Nuclear Information System (INIS)

    Srivasista, K.; Shah, Y.K.; Gupta, S.K.

    2006-01-01

    The Code of practice on safety in nuclear power plant operation states the requirements to be met during operation of a nuclear power plant for assuring safety. Among various stages of authorization, regulatory body issues authorization for operation of a nuclear power plant, monitors and enforces regulatory requirements. The responsible organization shall have overall responsibility and the plant management shall have the primary responsibility for ensuring safe and efficient operation of its nuclear power plants. A set of codal requirements covering technical and administrative aspects are mandatory for the plant management to implement to ensure that the nuclear power plant is operated in accordance with the design intent. Requirements on operating procedures and instructions establish operation and maintenance, inspection and testing of the plant in a planned and systematic way. The requirements on emergency preparedness programme establish with a reasonable assurance that, in the event of an emergency situation, appropriate measures can be taken to mitigate the consequences. Commissioning requirements verify performance criteria during commissioning to ensure that the design intent and QA requirements are met. Several modifications in systems important to safety required during operation of a nuclear power plant are regulated. However new operational codal requirements arising out of periodic safety review, operational experience feedback, life management, probabilistic safety assessment, physical security, safety convention and obligations and decommissioning are not covered in the present code of practice for safety in nuclear power plant operation. Codal provisions on 'Review by operating organization on aspects of design having implications on operability' are also required to be addressed. The merits in developing such a methodology include acceptance of the design by operating organization, ensuring maintainability, proper layout etc. in the new designs

  6. Russian nuclear survey

    International Nuclear Information System (INIS)

    2002-07-01

    This document gives a broad overview of the organization of nuclear activities in the Russian federation: Minatom activities, nuclear park and availability (reactors, performances, export activity), perspectives of development (improvement of safety, age of reactors, new realizations); fuel cycle (uranium production, conversion and enrichment, fuel fabrication, spent fuel reprocessing); wastes management (storage and disposal sites); R and D activities (organizations) and nuclear safety authority. (J.S.)

  7. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Chalbot, M.-C.; Nikolich, G.; Etyemezian, V.; Dubois, D.W.; King, J.; Shafer, D.; Gamboa da Costa, G.; Hinton, J.F.; Kavouras, I.G.

    2013-01-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. -- Highlights: •We characterized the water-soluble organic carbon (WSOC) of fire emissions by NMR. •Distinct patterns were observed for soil dust and vegetation combustion emissions. •Soil organic matter accounted for most of WSOC in early prescribed burn emissions. -- Humic-like soil organic matter may be an important component of particulate emissions in the early stages of wildfires

  8. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  9. Organic material reducing device in nuclear power plant

    International Nuclear Information System (INIS)

    Minakata, Noriyuki; Takada, Takao

    1998-01-01

    A total organic carbon (TOC) removing device is disposed between a filtration device and a desalting device or between a condensator and the desalting device disposed to a radioactive liquid waste processing facility or a condensate cleaning system of a BWR type nuclear reactor. Since the removing ratio of the TOC removing device is generally high if impurities are not contained, and ionic ingredients are formed after decomposition, TOC can be decomposed and removed more efficiently and removal in a short period of time can be expected by disposing the TOC device downstream of the filtration device or a condensator to be disposed instead of the filtration device and upstream of the desalting device. Then, further enhanced effect can be expected, if two series of the TOC removing line and the bypass line are disposed between the filtration device or the condensator and the desalting device so as to enable selection of processed liquids. (T.M.)

  10. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288.

    Science.gov (United States)

    Heng, Shuangping; Wei, Chao; Jing, Bing; Wan, Zhengjie; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Shen, Jinxiong

    2014-04-30

    Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288. Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line "J163-4" are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity. The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the

  11. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  12. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  13. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  14. Nuclear security and radiological preparedness for the olympic games, athens 2004: lessons learned for organizing major public events.

    Science.gov (United States)

    Kamenopoulou, Vassiliki; Dimitriou, Panayiotis; Hourdakis, Constantine J; Maltezos, Antonios; Matikas, Theodore; Potiriadis, Constantinos; Camarinopoulos, Leonidas

    2006-10-01

    In light of the exceptional circumstances that arose from hosting the Olympic Games in Athens in 2004 and from recent terrorist events internationally, Greece attributes the highest priority to security issues. According to its statutory role, the Greek Atomic Energy Commission is responsible for emergency preparedness and response in case of nuclear and radiological events, and advises the Government on the measures and interventions necessary to protect the public. In this context, the Commission participated in the Nuclear, Radiological, Biological, and Chemical Threat National Emergency Plan, specially developed for the Olympic Games, and coordinated by the Olympic Games Security Division. The objective of this paper is to share the experience gained during the organization of the Olympic Games and to present the nuclear security program implemented prior to, during, and beyond the Games, in order to prevent, detect, assess, and respond to the threat of nuclear terrorism. This program adopted a multi-area coverage of nuclear security, including physical protection of nuclear and radiological facilities, prevention of smuggling of radioactive materials through borders, prevention of dispersion of these materials into the Olympic venues, enhancement of emergency preparedness and response to radiological events, upgrading of the technical infrastructure, establishment of new procedures for assessing the threat and responding to radiological incidents, and training personnel belonging to several organizations involved in the National Emergency Response Plan. Finally, the close cooperation of Greek Authorities with the International Atomic Energy Agency and the U.S. Department of Energy, under the coordination of the Greek Atomic Energy Commission, is also discussed.

  15. Overview of nuclear data activities at the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Michel-Sendis, F.; Dupont, E.; Gulliford, J.; Nordborg, G.

    2011-01-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD). The mission of the NEA is to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for the safe, environmentally friendly and economical use of nuclear energy for peaceful purposes. All activities relevant to nuclear data measurements, evaluations and applications are managed by the NEA Nuclear Science Committee through the Nuclear Science section and the Data Bank, which work closely together. This paper gives an overview of current and planned nuclear data activities at the Nuclear Energy Agency through the program of work of the Data Bank in general and of the NEA Working Party on international nuclear data Evaluation Co-operation (WPEC) in particular. (authors)

  16. Organization of the lamin scaffold in the internal nuclear matrix of normal and transformed hepatocytes

    International Nuclear Information System (INIS)

    Barboro, Paola; D'Arrigo, Cristina; Repaci, Erica; Patrone, Eligio; Balbi, Cecilia

    2010-01-01

    Nuclear lamins are among the more abundant proteins making up the internal nuclear matrix, but very little is known about their structure in the nucleoplasm. Using immunoelectron microscopy, we demonstrate the organization of lamins in the nuclear matrix isolated from rat hepatocytes for the first time. Lamin epitopes are arrayed both in locally ordered clusters and in quasi-regular rows. Fourier filtering of the images demonstrates that the epitopes are placed at the nodes and halfway between the nodes of square or rhombic lattices that are about 50 nm on each side, as well as along rows at regular ∼25-nm intervals. In addition, we have compared this structure with that of the internal nuclear matrix isolated from persistent hepatocyte nodules. In transformed hepatocytes, the islands of lamin lattice are lost, and only a partial regularity in the rows of gold particles remains. We suggest that orthogonal lattice assembly might be an intrinsic property of lamin molecules, and that the disassembly may be triggered by simple molecular events such as phosphorylation.

  17. A New Approach to Dissect Nuclear Organization: TALE-Mediated Genome Visualization (TGV).

    Science.gov (United States)

    Miyanari, Yusuke

    2016-01-01

    Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.

  18. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function.

    Science.gov (United States)

    Dewitz, Carola; Pimpinella, Sofia; Hackel, Patrick; Akalin, Altuna; Jessell, Thomas M; Zampieri, Niccolò

    2018-02-13

    Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  20. Using Vector Projection Method to evaluate maintainability of mechanical system in design review

    International Nuclear Information System (INIS)

    Chen Lu; Cai Jianguo

    2003-01-01

    Maintainability of a mechanical system is one of the system design parameters that has a great impact in terms of ease of maintenance. In this article, based on the definition of the terms of maintenance and maintainability, an important tool of Design for Maintenance is developed as a way to improve maintainability through design. A set of standard and organized guidelines is provided and maintainability factors in terms of physical design, logistics support and ergonomics are identified. As a specific application of design review, a methodology so called Vector Projection Method is developed to evaluate the maintainability of the mechanical system. Lastly, an example is discussed

  1. Search for Erzion nuclear catalysis chains from cosmic ray Erzions stopping in organic scintillator

    International Nuclear Information System (INIS)

    Bazhutov, Yu.N.; Pletnikov, E.V.

    2006-01-01

    In the framework of Erzion model, charged cosmic ray Erzions stopping in organic substance begin to create Erzion nuclear catalysis chains with frequency of ∼ 100 MHz during ∼ 10-100 ms. Using an organic substance (plastic) scintillator we can observe long and flat (10-100 ms) pulses of large amplitude (∼100 MeV). No elementary particle can imitate such pulses. It is expected that such pulses in a plastic scintillator with mass of 100 kg will appear at the sea level every week. Such pulses can be observed every day with the Spectrometric Scintillation Super-Telescope (SSTIS) built at IZMIRAN for cosmic rays monitoring. (authors)

  2. Studies on the effectiveness of measures to maintain the integrity of pressurized components in German nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Elmas, M.; Jendrich, U.; Michel, F.; Reck, H.; Schimpfke, T.; Walter, M.; Wenke, R.

    2013-03-01

    The overall objective of the project was to investigate the effectiveness of measures to maintain the as-built quality of the pressure-retaining components in German nuclear power plants. In particular, investigations were performed on the application of the break preclusion concept, existing monitoring systems and the significance of the pressure test as part of the inspection concept. Moreover, the KompInt knowledge base has been updated. Break preclusion for pipes was applied in all German plants already during planning or after commissioning to a varying extent. The basic features of the required assessments were considered in the German nuclear regulations for the first time by inclusion in the safety requirements for nuclear power plants of 2012. The requirements for assessments, differing in their degree of detail, in the interpretations of these safety requirements and in the safety standard KTA 3206 are still in the draft stage. For the first time, the vessels as well as housings of valves and pumps are also included in the concept. Through the use of advanced monitoring systems it was possible in German plants at an early stage to establish modes of operation that minimise the load on components, to carry out appropriate technical backfitting measures, and to identify damages. In plant areas where local water chemistry parameters may result that deviate from the specification, the effectiveness of water chemistry monitoring is limited. In this case, other operational measures must be taken. The results of the simulations performed with the help of the GRS-developed PROST computer code to determine the significance of pressure tests lead - in accordance with the results of operating experience evaluation - to the conclusion that pressure tests carried out within the pressure-retaining boundary contribute to safeguarding the integrity. The user-friendliness of the KompInt knowledge base has been increased by changing over to a new hardware, a software

  3. Nuclear Safety Review for the Year 2009

    International Nuclear Information System (INIS)

    2010-07-01

    . A growing number of Member States are considering or have expressed interest in developing nuclear power programmes for the first time. Several countries have also embarked on ambitious plans for expanding their current programmes. The Agency's latest projections for the future of nuclear power by 2030 are higher than they were last year. Emerging international cooperative efforts in support of new and expanding nuclear power programmes have focused on many key issues. Such issues include gaps in national safety infrastructures, safety and security synergy and integration, and safety responsibilities and capacities for the various participants in a nuclear power programme, which include operators, regulators, government, suppliers, technical support organizations and relevant international organizations. Continued focus on cooperation for new and expanding nuclear power programmes is underscored by the fact that in some cases plans for nuclear programme development are moving faster than the establishment of the necessary safety infrastructure and capacity. Therefore, it is important that those countries of new and expanding nuclear power programmes actively participate in the global nuclear safety and security regime. As a result of the increasingly multinational nature of today's nuclear business and activities and associated technical and economic benefits, suppliers, operators, regulators and experts communities are making significant efforts towards the standardization and harmonization of equipment, components, methods and processes. As an example, the adoption by the European Union of a nuclear towards a harmonized approach to sustainable nuclear safety infrastructure worldwide. Similarly, international cooperation through conventions and codes of conduct, including associated peer review mechanisms, also provide for harmonized approaches to safety. Establishing and maintaining a regulatory body which is effectively independent in its decision making

  4. PREFACE: XXXV Symposium on Nuclear Physics

    Science.gov (United States)

    Padilla-Rodal, E.; Bijker, R.

    2012-09-01

    for Mexican students to present their current research and interact with the visiting scientists. The present volume contains 21 research articles based on invited talks presented at the symposium. We cannot thank enough to all the authors for their enthusiastic contribution, to the anonymous referees for the time they devoted to the review process, which helped us to maintain the high standard of the Conference Proceedings. Finally we would like to thank the International Advisory Committee and the Sponsoring Organizations that made this event possible. E Padilla-Rodal and R Bijker Editors Conference photograph International Advisory Committee Osvaldo Civitarese, Universidad Nacional de La Plata, Argentina Jerry P Draayer, Louisiana State University, USA Alfredo Galindo-Uribarri, Oak Ridge National Laboratory, USA Paulo Gomes, Universidade Federal Fluminense, Brazil Piet Van Isacker, GANIL, France James J Kolata, University of Notre Dame, USA Reiner Krücken, TRIUMF, Canada Jorge López, The University of Texas at El Paso, USA Stuart Pittel, University of Delaware, USA W Michael Snow, Indiana University, USA Adam Szczepaniak, Indiana University, USA Michael Wiescher, University of Notre Dame, USA Organizing Committee Elizabeth Padilla-Rodal (Chair), Instituto de Ciencias Nucleares, UNAM, Mexico Roelof Bijker, Instituto de Ciencias Nucleares, UNAM, Mexico Sponsoring Organizations División de Física Nuclear, SMF Dirección General de Asuntos de Personal Académico, UNAM Centro Latino-Americano de Física Instituto de Ciencias Nucleares, UNAM Instituto de Física, UNAM Instituto Nacional de Investigaciones Nucleares

  5. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  6. Nuclear lamina and nuclear matrix organization in sperm pronuclei assembled in Xenopus egg extract.

    Science.gov (United States)

    Zhang, C; Jenkins, H; Goldberg, M W; Allen, T D; Hutchison, C J

    1996-09-01

    Nuclear lamina and matrices were prepared from sperm pronuclei assembled in Xenopus egg extracts using a fractionation and extraction procedure. Indirect immunofluorescence revealed that while chromatin was efficiently removed from nuclei during the extraction procedure, the distribution of lamins was unaffected. Consistent with this data, the amount of lamin B3, determined by immunoblotting, was not affected through the extraction procedure. Nuclear matrices were visualised in DGD sections by TEM. Within these sections filaments were observed both at the boundary of the nucleus (the lamina) and within the body of the nucleus (internal nuclear matrix filaments). To improve resolution, nuclear matrices were also prepared as whole mounts and viewed using field emission in lens scanning electron microscopy (FEISEM). This technique revealed two distinct networks of filaments. Filaments lying at the surface of nuclear matrices interconnected nuclear pores. These filaments were readily labelled with monoclonal anti-lamin B3 antibodies. Filaments lying within the body of the nuclear matrix were highly branched but were not readily labelled with antilamin B3 antibodies. Nuclear matrices were also prepared from sperm pronuclei assembled in lamin B3 depleted extracts. Using FEISEM, filaments were also detected in these preparations. However, these filaments were poorly organised and often appeared to aggregate. To confirm these results nuclear matrices were also observed as whole mounts using TEM. Nuclear matrices prepared from control nuclei contained a dense array of interconnected filaments. Many (but not all) of these filaments were labelled with anti-lamin B3 antibodies. In contrast, nuclear matrices prepared from "lamin depleted nuclei' contained poorly organised or aggregated filaments which were not specifically labelled with anti-lamin B3 antibodies.

  7. Internal communication and data base management QA system in the Nuclear Training Centre

    International Nuclear Information System (INIS)

    Stritar, Andrej

    1999-01-01

    Nuclear Training Centre in Ljubljana, Slovenia, is serving to NPP Krsko as a subcontractor for initial phases of technical staff training. In addition we are also organizing several international training courses, we perform the radiological protection training for users of ionizing radiation in industry, medicine and science and we are also running the public information centre with about 7000 visitors per year. For all these activities there are only 11 people available. In order to maintain the quality and efficiency of our work, we were forced to develop strongly computerized support system for the internal communication and maintenance of ever growing databases. It is the mission of our training centre to serve as a reliable and effective source of information about nuclear technologies to nuclear professionals and to the wider public. In order to cope with the increasing number of activities and with the limited number of people and resources available, we had to introduce systematic and highly computerized system for more effective internal communication and support of our activities, which is described in this paper. We have in great extend achieved two main objectives, which we expected from it: to reduce and simplify our routine activities; and force us to follow the predefined rules and thereby maintain the high quality of our work

  8. Measuring safety climate in a nuclear power plant - an experience sharing

    International Nuclear Information System (INIS)

    Vincy, M.U.; Varshney, Aloke; Khot, Pankaj

    2016-01-01

    In this paper the author discusses the experience gained in safety climate measurement of an Indian nuclear power plant. Safety performance is increasingly part of an organization's sustainable development. Nuclear power stations are falling under the category 'high reliability' industries in the world as far as work safety is concerned. Both the research and the practical experience continually point to two underlying factors that drive safety outcomes: the quality of an organisation's leadership and the resulting culture. After years of development in safety technology and safety management system in the industry, management of nuclear industry world over has come to recognize that safety culture has to be addressed if high standards of health and safety are to be maintained. Therefore, nuclear industries in India have been carrying out measurement of safety climate for more than ten years. The objectives of the study are to examine people's values, attitude, perception, competencies, and patterns of behaviour that determine the commitment to, and effectiveness of health and safety management in the industry based on a questionnaires survey and their analysis

  9. Marginalization and challenge: the production of knowledge and landscape in Canadian nuclear waste management policy making

    International Nuclear Information System (INIS)

    Stanley, A.E.

    2006-01-01

    Aboriginal peoples have recently become politically significant in Canadian nuclear fuel waste (NFW) management policy making. Their newfound significance comes on the heels of an important challenge to the knowledge and authority of the nuclear industry with respect to its plans for NFW lead by a number of public groups and Aboriginal peoples from across Canada, including the Serpent River First Nation. This dissertation examines the relationships between the discourses of the Serpent River First Nation (SRFN) about their experiences of the nuclear fuel chain and the discourses of the Nuclear Waste Management Organization (NWMO) about the management of NFW. Two trends are found to characterize these relationships: marginalization and challenge. The discourses of the NWMO marginalize the SRFN, excluding their experiences of the nuclear fuel chain, radioactivity, and the effects of nuclear industries from the policy making process. The discourses of the SRFN challenge the claims of the NWMO about the effects of nuclear wastes and radioactivity, as well as about the safe and beneficial development of the nuclear fuel chain. I identify discourses of 'modern risk' and 'citizenship' found in the work of the NWMO as instrumental for maintaining the nuclear industry's control over the production of knowledge about NFW and its effects and subjugating the knowledge of the SRFN. I also identify discourses of identity, oppression, and 'situated knowledge' as important challenges to the content, method and premises of the claims of the nuclear industry about the management of NFW. While I conclude that the NWMO's discourses of risk and citizenship constitute a colonial politics of exclusion, I note that their discourses are contingent on the exclusion of the experiences of the SRFN with the fuel chain. For their accounts to be coherent, the NWMO need to maintain a strategic silence on the overwhelming implication Aboriginal peoples, as a category, in the nuclear fuel chain

  10. ASN guide project. Safety policy and management in INBs (base nuclear installations)

    International Nuclear Information System (INIS)

    2010-01-01

    This guide presents the recommendations of the French Nuclear Safety Authority (ASN) in the field of safety policy and management (PMS) for base nuclear installations (INBs). It gives an overview and comments of some prescriptions of the so-called INB order and PMS decision. These regulatory texts define a framework for provisions any INB operator must implement to establish his safety policy, to define and implement a system which allows the safety to be maintained, the improvement of his INB safety to be permanently looked for. The following issues are addressed: operator's safety policy, identification of elements important for safety, of activities pertaining to safety, and of associated requirements, safety management organization and system, management of activities pertaining to safety, documentation and archiving

  11. Audit Monitoring For Quality Management System (QMS) In Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Fazila Said; Nurul Huda Mudri; Nurul Zusyakirah Ishak

    2013-01-01

    Auditing for Quality Management System (QMS) is a tool that helps an organization to enhance the quality performance. The audit was performed to check, maintain and improve the QMS practice. It is a compulsory for an organization to undergo series of audit in order to maintain the certification based on standard. In Malaysian Nuclear Agency, audit activities is monitored by Research and Innovation Management Centre (RIMC) that manage and ensure the internal and external audit are performed effectively. This paper will discuss the audit status of the processes that implement MS ISO 9001 and laboratories that accredited with MS ISO/ IEC 17025 for consecutive five years from year 2008 till 2012. Among the factors that show the effectiveness of QMS are cumulative of non-conformance (nc) according to duration of certification, frequency of nc by clause and comparison of non conformance and conformance clause within five years. The improvement plans from RIMC are also have been discussed according to four factors; internal audit quality, organizational setting, management support and auditee attributes. (author)

  12. Activities of the Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear facilities in the Slovak Republic in 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The report summarizes activities of the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1994 and briefly presents results of the national expert supervision over nuclear safety facilities in the SR in 1994. In 1994, the NRA SR have performed a national supervision of following organizations: SE, a.s. - Jaslovske Bohunice Nuclear Power Plant (V-1 Nuclear Power Plant (V-1 NPP), V-2 Nuclear Power Plant (V-2 NPP), A-1 Nuclear Power Plant (A-1 NPP)); Mochovce Nuclear Power Plant; Radioactive waste repository, Mochovce); Organizations providing a specialized training of NPP personnel; Organizations providing specific deliveries and activities for the nuclear power industry; Organizations having an owner of nuclear materials; Organizations providing activities related to import of radioactive sources; Organizations using radioactive sources. Organization structure of the NRA SR is explained. In the presented Chapter 1 - Safety of nuclear power plants in the Slovak Republic - safety aspects of the Slovak NPPs are reported. The next activities are reported: nuclear materials and safeguards; radioactive waste; emergency planning and NRA SR's control and crisis centre; international activities to improve the national surveillance quality; other activities

  13. Introducing Knowledge Management in Study Program of Nuclear Engineering

    International Nuclear Information System (INIS)

    Pleslic, S.

    2012-01-01

    Nuclear engineering is the branch of engineering concerning application of the fission as well as the fusion of atomic nuclei, and the application of other sub-atomic physics, based on the principles of nuclear physics. In the sub-field of nuclear fission there are many investigations of interactions and maintaining of systems and components like nuclear reactors and nuclear power plants. The field also includes the study of different applications of ionizing radiation (medicine, agriculture...), nuclear safety, the problems of thermodynamics transport, nuclear materials and nuclear fuels, and other related technologies like radioactive waste management. In the area of nuclear science and engineering a big amount of knowledge has been accumulated over the last decades. Different levels of nuclear knowledge were considered in different ways and they were taught to different parts of population as a general human culture and as a general scientific-technical-technological culture (high schools, nuclear information centres, training centres, universities...). An advanced level of nuclear knowledge has been accumulated by many experienced workers, specialists and experts in all nuclear and nuclear-related fields and applications. In the last 20 years knowledge management has established itself as a discipline of enabling individuals, teams and whole organizations to create, share and apply knowledge collectively and systematically, with goal to better achieve their objectives. Also, knowledge management became key strategic approach for management of intellectual assets and knowledge that can improve safety, efficiency and innovation, and lead to preserve and enhance current knowledge. Knowledge management could be applied in education, training, networking, human resource development and capacity building, sharing, pooling and transferring knowledge form centres of knowledge to centres of growth. Considering the critical importance of nuclear knowledge it is important

  14. Current Activities on Nuclear Safety Culture in Korea. How to meet the challenges for Safety and Safety Culture?

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chaewoon [International Policy Department Policy and Standard Division, Korea Institute of Nuclear Safety, 19 Gusung-Dong Yuseong-Ku, 305-338 DAEJEON (Korea, Republic of)

    2008-07-01

    'Statement of Nuclear Safety Policy' declared by the Korean Government elucidates adherence to the principle of 'priority to safety'. The 3. Comprehensive Nuclear Energy Promotion Plan (2007-2011) more specifically addressed the necessity to develop and apply 'safety culture evaluation criteria' and to strengthen safety management of concerned organizations in an autonomous way. Putting these policies as a backdrop, Korean Government has taken diverse safety culture initiatives and has encouraged the relevant organizations to develop safety culture practices of their own accord. Accordingly, KHNP, the operating organization in Korea, developed a 'safety culture performance indicator', which has been used to evaluate safety mind of employees and the evaluation results have been continuously reflected in operational management and training programs. Furthermore, KHNP inserted 'nuclear safety culture subject' into every course of more than two week length, and provided employees with special lectures on safety culture. KINS, the regulatory organization, developed indicators for the safety culture evaluation based on the IAEA Guidelines. Also, KINS has hosted an annual Nuclear Safety Technology Information Meeting to share information between regulatory organizations and industries. Furthermore, KINS provided a nuclear safety culture class to the new employees and they are given a chance to participate in performance of a role-reversal socio-drama. Additionally, KINS developed a safety culture training program, published training materials and conducted a 'Nuclear Safety Culture Basic Course' in October 2007, 4 times of which are planed this year. In conclusion, from Government to relevant organizations, 'nuclear safety culture' concept is embraced as important and has been put into practice on a variety of forms. Specifically, 'education and training' is a starting line and sharing

  15. Protection and control of nuclear materials

    International Nuclear Information System (INIS)

    Jalouneix, J.; Winter, D.

    2007-01-01

    In the framework of the French regulation on nuclear materials possession, the first liability is the one of operators who have to know at any time the quantity, quality and localization of any nuclear material in their possession. This requires an organization of the follow up and of the inventory of these materials together with an efficient protection against theft or sabotage. The French organization foresees a control of the implementation of this regulation at nuclear facilities and during the transport of nuclear materials by the minister of industry with the sustain of the institute of radiation protection and nuclear safety (IRSN). This article presents this organization: 1 - protection against malevolence; 2 - national protection and control of nuclear materials: goals, administrative organization, legal and regulatory content (authorization, control, sanctions), nuclear materials protection inside facilities (physical protection, follow up and inventory, security studies), protection of nuclear material transports (physical protection, follow up), control of nuclear materials (inspection at facilities, control of nuclear material measurements, inspection of nuclear materials during transport); 3 - international commitments of France: non-proliferation treaty, EURATOM regulation, international convention on the physical protection of nuclear materials, enforcement in France. (J.S.)

  16. Systems of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    The implementation of safeguards agreements has always involved governmental organizations to a greater or lesser extent, according to the practices of the State concerned. When the Safeguards Committee 1970 defined the structure and content of agreements required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, particular attention was paid to the contacts between States and the Agency during the implementation of such agreements. The basic idea was that in each State a national organization would, as far as possible, lay the foundations for international safeguards. Accordingly, NPT safeguards agreements contain the obligation of the State to establish and maintain a 'State's system of accountancy for and control of nuclear material'. The Agency document describing the structure and content of NPT safeguards agreements, INFCIRC/153, also known as the 'Blue Book', lays down the basic requirements for a State's system of accounting for and control of nuclear material - SSAC for short. The same document stipulates that the Agency in its safeguards work should take due account of the technical effectiveness of the SSAC. In practice, the effectiveness of SSACs may differ widely. To take due account of their effectiveness, the Agency has to analyse them, note the elements included in them and the requirements they meet, and consider the particular situations they are designed to cope with

  17. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  18. Proposal and field practice of a 'hiyarihatto' activity method for promotion of statements of participants for nuclear power plant organization

    International Nuclear Information System (INIS)

    Aoyagi, Saizo; Fujino, Hidenori; Ishii, Hirotake; Shimoda, Hiroshi; Sakuda, Hiroshi; Yoshikawa, Hidekazu; Sugiman, Toshio

    2011-01-01

    In a 'hiyarihatto' activity, workers report and discuss incident cases related to their work. Such an activity is particularly effective for cultivating participants' attitudes about safety. Nevertheless, a conventional face-to-face hiyarihatto activity includes features that are inappropriate for conduct in a nuclear power plant organization. For example, workers at nuclear power plants are geographically distributed and busy. Therefore, they have great difficulty in participating in a face-to-face hiyarihatto activity. Furthermore, workers' hesitation in discussing problems inhibits the continuation of their active participation. This study is conducted to propose a hiyarihatto activity with an asynchronous and distributed computer-mediated communication (CMC) for a nuclear power plant organization, with the demonstration of its effectiveness through field practice. The proposed method also involves the introduction of special participants who follow action guidelines for the promotion of the continuation of the activity. The method was used in an actual nuclear power plant organization. Results showed that the method is effective under some conditions, such as during periods without facility inspection. Special participants promoted the activity in some cases. Moreover, other factors affecting the activity and some improvements were identified. (author)

  19. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis

    Science.gov (United States)

    Kim, Dong-Hyun; Kwon, Sanghoon; Byun, Sangwon; Xiao, Zhen; Park, Sean; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Kemper, Byron; Kemper, Jongsook Kim

    2016-01-01

    Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity. PMID:27412403

  20. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 July 2013

    International Nuclear Information System (INIS)

    2013-01-01

    European Commission) are party to legally binding treaties and have directives and regulations which have a bearing on the emergency response arrangements in their Member States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In 2002, the IAEA issued Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by the FAO, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA) and WHO. The requirements established therein imply additional expectations with regard to operational emergency preparedness and response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, international organizations that participate in the IACRNE develop, maintain and co-sponsor this Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). The IAEA is the main coordinating body for the development and maintenance of the Joint Plan. The Joint Plan does not prescribe arrangements between the participating organizations, but describes a common understanding of how each organization acts during a response and in making preparedness arrangements. Nothing in the Joint Plan should be construed as superseding the arrangements in place in the international organizations (or States). However, all international organizations (and States), irrespective of whether they are members of IACRNE, are invited to consider these arrangements in their own emergency management plans. This publication is the sixth edition of the Joint Plan. It includes new arrangements/initiatives which were introduced after

  1. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 July 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    European Commission) are party to legally binding treaties and have directives and regulations which have a bearing on the emergency response arrangements in their Member States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In 2002, the IAEA issued Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by the FAO, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA) and WHO. The requirements established therein imply additional expectations with regard to operational emergency preparedness and response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, international organizations that participate in the IACRNE develop, maintain and co-sponsor this Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). The IAEA is the main coordinating body for the development and maintenance of the Joint Plan. The Joint Plan does not prescribe arrangements between the participating organizations, but describes a common understanding of how each organization acts during a response and in making preparedness arrangements. Nothing in the Joint Plan should be construed as superseding the arrangements in place in the international organizations (or States). However, all international organizations (and States), irrespective of whether they are members of IACRNE, are invited to consider these arrangements in their own emergency management plans. This publication is the sixth edition of the Joint Plan. It includes new arrangements/initiatives which were introduced after

  2. Choosing nuclear engineering: A survey of nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Shillenn, J.K.; Klevans, E.H.

    1988-01-01

    Maintaining a reliable pool of qualified nuclear engineering graduates depends on the ability of nuclear engineering undergraduate programs to recruit students. With the prospect of declining enrollments in nuclear engineering it is important for nuclear engineering programs to know what factors influence students to choose nuclear engineering as an undergraduate major and why they choose a particular undergraduate program. This type of information can be very important to nuclear engineering programs that develop recruiting strategies. To provide some insight into this area, a questionnaire was designed and given to undergraduate nuclear engineering students at Pennsylvania State University. The purpose of the survey was to provide information on the reasons that students picked nuclear engineering as a career and chose to attend Penn State. The questionnaire was given to 27 students in their junior year during the spring semester of 1987 and again to 35 junior students during the spring semester of 1988. There was little difference except as noted between the two groups on their responses to the questionnaire. A partial listing of the survey results is provided

  3. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  4. Nuclear Society of Russia: Ten years in the world nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev-Stepnoi, N.N.; Gagarinski, A.Yu.

    2000-07-01

    the analysis of nuclear energy production trends and--most importantly for relations with the mass media and the public--crisis information (latest examples: Tokaimura, the virtual Y2K crisis, etc.), have become important sources of information for the NSR. It should be emphasized that the financial participation of the Russian Minatom (maintained at the insistent request of the NSR) in the NucNet system provides sufficiently wide dissemination of operative nuclear information not only through the NSR headquarters but also via its regional branches and separate enterprises. From its side, NSR has assumed the responsibility for the adequate flow of information on Russian nuclear events to NucNet. As a living and developing organism, the NSR wants to respond to its time's challenges. Several prospective directions could be among the NSR information exchange plans: (1) Independent international analysis of the problems of the use of nuclear energy, which is presently in a stagnation period but with future large-scale development, is as possible today as it never had been before. (2) In the field of public relations, many achievements of Russian and US specialists (in the form of articles, analyzing nuclear energy on the popular and highly professional level) stay inaccessible to others because of the language barrier. A possible joint ANS/NSR project on selection, translation, and exchange of such materials, with their further wide publication, represents an obvious reserve in their societies' information activities. (3) The International Youth Nuclear Congress project (proposed by the Russian nuclear youth and supported by ANS and ENS), conceived as a bridge between generations and a forum for opinion exchange between young nuclear specialists from various countries, deserves further development and appropriation of permanent status in the activities of the world nuclear societies.

  5. Nuclear E&T for Building and Sustaining Capacity from Korean Experience

    International Nuclear Information System (INIS)

    Nam, Youngmi

    2014-01-01

    Lessons learned: • A strong national initiative needs to be maintained, involving stakeholders with a staged national nuclear E&T plan and its execution together with an HRD plan. • An integrated competence based E&T for NEPIOs, operators, regulators, TSOs and etc. is an important element to become a knowledgeable customer or responsible vendor. • International cooperation is a useful mechanism by which long-term and widely ranged experience from others, including international organizations can be absorbed or transferred effectively in a relatively shorter term, minimizing trial and error

  6. Nuclear knowledge management

    International Nuclear Information System (INIS)

    Constantin, Marin; Ghitescu, Petre

    2007-01-01

    Nuclear knowledge is characterized by high-complexity and variety of the component topics and long duration required by the build-up of individual competence. At organizational level, these characteristics made the power of an organization or institution to be determined by the capital accumulated of existing knowledge. Furthermore, the capacity of an organization to re-generate and raise the knowledge capital according to the specific processes it is running according to the existing demand decides its position/ranking in the economy of nuclear field. Knowledge management emphasizes re-utilization of existing practice and experience, upgrade, enrich and re-value of accumulated knowledge. The present paper identifies and classifies the nuclear knowledge steps, namely: tacit knowledge, explicit knowledge, preserving, transfer, knowledge capture etc. On this basis there are identified the existing problems of nuclear knowledge management in Romania such as: difficulties to keep within the country the existing expertise, lack of interest in nuclear education, low level of organization of existing knowledge due to a small number of data bases, an insufficient integration of existing knowledge in IT systems, lack of ontology and taxonomy or an average structuralism. Nuclear knowledge in Romania is facing a major challenge which is generated by the future development of nuclear facilities. It is related to the rising demand of expertise and experts. This challenge is better solved by partnership between end users and institutions of Research and Development and university organization as well which could ensure the generation, transfer and preservation of nuclear knowledge. (authors)

  7. The Science of Nuclear Safety and Security. IAEA Backs the Work of Technical and Scientific Support Organizations in Safety and Security

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    Expertise in physical protection and accounting of nuclear and other radioactive material in use, storage and transport, and the associated facilities, as well as experience in the maintenance of systems, equipment and associated software used for effective border monitoring and for radiological threat assessment, are the fundaments of safety and security. This knowledge is developed through technical and scientific support organizations (TSOs), neutral and official organizations that provide the basis for decisions and activities regarding nuclear and radiation safety. The quality of the technical and scientific expertise provided by TSOs to the nuclear industry and their contribution to effective regulatory systems are of fundamental importance. For many years, the IAEA has been supporting the work of TSOs, by helping the TSOs promote their technical competence, transparency and observance of ethical principles.

  8. Impact of Agile Software Development Model on Software Maintainability

    Science.gov (United States)

    Gawali, Ajay R.

    2012-01-01

    Software maintenance and support costs account for up to 60% of the overall software life cycle cost and often burdens tightly budgeted information technology (IT) organizations. Agile software development approach delivers business value early, but implications on software maintainability are still unknown. The purpose of this quantitative study…

  9. Safe management of the operating lifetimes of nuclear power plants. INSAG-14. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2014-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. The present report by INSAG deals with a general approach to the safe management of the operating lifetimes of nuclear power plants. It responds to the concerns about maintaining adequate safety levels at ageing plants, even beyond their design lifetimes. Maintaining adequate safety levels implies first and foremost stringent control of equipment ageing, consistent with the design safety bases of the plants. However, as stated in the 75-INSAG-3 report, 'Basic Safety Principles for Nuclear Power Plants', nuclear safety requires a continuing quest for excellence; this implies enhancinuest for excellence; this implies enhancing the safety levels of operating nuclear power plants as far as reasonably practicable, with due account taken of experience and advancement in knowledge. Moreover, in view of the present situation of the nuclear industry, it may become difficult to maintain adequate competences in many countries with nuclear power programmes. These topics are considered in this latest INSAG report and released to a wider audience

  10. Safe management of the operating lifetimes of nuclear power plants. INSAG-14. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. The present report by INSAG deals with a general approach to the safe management of the operating lifetimes of nuclear power plants. It responds to the concerns about maintaining adequate safety levels at ageing plants, even beyond their design lifetimes. Maintaining adequate safety levels implies first and foremost stringent control of equipment ageing, consistent with the design safety bases of the plants. However, as stated in the 75-INSAG-3 report, 'Basic Safety Principles for Nuclear Power Plants', nuclear safety requires a continuing quest for excellence; this implies enhancing the safety levels of operating nuclear power plants as far as reasonably practicable, with due account taken of experience and advancement in knowledge. Moreover, in view of the present situation of the nuclear industry, it may become difficult to maintain adequate competences in many countries with nuclear power programmes. These topics are considered in this latest INSAG report and released to a wider audience

  11. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  12. Designing nuclear power plants for improved operation and maintenance

    International Nuclear Information System (INIS)

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig

  13. Designing nuclear power plants for improved operation and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig.

  14. A study on the nuclear foreign policy

    International Nuclear Information System (INIS)

    Lee, Byungwook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Noh, B. C.

    2008-12-01

    This study addresses four arenas to effectively assist national nuclear foreign policies under international nuclear nonproliferation regimes and organizations. Firstly, this study analyzes the trends of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime, and proposals for assurance of nuclear fuel supply. Secondly, this study analyzes the trends of international nuclear organizations, which include the IAEA as a central body of international nuclear diplomacy and technical cooperation and the OECD/NEA as a intergovernmental organization to consist of nuclear advanced countries. Thirdly, this study predicts the nuclear foreign policy of Obama Administration and reviews U. S.-India nuclear cooperation. Lastly, this study analyzes the nuclear issues of North Korea and current issues for regulation of nuclear materials.

  15. A Co-Word Analysis of Organizational Constraints for Maintaining Sustainability

    Directory of Open Access Journals (Sweden)

    Daoyan Guo

    2017-10-01

    Full Text Available A good understanding of organizational constraints is vital to facilitate organizational development as the sustainable development of organizations can be constrained by the organization itself. In this study, bibliometric methods were adopted to investigate the research status and trends of organizational constraints. The findings showed that there were 1138 articles and reviews, and 52 high-frequency keywords related to organizational constraints during the period 1980–2016. The research cores were “constraints”, “learning”, “institution”, and “behavior” in the co-occurrence network, and “constraints” played the most significant role. The 52 high-frequency keywords were classified into six clusters: “change and decision-making”, “supply chain and sustainability”, “human system and performance”, “culture and relations”, “entrepreneur and resource”, and “learning and innovation”. Furthermore, the indicators of organizational development (e.g., innovation, supply chain, decision-making, performance, sustainability, and employee behavior were found to be significantly related to the organizational constraints. Based on these findings, future trends were proposed to maintain the sustainability of organizations. This study investigated the state of the art in terms of organizational constraints and provided valuable references for maintaining the sustainable development of organizations.

  16. The Politics of Maintaining Professional Values in the 21st Century

    Science.gov (United States)

    Charles, John M.

    2016-01-01

    Looking ahead, it seems clear that organizing together the values we espouse as a profession could help us to live and work in a global kinesiology community in the best possible way. It is politic, in that it seems sensible and judicious to act on this principle, to organize and maintain a coherent framework of professional values. In which case,…

  17. 29 CFR 2520.104-27 - Alternative method of compliance for certain unfunded dues financed pension plans maintained by...

    Science.gov (United States)

    2010-07-01

    ... financed pension plans maintained by employee organizations. 2520.104-27 Section 2520.104-27 Labor... Alternative method of compliance for certain unfunded dues financed pension plans maintained by employee organizations. (a) Scope. Under the authority of section 110 of the Act, a pension benefit plan that meets the...

  18. Hydrogen Monitoring in Nuclear Power Cycles

    International Nuclear Information System (INIS)

    Maurer, Heini; Staub, Lukas

    2012-09-01

    Maintaining constant Hydrogen levels in Nuclear power cycles is always associated with the challenge to determine the same reliably. Grab sample analysis is complicated and costly and online instruments currently known are difficult to maintain, verify and calibrate. Although amperometry has been proven to be the most suitable measuring principle for online instruments, it has never been thoroughly investigated what electrode materials would best perform in terms of measurement drift and regeneration requirements. This paper we will cover the findings of a research program, conducted at the R and D centre of Swan Analytische Instrumente AG in Hinwil Switzerland, aimed to find ideal electrode materials and sensor design to provide the nuclear industry with an enhanced method to determine dissolved hydrogen in nuclear power cycles. (authors)

  19. Nuclear safety culture in Finland and Sweden - Developments and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.; Pietikaeinen, E. (Technical Research Centre of Finland, VTT (Finland)); Kahlbom, U. (RiskPilot AB (Sweden)); Rollenhagen, C. (Royal Institute of Technology (KTH) (Sweden))

    2011-02-15

    The project aimed at studying the concept of nuclear safety culture and the Nordic nuclear branch safety culture. The project also aimed at looking how the power companies and the regulators view the current responsibilities and role of subcontractors in the Nordic nuclear safety culture as well as to inspect the special demands for safety culture in subcontracting chains. Interview data was collected in Sweden (n = 14) and Finland (n = 16) during 2009. Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). Results gave insight into the nature and evaluation of safety culture in the nuclear industry. Results illustrated that there is a wide variety of views on matters that are considered important for nuclear safety within the Nordic nuclear community. However, the interviewees considered quite uniformly such psychological states as motivation, mindfulness, sense of control, understanding of hazards and sense of responsibility as important for nuclear safety. Results also gave insight into the characteristics of Nordic nuclear culture. Various differences in safety cultures in Finland and Sweden were uncovered. In addition to the differences, historical reasons for the development of the nuclear safety cultures in Finland and Sweden were pointed out. Finally, results gave implications that on the one hand subcontractors can bring new ideas and improvements to the plants' practices, but on the other hand the assurance of necessary safety attitudes and competence of the subcontracting companies and their employees is considered as a challenge. The report concludes that a good safety culture requires a deep and wide understanding of nuclear safety including the various accident mechanisms of the power plants as well as a willingness to continuously develop one's competence and understanding. An effective and resilient nuclear safety culture has to foster a constant

  20. Long-term management of Canada's spent nuclear fuel: the nuclear waste management organizations recommendation to government

    International Nuclear Information System (INIS)

    Shaver, K.

    2006-01-01

    Full text: Like many countries with nuclear power programs, Canada is in the process of addressing the long-term management of its spent fuel. The Nuclear Waste Management Organization (NWMO) was tasked through federal legislation to conduct a three-year study of approaches for the long-term management of spent fuel, and to recommend a preferred approach to the Government of Canada. Legislation required NWMO to compare at least three approaches -approaches based on deep geological disposal in the Canadian Shield, storage at nuclear reactor sites, and centralized storage either above or below ground. In assessing the options, NWMO sought a recommendation that would be socially acceptable, technically sound, environmentally responsible and economically feasible. The study drew on a vast base of social, technical, engineering, and financial research, and included an extensive engagement program with the public and Aboriginal peoples. The recommendation emerged from a collaborative dialogue with specialists and citizens, for an approach that is built on sound science and technology and responsive to citizen values. NWMO submitted its completed options study, with recommendation, to the Government in November 2005. NWMO has proposed an alternative approach, Adaptive Phased Management, which has as its key attributes: central containment and isolation of spent fuel in a deep repository, in an appropriate geological formation; contingency provision for central shallow storage; monitoring and retrievability; and a staged, adaptive process of concept implementation, reflecting the complex nature of the task and the desire of citizens to proceed through cautious, deliberate steps of technical demonstration and social acceptance. This paper will review: 1) the development of the assessment framework for comparing the technical options, which incorporated social and ethical considerations expressed by citizens; 2) findings of the assessment; and 3) features of the proposed

  1. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  2. Organizational Structure in Korea's Nuclear Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Lee, T. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    This paper explores the cross-sectional and dynamic analysis of nuclear related organizations in Korea to systemize them. Nuclear related organizations in Korea are classified into four large groups as commission, executive branch, public institution and private organization. Table 1 shows the nuclear related organizations in each group. AEC, NSC and their expert commission are all the commissions on nuclear energy. MEST, MKE, MFAT, MND etc. are executive branch related to nuclear energy. In addition, there are also government affiliated agencies, societies, associations and other different types of organizations carrying out tasks entrusted by the government concerning nuclear R and D and safety regulation. As for nuclear related private organizations, there are KEPCO, KHNP, KEPCO-ENC, KEPCO-NF etc

  3. Nuclear non-proliferation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    DOE's nuclear non-proliferation responsibilities are defined by the provisions of the Atomic Energy Act of 1954, as amended, and of the Nuclear Non-Proliferation Act of 1978 (NNPA). The Department's major responsibilities in this area are to: (1) provide technical assistance to the Department of State in negotiating agreements for civil cooperation in the peaceful uses of nuclear energy with other countries and international organizations; (2) join with other agencies to reach executive branch judgments with respect to the issuance of export licenses by the Nuclear Regulatory Commission; (3) be responsible for processing subsequent arrangements with other agencies as required by the Nuclear Non-Proliferation Act; (4) control the distribution of special nuclear materials, components, equipment, and nuclear technology exports; (5) participate in bilateral and multilateral cooperation with foreign governments and organizations to promote the peaceful uses of nuclear energy; and (6) act as a primary technical resource with respect to US participation in the International Atomic Energy Agency

  4. Licensing the First Nuclear Power Plant. INSAG-26. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2012-01-01

    having nuclear power plants of similar design, and the various technical cooperation activities conducted by international organizations, in particular the IAEA. The first major task for the regulatory body will be carrying out a review of the safety evaluation report of the proposed site for the first nuclear power plant. For this, the regulatory body must lay down the safety requirements that could be developed or adopted from IAEA safety standards on the subject. It will also require a set of specialized competences in areas such as seismology, hydrology, geochemistry and geology that is not necessarily nuclear related. In developing the strategy to secure and maintain a technically competent regulatory body, a decision should be made early whether to recruit staff with those competences or to outsource these activities to agencies where competences in such areas may already be available in the country. Notwithstanding this, the regulatory body still requires a core technical group in the key disciplines to be able to understand and compile the information from the site evaluation reports as input to the site licensing process.

  5. The experience on public consultation in the elaboration of nuclear regulations

    International Nuclear Information System (INIS)

    Monteiro, Iara A.; Pitta, Maria Adelia R.; Pereira, Enneite S.; Wieland, Patricia

    2009-01-01

    This paper presents and discusses the process of public consultation followed by the regulatory body, Nuclear Energy National Commission (CNEN), during the elaboration of nuclear regulations. In this paper, the due legislation on federal administration, law n. 9784/99, is referred to and the procedures established by CNEN for the elaboration of a nuclear regulation are described. The public consultation has the objective of improving the democratization of nuclear regulations elaboration process, allowing the participation of interested parties such as professional associations directly involved, organizations interested in its application and the general public. During the process of elaboration of a nuclear regulation, the basic text is, first of all, discussed and improved by a task group. This group is composed by CNEN's officials and representatives of organizations, enterprises and public agencies involved in the related area. Once the first version of the proposed regulation is ready, it is formally open to consultation and posted at CNEN website for a period of time. The suggestions, therein presented on-line, are analyzed by the task group and the conclusions are also posted at the site; those considered pertinent are incorporated to proposed regulation. As an example, the public consultation results obtained in 2008 with the revision of the CNEN-NN-6.02: Licensing of Radioactive Facilities regulation, are presented. Such results cover two aspects: the analysis of the participants profile and the analysis of the contributions. Public participation in the elaboration of nuclear regulations is a new way for CNEN to know the licensees and public demands, doubts and needs. This tool has demonstrated usefulness and therefore must be maintained by the regulatory body. (author)

  6. Low-field nuclear magnetic resonance characterization of organic content in shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Seymour, Joseph D.; Kirkland, Catherine; Vogt, Sarah J.

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Longitudinal T1 and transverse T2 relaxation time measurements made using LF-NMR on conventional reservoir systems provides information on rock porosity, pore size distributions, and fluid types and saturations in some cases. Recent improvements in LF-SNMR instrument electronics have made it possible to apply these methods to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids, therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus some types of T2 relaxation during correlation measurements allows for improved resolution of solid phase photons. LF-NMR measurements of T1 and T2 relaxation time correlations were carried out on raw oil shale samples from resources around the world. These shales vary widely in mineralogy, total organic carbon (TOC) content and kerogen type. NMR results were correlcated with Leco TOC and geochemical data obtained from Rock-Eval. There is excellent correlation between NMR data and programmed pyrolysis parameters, particularly TOC and S2, and predictive capability is also good. To better understand the NMR response, the 2D NMR spectra were compared to similar NMR measurements made using high-field (HF) NMR equipment.

  7. Organization and management activities in the nuclear power industry

    International Nuclear Information System (INIS)

    Evans, R.C.; Whitesel, R.N.

    1994-01-01

    The purpose of organization and management development activities in the commercial nuclear power industry is to foster high levels of power plant performance and safety through improved human performance. The NRC has been working to develop assessment tools to assay the effects of organizational factors on plant safety. The utility industry has been working on initiatives targeting individual accountability, the improvement of plant performance and the elimination of the items identified through the NRC assessment process. Organization and management activities do not focus on industry organizational charts, but on the personnel processes and dimensions (factors) that affect safety and economic performance. As individual terms these activities are often combined and referred to as organizational factors. As an area of study, organizational factors has become more prominent as the industry emphasis has switched in recent years from hardware issues related to safety and economics, to personnel-related issues. Beyond the obvious safety objectives affected by improved human performance, plant performance improvements, in areas such as capacity factors, can be achieved through improved human performance. For example, it is estimated that as many as half of the unplanned reactor scrams are caused by personnel errors. The integrated effect of these scram-initiating errors is conservatively estimated to be 100 lost capacity days per year. The financial impact of these events is estimated to be $100M per year

  8. Attaining and Maintaining a Continuity of Knowledge to Draw Safeguards Conclusions with Confidence.

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Robert [Purdue Univ., West Lafayette, IN (United States); Blair, Dianna S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pickett, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    As the 21st century progresses, new nuclear facilities and the expansion of nuclear activities into new countries will require the International Atomic Energy Agency (IAEA) to place a higher reliance on attaining and maintaining a Continuity of Knowledge (CoK) of its safeguards information than is currently practiced. Additionally, a conceptual view of where and how CoK can be applied will need to evolve to support improved efficiency and efficacy of drawing a safeguards conclusion for each Member State. The ability to draw a safeguards conclusion for a Member State will be predicated on the confidence that CoK has been attained and subsequently maintained with respect to the data and information streams used by the IAEA. This confidence can be described as a function of factors such as elapsed time since the measurement, surveillance of attributes, authentication of information, historic knowledge of potential system failures, and the number and type of data collections. A set of general scenarios are further described for determining what is required to attain CoK and whether CoK has been maintained. A high-level analysis of example scenarios is presented to identify failures or gaps that could cause a loss of CoK. Potential areas for technological research and development are discussed for the next generation of CoK tools.

  9. Chinese nuclear insurance and Chinese nuclear insurance pool

    International Nuclear Information System (INIS)

    Gong Zhiqi

    2000-01-01

    Chinese Nuclear Insurance Started with Daya Bay Nuclear Power Station, PICC issued the insurance policy. Nuclear insurance cooperation between Chinese and international pool's organizations was set up in 1989. In 1996, the Chinese Nuclear Insurance Pool was prepared. The Chinese Nuclear Insurance Pool was approved by The Chinese Insurance Regulatory Committee in May of 1999. The principal aim is to centralize maximum the insurance capacity for nuclear insurance from local individual insurers and to strengthen the reinsurance relations with international insurance pools so as to provide the high quality insurance service for Chinese nuclear industry. The Member Company of Chinese Nuclear Pool and its roles are introduced in this article

  10. Finding the Middlemen in Genome Organization.

    Science.gov (United States)

    Wong, Xianrong; Reddy, Karen L

    2015-12-21

    Chromatin domains associated with the nuclear lamina are generally heterochromatic and transcriptionally repressed. How they are recruited to and maintained at the nuclear periphery remains unclear. A recent study by Gonzalez-Sandoval et al. (2015) in Cell identifies a chromatin-binding protein that links repressive chromatin with the inner nuclear membrane. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The public image and image shaping of the nuclear and radiation safety regulatory organization

    International Nuclear Information System (INIS)

    Li Zhiguo

    2013-01-01

    Good image is the basis of trust. It is imminent to build good public image as our society and the public pay close attention to the negative information of relevant government departments which directly or indirectly affects the public image of the government departments in recent years. In order to promote the public image of the government regulatory department, it is required for all staff to figure out how to conscientiously fulfill social responsibility, how to respond to and properly handle emergencies, and how to establish and improve a full-time public relations team. Based on nuclear and radiation safety regulatory task, this paper discussed the necessity of government departments to set up the public image, and how to shape the public image of the nuclear and radiation safety regulatory organization. (author)

  12. Nuclear data services provided by the IAEA

    International Nuclear Information System (INIS)

    Schwerer, O.; Oblozinsky, P.

    2001-01-01

    This paper summarizes the various nuclear data types, libraries and services available free of charge from the IAEA Nuclear Data Section. The databases are collected, maintained and made available within the framework of an international nuclear data center's network. Particular emphasis is given to online services via the Internet. The URL address of the IAEA Nuclear Services is http://www-nds.iaea.or.at. (author)

  13. Organic-soluble lanthanide nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts

    International Nuclear Information System (INIS)

    Wenzel, T.J.; Zaia, J.

    1987-01-01

    Lanthanide complexes of the formula [Ln(fod) 4 ] - (FOD, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) are effective organic-soluble nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts. The shift reagent is formed in solution from Ln(fod) 3 and Ag(fod) or K(fod). The selection of Ag(fod) or K(fod) in forming the shift reagent is dependent on the anion of the organic salt. Ag(fod) is more effective with halide salts, whereas K(fod) is preferred with tetrafluoroborate salts. Resolution of diastereotopic hydrogen atoms was observed in the shifted spectra of certain substrates. Enantiomeric resolution was obtained in the spectrum of sec-butylisothiouronium chloride with a chiral shift reagent. The reagents can be employed in solvents such as chloroform and benzene

  14. An operational approach to standard nuclear process model (SNPM) and SAP nuclear software implementation at Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Warren, C.C.

    2010-01-01

    Benchmarking efforts in the fall of 2006 showed significant performance gaps in multiple measured processes between the Slovenske Elektrarne (SE) nuclear organization and the highest performing nuclear organizations in the world. While overall performance of the SE nuclear fleet was good and in the second quartile, when compared to the worldwide population of Pressurized Water Reactors (PWR), SE leadership set new goals to improve safety and operational performance to the first decile of the worldwide PWR Fleet. To meet these goals the SE nuclear team initiated a project to identify and implement the Best Practice nuclear processes in multiple areas. The benchmarking process identified the Standard Nuclear Performance Model (SNPM), used in the US nuclear fleet, as the industry best practice process model. The Slovenske Elektrarne nuclear management team used various change management techniques to clearly establish the case for organizational and process change within the nuclear organization. The project organization established by the SE nuclear management team relied heavily on functional line organization personnel to gain early acceptance of the project goals and methods thereby reducing organizational opposition to the significant organizational and process changes. The choice of a standardized process model used, all or in part, by approximately one third of the nuclear industry worldwide greatly facilitated the development and acceptance of the changes. Use of a nuclear proven templated software platform significantly reduced development and testing efforts for the resulting fully integrated solution. In the spring of 2007 SE set in motion a set of initiatives that has resulted in a significant redesign of most processes related to nuclear plant maintenance and continuous improvement. Significant organizational structure changes have been designed and implemented to align the organization to the SNPM processes and programs. The completion of the initial

  15. An operational approach to standard nuclear process model (SNPM) and SAP nuclear software implementation at Slovenske Elektrarne

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.C. [Nuclear Power Plants Operation Department, Slovenske Elektrarne, a.s., Mlynske nivy 47, 821 09 Bratislava (Slovakia)

    2010-07-01

    Benchmarking efforts in the fall of 2006 showed significant performance gaps in multiple measured processes between the Slovenske Elektrarne (SE) nuclear organization and the highest performing nuclear organizations in the world. While overall performance of the SE nuclear fleet was good and in the second quartile, when compared to the worldwide population of Pressurized Water Reactors (PWR), SE leadership set new goals to improve safety and operational performance to the first decile of the worldwide PWR Fleet. To meet these goals the SE nuclear team initiated a project to identify and implement the Best Practice nuclear processes in multiple areas. The benchmarking process identified the Standard Nuclear Performance Model (SNPM), used in the US nuclear fleet, as the industry best practice process model. The Slovenske Elektrarne nuclear management team used various change management techniques to clearly establish the case for organizational and process change within the nuclear organization. The project organization established by the SE nuclear management team relied heavily on functional line organization personnel to gain early acceptance of the project goals and methods thereby reducing organizational opposition to the significant organizational and process changes. The choice of a standardized process model used, all or in part, by approximately one third of the nuclear industry worldwide greatly facilitated the development and acceptance of the changes. Use of a nuclear proven templated software platform significantly reduced development and testing efforts for the resulting fully integrated solution. In the spring of 2007 SE set in motion a set of initiatives that has resulted in a significant redesign of most processes related to nuclear plant maintenance and continuous improvement. Significant organizational structure changes have been designed and implemented to align the organization to the SNPM processes and programs. The completion of the initial

  16. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  17. Nuclear forensic analysis capabilities and experience at the Oak Ridge Y-12 National Security Complex

    International Nuclear Information System (INIS)

    Hembree, D.M.; Carter, J.A.; Hinton, E.R. Jr.

    2002-01-01

    Full text: The Oak Ridge Y-12 National Security Complex has been involved in the U.S. nuclear weapons program since the program's inception in the 1940's. Known as the U.S. 'Fort Knox of uranium', the site is also a repository of unique expertise and experience related to enriched uranium and other weapons-related materials. Y-12's Analytical Chemistry Organization (ACO) contains a wide range of analytical instrumentation that has demonstrated the ability to provide important forensic information in a short period of time. This rapid response capability is in part due to having all of the analytical instrumentation and expertise contained in one building, within one organization. Rapid-response teams are easily formed to quickly obtain key information. The infrastructure to handle nuclear materials, e.g. chain-of-custody, radiological control, information management, etc. is maintained for normal operations. As a result, the laboratory has demonstrated the capability for rapid response times for nuclear forensic samples. This poster presentation will discuss Y-12's analytical capabilities and the importance of key instruments and highly trained personnel in providing critical information. The laboratory has collaborated with both state and federal law enforcement agencies to analyze non-nuclear forensic evidence. Y-12's participation in two nuclear forensic events, as part of multi-laboratory teams, will be described. (author)

  18. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  19. Maintaining staff competence-a NPP operator viewpoint

    International Nuclear Information System (INIS)

    Patrakka, E.

    2000-01-01

    For a nuclear power plant operator, it is crucial to guarantee the safe and economic operation of the power plant as well as to look after the general acceptability of nuclear power. As to human resources management, this requires continuous maintenance and enhancement of the performance of the individuals and organisation. To this end, several development projects have recently been implemented by Teollisuuden Voima Oy (TVO) at the Olkiluoto nuclear power plant, which consists of twin 840 MWe BWR units that commenced their operation in 1978 and 1980. Systematic initial and continuing training programmes are needed to maintain the technical and managerial skills and know-how at a high level. The present stabile state of nuclear power, i.e. operation of ageing plants with personnel ageing as well, requires a variety of actions to reinforce the training efforts. At Olkiluoto NPP, we have carried out an extensive modernization programme that allowed the personnel to strengthen their knowledge and supplement it with the most recent results of development. We have also closely monitored the NPP development projects of the vendors, which has added to the preservation of know-how and understanding of advanced nuclear power technology. We have close contacts to the research institutes and universities, and have performed R and D activities to limited extent. In addition to the projects mentioned above, a co-ordinated development programme, 'TVO 2002', was initiated last year. The main objective of this programme is to ensure the functional preconditions and the competitiveness of the company in a changing environment. The management and operational procedures will be developed in such a way that the goals set for year 2002 will be achieved. The programme is organised as ten projects, which cover a variety of development subjects. One of the focal areas includes projects that can be characterised with the words 'Survey of competencies' and 'Preservation of know

  20. Building and Maintaining Healthy Organizations: The Key to Future Success

    National Research Council Canada - National Science Library

    Matthews, Lloyd J

    2000-01-01

    ...." In recognition that there are certain commonalities among all organizational, institutional, and bureaucratic entities, whether civilian or military, the symposium construed the term organization in the broadest way...

  1. Organization of nuclear safety and radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Pretre, S.

    1995-01-01

    In Switzerland an important distinction is made between radiation protection (in charge of the use of ionizing radiations for medical uses or non nuclear industry), and nuclear safety (in charge of nuclear industry, including prevention or limitation of any risk of nuclear accident). In the eighties, it has been decided to make two laws for these two topics. The law for radioprotection, voted in 1991 is enforced since 1994 by OFSP (Office Federal de la Sante Publique). It performs any radiation monitoring outside nuclear industry plants. The law for nuclear safety, that should be enforced by OFEN (Office Federal de l'ENergie), is still not voted. The only existing legislation is the 1959 atomic law. (D.L.). 1 fig., 1 map

  2. Delays help German utilities maintain self-financing ratios. [Financing nuclear power projects

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, G [Dresden Bank, AG (Germany, F.R.)

    1979-05-01

    Estimates of electricity consumption have been substantially reduced and nuclear plant is now expected to be 22% of total generating capacity in 1985 instead of the earlier forecast of 36%. The decline in the ordering of new plant has benefited the financial position of the electricity utilities and the expected fall in self-financing ratios has not occurred.

  3. Micro-organisms and nuclear waste: a neglected problem

    International Nuclear Information System (INIS)

    Arnott, Don.

    1989-01-01

    The paper addresses the problem of bacteria in nuclear waste disposal. A description is given of how bacteria colonised the Three Mile Island Nuclear Reactor soon after meltdown, demonstrating the ability of some bacteria to operate under extreme conditions. Work is also described indicating that microbial corrosion of metal canisters can occur. Thus the author recommends that studies of nuclear waste disposal should take into account the interrelations between geology, geochemistry and microbiology. (U.K.)

  4. Building and Maintaining Healthy Organizations: The Key to Future Success

    National Research Council Canada - National Science Library

    Matthews, Lloyd J

    2000-01-01

    .... Symposium discussions addressed four major thematic areas: establishing values-based organizations, creating a change-receptive organizational culture, attracting and retaining future leaders, and selecting and developing the best leaders...

  5. Nuclear safety and public debate

    International Nuclear Information System (INIS)

    Tanguy, P.

    1997-01-01

    In this article are evoked the question of nuclear safety and the public opinion, from the beginning of nuclear power plants in 1954 where a peaceful use of nuclear energy is developed in minds. If the aim was to avoid any important accident, the Three Miles Island accident and more recently the Chernobyl accident provoked a shock in public opinion and marked a peak of nuclear controversy. From this point, the policy of transparence and a best information of the public taken as a partner are necessary to maintain the dialogue. (N.C.)

  6. A Study on the Nuclear Foreign Policy

    International Nuclear Information System (INIS)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S.

    2007-12-01

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society

  7. A Study on the Nuclear Foreign Policy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S

    2007-12-15

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society.

  8. Status of transactinium nuclear data in the Evaluated Nuclear Structure Data File

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1979-01-01

    The organization and program of the Nuclear Data Project are described. An Evaluated Nuclear Structure Data File (ENSDF) was designed to contain most of the data of nuclear structure physics. ENSDF includes adopted level information for all 1950 known nuclei, and detailed data for approximately 1500 decay schemes. File organization, management, and retrieval are reviewed. An international network of data evaluation centers has been organized to provide for a four-year cycle of ENSDF revisions. Standard retrieval and display programs can prepare various tables of specific data, which can serve as a good first approximation to a complete up-to-date compilation. Appendixes list, for A > 206, nuclear levels with lifetimes > or = 1 s, strong γ rays from radioisotopes (ordered by nuclide and energy), and strong α particle emissions (similarly ordered). 8 figures

  9. A Platform for Developing and Maintaining Competences in PBL Supervision

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Huttel, Hans

    2017-01-01

    One of the emerging challenges in academia is that of developing and maintaining teaching qualifications in a setting where teaching staff is often temporary and with diverse backgrounds. At Aalborg University, project-organized problem-based learning is at the heart of all degree programmes...

  10. Conference summaries of the Canadian Nuclear Association 30. annual conference, and the Canadian Nuclear Society 11. annual conference

    International Nuclear Information System (INIS)

    1990-01-01

    This volume contains conference summaries for the 30. annual conference of the Canadian Nuclear Association, and the 11. annual conference of the Canadian Nuclear Society. Topics of discussion include: energy needs and challenges facing the Canadian nuclear industry; the environment and nuclear power; the problems of maintaining and developing industrial capacity; the challenges of the 1990's; programmes and issues for the 1990's; thermalhydraulics; reactor physics and fuel management; nuclear safety; small reactors; fuel behaviour; energy production and the environment; computer applications; nuclear systems; fusion; materials handling; and, reactor components

  11. Guidelines and workbook for assessment of organization and administration of utilities seeking operating license for a nuclear power plant. Guidelines for utility organization and administration plan. Volume 1

    International Nuclear Information System (INIS)

    Thurber, J.A.; Olson, J.; Osborn, R.N.; Sommers, P.; Widrig, R.D.

    1985-08-01

    The Guidelines are intended to provide guidance to the user in preparing a written plan for a proposed nuclear organization and administration. The Guidelines allow for individual approaches to organizational structures to account for differences in plant size, number of operating units, number of plant sites, and the individual utility approach to providing technical support. These unique approaches, however, should meet the criteria of a reasoned, fully developed, and logically consistent focus on the user's organization in terms of organization of work, policies and procedures, staffing, and external relationships

  12. Maintainability allocation

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1980-06-01

    The author gives the general lines of a method for the allocation and for the evaluation of maintainability of complex systems which is to be developed during the conference. The maintainability objective is supposed to be formulated under the form of a mean time to repair (M.T.T.R.) [fr

  13. Nuclear electronics

    International Nuclear Information System (INIS)

    Lucero B, E.

    1989-01-01

    The rapid technical development of Colombia over the past years, resulted among others, a considerable increase in the number of measuring instrumentation and testing laboratories, scientific research and metrology centers, in industry, agriculture, public health, education on the nuclear field, etc. IAN is a well organized institution with qualified management, trained staff and reasonably equipped laboratories to carry out tasks as: Metrology, standardization, quality control and maintenance and repair of nuclear instruments. The government of Colombia has adopted a policy to establish and operate through the country maintenance and repair facilities for nuclear instrumentation. This policy is reflected in the organization of electronic laboratories in Bogota-IAN

  14. Record keeping for the decommissioning of nuclear facilities: Guidelines and experience

    International Nuclear Information System (INIS)

    2002-01-01

    This report covers record keeping for the decommissioning of nuclear facilities. Nuclear facilities include large commercial facilities such as nuclear power plants or chemical nuclear facilities (e.g. for fabrication and reprocessing), but also include smaller facilities such as research reactors and medical, industrial and other research facilities. Special attention may be needed for these small facilities owing to factors such as the low priority given to decommissioning by research teams and the possibility of poorly recorded structural and operational changes. A focus on research reactors is also important because of their widespread distribution. Two IAEA TECDOCs address record keeping for radioactive waste management and disposal facilities, and therefore these areas are not covered in this report. The objective of this report is to provide information, experience and assistance on how to identify, update as needed and maintain records to assist in the decommissioning of nuclear facilities, including for the decommissioning plan. This report is intended to be useful to policy makers, regulators, owners, operators, decommissioning contractors and other interested parties. Record keeping is an integral part of overall QA or quality management programmes, and this is emphasized in this report. This report also indicates the possible consequences of not maintaining adequate records. This report describes the needs and the sources of the records for decommissioning (Section 3) and the process of identifying and selecting these records (Section 4). Section 5 considers the records from the decommissioning process itself and their retention, while Section 6 deals with QA, organization and responsibilities. The Records Management System (RMS) is dealt with in Section 7 and the management of new records in Section 8. A summary of observations is included in Section 9. The report is complemented by an appendix and annexes that describe case histories

  15. A systematic approach to the training in the nuclear power industry: The need for standard

    International Nuclear Information System (INIS)

    Wilkinson, J.D.

    1995-01-01

    The five elements of a open-quotes Systematic Approach to Trainingclose quotes (SAT) are analysis, design, development, implementation and evaluation. These elements are also present in the effective application of basic process control. The fundamental negative feedback process control loop is therefore an excellent model for a successful, systematic approach to training in the nuclear power industry. Just as standards are required in today's manufacturing and service industries, eg ISO 9000, so too are control standards needed in the training industry and in particular in the training of nuclear power plant staff. The International Atomic Energy Agency (IAEA) produced its TECDOC 525 on open-quotes Training to Establish and Maintain the Qualification and Competence of Nuclear Power Plant Operations Personnelclose quotes in 1989 and the American Nuclear Society published its open-quotes Selection, Qualification, and Training of Personnel for Nuclear Power Plants, an American National Standardclose quotes in 1993. It is important that community colleges, training vendors and organizations such as the Instrument Society of America (ISA), who may be supplying basic or prerequisite training to the nuclear power industry, become aware of these and other standards relating to training in the nuclear power industry

  16. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    International Nuclear Information System (INIS)

    Reiman, T.

    2007-03-01

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  17. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.

    2007-03-15

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  18. Oxidizing gel formulation for nuclear decontamination: rheological and acidic properties of the organic matrix and its ozonolysis

    International Nuclear Information System (INIS)

    Rouy, E.

    2003-10-01

    An acidic and oxidizing gel was formulated with a purely organic matrix, xanthan gum, at low concentrations (1 to 2 wt %). This polymer gel was investigated in various media (aqueous, acidic and ceric) by means of rheology: shear thinning behaviour, thixotropy, yield stress... Evidences of unexpected rheological properties in highly concentrated media show that xanthan is quite convenient for industrial projection of this type of gel on metallic walls in nuclear plants, notwithstanding its time-limited resistance to oxidation (about a few hours). Complexation mechanisms between ceric species and polar sites of the polymer led us to characterise acidic properties of our xanthan sample by potentiometric titration and 1 H NMR techniques. The matrix was finally treated by ozonolysis to suppress organic residues, as required to handle nuclear wastes. In acidic medium, ozonolysis of the gel was achieved successfully while in acidic and ceric medium this process showed limited efficiency, needing further investigation to be clarified. (author)

  19. Environmental Justice, Place and Nuclear Fuel Waste Management in Canada

    International Nuclear Information System (INIS)

    Kuhn, Richard G.

    2006-01-01

    The purpose of this paper is to outline the basis of a Nuclear Fuel Waste management strategy for Canada, taking into account the unique legal tenets (Aboriginal rights; federal - provincial jurisdiction) and the orientation that the Nuclear Waste Management Organization (NWMO) has taken to date. The focus of the paper are grounded in notions of environmental justice. Bullard's definition provides a useful guideline: 'the fair treatment and meaningful involvement of all people regardless of race, colour, national origin or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies'. The overriding concern is to work towards a process that is inclusive and just. Prior to developing a specific strategy to site a NFW disposal facility, we maintain that the NWMO needs to first address three fundamental issues: Expand its mandate to include the future of nuclear energy in Canada; Provide an inclusive role for First Nations (Aboriginal people) in all stages of the process; Adhere to the requirement of specifying an economic region and deal more overtly with the transportation of NF

  20. Environmental Justice, Place and Nuclear Fuel Waste Management in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Richard G. [Univ. of Guelph (Canada). Dept. of Geography; Murphy, Brenda L. [Wilfrid Launer Univ., Brantford (Canada)

    2006-09-15

    The purpose of this paper is to outline the basis of a Nuclear Fuel Waste management strategy for Canada, taking into account the unique legal tenets (Aboriginal rights; federal - provincial jurisdiction) and the orientation that the Nuclear Waste Management Organization (NWMO) has taken to date. The focus of the paper are grounded in notions of environmental justice. Bullard's definition provides a useful guideline: 'the fair treatment and meaningful involvement of all people regardless of race, colour, national origin or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies'. The overriding concern is to work towards a process that is inclusive and just. Prior to developing a specific strategy to site a NFW disposal facility, we maintain that the NWMO needs to first address three fundamental issues: Expand its mandate to include the future of nuclear energy in Canada; Provide an inclusive role for First Nations (Aboriginal people) in all stages of the process; Adhere to the requirement of specifying an economic region and deal more overtly with the transportation of NF.