WorldWideScience

Sample records for nuclear moments electric

  1. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  2. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  3. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  4. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    Science.gov (United States)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  5. Searches for the electron electric dipole moment and nuclear anapole moments in solids

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.

    2004-01-01

    Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results

  6. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  7. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  8. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  9. Nuclear electric dipole moments in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2015-03-19

    We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.

  10. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    Energy Technology Data Exchange (ETDEWEB)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  11. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  12. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  13. Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd

    International Nuclear Information System (INIS)

    Clieves, H.P.; Steudel, A.

    1979-01-01

    The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de

  14. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  15. Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms

    International Nuclear Information System (INIS)

    Oshima, Sachiko; Fujita, Takehisa; Asaga, Tomoko

    2007-01-01

    The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects as well as nuclear finite size effects in Xe and Hg atomic systems. Due to Schiff's theorem, the first order perturbation energy of EDM is canceled out by the second order perturbation energy for the point nucleus. The nuclear finite size effects arising from the intermediate atomic excitations may be finite for deformed nucleus but it is extremely small. The finite size contribution of the intermediate nuclear excitations in the second order perturbation energy is completely canceled by the third order perturbation energy. As the results, the finite contribution to the atomic EDM comes from the first order perturbation energy of relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM d n for Xe and Hg, respectively, though the calculations are carried out with a simplified single-particle nuclear model. From this relation in Hg atomic system, we can extract the neutron EDM which is found to be just comparable with the direct neutron EDM measurement

  16. Electric Dipole Moments of Hadrons

    OpenAIRE

    Wirzba, Andreas

    2016-01-01

    A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...

  17. Neutron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Mischke, R.E.

    2003-01-01

    The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study

  18. Nuclear Anapole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  19. Nuclear Anapole Moments

    International Nuclear Information System (INIS)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-01-01

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments

  20. Constraints on T-odd and P-even hadronic interactions from nucleon, nuclear, and atomic electric dipole moments

    International Nuclear Information System (INIS)

    Haxton, W.C.; Hoering, A.; Musolf, M.J.; Old Dominion Univ., Norfolk, VA

    1994-01-01

    We deduce constraints on time-reversal-noninvariant (TRNI), parity-conserving (PC) hadronic interactions from nucleon, nuclear, and atomic electric dipole moment (edm) limits. Such interactions generate edm's through weak radiative corrections. We consider long-ranged mechanisms, i.e., those mediated by meson exchanges in contrast to short-range two-loop mechanisms. We find that the ratio of typical TRNI. PC nuclear matrix elements to those of the strong interaction are approx-lt 10 -5 , a limit about two orders of magnitude more stringent than those from direct detailed balance studies of such interactions

  1. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  2. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  3. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  4. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  5. An online database of nuclear electromagnetic moments

    International Nuclear Information System (INIS)

    Mertzimekis, T.J.; Stamou, K.; Psaltis, A.

    2016-01-01

    Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure – including nuclear moments – which hinders the information management. A new, dedicated, public and user friendly online database ( (http://magneticmoments.info)) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.

  6. Electric dipole moments of elementary particles, nuclei, atoms, and molecules

    International Nuclear Information System (INIS)

    Commins, Eugene D.

    2007-01-01

    The significance of particle and nuclear electric dipole moments is explained in the broader context of elementary particle physics and the charge-parity (CP) violation problem. The present status and future prospects of various experimental searches for electric dipole moments are surveyed. (author)

  7. Electric and Magnetic Dipole Moments

    CERN Document Server

    CERN. Geneva

    2005-01-01

    The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.

  8. The Muon Electric Dipole Moment

    OpenAIRE

    Barger, Vernon; Kao, Chung; Das, Ashok

    1997-01-01

    The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...

  9. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  10. The neutron electric dipole moment

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.H.J.; Pakvasa, S.

    1989-01-01

    A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs

  11. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  12. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  13. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  14. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  15. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  16. Search for a neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)

    1984-03-01

    To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.

  17. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  18. Electric dipole moments of the nucleon and light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wirzba, Andreas

    2014-08-15

    The electric dipole moments of the nucleon and light ions are discussed and strategies for disentangling the underlying sources of CP violation beyond the Kobayashi–Maskawa quark-mixing mechanism of the Standard Model are indicated. Contribution to “45 years of nuclear theory at Stony Brook: a tribute to Gerald E. Brown”.

  19. Neutron Electric Dipole Moment from colored scalars⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available We present new contributions to the neutron electric dipole moment induced by a color octet, weak doublet scalar, accommodated within a modified Minimal Flavor Violating framework. These flavor non-diagonal couplings of the color octet scalar might account for an assymmetry of order 3 × 10−3 for aCP(D0 → K−K+ − aCP(D0 → π+π− at tree level. The same couplings constrained by this assymmetry also induce two-loop contributions to the neutron electric dipole moment. We find that the direct CP violating asymmetry in neutral D-meson decays is more constraining on the allowed parameter space than the current experimental bound on neutron electric dipole moment.

  20. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  1. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  2. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1987-01-01

    The contribution of CP violating nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated following a recent proposal for its experimental detection. Two models of CP violating interactions are used, namely, the Kobayashi-Maskawa mechanism and the occurrence of the Θ term in the QCD lagrangian. These CP violating interactions are combined with realistic strong nucleon-nucleon interactions to induce a CP forbidden component of the 3 He wave function. The matrix element of the electric dipole operator is then evaluated between CP allowed and CP forbidden components yielding the observable electric dipole moment. Using the parameters emerging from the penguin terms in the Kobaysashi-Maskawa model we obtain a result much larger than the electric dipole moment of the neutron in the same model. On the other hand, no enhancement is found for the Θ-term mechanism. A possible explanation for this difference is discussed. Numerical estimates can be given only in the Kobayashi-Maskawa model, giving d( 3 He) ≅ 10 30 e . cm. In the second mechanism, the estimate give d ( 3 He) ≅ 10 16 anti Θ. (orig.)

  3. A new online database of nuclear electromagnetic moments

    Science.gov (United States)

    Mertzimekis, Theo J.

    2017-09-01

    Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.

  4. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  5. Electric Dipole Moment Results from lattice QCD

    Science.gov (United States)

    Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy

    2018-03-01

    We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  6. Electric Dipole Moment Results from lattice QCD

    Directory of Open Access Journals (Sweden)

    Dragos Jack

    2018-01-01

    Full Text Available We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  7. CP-violation and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Le Dall, Matthias; Ritz, Adam, E-mail: aritz@uvic.ca [University of Victoria, Department of Physics and Astronomy (Canada)

    2013-03-15

    Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.

  8. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  9. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1986-01-01

    The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm

  10. EDM: Neutron electric dipole moment measurement

    Directory of Open Access Journals (Sweden)

    Peter Fierlinger

    2016-02-01

    Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.

  11. Neutron Electric Dipole Moment on the Lattice

    Science.gov (United States)

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan

    2018-03-01

    For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  12. Neutron Electric Dipole Moment on the Lattice

    Directory of Open Access Journals (Sweden)

    Yoon Boram

    2018-01-01

    Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  13. Electric Dipole Moments in Split Supersymmetry

    CERN Document Server

    Giudice, Gian Francesco

    2006-01-01

    We perform a quantitative study of the neutron and electron electric dipole moments (EDM) in Supersymmetry, in the limit of heavy scalars. The leading contributions arise at two loops. We give the complete analytic result, including a new contribution associated with Z-Higgs exchange, which plays an important and often leading role in the neutron EDM. The predictions for the EDM are typically within the sensitivities of the next generation experiments. We also analyse the correlation between the electron and neutron EDM, which provides a robust test of Split Supersymmetry.

  14. Local electric dipole moments: A generalized approach.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  16. Nuclear moments of radioactive nuclei. Final report

    International Nuclear Information System (INIS)

    Greenlees, G.W.

    1985-01-01

    An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126 Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs

  17. What can nuclear physics learn from nuclear moments

    International Nuclear Information System (INIS)

    Faessler, A.

    1981-01-01

    The information which can be obtained from static electric quadrupole and magnetic moments is discussed for some specific examples. A new highly controversial measurement of the g-factor of the 4 + state in 20 Ne is used to show the importance of magnetic moments on the understanding of nuclear structure. If the g-factor of the 4 + state in 20 Ne would indeed be zero which is very unlikely it would change our whole understanding of the sd-shell nuclei. In the second chapter we discuss a possible test of the nature of the anomaly of the moment of inertia in the rare earth nuclei. If it is an alignment of two i(13/2) neutrons along the total angular momentum the g-factor should drop to a very small value for angular momenta near backbending at the beginning of the rare earth region. In section 3 we discuss the change of the sign of the spectroscopic quadrupole moments for the 13/ 2 + isomeric state in the Hg isotopes as an example for a change from strong coupling to decoupling if one fills up the i(13/2) neutron shell. In section 4 we discuss the nature of the 8 + , 10 + and 12 + states in the even mass Hg and Pt isotopes which show an irregular energy spacing. Detailed theoretical calculations indicate that in the Hg isotopes up to mass number A = 196 the 8 + and 10 + states are formed by the partial and full alignment of two h(11/2) proton hole states, while in 198,200Hg the 8 + , 10 + and 12 + states are formed by partial and full alignment of two i(13/2) neutron holes. A recent argument using the energy position of the two quasi particle states claims the those states should be in all Hg isotopes i(13/2) quasi particle states. A measurement of the g-factors of those states could clear up their nature. (orig.)

  18. The neutron electric dipole moment and the Weinberg's operator

    International Nuclear Information System (INIS)

    Li Chongsheng; Hu Bingquan

    1992-01-01

    After a summary of the predictions for the neutron electric dipole moment in a number of models of CP violation, the authors review mainly the recent developments associated with Weimberg's purely gluonic CP violation operator. Its implications on the neutron electric dipole moment in various models of CP violation are discussed. Inspired by Weimberg's work, several new mechanisms of generating large electric dipole moments of charged leptons and large electric and chromo-electric dipole moments of light quarks are recently proposed. Brief discussions on these new developments are also given

  19. Exotic fermions and electric dipole moments

    International Nuclear Information System (INIS)

    Joshipura, A.S.

    1991-01-01

    The contributions of mirror fermions to the electric dipole moments (EDM's) of leptons and neutrons are studied using the available limits on the mixing of the relevant fermions to their mirror partners. These limits imply EDM's several orders of magnitude larger than the current experimental bounds in the case of the electron and the neutron if the relevant CP-violating phases are not unnaturally small. If these phases are large, then the bounds on the EDM's can be used to improve upon the limits on mixing between the ordinary (f) and the mirror (F) fermions. In the specific case of the latter mixing angle being given by (m f /M F ) 1/2 , one can obtain the electron and the neutron EDM's close to experimental bounds

  20. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  1. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  2. Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM

    Science.gov (United States)

    Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.

    2018-03-01

    In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.

  3. Looking for permanent electric dipole moment

    International Nuclear Information System (INIS)

    Sakemi, Yasuhiro

    2007-01-01

    Exploration of the permanent electric dipole moment (EDM) is one of the important ways to promote the research of fundamental symmetries and interactions. In this paper the progress of the exploration up to the present is overviewed and then the present status and expectation in future of the experiment using cooled unstable atoms which is the hopeful method to measure electron EDM is presented. At first the physical meaning of the CPT symmetry breaking is introduced and the upper limit of EDM of electron, muon, tau, proton, neutron, Λ hyperon and 199 Hg are tabulated. It is explained how EDM appears in the theory beyond the standard model, the supersymmetry model e.g. The on-going experiments of EDM exploration of neutrons, nuclei, electrons, molecules and charged particles are briefly reviewed. Finally the experiment to use the Bose-Einstein condensation (BEC) to produce ultra low temperature of nK range by using the laser to cool down radioactive element is presented. Since the amplification of EDM is expected to be large in heavy unstable atoms, francium isotopes which are obtained by heavy ion fusion of 197 Au target bombarded with 18 O beam are chosen in this experiment. It has been confirmed that Rb can be kept in the instrument for 20 minutes up to the present. Progress toward trapping Fr is under way by optimizing numbers of experimental parameters. Experiments by the groups in foreign countries are overviewed briefly. (S. Funahashi)

  4. Confronting Higgcision with electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Kingman [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Jae Sik [Department of Physics, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 (Korea, Republic of); Senaha, Eibun [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Tseng, Po-Yan [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-06-26

    Current data on the signal strengths and angular spectrum of the 125.5 GeV Higgs boson still allow a CP-mixed state, namely, the pseudoscalar coupling to the top quark can be as sizable as the scalar coupling: C{sub u}{sup S}≈C{sub u}{sup P}=1/2. CP violation can then arise and manifest in sizable electric dipole moments (EDMs). In the framework of two-Higgs-doublet models, we not only update the Higgs precision (Higgcision) study on the couplings with the most updated Higgs signal strength data, but also compute all the Higgs-mediated contributions from the 125.5 GeV Higgs boson to the EDMs, and confront the allowed parameter space against the existing constraints from the EDM measurements of Thallium, neutron, Mercury, and Thorium monoxide. We found that the combined EDM constraints restrict the pseudoscalar coupling to be less than about 10{sup −2}, unless there are contributions from other Higgs bosons, supersymmetric particles, or other exotic particles that delicately cancel the current Higgs-mediated contributions.

  5. Electric Dipole Moments in the MSSM Reloaded

    CERN Document Server

    Ellis, Jonathan Richard; Pilaftsis, Apostolos

    2008-01-01

    We present a detailed study of the Thallium, neutron, Mercury and deuteron electric dipole moments (EDMs) in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the complete set of one-loop graphs, the dominant Higgs-mediated two-loop diagrams, the complete CP-odd dimension-six Weinberg operator and the Higgs-mediated four-fermion operators. We improve upon earlier calculations by including the resummation effects due to CP-violating Higgs-boson mixing and to threshold corrections to the Yukawa couplings of all up- and down-type quarks and charged leptons. As an application of our study, we analyse the EDM constraints on the CPX, trimixing and Maximally CP- and Minimally Flavour-Violating (MCPMFV) scenarios. Cancellations may occur among the CP-violating contributions to the three measured EDMs arising from the 6 CP-violating phases in the MCPMFV scenario, leaving open the possibility of relatively large contributions to other CP-violating observables. The anal...

  6. Experimental constraint on quark electric dipole moments

    Science.gov (United States)

    Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan

    2018-04-01

    The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.

  7. Electric dipole moments in natural supersymmetry

    Science.gov (United States)

    Nakai, Yuichiro; Reece, Matthew

    2017-08-01

    We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.

  8. The status of the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Grimus, W.

    1990-01-01

    The electric dipole moment of particles in quantum mechanics and quantum field theory is discussed. Furthermore, calculations of the neutron electric dipole moment in the standard model and several of its low-energy extensions are reviewed. 47 refs., 7 figs. (Author)

  9. Electric dipole moment of the electron and of the neutron

    Science.gov (United States)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  10. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  11. Measurement of the electric dipole moment and magnetic moment anomaly of the muon

    NARCIS (Netherlands)

    Onderwater, CJG

    2005-01-01

    The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The

  12. Electric dipole moments in two-Higgs-doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Martin [Institut für Physik, Technische Universität Dortmund,Otto-Hahn-Str. 4, D-44221 Dortmund (Germany); Pich, Antonio [IFIC, Universitat de València - CSIC,Apt. Correos 22085, E-46071 València (Spain)

    2014-04-10

    Electric dipole moments are extremely sensitive probes for additional sources of CP violation in new physics models. Specifically, they have been argued in the past to exclude new CP-violating phases in two-Higgs-doublet models. Since recently models including such phases have been discussed widely, we revisit the available constraints in the presence of mechanisms which are typically invoked to evade flavour-changing neutral currents. To that aim, we start by assessing the necessary calculations on the hadronic, nuclear and atomic/molecular level, deriving expressions with conservative error estimates. Their phenomenological analysis in the context of two-Higgs-doublet models yields strong constraints, in some cases weakened by a cancellation mechanism among contributions from neutral scalars. While the corresponding parameter combinations do not yet have to be unnaturally small, the constraints are likely to preclude large effects in other CP-violating observables. Nevertheless, the generically expected contributions to electric dipole moments in this class of models lie within the projected sensitivity of the next-generation experiments.

  13. Hadronic electric dipole moments in R-parity violating supersymmetry

    International Nuclear Information System (INIS)

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey

    2006-01-01

    We calculate the electric dipole moments (EDM) of the neutral 199 Hg atom, neutron and deuteron within a generic R-parity violating SUSY model (Re p SUSY) on the basis of a one-pion-exchange model with CP-odd pion-nucleon interactions. We consider two types of the Re p SUSY contributions to the above hadronic EDMs: via the quark chromoelectric dipole moments (CEDM) and CP-violating 4-quark interactions. We demonstrate that the former contributes to all the three studied EDMs while the latter appears only in the nuclear EDMs via the CP-odd nuclear forces. We find that the Re p SUSY induced 4-quark interactions arise at tree level through the sneutrino exchange and involve only s and b quarks. Therefore, their effect in hadronic EDMs is determined by the strange and bottom-quark sea of the nucleon. From the null experimental results on the hadronic EDMs we derive the limits on the imaginary parts of certain products Im(λ ' λ ' *) of the trilinear Re p -couplings and show that the currently best limits come from the 199 Hg EDM experiments. We demonstrate that some of these limits are better than those existing in the literature. We argue that future storage ring experiments on the deuteron EDM are able to improve these limits by several orders of magnitude

  14. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  15. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  16. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  17. A search for the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Lobashev, V.M.

    1982-01-01

    The experimental search for the electric dipole moment of the neutron, a possible manifestation of CP violation is reviewed. The existence of non-vanishing electric dipole moment of the neutron is predicted by different theories but the recent experiments are not sensitive enough to distinguish between the theories. The latest experimental limits and the expected results on limits of new, planned experiments are discussed. (D.Gy.)

  18. Two-stage nuclear refrigeration with enhanced nuclear moments

    International Nuclear Information System (INIS)

    Hunik, R.

    1979-01-01

    Experiments are described in which an enhanced nuclear system is used as a precoolant for a nuclear demagnetisation stage. The results show the promising advantages of such a system in those circumstances for which a large cooling power is required at extremely low temperatures. A theoretical review of nuclear enhancement at the microscopic level and its macroscopic thermodynamical consequences is given. The experimental equipment for the implementation of the nuclear enhanced refrigeration method is described and the experiments on two-stage nuclear demagnetisation are discussed. With the nuclear enhanced system PrCu 6 the author could precool a nuclear stage of indium in a magnetic field of 6 T down to temperatures below 10 mK; this resulted in temperature below 1 mK after demagnetisation of the indium. It is demonstrated that the interaction energy between the nuclear moments in an enhanced nuclear system can exceed the nuclear dipolar interaction. Several experiments are described on pulsed nuclear magnetic resonance, as utilised for thermometry purposes. It is shown that platinum NMR-thermometry gives very satisfactory results around 1 mK. The results of experiments on nuclear orientation of radioactive nuclei, e.g. the brute force polarisation of 95 NbPt and 60 CoCu, are presented, some of which are of major importance for the thermometry in the milli-Kelvin region. (Auth.)

  19. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kellö, Vladimir [Department of Physical Chemistry, Comenius University, SK-842 15 Bratislava (Slovakia)

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  20. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    Science.gov (United States)

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  1. Limits on CP nonconserving interactions from electric dipole moments

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss bounds on CP-nonconserving (CPNC) and parity-nonconserving (PNC) hadronic interactions that result from measurements of atomic electric dipole moments. In most models of hadronic CPNC, the nuclear edm arises primarily from the polarization of the ground state by the CPNC PNC NN interaction, rather than from the edms of valence nucleons. When the atom is placed in an external field, the nucleus is fully shielded apart from nuclear finite size effects and relativistic corrections arising from hyperfine interactions, so that careful atomic calculations must be performed to deduce the residual sensitivity to the nuclear edm. I describe these shielding effects qualitatively, and present results from more detailed calculations. Atomic limits, when translated into effective bounds on the neutron edm, have now reached sensitivities that are comparable to direct neutron edm limits. I also discuss limits that can be extracted on CPNC parity-conserving (PC) hadronic interactions. Such interactions can generate atomic edms when combined with weak radiative corrections

  2. Dependence of nuclear moments of inertia on the triaxial parameter

    International Nuclear Information System (INIS)

    Helgesson, J.; Hamamoto, Ikuko

    1989-01-01

    The dependence of nuclear moments of inertia on the triaxial parameter (γ-variable) is investigated including both the Belyaev term and the Migdal term. The obtained dependence is compared with that of hydrodynamical moments of inertia and other moments of inertia used conventionally. (orig.)

  3. Nuclear moments as a probe of electronic structure in material, exotic nuclear structure and fundamental symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Minamisono, T.; Mihara, M.; Fukuda, M. [Osaka Univ., Dept. of Physics (Japan); Zhu, Shengyun [CIAE (China); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka Univ., RCNP (Japan); Yuan Daqing; Zheng Yongnan; Zuo Yi; Fang Ping; Zhou Dongmei [CIAE (China); Ohtsubo, T. [Niigata Univ., Dept. of Physics (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Technology (Japan); Nishimura, D. [Tokyo Univ. of Science (Japan); Matsumiya, R. [Osaka Univ., RCNP (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M. [Nat. Inst. Radiological Sciences (Japan); Collaboration: Osaka-CIAE-NIRS-Niigata-Kochi-LBL Collaboration; and others

    2013-05-15

    We report our studies in various fields of Physics through nuclear moments utilizing the {beta}-NMR technique, including material sciences, nuclear structures and fundamental symmetries. Especially, we focus on the recent progress in the studies on the electronic structure in Pt through Knight shifts of various impurities, lattice locations of impurities, electric field gradients, the analysis of nuclear spin in terms of its components, anomaly in the spin expectation value for {sup 9}C-{sup 9}Li mirror pair, the G-parity conservation law, and the Ramsey resonance on UCN for future neutron EDM measurements.

  4. Search for a permanent Xe-electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    A permanent electric dipole moment (EDM) of the isotope {sup 129}Xe would imply a breakdown of both parity P and time-reversal symmetry T and, through the CPT theorem, a breakdown in CP, the combined symmetries of charge conjugation C and parity P. Our goal is to improve the present experimental limit (d{sub Xe}<3.10{sup -27} ecm) by about three orders of magnitude. The most precise EDM limit on diamagnetic atoms was measured on {sup 199}Hg (d{sub Hg}<3.1.10{sup -29} ecm). To get more stringent limits, we perform a {sup 3}He/{sup 129}Xe clock comparison experiment with the detection of free spin precession of gaseous, nuclear polarized {sup 3}He or {sup 129}Xe samples with a SQUID as magnetic flux detector. The precession of co-located {sup 3}He/{sup 129}Xe nuclear spins are used as an ultra-sensitive probe for non-magnetic spin interactions of type δν∝ d{sub Xe}.E. With our experimental setup at the research center Juelich we are able to observe spin coherence times T{sub 2}{sup *} of several hours for both species. We report on first experimental results achieved within the MIXed-collaboration.

  5. Electric and magnetic dipole moments of the neutron

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1977-01-01

    Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references

  6. Nuclear anapole moment and tests of the standard model

    International Nuclear Information System (INIS)

    Flambaum, V. V.

    1999-01-01

    There are two sources of parity nonconservation (PNC) in atoms: the electron-nucleus weak interaction and the magnetic interaction of electrons with the nuclear anapole moment. A nuclear anapole moment has recently been observed. This is the first discovery of an electromagnetic moment violating fundamental symmetries--the anapole moment violates parity and charge-conjugation invariance. We describe the anapole moment and how it can be produced. The anapole moment creates a circular magnetic field inside the nucleus. The interesting point is that measurements of the anapole allow one to study parity violation inside the nucleus through atomic experiments. We use the experimental result for the nuclear anapole moment of 133 Cs to find the strengths of the parity violating proton-nucleus and meson-nucleon forces. Measurements of the weak charge characterizing the strength of the electron-nucleon weak interaction provide tests of the Standard Model and a way of searching for new physics beyond the Standard Model. Atomic experiments give limits on the extra Z-boson, leptoquarks, composite fermions, and radiative corrections produced by particles that are predicted by new theories. The weak charge and nuclear anapole moment can be measured in the same experiment. The weak charge gives the mean value of the PNC effect while the anapole gives the difference of the PNC effects for the different hyperfine components of an electromagnetic transition. The interaction between atomic electrons and the nuclear anapole moment may be called the ''PNC hyperfine interaction.''

  7. Electron electric dipole moment in Inverse Seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay,91405 Orsay (France)

    2016-08-11

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  8. Neutron Electric Dipole Moment from Gauge-String Duality.

    Science.gov (United States)

    Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea

    2017-03-03

    We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.

  9. Electron electric dipole moment in Inverse Seesaw models

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  10. 6-quark contribution to nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ito, H.

    1985-01-01

    The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes

  11. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.

  12. Mercury monohalides: suitability for electron electric dipole moment searches.

    Science.gov (United States)

    Prasannaa, V S; Vutha, A C; Abe, M; Das, B P

    2015-05-08

    Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments.

  13. Electric dipole moments as a test of supersymmetric unification

    CERN Document Server

    Dimopoulos, Savas K; Dimopoulos, S; Hall, L J

    1995-01-01

    In a class of supersymmetric grand unified theories, including those based on the gauge group SO(10), there are new contributions to the electric dipole moments of the neutron and electron, which arise as a heavy top quark effect. These contributions arise from CKM-like phases, not from phases of the supersymmetry breaking operators, and can be reliably computed in terms of the parameters of the weak scale supersymmetric theory. For the expected ranges of these parameters, the electric dipole moments of the neutron and the electron are predicted to be close to present experimental limits.

  14. Electric quadrupole moments of {beta}-emitter {sup 21}F and {sup 23}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi; Matsuta, Kensaku; Fukuda, Mitsunori [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others

    1997-03-01

    For the systematic study of nuclear electromagnetic moments, electric quadrupole moments Q of {beta}-emitting nuclei {sup 21}F and {sup 23}Mg have been measured for the first time through combined technique of the polarized nuclear beams and {beta}-NMR technique. From the quadrupole coupling constants of {sup 21}F and {sup 23}Mg in MgF{sub 2} single crystal, the ratios of the Q`s with the known Q were determined as |Q({sup 21}F)|/|Q({sup 19}F{sup *})|=1.001{+-}0.034 and |Q({sup 23}Mg)|/|Q({sup 25}Mg)|=0.571{+-}0.017. (author)

  15. Model dependence of the 2H electric dipole moment

    International Nuclear Information System (INIS)

    Afnan, I. R.; Gibson, B. F.

    2010-01-01

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the 3 P 1 channel, the latter being sensitive to the off-shell behavior of the 3 P 1 amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the 2 H EDM until such time as a measurement better than 10% is obtained.

  16. Theoretical Expectations for the Muon's Electric Dipole Moment

    CERN Document Server

    Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the muon's electric dipole moment $\\dmu$ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's {\\em electric} dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on $\\dmu$ to date. This ambiguity could be definitively resolved by the dedicated search for $\\dmu$ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for $\\dmu$ in supersymmetry fall just below the proposed sensitivity. However, non-degeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to $\\dmu$ of order $10^{-22}$ e cm, two orders of magnitude above the sensitivity of the $\\dmu$ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. ...

  17. New insights into the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Ottnad, K.; Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Meissner, U.-G., E-mail: meissner@hiskp.uni-bonn.d [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institut fuer Kernphysik, Juelich Center for Hadron Physics and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Guo, F.-K. [Institut fuer Kernphysik, Juelich Center for Hadron Physics and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2010-04-05

    We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |theta{sub 0}|<=2.5x10{sup -10}. The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.

  18. New insights into the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ottnad, K.; Kubis, B.; Meissner, U.-G.; Guo, F.-K.

    2010-01-01

    We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |θ 0 |≤2.5x10 -10 . The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.

  19. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to

  20. Electric charge quantization and the muon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Pires, C.A.S. de; Rodrigues da Silva, P.S.

    2002-01-01

    We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems

  1. Current searches for the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Miranda, P.C.

    1985-01-01

    The two most sensitive experiments currently searching for a neutron electric dipole moment (ILL, France and LNPI. USSR) ared described. The present upper limit on the neutron EDM is /dsub(n)/ -25 e.cm at the 90% confidence level. An improvement on this limit by about one order of magnitude is expected in the near future. 5 refs.

  2. The neutron electric dipole moment in the cloudy bag model

    International Nuclear Information System (INIS)

    Morgan, M.A.; Miller, G.A.

    1986-01-01

    An evaluation of the neutron electric dipole moment (NEDM), using the cloudy bag model (CBM) shows that two CP-violating effects (a quark mass term and a pion-quark interaction) have contributions that are about equal in magnitude, but opposite in sign. This cancellation allows the upper limit on the θ parameter to increase by about an order of magnitude. (orig.)

  3. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  4. Electric dipole moments of charged leptons with sterile fermions

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  5. Anomalous Magnetic and Electric Dipole Moments of the $\\tau$

    CERN Document Server

    Taylor, L

    1998-01-01

    This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the e/sup +/e/sup -/ to tau /sup +/ tau /sup -/ gamma process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: a/sub tau /=0.004+or-0.027+or-0.023 and d /sub tau /=(0.0+or-1.5+or-1.3)*10/sup -16/ e.cm. (22 refs). This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 10^{-16}{e{\\cdot}\\mathrm{cm}}$.

  6. Electric dipole moments of charged leptons with sterile fermions

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-02-26

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  7. Searches for permanent electric dipole moments in Radium isotopes

    NARCIS (Netherlands)

    Willmann, L.; Jungmann, K.; Wilschut, H.W.

    2010-01-01

    Permanent electric dipole moments are uniquely sensitive to sources of T and P violation in fundamental interactions. In particular radium isotopes offer the largest intrinsic sensitivity. We want to explore the prospects for utilizing the high intense beams from HIE-ISOLDE to boost the statistical

  8. Simulation of Light Collection for Neutron Electrical Dipole Moment measurement

    Science.gov (United States)

    Ji, Pan; nEDM Collaboration

    2017-09-01

    nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.

  9. New method of measuring electric dipole moments in storage rings

    NARCIS (Netherlands)

    Farley, FJM; Jungmann, K; Miller, JP; Morse, WM; Orlov, YF; Roberts, BL; Semertzidis, YK; Silenko, A; Stephenson, EJ

    2004-01-01

    A new highly sensitive method of looking for electric dipole moments of charged particles in storage rings is described. The major systematic errors inherent in the method are addressed and ways to minimize them are suggested. It seems possible to measure the muon EDM to levels that test speculative

  10. Permanent Electric Dipole Moment Search in 129Xe

    NARCIS (Netherlands)

    Grasdijk, Jan; Bluemler, P.; Almendinger, F.; Heil, Werner; Jungmann, Klaus-Peter; Karpuk, S.; Krause, Hans-Joachim; Offenhaeuser, Andreas; Repetto, M.; Schmidt, Ulrich; Sobolev, Y.; Willmann, Lorenz; Zimmer, Stefan

    2017-01-01

    A permanent electric dipole moment (EDM) implies breakdown of P (parity) and T (time reversal) symmetries. Provided CPT holds, this implies CP violation. Observation of an EDM at achievable experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model and limits

  11. Electric Dipole Moment Measurements with Rare Isotopes

    International Nuclear Information System (INIS)

    Chupp, Timothy

    2016-01-01

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  12. Electric Dipole Moment Measurements with Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, Timothy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-11-11

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  13. A new formulation of the relativistic many-body theory of electric dipole moments of closed shell atoms

    International Nuclear Information System (INIS)

    Latha, K V P; Angom, Dilip; Chaudhuri, Rajat K; Das, B P; Mukherjee, Debashis

    2007-01-01

    The electric dipole moments of closed-shell atoms are sensitive to the parity and time-reversal violating phenomena in the nucleus. The nuclear Schiff moment is one such property, it arises from the parity and time reversal violating quark-quark interactions and the quark-chromo electric dipole moments. We calculate the electric dipole moment of atomic 199 Hg arising from the nuclear Schiff moment using the relativistic coupled-cluster theory. This is the most accurate calculation of the quantity to date. Our calculations in combination with the experiment data provide important insights to the P and T violating coupling constants at the elementary particle level. In addition, a new limit on the tensor-pseudo tensor induced atomic EDM, calculated using the relativistic coupled-cluster theory is also presented

  14. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  15. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Directory of Open Access Journals (Sweden)

    Andrzej Magiera

    2017-09-01

    Full Text Available Measurements of electric dipole moment (EDM for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle’s magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles’ interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  16. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Science.gov (United States)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  17. Lepton electric dipole moments, supersymmetric seesaw, and leptogenesis phase

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Mohapatra, R.N.

    2003-01-01

    We calculate the lepton electric dipole moments in a class of supersymmetric seesaw models and explore the possibility that they may provide a way to probe some of the CP violating phases responsible for the origin of matter via leptogenesis. We show that in models where the right handed neutrino masses M R arise from the breaking of local B-L by a Higgs field with B-L=2, some of the leptogenesis phases can lead to enhancement of the lepton dipole moments compared to the prediction of models where M R is either directly put in by hand or is a consequence of a higher dimensional operator

  18. Studies of nuclear second moments for pre-equilibrium nuclear reaction theories

    International Nuclear Information System (INIS)

    Sato, K.; Yoshida, S.

    1987-01-01

    The nuclear second moments, important inputs to pre-equilibrium reaction theories, are evaluated by assuming a simple model. The positive definite nature of the second moments is examined, and the nuclear level densities are calculated using positive definite second moments. (orig.)

  19. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  20. A cosmological lower bound on the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-10-01

    We argue that in a wide class of grand unified theories diagrams similar to those generating baryon number in the early universe also contribute to renormalization of the CP-violating theta parameter of QCD and hence to the neutron electric dipole moment dsub(n). We then use the apparent baryon-to-photon ratio (nsub(B)/nsub(γ))>=1.3 x 10 -10 to deduce an order-of-magnitude lower bound on the neutron electric dipole moment: dsub(n) > approximately 3 x 10 -28 e-cm. Conversely the present experimental upper limit on dsub(n) implies (nsub(B)/nsub(γ) -7 . We find as a corollary that there is not much scope for entropy generation after the creation of the baryon-antibaryon asymmetry in the very early universe

  1. Extreme black hole with an electric dipole moment

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tada, T.

    1996-01-01

    We construct a new extreme black hole solution in a toroidally compactified heterotic string theory. The black hole saturates the Bogomol close-quote nyi bound, has zero angular momentum, but a nonzero electric dipole moment. It is obtained by starting with a higher-dimensional rotating charged black hole, and compactifying one direction in the plane of rotation. copyright 1996 The American Physical Society

  2. Electric dipole moment of the neutron in gauge theory

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1983-01-01

    One of the consequences of violation of CP invariance of the physical world is the existence of an electric dipole moment of elementary particles. The renormalization gauge theory of the electroweak and strong interactions developed during the past decade has revealed several possible sources of violation of CP invariance: direct violation of CP invariance in the Lagrangian of the electroweak interactions, spontaneous violation of CP invariance, and violation of CP invariance in the strong interactions described by quantum chromodynamics. The present review is devoted to a discussion of the predictions for the electric dipole moment of the neutron which follow from the various sources of violation of CP invariance in the theory. It includes the theoretical results obtained in the framework of gauge theory during the past decade up to the beginning of 1982. A comparison of the prediction of various gauge models with the experimental measurements of the electric dipole moment will make it possible to gain a better understanding of the nature of violation of CP invariance

  3. Search for electric dipole moments at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Onderwater, C. J. G., E-mail: onderwater@kvi.nl [University of Groningen, KVI (Netherlands)

    2012-05-15

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM) they are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of 'new physics'. Until recently it was believed that only electrically neutral systems could be used for sensitive searches of EDMs. With the introduction of a novel experimental method, high precision for charged systems will be within reach as well. The features of this method and its possibilities are discussed.

  4. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  5. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2016-01-15

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  6. Electricity utilities: Nuclear sector

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The safe and economic operation of nuclear power plants requires an appropriate infrastructure on the part of the operator as well as a high level of technical quality of the plants and of qualification of the personnel. Added to this are a variety of services rendered by specialist firms. The Bayernwerk utility, with plants of its own, has played a major role in the development of nuclear power in the Federal Republic of Germany. The importance of nuclear power to this firm is reflected in the pattern of its electricity sources and in the composition of its power plants. (orig.) [de

  7. Economics of nuclear electricity

    International Nuclear Information System (INIS)

    Frederick, G.

    1997-01-01

    On the sites of Tihange and Doel in Belgium, a total of seven nuclear generating units with an aggregate installed power of 5807 MWe are operated. Construction of another unit at Doel was postponed indefinitely in 1988 after the Chernobyl accident. Electrabel holds a 25% interest in the Chooz B-1 and B-2 nuclear generating units under construction in France near the Belgian border. In terms of gross installed nuclear generating capacity worldwide, Belgium holds twelfth place; when ranked according to the contribution to public electricity supply, the country holds third place with a 57% share. Before decisions are taken about future nuclear power plants, above all the fuel costs of gas-fired cogeneration plants and the capital costs of nuclear power plants must be weighed. Current evaluation of all costs shows the use of nuclear power for electricity generation to be ten percent more expensive than that of natural gas. However, those responsible in the power supply industry feel that this short-term competitive situation is only one factor out of many others, such as safety issues, diversification in sourcing and deliveries, climatic influences, and employment. The development and construction of advanced reactors will result in the desired cost reduction and lead to a new era of nuclear power, also in Europe. (orig.) [de

  8. Electric dipole moments of nanosolvated acid molecules in water clusters.

    Science.gov (United States)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  9. Extracting the Omega- electric quadrupole moment from lattice QCD data

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, M.T. Pena

    2011-03-01

    The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].

  10. Theoretical expectations for the muon's electric dipole moment

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the muon's electric dipole moment d μ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's electric dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on d μ to date. This ambiguity could be definitively resolved by the dedicated search for d μ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for d μ in supersymmetry fall just below the proposed sensitivity. However, nondegeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to d μ ∼10 -22 e cm, two orders of magnitude above the sensitivity of the d μ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. We also derive new limits on the amount of flavor violation allowed and demonstrate that approximations previously used to obtain such limits are highly inaccurate in much of parameter space

  11. Electric dipole moment of magnetoexciton in concentric quantum rings

    Science.gov (United States)

    García, L. F.; Mikhailov, I. D.; Revinova, S. Yu

    2017-12-01

    We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.

  12. The electric dipole moment of magnesium deuteride, MgD.

    Science.gov (United States)

    Steimle, Timothy C; Zhang, Ruohan; Wang, Hailing

    2014-06-14

    The (0,0) A(2)Π-X (2)Σ(+) band of a cold molecular beam sample of magnesium monodeuteride, MgD, has been recorded field-free and in the presence of a static electric field of up to 11 kV/cm. The lines associated with the lowest rotational levels are detected for the first time. The field-free spectrum was analyzed to produce an improved set of fine structure parameters for the A(2)Π (v = 0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ(el) of 2.567(10)D and 1.31(8)D for A(2)Π (v = 0) and X(2)Σ(+)(v = 0) states, respectively. The recommended value for μ(el)(X(2)Σ(+) (v = 0)) for MgH, based upon the measured value for MgD, is 1.32(8)D.

  13. A sensitive search for a muon electric dipole moment

    International Nuclear Information System (INIS)

    Semertzidis, Yannis K.; Carey, R.M.; Miller, J.P.; Rind, O.; Roberts, B.L.; Sulak, L.R.; Brown, H.; Danby, G.T.; Jackson, J.W.; Larsen, R.; Lazarus, D.M.; Meng, W.; Morse, W.M.; Ozben, C.S.; Prigl, R.; Semertzidis, Y.K.; Balakin, V.; Bazhan, A.; Dudnikov, A.; Khazin, B. I.

    2001-01-01

    We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10 -24 e·cm. The experiment will be sensitive to non-standard physics like SUSY. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring. As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field. The EDM signature will be an out of plane muon spin precession as a function of time. The rate of this precession will be proportional to the EDM amplitude of the muon

  14. Nucleon electric dipole moments in high-scale supersymmetric models

    International Nuclear Information System (INIS)

    Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi

    2015-01-01

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  15. Nucleon electric dipole moments in high-scale supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-11-12

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  16. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    Science.gov (United States)

    Kambe, Takashi; Oshima, Kokichi

    2014-09-19

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.

  17. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  18. Change in Nuclear Electric

    International Nuclear Information System (INIS)

    Smart, D.

    1996-01-01

    Activities of Nuclear Electric company (Great Britain) in 1990-1995, aimed at privatization of certain NPPs and services, are considered. The company introduced commercial principles of work and control in all areas of expenditures. Great attention was paid to the work with personnel according to the program Investments in Personnel. All these initiatives resulted in increase in the total electricity production by 39% during the period of time under consideration in the 100% increase in the output per man/hour. This made it possible for the government to introduce its proposal on privatization of greater part of companies

  19. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    OpenAIRE

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...

  20. T violation in radiative β decay and electric dipole moments

    Directory of Open Access Journals (Sweden)

    W. Dekens

    2015-12-01

    Full Text Available In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs. As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  1. A large Muon Electric Dipole Moment from Flavor?

    CERN Document Server

    Hiller, Gudrun; Laamanen, Jari; Rüppell, Timo

    2010-01-01

    We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10^{-24} - 10^{-22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the Standard Model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity mediated supersymmetry breaking a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.

  2. Probing CP Violation with the Deuteron Electric Dipole Moment

    CERN Document Server

    Lebedev, Oleg; Pospelov, Maxim; Ritz, Adam; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam

    2004-01-01

    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.

  3. T violation in radiative β decay and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, W.; Vos, K.K., E-mail: k.k.vos@rug.nl

    2015-12-17

    In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  4. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  5. Description of nuclear collective motion by Wigner function moments

    International Nuclear Information System (INIS)

    Balbutsev, E.B.

    1996-01-01

    The method is presented in which the collective motion is described by the dynamic equations for the nuclear integral characteristics. The 'macroscopic' dynamics is formulated starting from the equations of the microscopic theory. This is done by taking the phase space moments of the Wigner function equation. The theory is applied to the description of collective excitations with multipolarities up to λ=5. (author)

  6. Strong dependence of ultracold chemical rates on electric dipole moments

    International Nuclear Information System (INIS)

    Quemener, Goulven; Bohn, John L.

    2010-01-01

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d 4(L+(1/2)) where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d 6 . We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d -4 for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  7. Search for the permanent electric dipole moment of 129Xe

    Science.gov (United States)

    Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep

    2017-09-01

    CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.

  8. Electromagnetic moments and electric dipole transitions in carbon isotopes

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-01-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value

  9. The electric dipole moment of cobalt monoxide, CoO.

    Science.gov (United States)

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  10. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  11. The electric dipole moment of cobalt monoxide, CoO

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xiujuan, E-mail: zhuangxj@hnu.edu.cn [College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China); Steimle, Timothy C. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2014-03-28

    A number of low-rotational lines of the E{sup 4}Δ{sub 7/2} ← X{sup 4}Δ{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}Δ{sub 7/2}(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ{sup -vector}{sub el}, for the X{sup 4}Δ{sub 7/2} (υ = 0) and E{sup 4}Δ{sub 7/2} (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F′ = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F′ = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  12. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  13. The electric dipole moment of magnesium deuteride, MgD

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, Timothy C., E-mail: TSteimle@asu.edu; Zhang, Ruohan [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States); Wang, Hailing [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 (China)

    2014-06-14

    The (0,0) A{sup 2}Π–X {sup 2}Σ{sup +} band of a cold molecular beam sample of magnesium monodeuteride, MgD, has been recorded field-free and in the presence of a static electric field of up to 11 kV/cm. The lines associated with the lowest rotational levels are detected for the first time. The field-free spectrum was analyzed to produce an improved set of fine structure parameters for the A{sup 2}Π (v = 0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ{sup -vector}{sub el} of 2.567(10)D and 1.31(8)D for A{sup 2}Π (v = 0) and X{sup 2}Σ{sup +}(v = 0) states, respectively. The recommended value for μ{sup -vector}{sub el}(X{sup 2}Σ{sup +} (v = 0)) for MgH, based upon the measured value for MgD, is 1.32(8)D.

  14. Neutron electric dipole moment and extension of the standard model

    International Nuclear Information System (INIS)

    Oshimo, Noriyuki

    2001-01-01

    A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)

  15. Neutron electric dipole moment in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.

    1995-01-01

    The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)

  16. Toward verification of electroweak baryogenesis by electric dipole moments

    International Nuclear Information System (INIS)

    Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun

    2016-01-01

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  17. Can measurements of electric dipole moments determine the seesaw parameters?

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Farzan, Yasaman

    2005-01-01

    In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments

  18. Towards a new measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomytov, N.; Kirch, K.; Knecht, A.; Kistryn, S.; Knowles, P.; Kuzniak, M.; Lefort, T.; Naviliat-Cuncic, O.; Pichlmaier, A.; Plonka, C.; Quemener, G.; Rebetez, M.; Rebreyend, D.; Rogel, G.

    2006-01-01

    Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 x 10 -28 e.cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity.

  19. Even larger contributions to the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Rujula, A. de; Gavela, M.B.; Vegas, F.J.

    1990-01-01

    Constraints on theories of CP-violation, from limits on the neutron electric dipole moment, and mediated by a CP-odd three-gluon operator, are current best sellers. We introduce novel CP-odd operators involving one photon and three gluons. We find that effects mediated by these operators result on bounds on supersymmetry an order of magnitude more stringent than earlier results: they are the tightest known bounds. For left-right models we derive richer limits than previously found. We also recalculate the anomalous dimensions of the three-gluon operator and find them to be minus those originally used; this weakens considerably its strictures on theory, though it still mediates the dominant effect in multi-Higgs models. (orig.)

  20. Electric dipole moments as probes of new physics

    CERN Document Server

    Pospelov, M; Pospelov, Maxim; Ritz, Adam

    2005-01-01

    We review several aspects of flavour-diagonal CP violation, focussing on the role played by the electric dipole moments (EDMs) of leptons, nucleons, atoms and molecules, which consitute the source of several stringent constraints on new CP-violating physics. We dwell specifically on the calculational aspects of applying the hadronic EDM constraints, reviewing in detail the application of QCD sum-rules to the calculation of nucleon EDMs and CP-odd pion-nucleon couplings. We also consider the current status of EDMs in the Standard Model, and on the ensuing constraints on the underlying sources of CP-violation in physics beyond the Standard Model, focussing on weak-scale supersymmetry.

  1. Electric dipole moment constraints on minimal electroweak baryogenesis

    CERN Document Server

    Huber, S J; Ritz, A; Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam

    2007-01-01

    We study the simplest generic extension of the Standard Model which allows for conventional electroweak baryogenesis, through the addition of dimension six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.

  2. The quest for an electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Schmidt-Wellenburg, P.

    2016-01-01

    To date no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishing small, escaping detection in the last 50 years, is not easy to explain. In general it is considered as the most sensitive probe for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/anti-matter asymmetry of the universe. The neutron might one day help to distinguish different sources of CP-violation in combination with measurements of the electron and diamagnetic EDMs. This proceedings article presents an overview of the most important concepts in searches for an nEDM and presents a brief overview of the world wide efforts.

  3. The quest for an electric dipole moment of the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Wellenburg, P., E-mail: philipp.schmidt-wellenburg@psi.ch [Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2016-07-07

    To date no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishing small, escaping detection in the last 50 years, is not easy to explain. In general it is considered as the most sensitive probe for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/anti-matter asymmetry of the universe. The neutron might one day help to distinguish different sources of CP-violation in combination with measurements of the electron and diamagnetic EDMs. This proceedings article presents an overview of the most important concepts in searches for an nEDM and presents a brief overview of the world wide efforts.

  4. Electric dipole moments with and beyond flavor invariants

    Science.gov (United States)

    Smith, Christopher; Touati, Selim

    2017-11-01

    In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  5. Electric dipole moments with and beyond flavor invariants

    Directory of Open Access Journals (Sweden)

    Christopher Smith

    2017-11-01

    Full Text Available In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U(1 phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  6. Electric dipole moments of light nuclei in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)

    2014-07-01

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.

  7. Toward verification of electroweak baryogenesis by electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuto, Kaori, E-mail: fuyuto@th.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8584 (Japan); Senaha, Eibun, E-mail: senaha@ncu.edu.tw [Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Taoyuan, 32001, Taiwan (China)

    2016-04-10

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  8. Molecules with an induced dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B; Ben-Shimol, Y

    2013-10-01

    The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.

  9. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  10. Polarized electric dipole moment of well-deformed reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    2012-01-01

    The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei

  11. Higgs-Boson Two-Loop Contributions to Electric Dipole Moments in the MSSM

    CERN Document Server

    Pilaftsis, Apostolos

    1999-01-01

    The complete set of Higgs-boson two-loop contributions to electric dipole moments of the electron and neutron is calculated in the minimal supersymmetric standard model. The electric dipole moments are induced by CP-violating trilinear couplings of the `CP-odd' and charged Higgs bosons to the scalar top and bottom quarks. Numerical estimates of the individual two-loop contributions to electric dipole moments are given.

  12. Electric quadrupole moments of neutron-rich nuclei {sup 32}Al and {sup 31}Al

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, D., E-mail: kameda@ribf.riken.jp; Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K.; Nagae, D.; Takemura, M.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Yoshimi, A.; Nagatomo, T.; Sugimoto, T. [RIKEN Nishina Center (Japan); Uchida, M.; Arai, T.; Takase, K.; Suda, S.; Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Murata, J.; Kawamura, H. [Rikkyo University, Department of Physics (Japan); Watanabe, H. [Australian National University, Department of Nuclear Physics (Australia); Kobayashi, Y.; Ishihara, M. [RIKEN Nishina Center (Japan)

    2007-11-15

    The electric quadrupole moments for the ground states of {sup 32}Al and {sup 31}Al have been measured by the {beta} ray-detected nuclear quadrupole resonance method. Spin-polarized {sup 32}Al and {sup 31}Al nuclei were obtained from the fragmentation of {sup 40}Ar projectiles at E/A = 95 MeV/nucleon, and were implanted in a single crystal {alpha}-Al{sub 2}O{sub 3} stopper. The measured Q moment of {sup 32}Al, |Q({sup 32}Al)| = 24(2) mb, is in good agreement with a conventional shell-model calculation with a full sd model space and empirical effective charges, while that of {sup 31}Al is considerably smaller than the sd calculations.

  13. Suggested search for 207Pb nuclear Schiff moment in PbTiO3 ferroelectric

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.

    2005-01-01

    We suggest two types of experiments, NMR and macroscopic magnetometry, with solid PbTiO 3 to search for the nuclear Schiff moment of 207 Pb. Both kinds of experiments promise substantial improvement over the presently achieved sensitivities. Statistical considerations show that the improvement of the current sensitivity can be up to ten orders of magnitude for the magnetometry experiment and up to seven orders of magnitude for the NMR experiment. Such significant enhancement is due to the strong internal electric field of the ferroelectric, as well as due to the possibility to cool the nuclear-spin subsystem in the compound down to nanokelvin temperatures

  14. Electric quadruple moments of high-spin isomers in 209Po

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Nicolescu, G.; Plostinaru, D.

    1998-01-01

    The electric quadrupole interaction of the 209 Po (17/2) - and (13/2) - isomers in a Bi single-crystal was measured. The results for the quadrupole moments are connected with studies of isomers in Po isotopes. A two level analysis procedure was employed for the combined data of (17/2) - and (13/2) - isomers. The quadrupole moments of the Po isotopes are of special interest for testing nuclear models because of supposed simple nuclear structure with two protons outside a closed magic number shell. While the g-factors are significant for the predominant few-particle structures often present at high spins, the quadrupole moments are sensitive to additional contributions arising from core deformation effects. A systematic study of quadrupole moments of 12 + isomers in Pb isotopes has indeed demonstrated that the valence neutron effective charge increases as more particle pairs are removed from the 208 Pb core. In the present work, quadrupole coupling constants were measured for the isomers by the time-differential perturbed angular distribution (TDPAD) technique, in the presence of quadrupole interactions from the internal electric field gradient (EFG) in Bi crystal. The experiments were performed using a pulsed deuteron-beam of 13 MeV. The (17/2) - isomer state (T 1/2 = 88 ns) and the (13/2) - isomer state (T 1/2 = 24 ns) were populated and aligned by the 209 Bi(d,2n) reaction. The repetition time of the pulse was 10 μs and the width was around 5 ns (FWHM). The rather low bombardment energy was chosen to reduce population of higher spin isomers and to optimize the population of 209 Po((17/2) - ) and 209 Po((13/2) - ). The 209 Po single crystal target was held at a temperature of 470 K in order to reduce possible radiation damage effects. The experiments have been performed with the c axis of the single crystal at 45 angle and 90 angle to the beam direction. We chose to use a calibration based on isomers with well-understood nuclear structure allowing a reliable

  15. Nuclear moments and the change of the mean square charge radius of neutron deficient thallium isotopes

    International Nuclear Information System (INIS)

    Menges, R.; Dinger, U.; Boos, N.; Huber, G.; Schroeder, S.

    1992-01-01

    The hyperfine structure, isotope and isomeric shifts in the atomic transition 6p 2 P 3/2 -7s 2 S 1/2 , λ=535 nm have been measured for the I=7 and I=2 states of 190,192,194,196 Tl, the I=1/2 and I=9/2 states of 191 Tl and the I=7 isomer of 188 Tl. The thallium isotopes were prepared as fast atomic beams at the GSI on-line mass separator following fusion reactions and - in some cases - subsequent β-decay. The nuclear dipole moments, electric quadrupole moments and the change in the nuclear mean square charge radius are evaluated. The uu-isotopes show an isomeric shift which changes sign between 192 Tl and 194 Tl. (orig.)

  16. BERKELEY: Looking for the electron's electric dipole moment; Massive neutrino?

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An elementary particle can act as an electric dipole only if the invariances of left/right reflection (parity - P) and time reversal (T) are violated. So far no such electric dipole moment (EDM) has been found

  17. Electric dipole moments in the MSSM at large tan β

    International Nuclear Information System (INIS)

    Demir, D.; Olive, K.A.; Pospelov, M.; Ritz, A.

    2003-11-01

    Within the minimal supersymmetric standard model (MSSM), the large tan β regime can lead to important modifications in the pattern of CP-violating sources contributing to low energy electric dipole moments (EDMs). In particular, four-fermion CP-violating interactions induced by Higgs exchange should be accounted for alongside the constituent EDMs of quarks and electrons. To this end, we present a comprehensive analysis of three low energy EDM observables - namely the EDMs of thallium, mercury and the neutron - at large tan β, in terms of one- and two-loop contributions to the constituent EDMs and four-fermion interactions. We concentrate on the constrained MSSM as well as the MSSM with non-universal Higgs masses, and include the CP-violating phases of μ and A. Our results indicate that the atomic EDMs receive significant corrections from four-fermion operators, especially when Im(A) is the only CP-violating source, whereas the neutron EDM remains relatively insensitive to these effects. As a consequence, in a large portion of the parameter space, one cannot infer a separate bound on the electron EDM via the experimental constraint on the thallium EDM. Furthermore, we find that the electron EDM can be greatly reduced due to the destructive interference of one- and two-loop contributions with the latter being dominated by virtual staus. (orig.)

  18. Cancellation mechanism in the predictions of electric dipole moments

    Science.gov (United States)

    Bian, Ligong; Chen, Ning

    2017-06-01

    The interpretation of the baryon asymmetry of the Universe necessitates the C P violation beyond the Standard Model (SM). We present a general cancellation mechanism in the theoretical predictions of the electron electric dipole moments (EDM), quark chromo-EDMs, and Weinberg operators. A relative large C P violation in the Higgs sector is allowed by the current electron EDM constraint released by the ACME collaboration in 2013, and the recent 199Hg EDM experiment. The cancellation mechanism can be induced by the mass splitting of heavy Higgs bosons around ˜O (0.1 - 1 ) GeV , and the extent of the mass degeneracy determines the magnitude of the C P -violating phase. We explicate this point by investigating the C P -violating two-Higgs-doublet model and the minimal supersymmetric Standard Model. The cancellation mechanism is general when there are C P violation and mixing in the Higgs sector of new physics models. The C P -violating phases in this scenario can be excluded or detected by the projected 225Ra EDM experiments with precision reaching ˜10-28 e .cm , as well as the future colliders.

  19. CP-odd phase correlations and electric dipole moments

    International Nuclear Information System (INIS)

    Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model, the CP-odd invariant related to the soft trilinear A-phase at the grand unified theory (GUT) scale, θ A , induces nontrivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tanβ, and can provide the dominant contribution to the electron EDM induced by θ A . We perform a detailed analysis of the EDM constraints within the constrained minimal supersymmetric standard model, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also illustrate how this reach will expand with results from the next generation of experiments which are currently in development

  20. Effective field theory, electric dipole moments and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-01-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  1. Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram

    2015-11-20

    We present lattice QCD results on the neutron tensor charges including, for the first time, a simultaneous extrapolation in the lattice spacing, volume, and light quark masses to the physical point in the continuum limit. We find that the "disconnected" contribution is smaller than the statistical error in the "connected" contribution. Our estimates in the modified minimal subtraction scheme at 2 GeV, including all systematics, are g_{T}^{d-u}=1.020(76), g_{T}^{d}=0.774(66), g_{T}^{u}=-0.233(28), and g_{T}^{s}=0.008(9). The flavor diagonal charges determine the size of the neutron electric dipole moment (EDM) induced by quark EDMs that are generated in many new scenarios of CP violation beyond the standard model. We use our results to derive model-independent bounds on the EDMs of light quarks and update the EDM phenomenology in split supersymmetry with gaugino mass unification, finding a stringent upper bound of d_{n}<4×10^{-28} e cm for the neutron EDM in this scenario.

  2. Detecting a heavy neutrino electric dipole moment at the LHC

    Directory of Open Access Journals (Sweden)

    Marc Sher

    2018-02-01

    Full Text Available The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM, then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10−17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10−17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5–1000 GeV for integrated luminosities of 300 and 3000 fb−1 at the LHC.

  3. Lepton electric dipole moment and strong CP violation

    Science.gov (United States)

    Ghosh, Diptimoy; Sato, Ryosuke

    2018-02-01

    Contribution of the strong CP angle, θ bar , to the Wilson Coefficients of electron and muon electric dipole moment (EDM) operators are discussed. Previously, θ bar contribution to the electron EDM operator was calculated by Choi and Hong [1]. However, the effect of CP-violating three meson coupling was missing in [1]. We include this missing contribution for the first time in the literature, and reevaluate the Wilson coefficients of the lepton EDM operator. We obtain de = - (2.2 - 8.6) ×10-28 θ bar e-cm which is 15-70% of the result obtained in [1]. We also estimated the muon EDM as dμ = - (0.5 - 1.8) ×10-25 θ bar e-cm. Using | θ bar | ≲10-10 suggested by the neutron EDM measurements, we obtain |de | ≲ 8.6 ×10-38e-cm and |dμ | ≲ 1.8 ×10-35e-cm. The θ bar contribution to the muon EDM is much below the sensitivities of the current and near future experiments. Our result shows that the θ bar contribution to de,μ can be larger than the CKM contributions by many orders of magnitude.

  4. Lepton electric dipole moment and strong CP violation

    Directory of Open Access Journals (Sweden)

    Diptimoy Ghosh

    2018-02-01

    Full Text Available Contribution of the strong CP angle, θ¯, to the Wilson Coefficients of electron and muon electric dipole moment (EDM operators are discussed. Previously, θ¯ contribution to the electron EDM operator was calculated by Choi and Hong [1]. However, the effect of CP-violating three meson coupling was missing in [1]. We include this missing contribution for the first time in the literature, and reevaluate the Wilson coefficients of the lepton EDM operator. We obtain de=−(2.2–8.6×10−28θ¯e-cm which is 15–70% of the result obtained in [1]. We also estimated the muon EDM as dμ=−(0.5–1.8×10−25θ¯e-cm. Using |θ¯|≲10−10 suggested by the neutron EDM measurements, we obtain |de|≲8.6×10−38e-cm and |dμ|≲1.8×10−35e-cm. The θ¯ contribution to the muon EDM is much below the sensitivities of the current and near future experiments. Our result shows that the θ¯ contribution to de,μ can be larger than the CKM contributions by many orders of magnitude.

  5. CP-odd Phase Correlations and Electric Dipole Moments

    CERN Document Server

    Olive, Keith A; Ritz, A; Santoso, Y; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model (CMSSM), the CP-odd invariant related to the soft trilinear A-phase at the GUT scale, theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan beta, and can provide the dominant contribution to the electron EDM induced by theta_A. We perform a detailed analysis of the EDM constraints within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also i...

  6. The electric dipole moment of the neutron a cosmic seismometer?

    CERN Document Server

    Nanopoulos, Dimitri V

    1981-01-01

    One of the most striking successes of Grand Unified Theories is the possibility of understanding, qualitatively and quantitatively the observed baryon asymmetry in the Universe GUTS contain all the basic ingredients for creating the baryon asymmetry, and the expanding Universe provides for free an excellent way to get out of equilibrium at the appropriate times. A very interesting question which is often asked is whether there is some connection between the observed low energy CP-violation in the K-system and the CP-violation operating at superhigh energies and thus responsible for the observed baryon asymmetry. The usual answer is no! Recently, J. Ellis, M.K. Gillard, S.Rudez and the author (Phys. Lett. B, vol.99, p.101, 1981) have done some work towards a connection that may exist between the magnitude of the (still unobserved) electric dipole moment of the neutron (d/sub n /) and the magnitude of the observed baryon asymmetry (n/sub B//n/sub gamma /). This is a review of that work, but with strong emphasis...

  7. Effective field theory, electric dipole moments and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba; White, Graham [ARC Centre of Excellence for Particle Physics at the Terascale School of Physics and Astronomy,Monash University,Victoria 3800 (Australia); Yue, Jason [Department of Physics, National Taiwan Normal University,Taipei 116, Taiwan (China); ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Sydney,NSW 2006 (Australia)

    2017-03-07

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  8. Detecting a heavy neutrino electric dipole moment at the LHC

    Science.gov (United States)

    Sher, Marc; Stevens, Justin R.

    2018-02-01

    The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10-17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10-17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5-1000 GeV for integrated luminosities of 300 and 3000 fb-1 at the LHC.

  9. The strange quark contribution to the neutron electric dipole moment in multi-Higgs doublet models

    International Nuclear Information System (INIS)

    He, Xiao Gang; McKeller, H.J.; Pakvasa, S.

    1990-09-01

    The strange quark contribution to the neutron electric dipole moment was studied and compared with other contributions in multi-Higgs doublet models. It was found that the strange quark contribution is significant because the strange quark color dipole moment is larger than that of the down (up) quark by a factor m s /m d (m s /m u ). In the case of neutral Higgs it can be the dominant contribution to the neutron electric dipole moment. 18 refs

  10. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  11. The electric dipole moment of the neutron in low energy supergravity

    International Nuclear Information System (INIS)

    Polchinski, J.; Wise, M.B.

    1983-01-01

    We compute the electric dipole moment of the neutron in models with low energy supergravity or softly broken supersymmetry. The electric dipole moment is typically of order 10sup(-(22-23))e cm times CP-violating phases. We discuss the origin of these phases. (orig.)

  12. Feasibility study of a sup 3 He-magnetometer for neutron electric dipole moment experiments

    CERN Document Server

    Borisov, Y; Leduc, M; Lobashev, V; Otten, E W; Sobolev, Y

    2000-01-01

    We report on a sup 3 He-magnetometer capable of detecting tiny magnetic field fluctuations of less than 10 sup - sup 1 sup 4 T in experiments for measuring the electric dipole moment (EDM) of the neutron. It is based on the Ramsey technique of separated oscillating fields and uses nuclear spin-polarized sup 3 He gas which is stored in two vessels of V approx =10 l in a sandwich-type arrangement around the storage bottle for ultra-cold neutrons (UCN). The gas is polarized by means of optical pumping in a separate, small discharge cell at pressures around 0.5 mbar and is then expanded into the actual magnetometer volume. To detect the polarization of sup 3 He gas at the end of the storage cycle the gas is pumped out by means of an oil-diffusion pump and compressed again into the discharge cell where optical detection of nuclear polarization is used.

  13. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  14. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  15. Theoretical prediction and impact of fundamental electric dipole moments

    International Nuclear Information System (INIS)

    Ellis, Sebastian A.R.; Kane, Gordon L.

    2016-01-01

    The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale ∼O(10 16 GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about 5×10 −30 e cm, and the neutron EDM should not be larger than about 5×10 −29 e cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.

  16. Theoretical prediction and impact of fundamental electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Sebastian A.R.; Kane, Gordon L. [Michigan Center for Theoretical Physics (MCTP),Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)

    2016-01-13

    The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale ∼O(10{sup 16} GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about 5×10{sup −30}e cm, and the neutron EDM should not be larger than about 5×10{sup −29}e cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.

  17. Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state

    International Nuclear Information System (INIS)

    Yuxin Liu; Jiangang Song; Hong-zhou Sun; Jia-jun Wang; En-guang Zhao

    1998-01-01

    We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)

  18. Novel applications of Lattice QCD: Parton Distributions, proton charge radius and neutron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Alexandrou Constantia

    2017-01-01

    Full Text Available We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.

  19. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  20. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  1. Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector

    International Nuclear Information System (INIS)

    Bowser-Chao, D.; Keung, W.; Chang, D.; Chang, D.

    1997-01-01

    The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two level. A careful model-independent analysis of the heavy fermion contribution is provided. We also consider some specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level. copyright 1997 The American Physical Society

  2. Search for an Electric Dipole Moment (EDM) of 199Hg

    Science.gov (United States)

    Heckel, Blayne

    2017-04-01

    The observation of a non-zero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the standard model of particle physics. Additional sources of CP violation have been proposed to help explain the excess of matter over anti-matter in our universe and the magnitude of ΘQCD, the strength of CP violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD. The experiment compares the phase accumulated by precessing Hg spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. Our new result represents a factor of 5 improvement over previous results. A description of the EDM experiment, data, systematic error considerations will be presented. This work was supported by NSF Grant No. 1306743 and by the DOE Office of Nuclear Physics under Award No. DE-FG02-97ER41020.

  3. Development of a {sup 3}He magnetometer for a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas; Heil, Werner; Lauer, Thorsten; Neumann, Daniel [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Koch, Hans-Christian [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); University of Fribourg, Physics Department, Fribourg (Switzerland); Daum, Manfred [Paul Scherrer Institute, Villigen (Switzerland); Pazgalev, Anatoly [Ioffe Institute, St Petersburg (Russian Federation); Sobolev, Yuri [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Weis, Antoine [University of Fribourg, Physics Department, Fribourg (Switzerland)

    2014-01-01

    We have developed a highly sensitive {sup 3}He magnetometer for the accurate measurement of the magnetic field in an experiment searching for an electric dipole moment of the neutron. By measuring the Larmor frequency of nuclear spin polarized {sup 3}He atoms a sensitivity on the femto-Tesla scale can be achieved. A {sup 3}He/Cs-test facility was established at the Institute of Physics of the Johannes Gutenberg University in Mainz to investigate the readout of {sup 3}He free induction decay with a lamp-pumped Cs magnetometer. For this we designed and built an ultra-compact and transportable polarizer unit which polarizes {sup 3}He gas up to 55% by metastability exchange optical pumping. The polarized {sup 3}He was successfully transfered from the polarizer into a glass cell mounted in a magnetic shield and the {sup 3}He free induction decay was detected by a lamp-pumped Cs magnetometer. (orig.)

  4. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  5. Nuclear electricity. 5. ed.

    International Nuclear Information System (INIS)

    Hore-Lacy, I.

    1999-01-01

    This new edition is updated, expanded and in a larger format than its predecessors. Also it is a joint undertaking with Canada, rather than simply an Australian perspective. It has a much expanded chapter on nuclear wastes and reprocessing, as well as more on the advanced reactors which are now coming into service. It also discusses nuclear reactor safety and safeguards issues. A final chapter looks at Australian and Canadian uranium mining

  6. Nuclear charge radii and nuclear moments of neutron deficient Ba isotopes from high resolution laser spectroscopy

    International Nuclear Information System (INIS)

    Nowicki, G.; Bekk, K.; Goering, S.; Hanser, A.; Rebel, H.; Schatz, G.

    1978-07-01

    Isotope shifts and hyperfine structure of the BaI 6s 2 1 S 0 -6s6p 1 P 1 transitions (lambda = 553.6 nm) in neutron deficient Ba nuclides (N 131 Ba, 128 Ba, in addition to remeasurements of all stable Ba nuclides. The extracted values of delta 2 >, the observed odd-even staggering and the nuclear moments are discussed in the light of other theoretical and experimental nuclear structure studies of the region 50 [de

  7. The neutron electric dipole moment in left-right symmetric low energy supergravity

    International Nuclear Information System (INIS)

    Ahn, Y.J.

    1984-01-01

    We compute the neutron electric dipole moment in low energy supergravity based on the gauge group SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L). We find the electric dipole moment dsub(n) -25 e cm x (CP violating phase) provided the left-right symmetry breaking scale > or approx. 10 3 GeV. (orig.)

  8. Electric dipole moment of the top quark in Higgs-boson-exchange models of CP nonconservation

    International Nuclear Information System (INIS)

    Soni, A.; Xu, R.M.

    1992-01-01

    The leading contribution to the electric and the chromoelectric dipole moments of the top quark is calculated in Higgs-boson-exchange models of CP nonconservation. The dipole moments are typically of the order of 10 -20 e cm and 10 -20 g cm, respectively and arise at one-loop order through neutral-Higgs-boson exchange. Several two-loop contributions are estimated to be smaller by about 2 orders of magnitude for the electric case and about 1 order of magnitude smaller for the chromoelectric case. The q 2 dependence of the dipole moment form factor is given for possible application to experimental searches

  9. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    Science.gov (United States)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  10. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  11. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  12. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  13. Nuclear electricity from France?

    International Nuclear Information System (INIS)

    Harms, W.

    1987-01-01

    This second volume of the Berlin series presents the papers and discussion of the eleventh discussion meeting on energy law, for the first time held in Berlin, on May 12-13, 1987. The leading subject of the first conference day, namely electricity imports from France, has since then widely been discussed in the media or at other meetings, although the legal problems or obstacles revealed at this Berlin meeting are far from being solved. There is EdF's wish to export electricity to West Germany on the other hand, and there is the West German coal industry's scepticism on the other hand. Much is at stake for West Germany's national concept of enhanced use of coal for electricity generation, and the related system of subventions. Supply concepts and franchise charges, a standing topic of the power sector for quite a time now, have been discussed on the second conference day. The papers read there gave an account of the situation and also presented some new aspects. (orig./UA) [de

  14. Nuclear Electric looks to the private sector

    International Nuclear Information System (INIS)

    Varley, James.

    1995-01-01

    The state-owned utility Nuclear Electric, which is responsible for nuclear power generation in England and Wales, was created in 1990 following withdrawal of nuclear from electricity privatisation. Having successfully made itself much more commercial, Nuclear Electric would like the freedom of operating in the private sector. (author)

  15. Nuclear orientation experiments on the magnetic moments of europium and gadolinium nuclei

    International Nuclear Information System (INIS)

    Berg, F.G. van den.

    1984-01-01

    In this thesis, experimental results on the ground state nuclear magnetic moments of europium and gadolinium isotopes are presented. The nuclear orientation experiments were performed on europium and gadolinium nuclei embedded in several host lattices. Attention is paid to the hyperfine interactions of the ions. Nuclear moments are discussed in the context of nuclear shell model. The theoretical framework is described for nuclear structure and low temperature nuclear orientation. Furthermore, the experimental techniques, the technical arrangement of the orientation apparatus, the methods for radiative detection and the use of nuclear orientation thermometry are described. (Auth.)

  16. Determination of power and moment on shaft of special asynchronous electric drives

    Science.gov (United States)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    In the article, questions and tasks of determination of power and the moment on a shaft of special asynchronous electric drives are considered. Use of special asynchronous electric drives in mechanical engineering and other industries is relevant. The considered types of electric drives possess the improved mass-dimensional indicators in comparison with singleengine systems. Also these types of electric drives have constructive advantages; the improved characteristics allow one to realize the technological process. But creation and design of new electric drives demands adjustment of existing or development of new methods and approaches of calculation of parameters. Determination of power and the moment on a shaft of special asynchronous electric drives is the main objective during design of electric drives. This task has been solved based on a method of electromechanical transformation of energy.

  17. Nuclear energy at a moment of truth. Six reasons behind the case for nuclear power

    International Nuclear Information System (INIS)

    Ritch, J. III

    2002-01-01

    Through the years, the simple word 'nuclear' has become the focal point for a seemingly endless controversy, filled with passions and ideologies that sprang originally from a rational fear of nuclear war - but grew into an emotional, and now somewhat institutionalised, standoff that plagues public discourse as to how the world's nations can best meet their energy needs in the 21st century. Along the way, the very idea of nuclear energy became a political and psychological surrogate. Scepticism about government, distrust of large corporations, worry over toxic industrial effluents, a subconscious fear of cataclysm - all these real feelings and fears are crystallized, for many people, in a vague concept called 'the nuclear industry'. The subject of this presentation is that this is an idea whose time has come: that nuclear energy, a half century after its inception, has reached a moment of truth, in no less than six important respects: first, the technology has come of age; second, on a national level, key issues affecting nuclear energy will soon demand decision; third, fossil supplies may simply be inadequate to meet world energy needs; fourth, the valuable uses of nuclear power will soon multiply; fifth, and of profound importance, a massive shift toward nuclear power is now environmentally indispensable; sixth, this moment of truth for nuclear power requires a telling of the truth. Given the urgent need for public awareness and political decision, those able to do so must now make the case for nuclear energy - forcefully, without apology or equivocation, and with persuasive effect. A great deal depends on developing the wisdom and will to exploit nuclear technology to full benefit

  18. General Electric Nuclear Energy

    International Nuclear Information System (INIS)

    2001-01-01

    The ESBWR is a 1380 MWe boiling water reactor with improved operating safety margins and passive safety systems. He stated that the ESBWR derived from earlier GE plant design certification efforts and is the result of eight years of International cooperative work. He stated that the biggest challenge is to cross the regulatory hurdles associated with the inspections, tests, analyses, and acceptance criteria (ITAAC) and combined license (COL) programs. He further stated that he did not know how long it might take to license the ESBWR, in part, because the last GE design certification took about 8 to 10 years. Dr. Rao also provided a brief overview of the GE Nuclear Advance Liquid Metal S-PRISM design

  19. Electric-dipole-moment enhancement factor for the thallium atom, and a new upper limit on the electric dipole moment of the electron

    International Nuclear Information System (INIS)

    Sandars, P.G.H.; Sternheimer, R.M.

    1975-01-01

    Some time ago, an accurate upper limit on a possible permanent electric dipole moment of the thallium atom in the 6 2 P 1 / 2 ground state was obtained by Gould. The result was D/sub Tl/ = [(1.3 +- 2.4) x 10 -21 cm]e. In connection with this value, a calculation of the electric dipole enhancement factor R/sub Tl/, which is defined as the ratio D/sub Tl//D/sub e/, where D/sub e/is the corresponding upper limit on a possible electric dipole moment of the (valence) electron was carried out. A value R/subTl/ = 700 was obtained, which leads to an upper limit D/sub e/ = [(1.9 +- 3.4) x 10 -24 cm]e. This result is comparable with the value D/sub e/ -24 cm)e previously obtained by Weisskopf et al. from measurements on the cesium atom, and with the result of Player and Sandars of [(0.7 +- 2.2) x 10 -24 cm]e obtained from the search for an electric dipole moment in the 3 P 2 metastable state of xenon. All three results set a stringent upper limit on the amount of a possible violation of T and P invariance in electromagnetic interactions. (U.S.)

  20. Elementary quantum mechanics of the neutron with an electric dipole moment.

    Science.gov (United States)

    Baym, Gordon; Beck, D H

    2016-07-05

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.

  1. Nuclear electricity - a progress report

    International Nuclear Information System (INIS)

    England, G.

    1980-01-01

    A survey of the progress of nuclear power over the past three years reveals three major features: (i) the continued operation of the first generation of commercial nuclear power stations, based on the Magnox gas-cooled reactor; (ii) the introduction and operation of the first of the second-generation stations, based on the advanced gas-cooled reactor (AGR); and (iii) the commitment of two successive Governments to a flexible thermal reactor strategy. Each of these features is considered and a number of related issues, including the safety record and cost savings to the electricity consumer, are discussed. (author)

  2. Molecular physics. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments.

    Science.gov (United States)

    Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P

    2015-04-03

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.

  3. Magnetic and electric dipole moments of the H 3Δ1 state in ThO

    International Nuclear Information System (INIS)

    Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.

    2011-01-01

    The metastable H 3 Δ 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ H and the molecule-fixed electric dipole moment D H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μ H =8.5(5)x10 -3 μ B displays the predicted cancellation of spin and orbital contributions in a 3 Δ 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.

  4. Rotation of a Spherical Particle with Electrical Dipole Moment Induced by Steady Irradiation in a Static Electric Field

    Science.gov (United States)

    Grachev, A. I.

    2018-04-01

    Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.

  5. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  6. New two-loop contribution to electric dipole moment in supersymmetric theories

    CERN Document Server

    Chang, Darwin; Pilaftsis, Apostolos; Chang, Darwin; Keung, Wai-Yee; Pilaftsis, Apostolos

    1999-01-01

    We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.

  7. Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E.O.

    2005-01-01

    We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10 -22 e cm (10 -20 e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment. (orig.)

  8. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    We discuss the sensitivity of magnetic transitions in nuclei like 12 C, to a small neutrino magnetic moment, and its implications for current and future experiments. We also point out that coherent neutrino-nuclear elastic scattering in low-temperature detectors, might improve the present laboratory bounds on the neutrino magnetic moment by an order of magnitude. (orig.)

  9. Calculation of nuclear moment of inertia with proper treatment of pairing interaction

    International Nuclear Information System (INIS)

    Tazaki, S.; Ando, Y.; Hasegawa, M.

    1997-01-01

    An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)

  10. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  11. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    Science.gov (United States)

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  12. USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES

    Directory of Open Access Journals (Sweden)

    Diego A. Torres

    2011-07-01

    Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  13. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro; Asahi, Koichiro; Hatanaka, Kichiji; Jeong, Sun-Chan; Kawasaki, Shinsuke; Matsumiya, Ryohei; Matsuta, Kensaku; Mihara, Mototsugu; Watanabe, Yutaka

    2012-01-01

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10 −28 e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  14. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yasuhiro, E-mail: yasuhiro.masuda@kek.jp [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Asahi, Koichiro [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hatanaka, Kichiji [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Jeong, Sun-Chan; Kawasaki, Shinsuke [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsumiya, Ryohei [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsuta, Kensaku; Mihara, Mototsugu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Watanabe, Yutaka [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-03-19

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10{sup −28}e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  15. Reduction of nuclear moment of inertia due to pairing interaction

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Jin, T.H.; Zhao, Z.J.

    1994-01-01

    The BCS theoretical values of the moments of inertia of even-even nuclei are systematically smaller than the experimental ones by a factor of 10--40%. This long-standing discrepancy disappears in the particle-number-conserving treatment for the cranked shell model, in which the blocking effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce the experimental data covering a large number of rare-earth even-even nuclei, whose deformations and single-particle states are well characterized (Lund systematics). The pairing interaction strength G is unambiguously determined by the even-odd mass difference. The reduction of the moment of inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive reduction is found

  16. Consistent calculation of the polarization electric dipole moment by the shell-correction method

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1992-01-01

    Macroscopic calculations of the polarization electric dipole moment which arises in nuclei with an octupole deformation are discussed in detail. This dipole moment is shown to depend on the position of the center of gravity. The conditions of consistency of the radii of the proton and neutron potentials and the radii of the proton and neutron surfaces, respectively, are discussed. These conditions must be incorporated in a shell-correction calculation of this dipole moment. A correct calculation of this moment by the shell-correction method is carried out. Dipole transitions between (on the one hand) levels belonging to an octupole vibrational band and (on the other) the ground state in rare-earth nuclei with a large quadrupole deformation are studied. 19 refs., 3 figs

  17. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  18. A storage ring experiment to detect a proton electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, V. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Andrianov, S. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada; Baessler, S. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA; Bai, M. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Benante, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Berz, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Blaskiewicz, M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Bowcock, T. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Brown, K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Casey, B. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Conte, M. [Physics Department and INFN Section of Genoa, 16146 Genoa, Italy; Crnkovic, J. D. [Brookhaven National Laboratory, Upton, New York 11973, USA; D’Imperio, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fanourakis, G. [Institute of Nuclear and Particle Physics NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece; Fedotov, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fierlinger, P. [Technical University München, Physikdepartment and Excellence-Cluster “Universe,” Garching, Germany; Fischer, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Gaisser, M. O. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Giomataris, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex, France; Grosse-Perdekamp, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Guidoboni, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Hacıömeroğlu, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Hoffstaetter, G. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Huang, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Incagli, M. [Physics Department, University and INFN Pisa, Pisa, Italy; Ivanov, A. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Kawall, D. [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA; Kim, Y. I. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; King, B. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Koop, I. A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia; Lazarus, D. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lebedev, V. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Lee, M. J. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, Y. H. [Korea Research Institute of Standards and Science, Daejeon 34141, South Korea; Lehrach, A. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Lenisa, P. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Levi Sandri, P. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Luccio, A. U. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lyapin, A. [Royal Holloway, University of London, Egham, Surrey, United Kingdom; MacKay, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Maier, R. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Makino, K. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Malitsky, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Marciano, W. J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meng, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meot, F. [Brookhaven National Laboratory, Upton, New York 11973, USA; Metodiev, E. M. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Harvard College, Harvard University, Cambridge, Massachusetts 02138, USA; Miceli, L. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Moricciani, D. [Dipartimento di Fisica dell’Univ. di Roma “Tor Vergata” and INFN Sezione di Roma Tor Vergata, Rome, Italy; Morse, W. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Nagaitsev, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Nayak, S. K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Orlov, Y. F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Ozben, C. S. [Istanbul Technical University, Istanbul 34469, Turkey; Park, S. T. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pesce, A. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Petrakou, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pile, P. [Brookhaven National Laboratory, Upton, New York 11973, USA; Podobedov, B. [Brookhaven National Laboratory, Upton, New York 11973, USA; Polychronakos, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Pretz, J. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Ptitsyn, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Ramberg, E. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973, USA; Rathmann, F. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Rescia, S. [Brookhaven National Laboratory, Upton, New York 11973, USA; Roser, T. [Brookhaven National Laboratory, Upton, New York 11973, USA; Kamal Sayed, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Semertzidis, Y. K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; Senichev, Y. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Sidorin, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Silenko, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Research Institute for Nuclear Problems of Belarusian State University, Minsk, Belarus; Simos, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Stahl, A. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Stephenson, E. J. [Indiana University Center for Spacetime Symmetries, Bloomington, Indiana 47405, USA; Ströher, H. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Syphers, M. J. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Talman, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Talman, R. M. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Tishchenko, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Touramanis, C. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Venanzoni, G. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Vetter, K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; Vlassis, S. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Won, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Physics Department, Korea University, Seoul 02841, South Korea; Zavattini, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Zioutas, K. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.

  19. A storage ring experiment to detect a proton electric dipole moment.

    Science.gov (United States)

    Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.

  20. Relics of short distance effects for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1982-12-01

    The Feynman diagrams which dominate the estimates of the electric dipole moment of the neutron with Kobayashi-Maskawa CP violation are considered. The extracted long distance contributions and the relics of short distance contributions are shown to be complementary and of the same magnitude, resulting in mod(Dsub(n)/e) approximately = (10 - 31 - 10 - 30 ) cm. (Auth.)

  1. A multiferroic material to search for the permanent electric dipole moment of the electron

    Czech Academy of Sciences Publication Activity Database

    Rushchanskii, K.Z.; Kamba, Stanislav; Goian, Veronica; Vaněk, Přemysl; Savinov, Maxim; Prokleška, J.; Nuzhnyy, Dmitry; Knížek, Karel; Laufek, F.; Eckel, S.; Lamoreaux, S.K.; Sushkov, A.; Ležaič, M.; Spaldin, N.A.

    2010-01-01

    Roč. 9, č. 8 (2010), s. 649-654 ISSN 1476-1122 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : multiferroics * electric dipole moment of the electron * dielectric and magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 29.897, year: 2010

  2. What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Zhitnitsky, A.R.

    1982-01-01

    A new mechanism is considered due to which the neutron electric dipole moment Dsub(n) aries in the Kobayashi-Maskawa model. This mechanism leads to the estimate Dsub(n) approx. equal to 2 x 10 -32 e cm, by two orders of magnitude larger than the contributions considered previously. (orig.)

  3. Large contribution to the neutron electric dipole moment from a dimension six four quark operator

    International Nuclear Information System (INIS)

    He, Xiaogang; McKellar, B.

    1992-01-01

    In this paper the contribution of a dimension six four quark operator (Q q ) to the neutron electric dipole moment was studied. It was found that this contribution dominates over other contributions by at least one order of magnitude in Left-Right symmetric models and two orders of magnitude in di-quark scalar models. 10 refs., 1 fig

  4. The standard model prediction for the electric dipole moment of the electron

    International Nuclear Information System (INIS)

    Hoogeveen, F.

    1990-01-01

    The electric dipole moment of the electron is calculated within the standard model with three generations of quarks. Depending on the values of some unknown parameters like the top quark mass and the CP-violating phase δ in the Kobayashi-Maskawa matrix, its value is of the order of magnitude of 2x10 -38 vertical strokeevertical stroke cm. (orig.)

  5. The neutron Electric Dipole Moment experiment at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Hélaine V.

    2014-06-01

    Full Text Available The neutron Electric Dipole Moment (nEDM is a probe for physics beyond the Standard Model. A report on the nEDM measurement performed at the Paul Scherrer Institute (Switzerland is given. A neutron spin analyzer designed to simultaneously detect both neutron spin states is presented.

  6. Unraveling models of CP violation through electric dipole moments of light nuclei

    NARCIS (Netherlands)

    Dekens, W.; Vries, J. de; Bsaisou, J.; Bernreuther, W.; Hanhart, C.; Meißner, Ulf-G; Nogga, A.; Wirzba, A.

    2014-01-01

    We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right

  7. Standard model contribution to the electric dipole moment of the deuteron, {sup 3}H, and {sup 3}He nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Nodoka [iTHES Research Group, RIKEN,Wako, Saitama 351-0198 (Japan); Hiyama, Emiko [RIKEN Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan)

    2016-02-10

    We calculate for the first time the electric dipole moment (EDM) of the deuteron, {sup 3}H, and {sup 3}He nuclei generated by the one-meson exchange CP-odd nuclear force in the standard model. The effective |ΔS|=1 four-quark operators are matched to the |ΔS|=1 standard model processes involving the CP phase of the Cabibbo-Kobayashi-Maskawa matrix at the electroweak scale and run down to the hadronic scale μ=1 GeV according to the renormalization group evolution in the next-to-leading logarithmic order. At the hadronic scale, the hadron matrix elements are modeled in the factorization approach. We then obtain the one-meson (pion, eta meson, and kaon) exchange CP-odd nuclear force, which is the combination of the |ΔS|=1 meson-baryon vertices which issue from the penguin operator and the hyperon-nucleon transition. From this CP-odd nuclear force, the nuclear EDM is calculated with the realistic Argonne v18 interaction and the CP-odd nuclear force using the Gaussian expansion method. It is found that the EDMs of light nuclear systems are of order O(10{sup −31})e cm. We also estimate the standard model contribution to other hadronic CP violating observables such as the EDMs of {sup 6}Li, {sup 9}Be nuclei, and the atomic EDMs of {sup 129}Xe, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra generated through the nuclear Schiff moment. We then analyze the source of theoretical uncertainties and show some possible ways to overcome them.

  8. Weak electric and magnetic dipole moments of the τ lepton from azimuthal asymmetries

    International Nuclear Information System (INIS)

    Sanchez Alvaro, E.

    1997-01-01

    Measurements of the weak electric dipole moment d τ w and, for the first time, the weak magnetic dipole moment a τ w of the τ lepton using L3 detector at LEP are presented. Azimuthal asymmetries for τ→πν and τ→ρν are used to obtain these measurements. Observed asymmetries are consistent with zero, and the limits set on d τ w and a τ w are vertical stroke d τ w vertical stroke -17 e.cm and vertical stroke a τ w vertical stroke <0.014 at 95% C.L. (orig.)

  9. Electric dipole moment of the deuteron in the standard model with NN - ΛN - ΣN coupling

    Science.gov (United States)

    Yamanaka, Nodoka

    2017-07-01

    We calculate the electric dipole moment (EDM) of the deuteron in the standard model with | ΔS | = 1 interactions by taking into account the NN - ΛN - ΣN channel coupling, which is an important nuclear level systematics. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne v18 nuclear force and the YN potential which can reproduce the binding energies of Λ3H, Λ3He, and Λ4He. The | ΔS | = 1 interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the YN interaction is small, and treating ΛN and ΣN channels as free is a good approximation for the EDM of the deuteron.

  10. Nuclear Power's Role in Generating Electricity

    National Research Council Canada - National Science Library

    Falk, Justin

    2008-01-01

    This study assesses the commercial viability of advanced nuclear technology as a means of meeting future demand for electricity by comparing the costs of producing electricity from different sources...

  11. Electric Dipole Moments of Light Nuclei and the Implications for CP Violation

    International Nuclear Information System (INIS)

    Gibson, B.F.; Afnan, I.R.

    2013-01-01

    A definitive measurement of an electric dipole moment (EDM) would likely imply new physics beyond the standard model. Although the standard model strong interaction term could theoretically produce an EDM of any size, that it is constrained by the current neutron EDM limit to be some 10 orders of magnitude smaller than 1 suggests that the electroweak sector and CP violation will be the source of a measurable EDM. The weak interaction standard model EDM is itself orders of magnitude smaller than contemporary experiments can measure. Direct measurement of the neutron EDM lies in the next decade; measurement of the proton EDM could well come first. A BNL proposal for an electrostatic storage ring measurement lies in the offing. Unless the EDM proves to be an isoscalar, one will need other measurements to separate the isoscalar, isovector, and isotensor components. Measurement of a nuclear EDM will be required: 2 H, 3 H, or 3 He being the simplest nuclear systems. A storage ring measurement of the triton EDM could be accomplished in a manner analogous to that proposed for the proton. However, the deuteron EDM measurement offers certain advantages, even though the experiment would be more complex, involving electric and magnetic fields, than that required for the proton and triton. The COSY facility in the Forschungszentrum Juelich is almost an ideal facility to house such an experiment; one could also measure in the same ring the EDM for the proton and He. The deuteron is the one nucleus for which exact model calculations can easily be performed. We briefly explore the model dependence of deuteron EDM calculations. Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variations in the nucleon–nucleon interaction, including contemporary potential models, and we explore the dependence upon intermediate state multiple scattering in the 3 P 1 channel. We investigate the tensor force contribution to the model

  12. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  13. Electric dipole moment function and line intensities for the ground state of carbon monxide

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Cheng Xin-Lu; Wu Jie; Liu Hao

    2015-01-01

    An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X 1 Σ + ) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ±0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman–Wallis factors, calculated with the Rydberg–Klein–Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work. (paper)

  14. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  15. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  16. On the electric dipole moments of small sodium clusters from different theoretical approaches

    International Nuclear Information System (INIS)

    Aguado, Andrés; Largo, Antonio; Vega, Andrés; Balbás, Luis Carlos

    2012-01-01

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: ► Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. ► New van der Waals selfconsistent implementation of non-local dispersion interactions. ► New starting isomeric geometries from extensive search of global minimum structures. ► Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na n clusters in the size range 10 n clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible contribution of the core electrons to the electric dipole moments. Our new geometries possess significantly smaller electric dipole moments than previous density functional results, mostly when combined with the van der Waals exchange–correlation functional. However, although the agreement with experiment clearly improves upon previous calculations, the theoretical dipole moments are still about one order of magnitude larger than the experimental values, suggesting that the correct global minimum structures have not been

  17. Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums

    CERN Multimedia

    Hoff, P; Kaczarowski, R

    2002-01-01

    %IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...

  18. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    It is shown that the MeV-range neutrinos with a magnetic moment of ≅ 10 -11 Bohr magnetons would excite nuclei, like 12 C, with cross sections comparable to those obtained in the Standard Model. This implies the possibility of improving the present experimental bounds on the magnetic moment of any flavour of neutrinos by one order of magnitude. Such a magnetic moment would also enhance the coherent neutrino-nuclear scattering in low-temperature detectors, enabling them to set comparable limits. (author)

  19. Large tau and tau neutrino electric dipole moments in models with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2010-01-01

    It is shown that the electric dipole moment of the τ lepton several orders of magnitude larger than predicted by the standard model can be generated from mixings in models with vectorlike mutiplets. The electric dipole moment (EDM) of the τ lepton arises from loops involving the exchange of the W, the charginos, the neutralinos, the sleptons, the mirror leptons, and the mirror sleptons. The EDM of the Dirac τ neutrino is also computed from loops involving the exchange of the W, the charginos, the mirror leptons, and the mirror sleptons. A numerical analysis is presented, and it is shown that the EDMs of the τ lepton and the τ neutrino which lie just a couple of orders of magnitude below the sensitivity of the current experiment can be achieved. Thus the predictions of the model are testable in an improved experiment on the EDM of the τ and the τ neutrino.

  20. Status of the Berkeley search for the electron electric dipole moment in thallium 205

    International Nuclear Information System (INIS)

    Ross, S.B.; Commins, E.D.

    1993-01-01

    This experiment employs two counterpropagating atomic beams in a uniform magnetic field B, laser optical pumping for state selection and analysis, two separated rf fields for magnetic resonance, and an electric field E between the rf regions. The signal is fluorescence in the second optical pumping region, and the signature of a finite electric dipole moment is an asymmetry in the signal proportional to E sm-bullet B. The two counterpropagating atomic beams are used to reduce by orders of magnitude a possible systematic effect due to precession of the atomic magnetic moment in a motional magnetic field Exv/c, and the small residual is dealt with by a variety of auxiliary measurements. Careful analysis of other possible systematics is also carded out. Since publication of our first results in Nov. 1990, we have improved our detection sensitivity, reduced noise, and further isolated a number of possible systematic effects. Now results will be presented

  1. The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Tsukuba Univ. (Japan). Graduate School of Pure and Applied Sciences; Horsley, R.; Zanotti, J. [Edinburgh Univ. (United Kingdom). School of Physics; Izubuchi, T. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Kanazawa Univ. (Japan). Inst. for Theoretical Physics; Nakamura, Y.; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division. Dept. of Mathematical Sciences

    2008-07-15

    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N{sub f}=2 flavors of dynamical quarks at imaginary vacuum angle {theta}. The calculation proceeds via the CP odd form factor F{sub 3}. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F{sub 3} at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing {theta}. (orig.)

  2. Nonspreading Wave Packets for Rydberg Electrons in Rotating Molecules with Electric Dipole Moments

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Bialynicka-Birula, Z.

    1996-01-01

    Nonspreading wave packets for Rydberg electrons are predicted in rotating molecules with electric dipole moments. We have named them the Trojan wave packets since their stability is due to the same mechanism that governs the motion of the Trojan asteroids in the Sun-Jupiter system. Unlike all previously predicted Trojan wave packets in atoms, molecular Trojan states do not require external fields for their existence

  3. High uniformity magnetic coil for search of neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-12-21

    We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.

  4. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  5. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  6. QCD corrections to neutron electric dipole moment from dimension-six four-quark operators

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); IPMU, TODIAS, University of Tokyo, Kashiwa 277-8568 (Japan); Tsumura, Koji, E-mail: ko2@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Yang, Masaki J.S., E-mail: yang@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2012-07-18

    In this Letter, the renormalization-group equations for the (flavor-conserving) CP-violating interaction are derived up to the dimension six, including all the four-quark operators, at one-loop level. We apply them to the models with the neutral scalar boson or the color-octet scalar boson which have CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment in these models.

  7. Torque for electron spin induced by electron permanent electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Senami, Masato, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  8. Development of a multifunction module for the neutron electric dipole moment experiment at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O., E-mail: olivier.bourrion@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France); Pignol, G. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France); Rebreyend, D. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France); Paul Scherrer Institut (PSI), CH-5232 Villigen PSI (Switzerland); Vescovi, C. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France)

    2013-02-11

    Experiments aiming at measuring the neutron electric dipole moment (nEDM) are at the forefront of precision measurements and demand instrumentation of increasing sensitivity and reliability. In this paper, we report on the development of a dedicated acquisition and control electronics board for the nEDM experiment at the Paul Scherrer Institute (PSI) in Switzerland. This multifunction module is based on a FPGA (Field Programmable Gate Array) which allows an optimal combination of versatility and evolution capacities.

  9. A proposed method of measuring the electric-dipole moment of the neutron by ultracold neutron interferometry

    International Nuclear Information System (INIS)

    Freedman, M.S.; Peshkin, M.; Ringo, G.R.; Dombeck, T.W.

    1989-08-01

    The use of an ultracold neutron interferometer incorporating an electrostatic accelerator having a strong electric field gradient to accelerate neutrons by their possible electric dipole moment is proposed as a method of measuring the neutron electric dipole moment. The method appears to have the possibility of extending the sensitivity of the measurement by several orders of magnitude, perhaps to 10 -30 e-cm. 9 refs., 3 figs

  10. Nuclear deformations, level assignments and static nuclear moments of isotopes in the region 72Hf-77Ir

    International Nuclear Information System (INIS)

    Ekstroem, C.; Rubinsztein, H.; Moeller, P.

    1976-01-01

    A comparison is made between experimental and theoretical level assignments and static electromagnetic moments of nuclei in the region 72 Hf- 77 Ir. The theoretical calculations are based on the modified oscillator model. Equilibrium deformation values, epsilon and epsilon 4 , are determined for doubly-even and odd-mass nuclei from the minima in the potential energy surfaces. The influence of the different parameters entering the expressions for the magnetic dipole moment is analysed. The electric quadrupole and hexadecapole moments are calculated on the assumption that the nucleus is a homogeneously charged body with a sharp surface and a shape corresponding to that of an equipotential surface. In some selected cases, the electric multipole moments are evaluated by use of the single-particle wave functions. (Auth.)

  11. Higgs-Mediated Electric Dipole Moments in the MSSM An Application to Baryogenesis and Higgs Searches

    CERN Document Server

    Pilaftsis, Apostolos

    2002-01-01

    We perform a comprehensive study of the dominant two- and higher-loop contributions to the Tl(205), neutron and muon electric dipole moments induced by Higgs bosons, third-generation quarks and squarks, charginos and gluinos in the Minimal Supersymmetric Standard Model (MSSM). We find that strong correlations exist among the contributing CP-violating operators, for large stop, gluino and chargino phases, and for a wide range of values of \\tan\\beta and charged Higgs-boson masses, giving rise to large suppressions of the Tl(205) and neutron electric dipole moments below their present experimental limits. Based on this observation, we discuss the constraints that the nonobservation of electric dipole moments imposes on the radiatively-generated CP-violating Higgs sector and on the mechanism of electroweak baryogenesis in the MSSM. We improve previously suggested benchmark scenarios of maximal CP violation for analyzing direct searches of CP-violating MSSM Higgs-bosons at high-energy colliders, and stress the imp...

  12. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    Science.gov (United States)

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  13. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  14. Local spin torque induced by electron electric dipole moment in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  15. Nuclear power's effects on electric rate making

    International Nuclear Information System (INIS)

    Smith, D.S.; Lancaster, A.A.

    1978-01-01

    Government and the electric utility industry are re-evaluating nuclear power's contribution to the total U.S. energy supplies. This article addresses how the recently increased nuclear plant construction and operation costs are translated into the prices that consumers pay for electricity. The electric rates that consumers pay must reflect the costs of producing electricity, as well as the costs of transmission, distribution, metering, and billing. The use of nuclear power for electric production is anticipated to grow rapidly so as to meet a larger portion of our country's electricity needs through the end of the century; so nuclear power costs are expected to be an even larger portion of the total electricity price. There are certain rate-making issues that are actively being discussed in public forums and before state and Federal regulatory bodies. These issues are not unique to nuclear power, but take on added significance when nuclear power is used by utilities to produce electricity because of the technology required and because of the type, timing, and magnitude of the costs involved. These are: (1) inclusion of construction work in progress in the rate base; (2) fuel adjustment clauses and treatment of nuclear fuel cycle costs; (3) treatment of certain taxes under the rate-making method called normalization or deferral accounting (sometimes referred to as ''phantom taxes''); and (4) rate treatment for particular nuclear expense items reflecting costs of delays, plant cancellations, and operational slowdowns

  16. The nuclear deal with Iran: Le moment suprême?

    NARCIS (Netherlands)

    Blockmans, S.

    2015-01-01

    More than two years in the making, the agreement concluded by China, the EU, France, Germany, Russia, the UK and the US with Iran to prevent the ‘weaponisation’ of the latter’s nuclear programme is a big deal. But, cautions Steven Blockmans in this CEPS Commentary, it is not the silver bullet to the

  17. Nuclear moments from heavy-ion inelastic scattering above the Coulomb barrier

    International Nuclear Information System (INIS)

    Gross, E.E.

    1981-01-01

    Use of appropriate theoretical techniques allows the study of the moments of the nuclear charge distribution to be extended above the Coulomb barrier. The investigation of nuclear moments through analysis of differential cross sections is discussed with the aid of several examples: 12 C(70.4 MeV) + 144 146 Nd, importance of multistep effects; 20 Ne(131 MeV) + 208 Pb, large hexadecapole deformation; 12 C(78 MeV) + 194 Pt, asymmetric rotor model; and 22 Ne(93.5 MeV) + 126 Te, mutual excitation. 13 figures, 1 table

  18. Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E. O.

    2001-01-01

    We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(μ->eγ) in the framework of the general two Higgs doublet model. Our prediction is 10 -32 ecm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings {bar ξ} N,τe D and {bar ξ} N,τμ D . Finally, we present an expression which connects the BR(τ->μγ) and the electric dipole moment of the τ lepton and study the relation between these physical quantities

  19. On the electric dipole moments of small sodium clusters from different theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)

    2012-05-03

    contribution of the core electrons to the electric dipole moments. Our new geometries possess significantly smaller electric dipole moments than previous density functional results, mostly when combined with the van der Waals exchange-correlation functional. However, although the agreement with experiment clearly improves upon previous calculations, the theoretical dipole moments are still about one order of magnitude larger than the experimental values, suggesting that the correct global minimum structures have not been located yet.

  20. Permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) by the composite approach

    Science.gov (United States)

    Deng, Dan; Lian, Yongqin; Zou, Wenli

    2017-11-01

    Using the FPD composite approach of Peterson et. al. we calculate the permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) at the equilibrium geometries of their ground states. The dipole moment of PtF is estimated to be 3.421 Debye, being very close to the experimental value of 3.42(6) Debye. This research also suggests the ordering of dipole moments of PtX being proportional to the electronegativity of X.

  1. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  2. Political electricity: What future for nuclear energy

    International Nuclear Information System (INIS)

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  3. Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment

    International Nuclear Information System (INIS)

    Adachi, T; Hiraki, Y; Yamamoto, K; Takahashi, Y; Fukunishi, H; Hsu, R-R; Su, H-T; Chen, A B; Mende, S B; Frey, H U; Lee, L C

    2008-01-01

    The fundamental electrodynamical coupling processes between lightning and sprites are investigated. By combining the observed spectral data with the Monte Carlo swarm experiments, reduced electric fields and electron energies in sprite streamers and halos are estimated. The obtained fields inside sprite halos (70-97 Td with an analysis error of ±5 Td) are lower than the conventional breakdown field, E k ∼ 128 Td, indicating a significant reduction of electrons associated with halos while those in sprite streamers (98-380 Td with an error of ±50 Td) are higher than E k , suggesting that a significant ionization process drives their formation and development. A combined analysis of photometric and electromagnetic data makes it possible to estimate temporal evolutions of lightning charge moment. It is found that lightning discharges with a short time scale (∼1 ms) and a moderate amount of charge moment (∼400 C km) produce discernible halos. On the other hand, lightning discharges with a large amount of charge moment (∼1300 C km) produce streamers regardless of their time scale. The results obtained are comprehensively interpreted with both the conventional breakdown field necessary for the formation of streamers and the electric field necessary for the production of optical emissions of halo which is sensitive to the time scale of the thundercloud field due to the significant reduction of electrons.

  4. Nuclear structure studies by means of magnetic moments of excited states

    International Nuclear Information System (INIS)

    Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.

    1981-09-01

    Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)

  5. The permanent electric dipole moment of thorium sulfide, ThS.

    Science.gov (United States)

    Le, Anh; Heaven, Michael C; Steimle, Timothy C

    2014-01-14

    Numerous rotational lines of the {18.26}1-X(1)Σ(+) band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ⃗el, of 4.58(10) D and 6.72(5) D for the X(1)Σ(+) (v = 0) and {18.26}1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO.

  6. The permanent electric dipole moment of thorium sulfide, ThS

    Energy Technology Data Exchange (ETDEWEB)

    Le, Anh; Steimle, Timothy C., E-mail: Tsteimle@ASU.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States); Heaven, Michael C. [Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-01-14

    Numerous rotational lines of the (18.26)1-X{sup 1}Σ{sup +} band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ{sup -vector}{sub el}, of 4.58(10) D and 6.72(5) D for the X{sup 1}Σ{sup +} (v = 0) and (18.26)1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO.

  7. A novel approach to measure the electric dipole moment of the isotope 129-Xe

    Directory of Open Access Journals (Sweden)

    Kuchler F.

    2014-03-01

    Full Text Available Permanent electric dipole moments (EDM of fundamental systems are promising systems to find new CP violation beyond the Standard Model. Our EDM experiment is based on hyper-polarized liquid xenon droplets of sub-millimeter size on a micro-fabricated structure, placed in a low-field NMR setup. Implementation of rotating electric fields enables a conceptually new EDM measurement technique, allowing thorough investigation of systematic effects. Still, a Ramsey-type spin precession experiment with static electric field can be realized at similar sensitivity within the same setup. Employing superconducting pick-up coils and highly sensitive LTc-SQUIDs, a large array of independent measurements can be performed simultaneously. With our approach we aim to finally increase the sensitivity on the EDM of 129Xe by more than three orders of magnitude.

  8. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-01-01

    Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

  9. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    Science.gov (United States)

    Alvizuri, Celso R.

    rather the confidence, is then given by the 'confidence curve' P( V), where P(V) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V. The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M0. We apply the method to data from events in different regions and tectonic settings: 63 small (M w 4) earthquakes in the southern Alaska subduction zone, and 12 earthquakes and 17 nuclear explosions at the Nevada Test Site. Characterization of moment tensor uncertainties puts us in better position to discriminate among moment tensor source types and to assign physical processes to the events.

  10. The statistic-thermodynamically calculations of magnetic thermodynamically functions for nuclear magnetic moments

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Luo Deli; Feng Kaiming

    2013-01-01

    The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)

  11. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    International Nuclear Information System (INIS)

    Lundin, R.; Hultqvist, B.

    1989-01-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989

  12. Development of atomic-beam resonance method to measure the nuclear moments of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T., E-mail: sugimoto@ribf.riken.jp [SPring-8 (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Kawamura, H.; Murata, J. [Rikkyo University, Department of Physics (Japan); Nagae, D.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H.; Yoshimi, A. [RIKEN Nishina Center (Japan)

    2008-01-15

    We have been working on the development of a new technique of atomic-beam resonance method to measure the nuclear moments of unstable nuclei. In the present study, an ion-guiding system to be used as an atomic-beam source have been developed.

  13. Analysis of electric moments of RNA-binding proteins: implications for mechanism and prediction

    Directory of Open Access Journals (Sweden)

    Sarai Akinori

    2011-02-01

    Full Text Available Abstract Background Protein-RNA interactions play important role in many biological processes such as gene regulation, replication, protein synthesis and virus assembly. Although many structures of various types of protein-RNA complexes have been determined, the mechanism of protein-RNA recognition remains elusive. We have earlier shown that the simplest electrostatic properties viz. charge, dipole and quadrupole moments, calculated from backbone atomic coordinates of proteins are biased relative to other proteins, and these quantities can be used to identify DNA-binding proteins. Closely related, RNA-binding proteins are investigated in this study. In particular, discrimination between various types of RNA-binding proteins, evolutionary conservation of these bulk electrostatic features and effect of conformational changes by complex formation are investigated. Basic binding mechanism of a putative RNA-binding protein (HI1333 from Haemophilus influenza is suggested as a potential application of this study. Results We found that similar to DNA-binding proteins (DBPs, RNA-binding proteins (RBPs also show significantly higher values of electric moments. However, higher moments in RBPs are found to strongly depend on their functional class: proteins binding to ribosomal RNA (rRNA constitute the only class with all three of the properties (charge, dipole and quadrupole moments being higher than control proteins. Neural networks were trained using leave-one-out cross-validation to predict RBPs from control data as well as pair-wise classification capacity between proteins binding to various RNA types. RBPs and control proteins reached up to 78% accuracy measured by the area under the ROC curve. Proteins binding to rRNA are found to be best distinguished (AUC = 79%. Changes in dipole and quadrupole moments between unbound and bound structures were small and these properties are found to be robust under complex formation. Conclusions Bulk electric

  14. Nuclear Electric's central dose record service

    International Nuclear Information System (INIS)

    Goldfinch, E.P.; Mullarkey, D.T.; McWhan, A.W.; Risk, G.; Vaughan, L.

    1991-01-01

    This paper describes the conception, development and operation of the Nuclear Electric Central Dose Record Service, including the initial philosophy considered necessary for a database for a large multi-site organisation, the setting up of the data and current routine operation. Lessons learned are briefly described. CDRS holds 35,000 records in a high security environment. The database includes records of radiation doses received by contractor's employees working at Nuclear Electric sites as well as dose records and dose histories for classified and non classified Nuclear Electric employees. (Author)

  15. Dynamics of a magnetic monopole in matter, Maxwell equations in dyonic matter and detection of electric dipole moments

    International Nuclear Information System (INIS)

    Artru, X.; Fayolle, D.

    2001-01-01

    For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed

  16. Nuclear transition moment measurements of neutron rich nuclei

    Science.gov (United States)

    Starosta, Krzysztof

    2009-10-01

    The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.

  17. Communication: theoretical study of ThO for the electron electric dipole moment search.

    Science.gov (United States)

    Skripnikov, L V; Petrov, A N; Titov, A V

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.

  18. Lattice calculation of electric dipole moments and form factors of the nucleon

    Science.gov (United States)

    Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.

    2017-07-01

    We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.

  19. Communication: Theoretical study of ThO for the electron electric dipole moment search

    Energy Technology Data Exchange (ETDEWEB)

    Skripnikov, L. V., E-mail: leonidos239@gmail.com; Petrov, A. N.; Titov, A. V. [Federal State Budgetary Institute “Petersburg Nuclear Physics Institute,” Gatchina, Leningrad district 188300 (Russian Federation); Department of Physics, Saint Petersburg State University, Saint Petersburg, Petrodvoretz 198904 (Russian Federation)

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H{sup 3}Δ{sub 1} state of ThO molecule was proposed and now prepared by the ACME Collaboration [ http://www.electronedm.org ]. To interpret the experiment in terms of eEDM and dimensionless constant k{sub T,} {sub P} characterizing the strength of the T,P-odd pseudoscalar–scalar electron–nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, E{sub eff}, and a parameter of the T,P-odd pseudoscalar–scalar interaction, W{sub T,} {sub P}, in ThO is required. We report our results for E{sub eff} (84 GV/cm) and W{sub T,} {sub P} (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H{sup 3}Δ{sub 1} → X{sup 1}Σ{sup +} transition energy, which can serve as a measure of reliability of the obtained E{sub eff} and W{sub T,} {sub P} values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H{sup 3}Δ{sub 1}.

  20. Communication: Theoretical study of ThO for the electron electric dipole moment search

    International Nuclear Information System (INIS)

    Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.

    2013-01-01

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H 3 Δ 1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [ http://www.electronedm.org ]. To interpret the experiment in terms of eEDM and dimensionless constant k T, P characterizing the strength of the T,P-odd pseudoscalar–scalar electron–nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, E eff , and a parameter of the T,P-odd pseudoscalar–scalar interaction, W T, P , in ThO is required. We report our results for E eff (84 GV/cm) and W T, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H 3 Δ 1 → X 1 Σ + transition energy, which can serve as a measure of reliability of the obtained E eff and W T, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H 3 Δ 1

  1. Nuclear power in competitive electricity markets

    International Nuclear Information System (INIS)

    2000-01-01

    Economic deregulation in the power sector raises new challenges for the prospects of nuclear power. A key issue is to assess whether nuclear power can be competitive in a de-regulated electricity market. Other important considerations include safety, nuclear liability and insurance, the nuclear power infrastructure, and health and environmental protection. This study, conducted by a group of experts from twelve OECD Member countries and three international organisations, provides a review and analysis of these issues, as related to both existing and future nuclear power plants. It will be of particular interest to energy analysts, as well as to policy makers in the nuclear and government sectors. (author)

  2. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  3. Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2016-03-15

    We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.

  4. Nuclear power within liberalised electricity markets

    International Nuclear Information System (INIS)

    Kidd, Stephen W.

    2002-01-01

    Competition between various methods of generating electricity in liberalised markets means that all power plants must be cost-effective. The price of electricity from nuclear power includes all waste disposal and decommissioning costs, unlike other electricity generating technologies. Most existing nuclear power plants are likely to prosper under electricity liberalization. Many will receive operating life extensions and be able to compete in the electricity market for many years to come. Investment costs are particularly heavy for nuclear plants. Capital expenditure appraisal methodologies mean that such plants suffer financial disadvantages in times of high interest rates. Low and stable fuel costs are the prime advantage of nuclear plants against other sources of generating electricity. There will be significant demand for new generating capacity, both incremental and replacement, in the next 20 years. Under present conditions, where there is access to a stable and cheap supply of piped gas, nuclear and coal plants find it difficult to compete against gas-fired plants. The nuclear industry is addressing the need for new reactor designs, offering significant capital and operating cost reductions from the previous generation of reactors. This development and the need for carbon abatement on a worldwide basis offers nuclear plants a further economic advantage against alternative technologies. (author)

  5. Electric dipole moments of light nuclei in chiral effective field theory

    International Nuclear Information System (INIS)

    Bsaisou, Jan

    2014-01-01

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ had >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ QCD ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ QCD in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive Dimensional

  6. Electric dipole moments of light nuclei in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan

    2014-04-25

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ{sub had} >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ{sub QCD} ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ{sub QCD} in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive

  7. The electric dipole moment of the neutron in the left-right supersymmetric model

    International Nuclear Information System (INIS)

    Frank, M.

    1999-01-01

    We calculate the neutron electric dipole moment (EDM) in the left-right supersymmetric model, including one-loop contributions from the chargino, the neutralino and the gluino diagrams. We discuss the dependence of the EDM on the phases of the model, as well as on the mass parameters in the left and right sectors. The neutron EDM imposes different conditions on the supersymmetric spectrum from either the electron EDM, or the neutron EDM in the minimal supersymmetric standard model. The neutron EDM may be a clue to an extended gauge structure in supersymmetry. (author)

  8. Geant4 Developments for the Radon Electric Dipole Moment Search at TRIUMF

    Science.gov (United States)

    Rand, E. T.; Bangay, J. C.; Bianco, L.; Dunlop, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Wong, J.

    2011-09-01

    An experiment is being developed at TRIUMF to search for a time-reversal violating electric dipole moment (EDM) in odd-A isotopes of Rn. Extensive simulations of the experiment are being performed with GEANT4 to study the backgrounds and sensitivity of the proposed measurement technique involving the detection of γ rays emitted following the β decay of polarized Rn nuclei. GEANT4 developments for the RnEDM experiment include both realistic modelling of the detector geometry and full tracking of the radioactive β, γ, internal conversion, and x-ray processes, including the γ-ray angular distributions essential for measuring an atomic EDM.

  9. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

    OpenAIRE

    Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Petrik, E. S.; Spaun, B.

    2014-01-01

    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e, in the range of 10^(−27) to 10^(−30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the p...

  10. Screening of electron electric dipole moment through the Foldy-Wouthuysen representation

    Directory of Open Access Journals (Sweden)

    M M Ettefaghi

    2015-07-01

    Full Text Available The existent of the intrinsic electric dipole moments (EDM lead to CP violation in a physical system. In the non-relativistic and point like limits, the effects of them in atoms are canceled which is well-known as Schiff screening effects. It is why that the energy shift due to the EDM is proportional to the expectation value of which vanishes in non-relativistic limit. In this paper, using Foldy-Wouthuysen representation we remove the odd terms (those terms mix the positive and negative energy solutions up to order and then study the Schiff screening effects.

  11. The electric dipole moment of the deuteron from the QCD {theta}-term

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Liebig, S. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Hanhart, C.; Nogga, A.; Wirzba, A. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Meissner, U.G. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Universitaet Bonn, Bethe Center for Theoretical Physics, Bonn (Germany)

    2013-03-15

    The two-nucleon contributions to the electric dipole moment (EDM) of the deuteron, induced by the QCD {theta}-term, are calculated in the framework of effective field theory up-to-and-including next-to-next-to-leading order. In particular we find for the difference of the deuteron EDM and the sum of proton and neutron EDM induced by the QCD {theta}-term a value of (- 5.4 {+-}3.9) anti {theta} x 10{sup -} {sup 4} e fm. The by far dominant uncertainty comes from the CP- and isospin-violating {pi}NN coupling constant. (orig.)

  12. The neutron electric dipole moments as a test of the superweak interaction theory

    CERN Document Server

    Wolfenstein, Lincoln

    1974-01-01

    Theoretical calculations of the neutron electric dipole moment D/sub n / are reviewed for various theories of CP violation. It is shown that for the superweak interaction theory D/sub n/ is less than 10/sup -29/ e.cm in contrast to values of 10/sup -23/ to 10/sup -24/ predicted by many but not all milliweak theories. It is concluded that prospective measurements of D/sub n/ may provide decisive evidence against or significant evidence in favour of the superweak theory. (26 refs).

  13. Development of francium atomic beam for the search of the electron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Sato Tomoya

    2014-03-01

    Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  14. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    Science.gov (United States)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  15. Zeroth order regular approximation approach to electric dipole moment interactions of the electron

    Science.gov (United States)

    Gaul, Konstantin; Berger, Robert

    2017-07-01

    A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.

  16. Projected cost comparison of nuclear electricity

    International Nuclear Information System (INIS)

    Juhn, P.E.; Hu, C.W.

    2000-01-01

    Comparison of electricity generation costs has been done in the late years through a large co-operation between several organisations. The studies are aiming to provide reliable comparison of electricity generating costs of nuclear and conventional base load power plants. This paper includes the result of the joint IAEA/OECD study published in 1997. (author)

  17. Contribution of relativistic quantum chemistry to electron’s electric dipole moment for CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M., E-mail: minoria@tmu.ac.jp; Gopakumar, G., E-mail: gopakumargeetha@gmail.com; Hada, M., E-mail: hada@tmu.ac.jp [Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji-city, Tokyo 192-0397 (Japan); JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Das, B. P., E-mail: das@iiap.ernet.in [Indian Institute of Astrophysics, Bangalore 560 034 (India); Tatewaki, H., E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Mukherjee, D., E-mail: pcdm@iacs.res.in [Raman Center of Atomic, Molecular and Optical Sciences, IACS, Kolkata 700 032 (India)

    2015-12-31

    The search for the electric dipole moment of the electron (eEDM) is important because it is a probe of Charge Conjugation-Parity (CP) violation. It can also shed light on new physics beyond the standard model. It is not possible to measure the eEDM directly. However, the interaction energy involving the effective electric field (E{sub eff}) acting on an electron in a molecule and the eEDM can be measured. This quantity can be combined with E{sub eff}, which is calculated by relativistic molecular orbital theory to determine eEDM. Previous calculations of E{sub eff} were not sufficiently accurate in the treatment of relativistic or electron correlation effects. We therefore developed a new method to calculate E{sub eff} based on a four-component relativistic coupled-cluster theory. We demonstrated our method for YbF molecule, one of the promising candidates for the eEDM search. Using very large basis set and without freezing any core orbitals, we obtain a value of 23.1 GV/cm for E{sub eff} in YbF with an estimated error of less than 10%. The error is assessed by comparison of our calculations and experiments for two properties relevant for E{sub eff}, permanent dipole moment and hyperfine coupling constant. Our method paves the way to calculate properties of various kinds of molecules which can be described by a single-reference wave function.

  18. Neutron-proton isovector pairing effect on the nuclear moment of inertia

    International Nuclear Information System (INIS)

    Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H.

    2008-01-01

    The neutron-proton (n-p) isovector pairing effect on the nuclear moment of inertia has been studied within the framework of the BCS approximation. An analytical expression of the moment of inertia, that explicitly depends upon the n-p pairing, has been established using the Inglis cranking model. The model was first tested numerically for nuclei such as N = Z and whose experimental values of the moment of inertia are known (i.e. such as 16 ≤ Z ≤ 40). It has been shown that the n-p pairing effect is non-negligible and clearly improves the theoretical predictions when compared to those of the pairing between like particles. Secondly, predictions have been established for even-even proton-rich rare-earth nuclei. It has been shown that the n-p pairing effect is non-negligible when N = Z and rapidly decreases with increasing values of (N-Z). (author)

  19. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    In this popular scientific brochure a brief description of history construction of Bohunice Nuclear Power Plant is presented. The chart of electricity generation in WWER 440/V-213 nuclear power plant is described. Operation and safety improvements at Mochovce NPP as well as environment protection are presented. Basic data of Mochovce NPP are included

  20. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  1. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  2. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  3. Manifestations of geometric phases in a proton electric-dipole-moment experiment in an all-electric storage ring

    Science.gov (United States)

    Silenko, Alexander J.

    2017-12-01

    We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.

  4. Implications of the strange spin of the nucleon for the neutron electric dipole moment in supersymmetric theories

    CERN Document Server

    Ellis, Jonathan Richard; Ellis, John; Flores, Ricardo A

    1996-01-01

    Supersymmetric model contributions to the neutron electric dipole moment arise via quark electric dipole moment operators, whose matrix elements are usually calculated using the Naive Quark Model (NQM). However, experiments indicate that the NQM does not describe well the quark contributions \\Delta q to the nucleon spin, and so may provide misleading estimates of electric dipole operator matrix elements. Taking the \\Delta q from experiment, we indeed find consistently smaller estimates of the neutron electric dipole moment for given values of the supersymmetric model parameters. This weakens previous constraints on CP violation in supersymmetric models, which we exemplify analytically in the case where the lightest supersymmetric particle (LSP) is a U(1) gaugino \\tilde{B}, and display numerically for other LSP candidates.

  5. Magnetic moments in present relativistic nuclear theories: a mean-field problem

    International Nuclear Information System (INIS)

    Desplanques, B.

    1986-07-01

    We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs

  6. Searches for spatial anisotropy and a permanent atomic electric dipole moment using optically-pumped mercury

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.

    1986-01-01

    The nuclear magnetic resonance frequencies of 201 Hg (l = 3/2) and 199 Hg (l = 1.2) were compared in driven optically-pumped atomic light-absorption oscillators to see if the relative frequencies depend on the orientation of the quantization axis in space. The null result obtained (δnu 199 Hg nuclear magnetic resonance frequency in the presence of a reversible electric field of 9 kV/cm. The null result obtained (d/sub A/ < 5e cm) reduces previous limits on possible time-reversal violating interactions in atoms by an order of magnitude

  7. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  8. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    Science.gov (United States)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  9. World electricity: will nuclear doubts affect growth

    International Nuclear Information System (INIS)

    Baum, Vladimir.

    1986-01-01

    The world has shown a healthy appetite for electricity even during the years of high energy prices. Between 1970 and 1985 worldwide electricity production increased by 92%, from 4,906.7 terawatt hours (TWh) to 9,421.7 TWh (1TWh = 10 9 KWh). In the same period total world energy consumption rose by 44.8% from 220.2 exajoules to 318.8 EJ (1 EJ = 23.88 million tonnes of oil equivalent). The major part of this growth occurred in the 1970s. Over the last five years, from 1980 to 1985, world energy consumption inched forward only by 7.2%, while notwithstanding widespread economic recession, electricity production advanced by 16.1%, with nuclear power responsible for an increasing share. These figures are tabulated and analysed on a worldwide regional basis. The amount of electricity produced by nuclear power plants is given, and the situation in particular countries noted. The projected future electricity demand and future nuclear electricity generating capacity are given. The effect of the Chernobyl incident is assessed. It may prove to be the beginning of the end of nuclear energy or just an unfortunate hiccough in its progress. (U.K.)

  10. Effects of an anomalous W-boson weak electric dipole moment in fi- fj → W ± Z0 (γ)

    International Nuclear Information System (INIS)

    Queijeiro, A.; Garcia, J.

    1995-01-01

    We study the high-energy production process f i - f j → W ± Z 0 (γ) allowing for gauge boson compositeness through an anomalous W - -boson weak-electric dipole moment parameter ∼ k z . We give the angular differential and total cross-section for different values of ∼ k z , and compare with the corresponding results coming from an anomalous weak-magnetic dipole moment k z . (Author)

  11. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  12. The search for electric dipole moments of light ions in storage rings

    International Nuclear Information System (INIS)

    Rathmann, Frank; Saleev, Artem; Nikolaev, N N

    2013-01-01

    The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10 −29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3 He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters

  13. A novel approach to measure the electric dipole moment of 129Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian; Feldmeier, Wolfhardt; Fierlinger, Peter; Taubenheim, Bernd [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany)

    2012-07-01

    Permanent electric dipole moments (EDM) are promising systems to find new CP violation. The properties of the diamagnetic atom 129-Xe make it a particularly interesting candidate for an EDM search, as it enables new experimental strategies. Although the current experimental limit of d{sub Xe} < 4.0.10{sup -27} ecm is many orders of magnitude higher than the Standard Model (SM) prediction, theories beyond the SM usually require larger EDMs. Our experiment is based on microscopic hyper-polarized liquid xenon droplets, placed in a low-field NMR setup. Implementation of rotating electric fields enables a conceptually new EDM measurement technique, allowing thorough investigation of systematic effects. Still, a Ramsey-type spin precession experiment with static electric field can be realized at similar sensitivity within the same setup. Employing superconducting pick-up coils and highly sensitive LTc-SQUIDs, a large array of independent measurements can be performed simultaneously with different field configurations. With our novel approach we aim to be sensitive to an EDM of 129-Xe on the order of 10{sup -30} ecm. The talk gives an update on the current status of the xenon EDM experiment.

  14. Search for the permanent electric dipole moment of {sup 129}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [KVI, University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Scharth, Anja; Sobolev, Yuri; Tullney, Kathlynne [Institut fuer Physik, Universitaet Mainz (Germany); Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Burghoff, Martin; Kilian, Wolfgang; Schnabel, Allard; Seifert, Frank; Trahms, Lutz [PTB Berlin (Germany)

    2013-07-01

    Permanent electric dipole moments (EDMs) violate parity and time reversal symmetry at the same time. Assuming CPT invariance a non-zero EDM would also violate CP symmetry, which could provide an explanation for the observed matter-antimatter asymmetry in the universe. An EDM at the present limit of experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model. Our approach is to observe the coherent spin-precession of co-located {sup 3}He/{sup 129}Xe polarized samples over extended periods of 1 day, typically. Based on results of measurements on Lorentz-invariance, we intend to reach a measurement sensitivity that will improve the present upper limit d{sub Xe} = 3 . 10{sup -27} ecm significantly. Phase I of this experiment will be performed in the magnetically shielded room BMSR-2 of the PTB Berlin using very sensitive SQUID gradiometers as magnetic flux detectors and electric fields of 2 kV/cm. The experimental setup, in particular the implementation of the electric field, and current status of work are presented.

  15. On the search for the electric dipole moment of strange and charm baryons at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)

    2017-03-15

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)

  16. Electric quadrupole moments of the 2$_{1}^{+}$ states in $^{100,102,104}$Cd

    CERN Document Server

    Ekström, A; DiJulio, D D; Fahlander, C; Hjorth-Jensen, M; Blazhev, A; Bruyneel, B; Butler, P A; Davinson, T; Eberth, J; Fransen, C; Geibel, K; Hess, H; Ivanov, O; Iwanicki, J; Kester, O; Kownacki, J; Köster, U; Marsh, B A; Reiter, P; Scheck, M; Siebeck, B; Siem, S; Stefanescu, I; Toft, H K; Tveten, G M; van de Walle, J; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wrzosek, K; Zielińska, M

    2009-01-01

    Using the REX-ISOLDE facility at CERN the Coulomb excitation cross sections for the 0gs+→21+ transition in the β-unstable isotopes 100,102,104Cd have been measured for the first time. Two different targets were used, which allows for the first extraction of the static electric quadrupole moments Q(21+) in 102,104Cd. In addition to the B(E2) values in 102,104Cd, a first experimental limit for the B(E2) value in 100Cd is presented. The data was analyzed using the maximum likelihood method. The provided probability distributions impose a test for theoretical predictions of the static and dynamic moments. The data are interpreted within the shell-model using realistic matrix elements obtained from a G-matrix renormalized CD-Bonn interaction. In view of recent results for the light Sn isotopes the data are discussed in the context of a renormalization of the neutron effective charge. This study is the first to use the reorientation effect for post-accelerated short-lived radioactive isotopes to simultaneously d...

  17. Neutron electric dipole moment from supersymmetric anomalous W-boson coupling

    International Nuclear Information System (INIS)

    Kadoyoshi, T.; Oshimo, N.

    1997-01-01

    In the supersymmetric standard model (SSM) the W boson could have a nonvanishing electric dipole moment (EDM) through a one-loop diagram mediated by the charginos and neutralinos. Then the W-boson EDM induces the EDMs of the neutron and the electron. We discuss these EDMs, taking into consideration the constraints from the neutron and electron EDMs at the one-loop level induced by the charginos and squarks or sleptons. It is shown that the neutron and the electron could, respectively, have EDMs of the order of 10 -26 ecm and 10 -27 ecm, solely owing to the W-boson EDM. Since these EDMs do not depend on the values of the SSM parameters for the squark or slepton sector, they provide less ambiguous predictions for CP violation in the SSM. copyright 1997 The American Physical Society

  18. Neutron electric dipole moment in the instanton vacuum: Quenched versus unquenched simulations

    International Nuclear Information System (INIS)

    Faccioli, P.; Guadagnoli, D.; Simula, S.

    2004-01-01

    We investigate the role played by the fermionic determinant in the evaluation of the CP-violating neutron electric dipole moment (EDM) adopting the Instanton Liquid Model. Significant differences between quenched and unquenched calculations are found. In the case of unquenched simulations the neutron EDM decreases linearly with the quark mass and is expected to vanish in the chiral limit. On the contrary, within the quenched approximation, the neutron EDM increases as the quark mass decreases and is expected to diverge as 1/m N f in the chiral limit. We argue that such a qualitatively different behavior is a parameter-free, semiclassical prediction and occurs because the neutron EDM is sensitive to the topological structure of the vacuum. The present analysis suggests that quenched and unquenched lattice QCD simulations of the neutron EDM as well as of other observables governed by topology might show up important differences in the quark mass dependence for m q QCD

  19. Measurement of the neutron electric dipole moment: simultaneous spin analysis and preliminary data analysis

    International Nuclear Information System (INIS)

    Helaine, Victor

    2014-01-01

    In the framework of the neutron Electric Dipole Moment (nEDM) experiment at the Paul Scherrer Institut (Switzerland), this thesis deals with the development of a new system of spin analysis. The goal here is to simultaneously detect the two spin components of ultracold neutrons in order to increase the number of detected neutrons and therefore lower the nEDM statistical error. Such a system has been designed using Geant4-UCN simulations, built at LPC Caen and then tested as part of the experiment. In parallel to this work, the 2013 nEDM data taken at PSI have been analysed. Finally, methods to recover magnetic observables of first interest to control nEDM systematic errors have been studied and possible improvements are proposed. (author) [fr

  20. Flavor effects on the electric dipole moments in supersymmetric theories: A beyond leading order analysis

    International Nuclear Information System (INIS)

    Hisano, Junji; Nagai, Minoru; Paradisi, Paride

    2009-01-01

    The standard model predictions for the hadronic and leptonic electric dipole moments (EDMs) are considerably far from the present experimental resolutions; thus, the EDMs represent very clean probes of new physics effects. Especially, within supersymmetric frameworks with flavor-violating soft terms, large and potentially visible effects to the EDMs are typically expected. In this work, we systematically evaluate the predictions for the EDMs at the beyond leading order. In fact, we show that beyond-leading-order contributions to the EDMs dominate over the leading-order effects in large regions of the supersymmetric parameter space. Hence, their inclusion in the evaluation of the EDMs is unavoidable. As an example, we show the relevance of beyond-leading-order effects to the EDMs for a supersymmetric SU(5) model with right-handed neutrinos.

  1. Electric dipole moments from spontaneous CP violation in SU(3)-flavoured SUSY

    International Nuclear Information System (INIS)

    Jones Perez, J

    2009-01-01

    The SUSY flavour problem is deeply related to the origin of flavour and hence to the origin of the SM Yukawa couplings themselves. Since all CP-violation in the SM is restricted to the flavour sector, it is possible that the SUSY CP problem is related to the origin of flavour as well. In this work, we present three variations of an SU(3) flavour model with spontaneous CP violation. Such models explain the hierarchy in the fermion masses and mixings, and predict the structure of the flavoured soft SUSY breaking terms. In such a situation, both SUSY flavour and CP problems do not exist. We use electric dipole moments and lepton flavour violation processes to distinguish between these models, and place constraints on the SUSY parameter space.

  2. Progress Towards an Order of Magnitude Improvement on the Measurement of the Electron Electric Dipole Moment

    Science.gov (United States)

    Ang, Daniel; Demille, David; Doyle, John; Gabrielse, Gerald; Haefner, Jonathan; Lasner, Zack; Meisenhelder, Cole; Panda, Cristian; West, Adam; West, Elizabeth

    2017-04-01

    The search for the electron electric dipole moment (eEDM) is a powerful probe of fundamental physics beyond the Standard Model. In 2014, the first generation of the ACME experiment set the most stringent upper limit on the eEDM of |de | < 1 ×10-28 e . cm by means of measuring spin precession in a beam of thorium monoxide. Since then, we have implemented various improvements, such as STIRAP preparation of the experimental H state, rotational cooling, optimized apparatus geometry, and enhanced detection efficency, boosting our signal by a factor of about 400. We have also devised means to reduce the leading systematics we found in the Generation I experiment. We describe the recent progress in taking data using our Generation II apparatus and our ongoing efforts to investigate various systematics. NSF Grant 1404146.

  3. Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingchuan [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: yli@physics.wisc.edu; Profumo, Stefano [Department of Physics and Santa Cruz Institute for Particle Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States)], E-mail: profumo@scipp.ucsc.edu; Ramsey-Musolf, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)], E-mail: mjrm@physics.wisc.edu

    2009-03-09

    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino-Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario.

  4. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature.

    Science.gov (United States)

    Kumar, Ashok; Scott, J F; Katiyar, R S

    2011-08-08

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10(-12) sm(-1).

  5. Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    International Nuclear Information System (INIS)

    Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael

    2009-01-01

    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino-Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario

  6. The search for permanent electric dipole moments, in particular for the one of the neutron

    CERN Document Server

    CERN. Geneva

    2010-01-01

    Nonzero permanent electric dipole moments (EDM) of fundamental systems like particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new CP violating phases which often lead to the prediciton of larger EDM. EDM searches in different systems are complementary and various efforts worldwide are underway, but no finite value could be established yet. An improved search for the EDM of the neutron requires, among other things, much better statistics. At PSI, we are presently commissioning a new high intensity source of ultracold neutrons. At the same time, with an international collaboration, we are setting up for a new measurement of the ...

  7. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  8. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    Science.gov (United States)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  9. Lepton electric dipole moments in non-degenerate supersymmetric Seesaw models

    CERN Document Server

    Ellis, Jonathan Richard; Raidal, Martti; Shimizu, Y; Ellis, John; Hisano, Junji; Raidal, Martti; Shimizu, Yasuhiro

    2002-01-01

    In the context of supersymmetric seesaw models of neutrino masses with non-degenerate heavy neutrinos, we show that Dirac Yukawa interactions N^c_i (Y_nu)_{ij} L_j H_2 induce large threshold corrections to the slepton soft masses via renormalization. While still yielding rates for lepton-flavour-violating processes below the experimental bounds, these contributions may increase the muon and electron electric dipole moments d_mu and d_e by several orders of magnitude. In the leading logarithmic approximation, this is due to three additional physical phases in Y_nu, one of which also contributes to leptogenesis. The naive relation d_mu/d_e\\approx -m_mu/m_e is violated strongly in the case of successful phenomenological textures for Y_nu, and the values of d_mu and/or d_e may be within the range of interest for the future experiments.

  10. The electric dipole moment of the neutron from 2+1 flavor lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.K. [Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Meissner, U.G. [Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Forschungszentrum Juelich GmbH (Germany). Inst. for Advanced Simulation; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Forschungszentrum Juelich (Germany). Center for Hadron Physics; Juelich Aachen Research Alliance (Germany). JARA-FAME and JARA-HPC; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics

    2015-02-15

    We compute the electric dipole moment d{sub n} of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing theta term. The latter is rotated into the pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle θ is taken to be purely imaginary. The physical value of d{sub n} is obtained by analytic continuation. We find d{sub n}=-3.8(2)(9) x 10{sup -16} θ e cm, which, when combined with the experimental limit on d{sub n}, leads to the upper bound vertical stroke θ vertical stroke

  11. Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions

    Science.gov (United States)

    Cairncross, William B.; Gresh, Daniel N.; Grau, Matt; Cossel, Kevin C.; Roussy, Tanya S.; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A.

    2017-10-01

    We describe the first precision measurement of the electron's electric dipole moment (de) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on 180Hf 19F+ in its metastable 3Δ1 electronic state, we obtain de=(0.9 ±7. 7stat±1. 7syst)×10-29 e cm , resulting in an upper bound of |de|<1.3 ×10-28 e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |de|<9.4 ×10-29 e cm [J. Baron et al., New J. Phys. 19, 073029 (2017), 10.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

  12. A SQUID magnetometry system for a cryogenic neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Clarke, C.; Cottle, A.; Lynch, A.; Pipe, M.

    2014-11-01

    Precision magnetometry is an essential component of any neutron electric dipole moment experiment in order to correct shifts in the neutron precession frequency due to changes in the magnetic field. We have developed a magnetometry system using 12 SQUID sensors, designed to operate in 0.5 K superfluid helium. The pick-up loops located near the neutron cell are connected to the SQUID sensors by ∼2 m twisted wire pairs. The SQUID readout cables are run via an intermediate stage at 4.2 K. The system has been installed and tested in the cryoEDM apparatus at the ILL, Grenoble, and used to characterise the magnetic environment. Further tests in a suitable low noise environment confirm it meets our requirements.

  13. Solid deuterium and UCN factory: application to the neutron electric dipole moment measurement

    CERN Document Server

    Serebrov, A P

    2000-01-01

    Present experiments which search for an electric dipole moment (EDM) of the neutron use ultra-cold neutrons (UCN) and are limited by counting statistics. One way to solve this problem is to improve the source of UCN. The present article briefly reviews two possibilities which employ solid deuterium at the temperature of liquid helium. The possibility of installing a solid deuterium UCN source at the FRM-II reactor and at spallation neutron sources at PSI, LANL and KEK is discussed. An increase of the UCN density up to the level of 10 sup 3 -10 sup 4 cm sup - sup 3 is expected. Compared to existing sources, this corresponds to an improvement by two to three orders of magnitude. Such experimental facilities will make it possible to improve measurements of the EDM of the neutron down to the level of 10 sup - sup 2 sup 7 e cm.

  14. The 2H Electric Dipole Moment in a Separable Potential Approach

    Directory of Open Access Journals (Sweden)

    Afnan I.R.

    2010-04-01

    Full Text Available Measurement of the electric dipole moment (EDM of 2H or of 3He may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations. We investigate in a separable potential approach the relationship of the full model calculation to the plane wave approximation, correct an error in an early potential model result, and examine the tensor force aspects of the model results as well as the effect of the short range repulsion found in the realistic, contemporary potential model calculations of Liu and Timmermans. We conclude that, because one-pion exchange dominates the EDM calculation, separable potential model calculations should provide an adequate picture of the 2H EDM until better than 10% measurements are achieved.

  15. Electric Dipole Moment of the Neutron from 2+1 Flavor Lattice QCD.

    Science.gov (United States)

    Guo, F-K; Horsley, R; Meissner, U-G; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M

    2015-08-07

    We compute the electric dipole moment d(n) of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing θ term. The latter is rotated into a pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle θ is taken to be purely imaginary. The physical value of dd(n) is obtained by analytic continuation. We find d(n)=-3.9(2)(9)×10(-16) θ  e cm, which, when combined with the experimental limit on d(n), leads to the upper bound |θ|≲7.4×10(-11).

  16. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.

    Science.gov (United States)

    Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M

    2014-12-01

    The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.

  17. Spin precession of a particle with an electric dipole moment: contributions from classical electrodynamics and from the Thomas effect

    International Nuclear Information System (INIS)

    Silenko, Alexander J

    2015-01-01

    The new derivation of the equation of the spin precession is given for a particle possessing electric and magnetic dipole moments. Contributions from classical electrodynamics and from the Thomas effect are explicitly separated. A fully covariant approach is used. The final equation is expressed in a very simple form in terms of the fields in the instantaneously accompanying frame. The Lorentz transformations of the electric and magnetic dipole moments and of the spin are derived from basic equations of classical electrodynamics. For this purpose, the Maxwell equations in matter are used and the result is confirmed by other methods. An antisymmetric four-tensor is correctly constructed from the electric and magnetic dipole moments. (article)

  18. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    Science.gov (United States)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  19. Consequences of electricity deregulation on nuclear safety

    International Nuclear Information System (INIS)

    Podjavorsek, M.

    2007-01-01

    The evolution of deregulation of electricity market started a couple of years ago and has not been finished yet. Deregulation causes increased pressure to reduce the costs of electricity generation. This presents a new challenge to regulatory bodies. They have to assess the impact of these changes on the safety of nuclear power plants. Accordingly, it is important to identify the risks to the nuclear power industry resulting from the deregulation. Today's trend is that the number of electricity generating power companies will be reduced in Europe and also in Slovenia due to tough competition in the electricity market. The electricity price has decreased after the introduction of the deregulated market in most countries. This has been also the main reason for less investment to new generating capacities since the price has been lower than the generation costs. Investment problems are also present for the existing units, because of danger of inappropriate maintenance and reduction of the number of staff and their qualifications below the desired level that leads to loss of institutional memory. It is expected that only the biggest companies can stand the consequences of competition in electricity prices and consequential pressure to reduce the cost. In order to review the impact of deregulation of the electricity market some relevant points are discussed in this paper such as the need to cut costs of companies by reducing the number of their activities and increasing the efficiency in the remaining activities and /or outsourcing of activities, power station operating regime, safety culture, grid reliability, reliability and safety of operation, increased number of transients, ageing of components, outage duration, extended cycle and response of nuclear regulators. From a regulatory point of view the impact of deregulation on nuclear safety is an important issue. This paper also discusses analyses and evaluations of this impact and proposes some measures how to

  20. Nuclear desalination and electricity production for islands

    International Nuclear Information System (INIS)

    Tran Dai Nghiep

    2005-01-01

    Nuclear desalination is an established and commercially proven technology that is now available and has the potential of further improvement. The technology of a small-sized reactor for desalination and electricity production will be an economically viable option and will also be suitable for islands with geographic, climatic, ecological and hydrological specifics. The operating experiences and achieved safety should benefit the early stage of a national nuclear power programme in developing countries. (author)

  1. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  2. The Birth of Nuclear-Generated Electricity

    International Nuclear Information System (INIS)

    Claflin, D.J. POC

    1999-01-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public

  3. Taking into account the Earth's rotation in experiments on search for the electric dipole moment of neutron

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2007-01-01

    Analysis of the problem of taking into account the Earth's rotation in a search for the electric dipole moment (EDM) of the neutron in experiments with ultracold neutrons and in a diffractional experiment is fulfilled. Taking into account the Earth's rotation in the diffractional experiment gives an exactly calculated correction which is negligible as compared with the accuracy reached at present time. In the experiments with ultracold neutrons, the correction is greater than the systematical error and the exact calculation of it needs further investigation. In this connection, further developments of diffractional method would considerably promote progress in the search for the electric dipole moment of the neutron

  4. Measurement of permanent electric dipole moments of charged hadrons in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Pretz, Joerg, E-mail: pretz@physik.rwth-aachen.de [III. Physikalisches Institut (Germany); Collaboration: JEDI Collaboration

    2013-03-15

    Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance ( T ) and parity ( P ). Assuming the CPT theorem this implies CP violation. The CP violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of CP violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich with an ultimate goal to reach a sensitivity of 10{sup - 29}e{center_dot}cm.

  5. Reduced Limit on the Permanent Electric Dipole Moment of ^{199}Hg.

    Science.gov (United States)

    Graner, B; Chen, Y; Lindahl, E G; Heckel, B R

    2016-04-22

    This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ^{199}Hg atoms. Fused silica vapor cells containing enriched ^{199}Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ^{199}Hg EDM d_{Hg}=(-2.20±2.75_{stat}±1.48_{syst})×10^{-30}e cm. We use this result to place a new upper limit on the ^{199}Hg EDM |d_{Hg}|<7.4×10^{-30}e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.

  6. Applications of computed nuclear structure functions to inclusive scattering, R-ratios and their moments

    International Nuclear Information System (INIS)

    Rinat, A.S.

    2000-01-01

    We discuss applications of previously computed nuclear structure functions (SF) to inclusive cross sections, compare predictions with recent CEBAF data and perform two scaling tests. We mention that the large Q 2 plateau of scaling functions may only in part be due to the asymptotic limit of SF, which prevents the extraction of the nucleon momentum distribution in a model- independent way. We show that there may be sizable discrepancies between computed and semi-heuristic estimates of SF ratios. We compute ratios of moments of nuclear SF and show these to be in reasonable agreement with data. We speculate that an effective theory may underly the model for the nuclear SF, which produces overall agreement with several observables. (author)

  7. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  8. Seismic signal simulation and study of underground nuclear sources by moment inversion

    International Nuclear Information System (INIS)

    Crusem, R.

    1986-09-01

    Some problems of underground nuclear explosions are examined from the seismological point of view. In the first part a model is developed for mean seismic propagation through the lagoon of Mururoa atoll and for calculation of synthetic seismograms (in intermediate fields: 5 to 20 km) by summation of discrete wave numbers. In the second part this ground model is used with a linear inversion method of seismic moments for estimation of elastic source terms equivalent to the nuclear source. Only the isotrope part is investigated solution stability is increased by using spectral smoothing and a minimal phase hypothesis. Some examples of applications are presented: total energy estimation of a nuclear explosion, simulation of mechanical effects induced by an underground explosion [fr

  9. NASA's nuclear electric propulsion technology project

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs

  10. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  11. Regional analysis of the nuclear-electricity

    International Nuclear Information System (INIS)

    Parera, M. D.

    2011-11-01

    In this study was realized a regional analysis of the Argentinean electric market contemplating the effects of regional cooperation, the internal and international interconnections; and the possibilities of insert of new nuclear power stations were evaluated in different regions of the country, indicating the most appropriate areas to carry out these facilities to increase the penetration of the nuclear energy in the national energy matrix. Also was studied the interconnection of the electricity and natural gas markets, due to the existent linking among both energy forms. With this purpose the program Message (Model for energy supply strategy alternatives and their general environmental impacts) was used, promoted by the International Atomic Energy Agency. This model carries out an economic optimization level country, obtaining the minimum cost as a result for the modeling system. The division for regions realized by the Compania Administradora del Mercado Mayorista Electrico (CAMMESA) was used, which divides to the country in eight regions. They were considered the characteristics and necessities of each one of them, their respective demands and offers of electric power and natural gas, as well as their existent and projected interconnections, composed by the electric lines and gas pipes. According to the results obtained through the model, the nuclear-electricity is a competitive option. (Author)

  12. Effective Lagrangian approach to fermion electric dipole moments induced by a CP-violating WWγ vertex

    International Nuclear Information System (INIS)

    Novales-Sanchez, H.; Toscano, J. J.

    2008-01-01

    The one-loop contribution of the two CP-violating components of the WWγ vertex, κ-tilde γ W μ + W ν - F-tilde μν and (λ-tilde γ /m W 2 )W μν + W ρ -ν F-tilde ρμ , on the electric dipole moment (EDM) of fermions is calculated using dimensional regularization and its impact at low energies reexamined in the light of the decoupling theorem. The Ward identities satisfied by these couplings are derived by adopting a SU L (2)xU Y (1)-invariant approach and their implications in radiative corrections discussed. Previous results on κ-tilde γ , whose bound is updated to |κ-tilde γ | -5 , are reproduced, but disagreement with those existing for λ-tilde γ is found. In particular, the upper bound |λ-tilde γ | -2 is found from the limit on the neutron EDM, which is more than 2 orders of magnitude less stringent than that of previous results. It is argued that this difference between the κ-tilde γ and λ-tilde γ bounds is the one that might be expected in accordance with the decoupling theorem. This argument is reinforced by analyzing carefully the low-energy behavior of the loop functions. The upper bounds on the W EDM, |d W | -21 e·cm, and the magnetic quadrupole moment, |Q-tilde W | -36 e·cm 2 , are derived. The EDM of the second and third families of quarks and charged leptons are estimated. In particular, EDM as large as 10 -20 e·cm and 10 -21 e·cm are found for the t and b quarks, respectively

  13. Current training initiatives at Nuclear Electric plc

    International Nuclear Information System (INIS)

    Fowler, C.D.

    1993-01-01

    Nuclear Electric, one of the three generating companies to emerge from the demise of the U.K.'s Central Electricity Generating Board (CEGB), owns and operates the commercial nuclear power stations in England and Wales. The U.K. government proscribed further construction beyond Sizewell B, the United Kingdom's first pressurized water reactor (PWR) station, pending the outcome of a review of the future of nuclear power to be held in 1994. The major challenges facing Nuclear Electric at its formation in 1990 were therefore to demonstrate that nuclear power is safe, economical, and environmentally acceptable and to complete the PWR station under construction on time and within budget. A significant number of activities were started that were designed to increase output, reduce costs, and ensure that the previous excellent safety standards were maintained. A major activity was to reduce the numbers of staff employed, with a recognition from the outset that this reduction could only be achieved with a significant human resource development program. Future company staff would have to be competent in more areas and more productive. This paper summarizes some of the initiatives currently being pursued throughout the company and the progress toward ensuring that staff with the required competences are available to commission and operate the Sizewell B program in 1994

  14. Improving the Optical Trapping Efficiency in the 225Ra Electric Dipole Moment Experiment via Monte Carlo Simulation

    Science.gov (United States)

    Fromm, Steven

    2017-09-01

    In an effort to study and improve the optical trapping efficiency of the 225Ra Electric Dipole Moment experiment, a fully parallelized Monte Carlo simulation of the laser cooling and trapping apparatus was created at Argonne National Laboratory and now maintained and upgraded at Michigan State University. The simulation allows us to study optimizations and upgrades without having to use limited quantities of 225Ra (15 day half-life) in experiment's apparatus. It predicts a trapping efficiency that differs from the observed value in the experiment by approximately a factor of thirty. The effects of varying oven geometry, background gas interactions, laboratory magnetic fields, MOT laser beam configurations and laser frequency noise were studied and ruled out as causes of the discrepancy between measured and predicted values of the overall trapping efficiency. Presently, the simulation is being used to help optimize a planned blue slower laser upgrade in the experiment's apparatus, which will increase the overall trapping efficiency by up to two orders of magnitude. This work is supported by Michigan State University, the Director's Research Scholars Program at the National Superconducting Cyclotron Laboratory, and the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  15. Excited state electric dipole moment of 5-hydroxy indole and 5-hydroxy indole 3-acetic acid through solvatochromic shifts

    International Nuclear Information System (INIS)

    Rani, G. Neeraja; Ayachit, Narasimha H.

    2010-01-01

    The determination of excited state electric dipole moment through solvatochromic shifts is one of the easiest approaches to understand the molecular structure in the excited state. These studies have gained importance due to their application in photo science, especially if they are of biological importance. In view of this the excited state electric dipole moments of two substituted indoles which are of biological importance are determined and reported here. The fluorescence shifts have been used and the results found seem to be more consistent in comparison with the one calculated through absorption shifts. The results presented are also discussed. A qualitative estimate of the orientation of the dipole moments in ground and excited state are also presented and discussed. The method proposed by Ayachit and Neeraja Rani is used in view of the several advantages it has.

  16. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    External costs of nuclear power include: future financial liabilities arising from decommissioning and dismantling of nuclear facilities, health and environmental impacts of radioactivity releases in routine operation, radioactive waste disposal and effects of severe accidents. The nuclear energy industry operates under regulations that impose stringent limits to atmospheric emissions and liquid effluents from nuclear facilities as well as requiring the containment and confinement of solid radioactive waste to ensure its isolation from the biosphere as long as it may be harmful for human health and the environment. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the above-mentioned potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The externality related to potential health and environmental impacts of radioactive releases during routine operations have been assessed in a large number of comprehensive studies, in particular the ExternE project that was created in the framework of the European Commission. With regard to effects of severe nuclear accidents, a special legal regime, the third-party liability system, has been implemented to provide limited third party liability coverage in the event of a nuclear accident. The nuclear plant owners are held liable for some specified first substantial part of damages to third parties, and must secure insurance coverage adequate to cover this part. The Government provides coverage for some specified substantial second part of the damages, with any remaining damages to be considered by the national legislation. Thus, the costs of an incident or accident are fully internalized in the costs borne by the nuclear plant owners. Externalities of energy are not limited to environmental and health related impacts, but may result also from macro-economic, policy or strategic factors not reflected

  17. CP violation in η, KL → μantiμ- decays and electric dipole moments of electron and muon

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.

    1990-03-01

    The CP-violating longitudinal polarization asymmetry P L of the outgoing muon in η → μ μ - decays and the electric dipole moments of electron and muon (d l , l = e,μ) are studied in various extensions of the standard CP violation model. The possibility of having large P L in both decays and d l is explored

  18. On the magnitude of electric dipole moment of a neutron in the Weinberg CP-violation model

    International Nuclear Information System (INIS)

    Ansel'm, A.A.; Bunakov, V.E.; Gudkov, V.P.; Ural'tsev, N.G.

    1984-01-01

    It is shown, that the magnitude of the electric dipole moment of an neutron in the Weinberg CP-violation model is determined by the interaction with neutral Higgs bosons and it exceeds the existing experimental limit by two or three orders

  19. Hydrogen bond nature of ferroelectric material studied by X-ray and neutron diffraction. Electric dipole moment and proton tunneling

    International Nuclear Information System (INIS)

    Noda, Yukio; Kiyanagi, Ryoji; Mochida, Tomoyuki; Sugawara, Tadashi

    2006-01-01

    Hydrogen bond nature of MeHPLN and BrHPLN is studied using x-ray and neutron diffraction technique. We found that electric dipole moment of hydrogen atom plays an important role for the phase transition, and proton tunneling model is confirmed on this isolated hydrogen bond system. (author)

  20. A relation between the rotational g-factor and the electric dipole moment of a diatomic molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.

    1998-01-01

    The relation between the rotational g-factor and the electric dipole moment of a diatomic molecule is investigated. An explicit expression for the irreducible nonadiabatic contribution in terms of excited electronic states is derived. The importance of this expression for the analysis of vibration...

  1. On planar quantum dynamics of a magnetic dipole moment in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2014-10-15

    The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)

  2. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    Ennison, I.; Dzobo, M.

    2011-01-01

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  3. Duty and role of Nuclear Regulation Authority facing a crucial moment

    International Nuclear Information System (INIS)

    Asaoka, Mie

    2013-01-01

    Duty of Nuclear Regulation Authority (NRA) was to restore public trust on nuclear regulation spoiled by the Fukushima nuclear accident. How applied such regulation as mandatory back-fitting based on latest knowledge and 40 year operational limit in principle became of great concern. Active faults issue on existing nuclear power station could be a touchstone. Safety side judgment and electric utilities side's proof responsibilities were required as more stringent criteria for active faults. The expert group had been working on assessment of fracture zones under the field survey. Reform of safety regulations should be done based on three important standpoints: (1) not business easiness but public safety was first (2) NRA keeping stance to judge its own safety standard and how NRA ought to be and (3) importance of public disclosure of information and participation in decision-making judging from greatness of public effects caused by nuclear disaster. (T. Tanaka)

  4. Nuclear Electric Visitor Centres - Innovation and inspiration

    International Nuclear Information System (INIS)

    Fenton, Bob

    1998-01-01

    Full text: This eight minute video demonstrates the approach taken by Nuclear Electric to exhibitions that are open to the public. The information is given both visually - with excerpts from some of the attractions on display at the centres - and in comments from interviews with visitors, the centre guides and the man responsible for many of the exhibits featured in the video. on one side are the schoolchildren who are visiting the exhibition and are seen both playing and learning as they press buttons, watch videos, 'meet' Michael Faraday, and learn about radiation - its disposal and its safe transportation. The headmaster of the school is interviewed and explains that the exhibition is helping his children understand the importance of electricity to their world. on the other side is Jackie Lucas, the visitor centre manager, explaining what the public make of the exhibition. We see her staff greeting the children and helping them to understand the show. The designer of the exhibition, Len Upton explains how you go about making an exhibition such as this both informative and fun. Also interviewed is the man behind many of the exhibitions featured at Nuclear Electric's visitor centres up and down the country, Nicholas Mullane. He explains the purpose of the exhibition and what messages it imparts. The video is presented in split-screen or composite format, whereby the interviewee and children are often presented together. Excerpts from the various videos on display are presented as both how they are seen from the floor, as well as the full screen effect of the various programmes. The video gives much of the feeling of fun to be gained at the exhibition, as well as showing the educational benefits to be gained from a couple of hours at one of Nuclear Electric's visitor centres. Copies of the video can be obtained from Bob Fenton at Nuclear Electric. (Fax: ++44 1 452 652 443). (author)

  5. Electric utility deregulation - A nuclear opportunity

    International Nuclear Information System (INIS)

    DeMella, J.R.

    2002-01-01

    influenced and ultimately determined the price or tariffs for electricity to customers, were generally the same. Utilities revenue requirements were founded upon complex 'cost of service' formulas which emphasized and allowed the recovery of all 'reasonable' costs including operating expenses, taxes, depreciation of investments and additionally assured a reasonable rate or return on all outstanding investments. The consequence was that, through regulation of electric rate design, the ultimate price of electricity was determined by the aggregate of costs to produce it, independent of the forces of supply and demand. Through the examination of the major principles and features of regulated compared to unregulated electric markets such as the 'obligation to serve' and the 'cost of service', this presentation will address and discuss the economic opportunities and risks associated with nuclear power plants operating in deregulated, competitive electric generation markets. In transitioning to competitive markets, a number of key economic questions will be raised that will emphasize nuclear plant economic requirements for a profitable enterprise, addressing factors such as, plant operating performance, market conditions, energy price, key economic measures, investment opportunities, nuclear asset valuation and plant life extension. An economic analysis of a recent nuclear power plant valuation study will be presented including a discussion of key input variables, financial assumptions, economic results and a brief demonstration of an interactive, PC based computer model used for the analysis. A similar model, is currently being considered by the IAEA to evaluate the economics of nuclear power plant life extension along with alternative generation approaches. In closing, a number of short and long term prospects for the future of nuclear power will be discussed including plant life extension and the prognostication of a new electric generation business model concept

  6. Energy Moment Method Applied to Nuclear Quadrupole Splitting of Nuclear Magnetic Resonance Lines

    DEFF Research Database (Denmark)

    Frank, V

    1962-01-01

    Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus interacting with a static magnetic field and a static electric field gradient are derived. Several applications of this method for obtaining the values of the components of the electric field...

  7. Fluctuations of local electric field and dipole moments in water between metal walls.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2015-10-21

    We examine the thermal fluctuations of the local electric field Ek (loc) and the dipole moment μk in liquid water at T = 298 K between metal walls in electric field applied in the perpendicular direction. We use analytic theory and molecular dynamics simulation. In this situation, there is a global electrostatic coupling between the surface charges on the walls and the polarization in the bulk. Then, the correlation function of the polarization density pz(r) along the applied field contains a homogeneous part inversely proportional to the cell volume V. Accounting for the long-range dipolar interaction, we derive the Kirkwood-Fröhlich formula for the polarization fluctuations when the specimen volume v is much smaller than V. However, for not small v/V, the homogeneous part comes into play in dielectric relations. We also calculate the distribution of Ek (loc) in applied field. As a unique feature of water, its magnitude |Ek (loc)| obeys a Gaussian distribution with a large mean value E0 ≅ 17 V/nm, which arises mainly from the surrounding hydrogen-bonded molecules. Since |μk|E0 ∼ 30kBT, μk becomes mostly parallel to Ek (loc). As a result, the orientation distributions of these two vectors nearly coincide, assuming the classical exponential form. In dynamics, the component of μk(t) parallel to Ek (loc)(t) changes on the time scale of the hydrogen bonds ∼5 ps, while its smaller perpendicular component undergoes librational motions on time scales of 0.01 ps.

  8. Carbon pricing, nuclear power and electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  9. Carbon pricing, nuclear power and electricity markets

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2012-01-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  10. Electric dipole moments in the MSSM at large tanβ

    International Nuclear Information System (INIS)

    Demir, Durmus; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam

    2004-01-01

    Within the minimal supersymmetric standard model (MSSM), the large tanβ regime can lead to important modifications in the pattern of CP-violating sources contributing to low energy electric dipole moments (EDMs). In particular, four-fermion CP-violating interactions induced by Higgs exchange should be accounted for alongside the constituent EDMs of quarks and electrons. To this end, we present a comprehensive analysis of three low energy EDM observables - namely the EDMs of thallium, mercury and the neutron - at large tanβ, in terms of one- and two-loop contributions to the constituent EDMs and four-fermion interactions. We concentrate on the constrained MSSM as well as the MSSM with non universal Higgs masses, and include the CP-violating phases of μ and A. Our results indicate that the atomic EDMs receive significant corrections from four-fermion operators, especially when Im(A) is the only CP-violating source, whereas the neutron EDM remains relatively insensitive to these effects. As a consequence, in a large portion of the parameter space, one cannot infer a separate bound on the electron EDM via the experimental constraint on the thallium EDM. Furthermore, we find that the electron EDM can be greatly reduced due to the destructive interference of one- and two-loop contributions with the latter being dominated by virtual status

  11. Top quark electric dipole moment in a minimal supersymmetric standard model extension with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2010-01-01

    The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10 -19 ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10 -19 ecm could be accessible in collider experiments such as the International Linear Collider.

  12. Search for a permanent electric-dipole moment using atomic indium

    International Nuclear Information System (INIS)

    Sahoo, B. K.; Pandey, R.; Das, B. P.

    2011-01-01

    We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM) arising from violations of parity (P) and time-reversal (T) symmetries. This atom has been laser cooled and therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a paramagnetic atom, which comes from thallium. We report the results of our calculations of the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar (S-PS) interaction coupling constant in In within the framework of the relativistic coupled cluster theory. It might be possible to get new limits for the electron EDM and the S-PS CP-violating coupling constant by combining the results of our calculations with the measured value of the EDM of In when it is available. These limits could have important implications for the standard model (SM) of particle physics.

  13. The electric dipole moment of the neutron from Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Cyprus Institute, Nicosia; Hadjiyiannakou, K.; Cyprus Institute, Nicosia; George Washington Univ., Washington, DC; Jansen, K.; Koutsou, G.; Ottnad, K.; Bonn Univ.; Petschlies, M.; Bonn Univ.

    2015-11-01

    We extract the neutron electric dipole moment (nEDM) vertical stroke vector d n vertical stroke on configurations produced with N f =2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M π ≅ 373 MeV. We do so by evaluating the CP-odd form factor F 3 for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F 3 at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d n vertical stroke /θ=0.045(6)(1) e.fm.

  14. A new experiment to measure the electric dipole moment of the neutron?

    International Nuclear Information System (INIS)

    Lamoreaux, Steve; Cooper, Martin; Greene, Geoffrey; Penttilae, Seppo; Espy, Michelle; Marek, Larry; Tupa, Dale; Krause, Robert; Doyle, John; Golub, Robert

    1997-01-01

    For nearly fifty years, the limits on the electric dipole moment of the neutron have provided information of great importance in our understanding of the fundamental symmetries of nature. Current experiments using bottled Ultra Cold Neutrons (UCN) provide the best experimental limits on the neutron EDM. While modest improvements may be expected by extension of current methods, major reductions in the experimental error appear unlikely due to statistical sensitivity and systematic effects. This situation is unfortunate as several theoretical notions (supersymmetry and the origin of the baryon asymmetry) suggest a magnitude for the neutron EDM which may be only one or two orders of magnitude below the current limit. Recently, Golub and Lamoreaux (1) have suggested a new method for the measurement of the neutron EDM that uses a novel feature of the interaction between low energy neutron and superfluid 4 He to provide a very high density of UCN in an experimental volume. The proposed method also promises a significant reduction in the dominant systematic effect using a polarized 3 He co-magnetometer in the same volume. Their careful analysis suggests that an improvement of two orders of magnitude in the uncertainty of the neutron EDM may be possible. A review of the current experimental situation is given and the prospects for the realization of such a new experiment are discussed

  15. A new experiment to measure the electric dipole moment of the neutron?

    International Nuclear Information System (INIS)

    Lamoreaux, S.; Cooper, M.; Greene, G.; Penttilae, S.; Espy, M.; Marek, L.; Tupa, D.; Krause, R.; Doyle, J.; Golub, R.

    1997-01-01

    For nearly fifty years, the limits on the electric dipole moment of the neutron have provided information of great importance in our understanding of the fundamental symmetries of nature. Current experiments using bottled Ultra Cold Neutrons (UCN) provide the best experimental limits on the neutron EDM. While modest improvements may be expected by extension of current methods, major reductions in the experimental error appear unlikely due to statistical sensitivity and systematic effects. This situation is unfortunate as several theoretical notions (supersymmetry and the origin of the baryon asymmetry) suggest a magnitude for the neutron EDM which may be only one or two orders of magnitude below the current limit. Recently, Golub and Lamoreaux (1) have suggested a new method for the measurement of the neutron EDM that uses a novel feature of the interaction between low energy neutron and superfluid 4 He to provide a very high density of UCN in an experimental volume. The proposed method also promises a significant reduction in the dominant systematic effect using a polarized 3 He co-magnetometer in the same volume. Their careful analysis suggests that an improvement of two orders of magnitude in the uncertainty of the neutron EDM may be possible. A review of the current experimental situation is given and the prospects for the realization of such a new experiment are discussed. copyright 1997 American Institute of Physics

  16. Order of magnitude smaller limit on the electric dipole moment of the electron.

    Science.gov (United States)

    Baron, J; Campbell, W C; DeMille, D; Doyle, J M; Gabrielse, G; Gurevich, Y V; Hess, P W; Hutzler, N R; Kirilov, E; Kozyryev, I; O'Leary, B R; Panda, C D; Parsons, M F; Petrik, E S; Spaun, B; Vutha, A C; West, A D

    2014-01-17

    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

  17. A Revised Experimental Upper Limit on the Electric Dipole Moment of the Neutron

    CERN Document Server

    Pendlebury, J  M; Ayres, N J; Baker, C A; Ban, G; Bison, G; Bodek, K; Burghoff, M; Geltenbort, P; Green, K; Griffith, W C; van der Grinten, M; Grujic, Z D; Harris, P G; Helaine, V; Iaydjiev, P; Ivanov, S N; Kasprzak, M; Kermaidic, Y; Kirch, K; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemiere, Y; May, D J R; Musgrave, M; Musgrave, M; Naviliat-Cuncic, O; Piegsa, F M; Pignol, G; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Richardson, J D; Ries, D; Roccia, S; Rozpedzik, D; Schnabel, A; Schmidt-Wellenburg, P; Severijns, N; Shiers, D; Thorne, J A; Weis, A; Winston, O  J; Wursten, E; Zejma, J; Zsigmond, G

    2015-01-01

    We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_\\mathrm{n} = -0.21 \\pm 1.82 \\times10^{-26}$ $e$cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of $3.0 \\times10^{-26}$ $e$cm (90% CL) or $ 3.6 \\times10^{-26}$ $e$cm (95% CL). This paper is dedicated by the remaining authors to the memory of Prof. J. Michael Pendlebury.

  18. Simulation of spin dynamics to measure electric dipole moments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Marcel; Lehrach, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Collaboration: JEDI-Collaboration

    2013-07-01

    CP violation in the baryon sector, which is predicted by the Standard Model of Particle Physics, is too small to explain the matter and antimatter asymmetry in our universe. Permanent Electric Dipole Moments (EDMs) violate both P and T symmetries and are therefore, through the CPT theorem, also CP violating. No direct EDM measurements for protons, deuterons and light nuclei have been performed up to now. The JEDI collaboration at Forschungszentrum Juelich (FZJ) and the BNL-EDM collaboration at Brookhaven National Laboratory (BNL) pursue the goal to measure the EDMs of these particles in dedicated storage rings. Therefore different approaches are studied to reach an ultimate sensitivity of 10{sup -29} e.cm. A first direct measurement of the proton and deuteron EDM at a sensitivity level of 10{sup -24} e.cm will be performed in the existing conventional storage ring at FZJ, the Cooler Synchrotron COSY. Particle tracking simulations to explore the motion-correlated spin dynamics are a crucial part of feasibility studies of the planned storage ring EDM experiments. In a first step, a benchmarking of simulation codes with measurements at the Cooler Synchrotron COSY is performed.

  19. Noble Gas Leak Detector for Use in the SNS Neutron Electric Dipole Moment Experiment

    Science.gov (United States)

    Barrow, Chad; Huffman, Paul; Leung, Kent; Korobkina, Ekaterina; White, Christian; nEDM Collaboration Collaboration

    2017-09-01

    Common practice for leak-checking high vacuum systems uses helium as the probing gas. However, helium may permeate some materials at room temperature, making leak characterization difficult. The experiment to find a permanent electric dipole moment of the neutron (nEDM), to be conducted at Oak Ridge National Laboratories, will employ a large volume of liquid helium housed by such a helium-permeable composite material. It is desirable to construct a leak detector that can employ alternative test gases. The purpose of this experiment is to create a leak detector that can quantify the argon gas flux in a high vacuum environment and interpret this flux as a leak-rate. This apparatus will be used to check the nEDM volumes for leaks at room temperature before cooling down to cryogenic temperatures. Our leak detector uses a residual gas analyzer and a vacuum pumping station to characterize the gas present in an evacuated volume. The introduction of argon gas into the system is interpreted as a leak-rate into the volume. The device has been calibrated with NIST certified calibrated leaks and the machine's sensitivity has been calculated using background gas analysis. As a result of the device construction and software programming, we are able to leak-check composite and polyamide volumes This work was supported in part by the US Department of Energy under Grant No. DE-FG02-97ER41042.

  20. Hedging electricity price volatility using nuclear power

    International Nuclear Information System (INIS)

    Mari, Carlo

    2014-01-01

    Highlights: • Nuclear power is an important asset to reduce the volatility of electricity prices. • Unpredictability of fossil fuels and carbon prices makes power prices very volatile. • The dynamics of fossil fuels and carbon prices is described by Brownian motions. • LCOE values, volatilities and correlations are obtained via Monte Carlo simulations. • Optimal portfolios of generating technologies are get using a mean–variance approach. - Abstract: The analysis presented in this paper aims to put in some evidence the role of nuclear power as hedging asset against the volatility of electricity prices. The unpredictability of natural gas and coal market prices as well as the uncertainty in environmental policies may affect power generating costs, thus enhancing volatility in electricity market prices. The nuclear option, allowing to generate electricity without carbon emissions, offers the possibility to reduce the volatility of electricity prices through optimal diversification of power generating technologies. This paper provides a methodological scheme to plan well diversified “portfolios” of generating capacity that minimize the electricity price risk induced by random movements of fossil fuels market prices and by unpredictable fluctuations of carbon credits prices. The analysis is developed within a stochastic environment in which the dynamics of fuel prices as well as the dynamics of carbon credits prices is assumed to evolve in time according to well defined Brownian processes. Starting from market data and using Monte Carlo techniques to simulate generating cost values, the hedging argument is developed by selecting optimal portfolio of power generating technologies using a mean–variance approach

  1. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    Science.gov (United States)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  2. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    Science.gov (United States)

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  3. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  4. Costs and competitiveness of nuclear electricity

    International Nuclear Information System (INIS)

    Bennett, L.L.; Woite, G.

    1995-01-01

    The experienced and projected future construction costs and electricity generation costs of nuclear and fossil fired power plants are reviewed and compared. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitiveness position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budget, and are operated reliably and efficiently. Relevant cost impacting factors are identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climatic impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard also, mitigation of emissions from fossil fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power. (author). 19 refs, 7 figs, 2 tabs

  5. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  6. Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry

    NARCIS (Netherlands)

    Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.

    2009-01-01

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and

  7. Corrections for a constant radial magnetic field in the muon g - 2 and electric-dipole-moment experiments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-10-15

    We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)

  8. Corrections for a constant radial magnetic field in the muon \\varvec{g}-2 and electric-dipole-moment experiments in storage rings

    Science.gov (United States)

    Silenko, Alexander J.

    2017-10-01

    We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.

  9. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    Directory of Open Access Journals (Sweden)

    Jorge A. Bertolotto

    2016-06-01

    Full Text Available In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  10. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    Directory of Open Access Journals (Sweden)

    Richard M. Talman

    2015-07-01

    Full Text Available There has been much recent interest in directly measuring the electric dipole moments (EDM of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of “frozen spin” particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV “electron analog” ring at Brookhaven National Laboratory in 1954; it can also be referred to as the “AGS analog” ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through “transition” with the newly invented alternating gradient proton ring design. By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to “resurrect” the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of “archeological physics” to reconstitute the detailed electron analog lattice design from a

  11. Perception of the People Concerning Nuclear Power Plant for Electricity

    International Nuclear Information System (INIS)

    Suroyo, A.M. Djuliati

    2003-01-01

    Preliminary research on the perception and resistance of the people concerning government's plan to build a nuclear power plant for electricity at Muria peninsula, in Jepara, has that some people refused, some were ready to accept, and some just hesitated. In general the beaurocrats accepted the plan, although some felt doubtful since they are in change of environment conservation. Parliament members and religious leaders have the tendency to be doubtful in response of the government's plan on nuclear power plant. Those NGO members, especially these under young activist leaders have refused the plan, while other religious leaders and some rural leaders tend to accept it. The various perception and attitudes which exist in the society are mostly caused by conditions such as one's position, his group's perception in which he attached to, and factors either socio-cultural, socio-political, or socio-economics. Especially those with negative perception were actually influenced by the feeling of distrust to the government. At this time the government is trying to rebuild people's confidence by planning some development programs with bottom-up approach, but since it has a bad reputation in the post, that different attitudes have emerged toward state's projects, since in the past many persons have corrupted the project they carried-out for their own benefit. The various attitudes of the people toward the government have their impact on the government plan to build nuclear plant in Jepara. In this situation it will be more who reject the plan. To this moment is seems that the government has not successfully changed its image to have public trust, due to their prejudice to government projects, more over for its nuclear power plant. Input of information, especially about nuclear. They select information about nuclear mostly from the negative side only, although there should be also positive side

  12. Ab initio study of the RbSr electronic structure: Potential energy curves, transition dipole moments, and permanent electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Pototschnig, Johann V., E-mail: johann.pototschnig@tugraz.at; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E., E-mail: wolfgang.ernst@tugraz.at [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm{sup −1}. We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) and Rb (5p {sup 2}P°) + Sr (5s{sup 2} {sup 1}S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  13. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    Science.gov (United States)

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  14. Nuclear power in the UK electricity market

    International Nuclear Information System (INIS)

    Coffey, J.M.

    1995-01-01

    Nuclear Electric was formed in the public sector to operate only nuclear power plant, and the Company has been foremost in developing the UK's capability for PWR design and construction. It is now obliged to compete on equal terms with privately-owned generators, and we have made it clear that we would invest in further nuclear plant only if the terms were commercially attractive to the company. The competitive environment in which we now operate has led us to recognise that the priority for the Company in the Nuclear Review is to seek the commercial flexibility which accompanies privatisation. Accordingly, our evidence to the Government in the Nuclear Review has shown that the problems of confidence which surrounded nuclear power in 1989 have been substantially resolved. The improved accounting costs and low avoidable costs of the existing stations make the commercial case for their continued operation. The completion of Szewell B has not only given us a gist class new, profitable power plant, but given confidence in the costs and performance of any follow-on PWRs. In the longer term, a greater recognition of the external environmental costs of fossil-fuel generation may swing the market in favour of nuclar power construction. (orig.) [de

  15. Electricity market competition and nuclear power

    International Nuclear Information System (INIS)

    Varley, C.; Paffenbarger, J.

    1999-01-01

    Throughout the world, the Organization for Economic Cooperation and Development (OECD) member countries' governments are promoting competitive electricity markets. In particular, there is a move away from administrative price-setting by government institutions to market price-setting through the introduction of competition. Today this is often focused on competition in generation. However, competition among final electricity suppliers and distributors to provide effective consumer choice is a further step that governments are likely to pursue as experience with market reform grows. This competitive environment will undoubtedly impact upon the nuclear generation industry. Competition will provide an opportunity to reinvigorate nuclear power; it will improve the transparency of energy policy-making and the policy framework for nuclear power; it will spur innovation in existing plants and help prospects for new plant build; and provide a strong impetus for cost reduction and innovation. This paper discusses these issues in detail. It looks at the potential benefits and challenges to the nuclear generation industry arising from an increasingly competitive market. (author)

  16. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  17. Nuclear-electric power in space

    International Nuclear Information System (INIS)

    Truscello, V.C.; Davis, H.S.

    1984-01-01

    Because direct-broadcast satellites, air-traffic-control radar satellites, industrial processing on subsequent versions of the space station, and long range excursions to other planets using nuclear-electric propulsion systems, all space missions for which current power-supply systems are not sufficient. NASA and the DOE therefore have formed a joint program to develop the technology required for nuclear-reactor space power plants. After investigating potential space missions in the given range, the project will develop the technology to build such systems. High temperatures pose problems, ''hot shoes'' and ''cold shoes'', a Stirling engine dynamic system, and critical heat-transfer problems are all discussed. The nuclear reactor system for space as now envisioned is schematicized

  18. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation

    Science.gov (United States)

    Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan

    2018-05-01

    This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.

  19. General classical and quantum-mechanical description of magnetic resonance: an application to electric-dipole-moment experiments

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-05-15

    A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)

  20. Quark deconfinement in nuclei: A review of experimental tests based on nuclear magnetic moment measurements

    International Nuclear Information System (INIS)

    Stone, N.J.; Rikovska, J.

    1988-01-01

    The introduction very briefly outlines the basic idea and experimental evidence to suggest that quarks may behave differently in nuclei and in individual nucleons, with possible consequences for the calculation of nuclear magnetic dipole moments. After description of a calculation of moments made using the extreme model of total quark deconfinement (the MIT bag model) attention is focussed on experimental tests and the state of current evidence for more partial quark deconfinement. The arguments of Yamazaki which give an experimental basis for distinguishing quark deconfinement effects from, specifically, effects caused by pion exchange currents, are given in more detail. The reasons underlying choice of nuclei in which meaningful tests may be possible are given. Early claims by Karl et al. to have demonstrated the existence of quark deconfinement in mass 3 nuclei are discussed. The current status of evidence for deconfinement based on orbital g-factor measurements in heavier nuclei is also summarised. Finally some examples are given of possible experiments using recently developed on-line facilities which may provide further tests of these ideas. (orig.)

  1. The electric monopole transition: Nuclear structure, and nuclear spectroscopy

    International Nuclear Information System (INIS)

    Zganiar, E.F.

    1992-01-01

    The electric monopole (E0) transition process provides unique information on the structure of nuclei. For example, δI=0 transitions between nuclear configurations of different shape have enhanced EO components. The authors have observed I π→Iπ (I=0) transitions in 185 Pt and 184 Pt which are pure E0. This is unprecedented. Further, they have initiated searches for the location of the superdeformed band in 192 Hg utilizing internal conversion spectroscopy and, for the first time, internal pair spectroscopy. Additionally, the lifetime of the 0 + 2 level in 188 Hg was measured with a newly developed picosecond lifetime system which utilized the 0 + 2 →0 + 1 E0 internal conversion transition as an energy gate and its associated atomic X-ray as a fast trigger. The role of the E0 internal conversion process in the study of nuclear structure and as a tool in nuclear spectroscopy are discussed

  2. Nuclear Electric - four years on and right on course

    International Nuclear Information System (INIS)

    Hawley, R.

    1994-01-01

    Since the Government's decision, four years ago, to withdraw the nuclear stations from the electricity supply industry privatisation, and place a moratorium on the construction of further nuclear plant, the newly formed nuclear generators, Nuclear Electric and Scottish Nuclear, have risen to the challenge of proving that nuclear power can be as competitive in the United Kingdom as it is elsewhere in the world. The Chief Executive of Nuclear Electric documents changes which have taken place within the organisation since privatisation, presenting data on output and market share and productivity to back his argument. (UK)

  3. Nuclear Alignment in Projectile Fragmentation as a Tool for Moment Measurements

    International Nuclear Information System (INIS)

    Georgiev, G.; Matea, I.; Oliveira Santos, F. de; Lewitowicz, M.; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Borremans, D.; Himpe, P.; Neyens, G.; Sawicka, M.

    2004-01-01

    The application of the Time Dependent Perturbed Angular Distribution (TDPAD) method to study isomeric states produced and oriented in projectile-fragmentation reactions provides the opportunity to perform nuclear-moment measurements in a wide range of neutron-rich nuclei, unaccessible by other means. An absolute necessity for the application of the TDPAD technique is a spin-aligned ensemble of nuclei. The preliminary results from a recent application of this method on 61mFe and 54mFe at GANIL, Caen, France showed that a significant increase of the amount of the observed alignment, compared to our previous measurement on 67mNi and 69mCu, can be obtained. Some experimental details, concerning the conservation of the reaction obtained alignment, are discussed

  4. Muon polarization in η, KL → μ anti-μ decays and electric dipole moments of electron and muon

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.

    1990-08-01

    We review the CP-violating longitudinal polarization asymmetry P L of the outgoing muon in η → μ anti-μ and K L → μ anti-μ decays and the electric dipole moments of electron and muon (d l , l=e, μ) in various extensions of the standard CP violation model. We discuss the possibility of having large d l and P L in the decays. (Author) (48 refs.3 tabs., 5 figs.)

  5. Large contribution to the neutron electric dipole moment from a dimension-six four-quark operator

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.

    1993-01-01

    In this paper we study the contribution of a dimension-six four-quark operator to the neutron electric dipole moment. We find that this contribution dominates over the one-loop contributions due to W L- WR mixing by at least one order of magnitude in left-right-symmetric models, and in diquark scalar models this contribution is two orders of magnitude larger than other contributions

  6. Apparatus for measurement of the electric dipole moment of the neutron using a cohabiting atomic-mercury magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.A. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chibane, Y.; Chouder, M. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Geltenbort, P. [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Green, K. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Harris, P.G., E-mail: p.g.harris@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Heckel, B.R. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Iaydjiev, P.; Ivanov, S.N.; Kilvington, I. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lamoreaux, S.K. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); May, D.J.; Pendlebury, J.M.; Richardson, J.D.; Shiers, D.B.; Smith, K.F. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Grinten, M. van der [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2014-02-01

    A description is presented of apparatus used to carry out an experimental search for an electric dipole moment of the neutron, at the Institut Laue-Langevin (ILL), Grenoble. The experiment incorporated a cohabiting atomic-mercury magnetometer in order to reduce spurious signals from magnetic field fluctuations. The result has been published in an earlier letter [1]; here, the methods and equipment used are discussed in detail.

  7. rf Wien filter in an electric dipole moment storage ring: The “partially frozen spin” effect

    Directory of Open Access Journals (Sweden)

    William M. Morse

    2013-11-01

    Full Text Available An rf Wien filter (WF can be used in a storage ring to measure a particle’s electric dipole moment (EDM. If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.

  8. Quadrupole moments of Cd and Zn nuclei: When solid-state, molecular, atomic, and nuclear theory meet

    DEFF Research Database (Denmark)

    Haas, Heinz; Sauer, Stephan P. A.; Hemmingsen, Lars Bo Stegeager

    2017-01-01

    The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd-dimethyl an......The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd...

  9. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Science.gov (United States)

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-08-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  10. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Slim, J. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Gebel, R. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Heberling, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); Hinder, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Hölscher, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Lehrach, A. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Lorentz, B. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Mey, S. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Nass, A.; Rathmann, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); and others

    2016-08-21

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1–2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  11. Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment

    Science.gov (United States)

    Petrov, A. N.

    2018-05-01

    The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.

  12. Evolutionary use of nuclear electric propulsion

    International Nuclear Information System (INIS)

    Hack, K.J.; George, J.A.; Riehl, J.P.; Gilland, J.H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed. 26 refs

  13. Reactor design for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Koenig, D.R.; Ranken, W.A.

    1979-01-01

    Conceptual design studies of a nuclear power plant for electric propulsion of spacecrafts have been on going for several years. An attractive concept which has evolved from these studies and which has been described in previous publications, is a heat-pipe cooled, fast spectrum nuclear reactor that provides 3 MW of thermal energy to out-of-core thermionic converters. The primary motivation for using heat pipes is to provide redundancy in the core cooling system that is not available in gas or liquid-metal cooled reactors. Detailed investigation of the consequences of heat pipe failures has resulted in modifications to the basic reactor design and has led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO 2 and molybdenum sheets that span the entire diameter of the core. Design characteristics are presented and compared for the two reactors

  14. Nuclear opponents sentenced to pay electricity rates

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    In its decison of March 19, 1980 the Local Court of Hamburg sentenced a nuclear opponent to pay the sum withheld to the electricity supply utility. He had remitted 10 per cent of the rate on a blocked account. A right to refuse payment cannot be founded on Art. 4 of the Basic Law, since the freedom of conscience is not unilimited but may be restricted by the legal system or by obligations undertaken by oneself. Nor does the defendant have a right to withhold, since he is not entitled to a counter-claim from the power supply contract. Against the right to refuse payment in good faith speaks the fact that the plaintiff operates the nuclear power plant legally persuant to a licence. Even if the licence was withdrawn by an administrative court, this would not abolish with retroactive effect the existing reasonability of payment. (HSCH) [de

  15. Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift

    OpenAIRE

    Tkalya, E. V.

    2005-01-01

    We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...

  16. Roles of configuration mixing and exchange currents in nuclear magnetic moments and beta decays. Chapter 17

    International Nuclear Information System (INIS)

    Arima, A.; Hyuga, H.

    1979-01-01

    The authors review systematically several important mechanisms which affect magnetic moments, magnetic dipole transitions and allowed beta-decays. They are first order configuration mixing, second order configuration mixing, the Sachs moment and other exchange magnetic moments, the contribution of the Sachs moment and other exchange magnetic moments with first order configuration mixing. It is shown that first order configuration mixing and the Sachs moment are important for heavy nuclei, and that all the effects except first order mixing are important for light nuclei. (Auth.)

  17. SQUIDs as detectors in a new experiment to measure the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H. Jr.; Matlachov, A.; Ruminer, P.

    1998-01-01

    A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10 -28 ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large (∼100 cm 2 ) pick-up coils to measure the precision frequency of the spin-polarized 3 He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the 3 He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of ∼2x10 -16 Tm 2 (0.1 Φ 0 ) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of dΦ SQ = 2x10 -6 Φ 0 /√Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application the authors designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and they developed a two-SQUID readout system that will reduce SQUID noise in the experiment. They present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. The authors also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique

  18. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  19. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  20. Nuclear moments and deformation changes in the lightest Pt isotopes measured by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J; Duong, H T; Genevey, J; Girod, M; Huber, G; Ibrahim, F; Krieg, M; Le Blanc, F; Lee, J K P; Obert, J; Oms, J; Peru, S; Pinard, J; Putaux, J C; Sauvage, J; Sebastian, V; Zemlyanoi, S G; Forkel-Wirth, Doris; Lettry, Jacques

    1999-01-01

    Laser spectroscopy measurements are performed with the lightest neutron-deficient platinum isotopes using the experimental setup COMPLIS installed at the ISOLDE-Booster facility. The hyperfine spectra of /sup 182-178/Pt and /sup 183m/Pt are recorded for the first time from the optical transition 5d/sup 9/6s/sup 3/D/sub 3/ to 5d/sup 9/6p/sup 3/P/sub 2/. The variation in the mean-square charge radius of these nuclei and the magnetic and quadrupole (for I>or=1) moments of the odd isotope nuclei are found. A large deformation change between the /sup 183g/Pt and /sup 183m/Pt nuclei, quite large inverted odd-even staggering of the charge radius around the neutron midshell N=104, and a nuclear deformation drop in the region A=179 are revealed. All the results are discussed in terms of nuclear shape variation and are compared with the results of Hartree-Fock- Bogoliubov calculations involving the Gogny force. Comparison of the deformation measured from /sup 183g, m/Pt to the odd-odd isotone /sup 184g, m/Au shows that...

  1. Effects of particle-number-projection on nuclear moment of intertia

    International Nuclear Information System (INIS)

    Rozmej, P.

    1976-01-01

    The formalism of the moment of inertia in cranking model and BCS theory has been extended for the partially particle-number-projected BCS wave functions. The ground state moments of inertia obtained by this method are a little greater than those calculated by BCS method. A smooth growth of the moments of inertia for diminishing pairing strength constant has been obtained. (author)

  2. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2018-03-01

    Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  3. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  4. Corrigendum to ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; [J. Mol. Struct. 1137 (2017) 440-452

    Science.gov (United States)

    Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat

    2017-08-01

    The authors regret to inform that three references in the article titled ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; are not given in the manuscript. This is purely an oversight mistake. The references are as shown in this correction. The authors would like to apologize for any inconvenience caused.

  5. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  6. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    Science.gov (United States)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  7. Moment tensor analysis of the 3 September 2017 DPRK announced nuclear explosion and collapse aftershock

    Science.gov (United States)

    Ichinose, G. A.; Ford, S. R.; Chiang, A.; Walter, W. R.; Dreger, D. S.

    2017-12-01

    The Democratic People's Republic of Korea (DPRK) conducted its sixth announced nuclear test on 3 September 2017, 03:30:00 with a magnitude of 6.1 (IDC mb). At 03:38:27, there was an aftershock of magnitude 4.1 (IDC mb). Moment tensor analysis using regional long-period surface waves was performed to identify the source type of these two events. The first event was an explosive isotropic source with total seismic moment magnitude of Mw 5.34 (Mo=1.16e+17 Nm) with strong 66% isotropic component (eigenvalues: 1.30e+17, 0.75e+17, 0.44e+17 Nm). The second event was a closing crack source with an Mw 4.64 (Mo=1.04e+17 Nm) also with a strong 68% isotropic component (eigenvalues: -4.82e+16, -5.33e+16, -10.93e+16 Nm). We used the same stations within 360-1140 km for inversion of both events (stations: IC.MDJ, IC.BJT, IC.HIA) and predict the long-period displacements at KG.TJN and IU.INCN. We used a 1-D velocity model appropriate for active tectonic regions and band pass the data between periods of 20 and 100 sec. Waveform time-shifts were incorporated from previous event-station pairs to account for velocity model inadequacies. Both DPRK events source-types plot within the population of other NNSS nuclear and western US collapse events (Ford et al., 2009) on the fundamental lune (Tape and Tape, 2012). The DPRK collapse event is similar to the hole collapse 0h21m26s after the 5 September 1982 Atrisco shot at NNSS (Springer et al., 2002; DOE NV-209). The DPRK collapse could be explained by a complete or partial apical cavity collapse. The estimated collapse volume is 122000-277000 m3 and crack radius is 30-40 m given the seismic moment, elastic moduli for granite and a closing crack model (Mueller, 2001). In comparison to Denny and Johnson (1994) cavity-yield scaling in granite, the cavity radius ranges from 40 to 60 m given an explosion yield range of 140-400 kT. This collapse event is noteworthy because large aftershocks are rare in nuclear testing and even more rare are

  8. Electric dipole moments and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Yuan, Hong Kuan; Chen, Hong; Wu, Bo [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, An Long [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); School of Physical Science and Technology, Suzhou University, Suzhou 215006 (China)

    2012-01-15

    The electric dipole moments (EDMs) and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters are investigated by the finite field method within density functional theory (DFT). The results show that both dipole moments and polarizabilities have even-odd oscillation behaviors, and they strongly depend on geometrical structures and electronic structures. High symmetry structure prohibits the occurrence of EDMs on Bi clusters. The increasing polarizabilities of Bi clusters are attributed to the inherent novel chain-like geometrical evolution, which is significantly different from the characters observed in metal clusters or semiconductor clusters. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    International Nuclear Information System (INIS)

    Furukawa, Takeshi; Wakui, Takashi; Yang, Xiaofei; Fujita, Tomomi; Imamura, Kei; Yamaguchi, Yasuhiro; Tetsuka, Hiroki; Tsutsui, Yoshiki; Mitsuya, Yosuke; Ichikawa, Yuichi; Ishibashi, Yoko; Yoshida, Naoki; Shirai, Hazuki; Ebara, Yuta; Hayasaka, Miki; Arai, Shino; Muramoto, Sosuke

    2013-01-01

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the 85 Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a 85 Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the 85 Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei

  10. NASA's progress in nuclear electric propulsion technology

    International Nuclear Information System (INIS)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs

  11. Nuclear magnetic moment of 69As from on-line β-NMR on oriented nuclei

    International Nuclear Information System (INIS)

    Golovko, V.V.; Kraev, I.S.; Phalet, T.; Severijns, N.; Delaure, B.; Beck, M.; Kozlov, V.Yu.; Lindroth, A.; Coeck, S.; Zakoucky, D.; Venos, D.; Srnka, D.; Honusek, M.; Herzog, P.; Tramm, C.; Koester, U.

    2005-01-01

    A precise value for the magnetic moment of the 69 As 5/2 - ground state has been obtained from nuclear magnetic resonance on oriented nuclei (NMR/ON) using the NICOLE 3 He- 4 He dilution refrigerator setup at ISOLDE/CERN. The NMR/ON signal was observed by monitoring the anisotropy of the 69 As β particles. The center frequency ν[B ext =0.0994(10)T]=169.98(9) MHz corresponds to μ[ 69 As]=+1.6229(16)μ N . This result differs considerably from the πf 5/2 single-particle value obtained with g factors for a free proton but is in reasonable agreement with the value obtained with effective g factors and with values from a core polarization calculation and from calculations in the framework of the interacting boson-fermion model. Assuming a single exponential spin-lattice relaxation behavior a relaxation time T 1 ' =10(25) s was observed for 69 AsFe -bar at a temperature of about 20 mK in a magnetic field B=0.1 T

  12. E6 based mechanism for the generation of fermion electric dipole moments: An application to the solar neutrino puzzle

    International Nuclear Information System (INIS)

    Grifols, J.A.

    1987-01-01

    We discuss the electric dipole moments (EDM) of fermions generated by CP-violating phases associated to the new Yukawa couplings involving heavy matter E 6 fields predicted in the framework of superstring theories. While for neutron and electron it is not strictly necessary to resort to a superstring scenario to get a substantial EDM, in the neutrino case a sizeable EDM is a distinctive feature of the superstring. We thus focus on the neutrino EDM and discuss its relevance for the solution of the solar neutrino problem. (orig.)

  13. Feeble magnetic fields generated by thermal charge fluctuations in extended metallic conductors: Implications for electric-dipole moment experiments

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.

    1999-01-01

    A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society

  14. Development of a SQUID-based 3He Co-magnetometer Readout for a Neutron Electric Dipole Moment Experiment

    OpenAIRE

    Kim, Young Jin; Clayton, Steven M.

    2012-01-01

    A discovery of a permanent electric dipole moment (EDM) of the neutron would provide one of the most important low energy tests of the discrete symmetries beyond the Standard Model of particle physics. A new search of neutron EDM, to be conducted at the spallation neutron source (SNS) at ORNL, is designed to improve the present experimental limit of ~10^-26 e-cm by two orders of magnitude. The experiment is based on the magnetic-resonance technique in which polarized neutrons precess at the L...

  15. The one-loop contributions to c(t) electric dipole moment in the CP-violating BLMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shu-Min; Feng, Tai-Fu; Yang, Zhong-Jun; Zhang, Hai-Bin; Dong, Xing-Xing [Hebei University, Department of Physics, Baoding (China); Guo, Tao [Hebei University of Geosciences, School of Mathematics and Science, Shijiazhuang (China)

    2017-02-15

    In the CP-violating supersymmetric extension of the standard model with local gauged baryon and lepton symmetries (BLMSSM), there are new CP-violating sources which can give new contributions to the quark electric dipole moment (EDM). Considering the CP-violating phases, we analyze the EDMs of the quarks c and t. We take into account the contributions from the one-loop diagrams. The numerical results are analyzed with some assumptions on the relevant parameter space. The numerical results for the c and t EDMs can reach large values. (orig.)

  16. A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kunkler, Brandon; Liu, Chen-Yu; Visser, Gerard [CEEM, Physics Department, Indiana University, Bloomington, Indiana 47408 (United States)

    2012-01-15

    We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the electric dipole moment of the electron. The DAQ system consists of two main components: a master board for DAQ control and eight individual analog-to-digital converter (ADC) boards for signal processing. This custom DAQ system provides galvanic isolation of the ADC boards from each other and the master board using fiber optic communication to reduce the possibility of ground loop pickup and attain ultimate low levels of channel cross-talk. In this paper, we describe the implementation of the DAQ system and scrutinize its performance.

  17. GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Safety culture development in nuclear electric plc

    International Nuclear Information System (INIS)

    Gibson, G.P.; Low, M.B.J.

    1995-01-01

    Nuclear Electric plc (NE) has always given the highest priority to safety. However, past emphasis has been directed towards ensuring safety thorough engineering design and hazard control procedures. Whilst the company did achieve high safety standards, particularly with respect to accidents, it was recognized that further improvements could be obtained. Analysis of the safety performance across a wide range of industries showed that the key to improving safety performance lay in developing a strong safety culture within the company. Over the last five years, NE has made great strides to improve its safety culture. This has resulted in a considerable improvement in its measured safety performance indicators, such as the number of incidents at international nuclear event scale (INES) rating 1, the number of lost time accidents and the collective radiation dose. However, despite this success, the company is committed to further improvement and a means by which this process becomes self-sustaining. In this way the company will achieve its prime goal, to ''ensure the safety of people, plant and the environment''. The paper provides an overview of the development of safety culture in NE since its formation in November 1989. It describes the research and international developments that have influenced the company's understanding of safety culture, the key initiatives that the company has undertaken to enhance its safety culture and the future initiatives being considered to ensure continual improvement. (author). 5 refs, 2 figs, 2 tabs

  19. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  20. Competitiveness of nuclear power in Japanese liberalized electricity market

    International Nuclear Information System (INIS)

    Abe, Y.

    2006-01-01

    The liberalization of Japanese electricity market expanded to customers of over 50 kV on April 1, 2005 and more than 60% of the market has been already open. The discussion about the assistance measures of nuclear power generation in Japanese liberalization of electricity market has come to grow warmer gradually. The opinions on the competitiveness of nuclear power are inconsistency among the supporters of nuclear power. Some says that nuclear power is the most competitive, others says nuclear power require some sort of financial or political assistance in the deregulation of electricity market. In this study, based on financial statements of each Japanese electric power company, the constitution of generation cost of nuclear power is illustrated and various financial and economic characteristics, including ''merit of scale'' and the impact of new nuclear power plant construction on the finance of electric power company, are discussed. In addition, the economic features of nuclear power generation are compared with those of thermal power generation through the analysis of financial statements. Finally, support policies for nuclear power required in deregulation of electric utilities are examined in terms of fairness of competition and security of electricity supply

  1. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.; Freie Univ. Berlin

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2)=140 ns, Isup(π)=7/2 + isomer in 125 Xe. The g-factor is g=+0.264(10) and the quadrupole coupling constant e 2 Qq/h=122.1(6) MHz at 552 K. The lifetime of the Isup(π)=11/2 + state was measured to be tau=11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-pulse-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q=1.40(15) b yielding an electric field gradient (efg) eq=3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  2. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2) = 140 ns, Isup(π) = 7/2 + isomer in 125 Xe. The g-factor is g = +0.264(10) and the quadrupole coupling constant e 2 Qq/h = 122.1(6) MHz at 552 K. The lifetime of the Isup(π) = 11/2 + state was measured to be tau = 11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-plus-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q = 1.40(15) b yielding an electric field gradient (efg) eq = 3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  3. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kortschot, R. J.; Bakelaar, I. A.; Erné, B. H.; Kuipers, B. W. M., E-mail: B.W.M.Kuipers@uu.nl [Van ' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2014-03-15

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10{sup −2} to 10{sup 7} Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  4. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots.

    Science.gov (United States)

    Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2014-03-01

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  5. Second generation measurement of the electric dipole moment of the electron using trapped ThF+ ions

    Science.gov (United States)

    Ng, Kia Boon; Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matthew; Ni, Yiqi; Ye, Jun; Cornell, Eric

    2016-05-01

    ThF+ has been chosen as the candidate for a second generation measurement of the electric dipole moment of the electron (eEDM). Compared to the current HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states. Here, we present progress of our experimental setup, preliminary spectroscopic data of multi-photon ionization, and discussions of new features in ion trapping, state preparation and population readout.

  6. Regulation of unbalanced electromagnetic moment in mutual loading systems of electric machines of traction rolling stock and multiple unit of mainline and industrial transport

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-12-01

    Full Text Available Purpose. The research data are aimed to identify the regulatory principles of unbalanced electromagnetic moment of mutually loaded electric machines of traction rolling stock and multiple unit of main and industrial transport. The purpose of this study is energy efficiency increase of the testing of traction electric machines of direct and pulse current using the improvement methods of their mutual loading, including the principles of automatic regulation of mutual loading system. Methodology. The general theoretical provisions and principles of system approach to the theoretical electric engineering, the theory of electric machines and theoretical mechanics are the methodological basis of this research. The known methods of analysis of electromagnetic and electromechanical processes in electrical machines of direct and pulse current are used in the study. Methods analysis of loading modes regulation of traction electric machines was conducted using the generalized scheme of mutual loading. It is universal for all known methods to cover the losses of idling using the electric power. Findings. The general management principles of mutual loading modes of the traction electric machines of direct and pulse current by regulating their unbalanced electric magnetic moment were developed. Regulatory options of unbalanced electromagnetic moment are examined by changing the difference of the magnetic fluxes of mutually loaded electric machines, the current difference of electric machines anchors, the difference of the angular velocities of electric machines shafts. Originality. It was obtained the scientific basis development to improve the energy efficiency test methods of traction electric machines of direct and pulse current. The management principles of mutual loading modes of traction electric machines were formulated. For the first time it is introduced the concept and developed the principles of regulation of unbalanced electromagnetic moment in

  7. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  8. External meeting - Geneva University: Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 ? Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 16th May  2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Proposal to measure the muon electric dipole moment with a compact storage ring at PSI by Dr. Thomas Schietinger, PSI - Villigen In the Standard Model, lepton electric dipole moments (EDM) arise from the CP-violating phase in the CKM matrix at the three-loop level only, resulting in values that are many orders of magnitude below the sensitivity of current and future experiments. Lepton EDMs therefore offer an excellent opportunity to discover unambiguous evidence for new CP-violating phases, as called for by the baryon-antibaryon asymmetry of the universe. The muon EDM is one of the least constrained fundamental properties in elementary particle physics. We propose to utilize the large available flux of polarized muons at PSI to search for a muon EDM ...

  9. Measurements of nuclear polarization and nuclear magnetic moment of 170Tm in 170Tm:SrF2 by optical pumping

    International Nuclear Information System (INIS)

    Shimomura, K.

    1988-01-01

    Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)

  10. Rising to the challenge - the changing face of Nuclear Electric

    International Nuclear Information System (INIS)

    Hawley, R.

    1994-01-01

    When the electricity generation industry in the United Kingdom was privatised in 1989, the Government decided to withdraw the nuclear generating capacity from the programme. Nuclear power's poor track record on construction, operating and production costs and apparently crippling liabilities for decommissioning and radioactive waste management made it an unlikely success on the financial markets. Nuclear Electric was then formed, a public limited company, wholly owned by the Government to run England's and Wales' nuclear power industry. In four years since then the management and staff of Nuclear Electric have worked hard to improve performance; output has risen, costs are down and productivity has doubled. The Sizewell B power station has been completed remarkably ahead of time and within budget. It is argued that, with further improvements, Nuclear Electric may also be profitably privatised in the future should the Government wish it. (UK)

  11. The cost of nuclear electricity: economic values and political calculations

    International Nuclear Information System (INIS)

    Stauffer, T.

    1985-01-01

    The subject is covered in sections: introduction (monetary inflation; US-style rate-base formula; cost escalation); electricity generation costs (rate-base calculation formula; regulatory versus economic costs; inflationary case; cost-of-service rates versus inflation; first year electricity costs); rate shock (A. comparison with oil; B. nuclear case; C. comparison with coal/nuclear system; vintaged electricity costs versus growth and inflation); conclusions. (U.K.)

  12. One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory

    International Nuclear Information System (INIS)

    Li Jian; Yao, J.M.; Meng Jie; Arima, Akito

    2011-01-01

    The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)

  13. Zeeman interaction in the Δ31 state of HfF+ to search for the electron electric dipole moment

    Science.gov (United States)

    Petrov, A. N.; Skripnikov, L. V.; Titov, A. V.

    2017-08-01

    A theoretical study devoted to suppression of magnetic systematic effects in HfF+ cation for an experiment to search for the electron electric dipole moment is reported. The g factors for J =1 , F =3 /2 , | MF|=3 /2 hyperfine levels of the Δ31 state are calculated as functions of the external electric field. The minimal value for the difference between the g factors of Ω -doublet levels, Δ g =3 ×10-6 , is attained at the electric field 7 V/cm. The body-fixed g factor, G∥, was obtained both within the ab initio electronic structure calculations and with our fit of the experimental data [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683]. For the electronic structure calculations we used a combined scheme to perform correlation calculations of HfF+, which includes both the direct four-component all-electron and generalized relativistic effective core potential approaches. The electron correlation effects were treated using the coupled cluster methods. The calculated value G∥=0.0115 agrees very well with the G∥=0.0118 obtained with our fitting procedure. The calculated ab initio value D∥=-1.53 a.u. for the molecule-frame dipole moment (with the origin in the center of mass) is in agreement with the experimental datum D∥=-1.54 (1 ) a.u. [H. Loh, Ph.D. thesis, Massachusetts Institute of Technology, 2006.].

  14. Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment

    International Nuclear Information System (INIS)

    Poluektov, Yu.M.

    2014-01-01

    The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively

  15. Nuclear moments of inertia inferred from wobbling motion in the triaxial superdeformed nuclei

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi

    2003-01-01

    The three moments of inertia associated with the wobbling mode built on the triaxial superdeformed states in Lu-Hf region are investigated by means of the cranked shell model plus random-phase approximation to the configurations with aligned quasiparticle(s). The result indicates that it is crucial to take into account the direct contribution to the moments of inertia from the aligned quasiparticle(s)so as to realize T x > T y in positive-γ shapes. (author)

  16. Additional comments on 'A proposed method for measuring the electric dipole moment of the neutron using acceleration in an electric field gradient and ultracold neutron interferometry'

    CERN Document Server

    Lamoreaux, S K

    1999-01-01

    We have previously (Lamoreaux and Golub, Los Alamos archive (xxx) nucl-ex/9901007vs, Nucl. Instr. and Meth., 433 (1999)) presented an analysis, using classical, semi-classical and quantum mechanical tehniques, of the proposal of Freedman et al., (Nucl. Instr. and Meth., A 396 (1997) 181) to search for the neutron electric dipole moment by the use of acceleration of ultracold neutrons in an inhomogeneous electric field followed by amplification of the resulting displacement by several methods involving spin independent interactions (gravity) or reflection from curved (spin independent) mirrors. Following the appearance of some more recent comments (Peshkin, Los Alamos archive (xxx) nucl-ex/9903012 v2; Dombeck and Ringo, Nucl. Instr. and Meth., A 433 (1999)) it now seems reasonable to publish a revised version of our quantum mechanical treatment (Section 2 B of ) with a more detailed exposition.

  17. Recent advances in nuclear powered electric propulsion for space exploration

    International Nuclear Information System (INIS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  18. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  19. Mine... electricity... reprocessing... Nuclear energy, how and why? Second edition

    International Nuclear Information System (INIS)

    Grisez, F.

    2003-01-01

    This book makes a short and consistent synthesis of nuclear power: how electricity can be generated by braking up atoms and what is the advantage of this mean with respect to the use of fossil fuels or renewable energy sources. Beside the text, this book contains transparency-like illustrations which give a general overview of the civil nuclear domain. Content: 1 - introduction; 2 - radioactivity and nuclear safety: natural and artificial atoms, radioactivity, exposure, nuclear safety; 3 - nuclear fuel cycle: uranium mines and yellow cake, uranium conversion, uranium enrichment, fuel fabrication, nuclear power plants, reprocessing, recycling and conditioning, wastes, statuses, needs, companies and industrial capacities, R and D; 4 - energy consumption; 5 - what energy sources for even more electricity: available energies, environmental impact and accidents, costs of electricity, energy reserves, summary, opinions and conclusions. (J.S.)

  20. Detailed discussion of a linear electric field frequency shift induced in confined gases by a magnetic field gradient: Implications for neutron electric-dipole-moment experiments

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Golub, R.

    2005-01-01

    The search for particle electric dipole moments (EDM's) is one of the best places to look for physics beyond the standard model of electroweak interaction because the size of time reversal violation predicted by the standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymmetry. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We develop a general analytical approach to describe a systematic effect recently observed in an electric dipole moment experiment using stored particles [J. M. Pendlebury et al., Phys. Rev. A 70, 032102 (2004)]. Our approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation function, are in good agreement with both the limiting cases studied in recent work that employed a numerical and heuristic analysis. Our general approach explains some of the surprising results observed in that work and displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously

  1. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.

    Science.gov (United States)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan

    2017-02-14

    The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  2. Quantum Dynamics in Atomic-Fountain Experiments for Measuring the Electric Dipole Moment of the Electron with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    B. J. Wundt

    2012-11-01

    Full Text Available An improved measurement of the electron electric dipole moment (EDM appears feasible using ground-state alkali atoms in an atomic fountain in which a strong electric field, which couples to a conceivable EDM, is applied perpendicular to the fountain axis. In a practical fountain, the ratio of the atomic tensor Stark shift to the Zeeman shift is a factor μ∼100. We expand the complete time-evolution operator in inverse powers of this ratio; complete results are presented for atoms of total spin F=3, 4, and 5. For a specific set of entangled hyperfine sublevels (coherent states, potential systematic errors enter only as even powers of 1/μ, making the expansion rapidly convergent. The remaining EDM-mimicking effects are further suppressed in a proposed double-differential setup, where the final state is interrogated in a differential laser configuration, and the direction of the strong electric field also is inverted. Estimates of the signal available at existing accelerator facilities indicate that the proposed apparatus offers the potential for a drastic improvement in EDM limits over existing measurements, and for constraining the parameter space of supersymmetric (SUSY extensions of the Standard Model.

  3. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  4. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    International Nuclear Information System (INIS)

    Sakai, Masamichi

    2016-01-01

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.

  5. Comparison of electric dipole moments and the Large Hadron Collider for probing CP violation in triple boson vertices

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Wells, James D.

    2009-01-01

    CP violation from physics beyond the standard model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP-violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the LHC. Despite triple boson CP-violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give an example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.

  6. Methods, analysis, and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide

    Science.gov (United States)

    Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Spaun, B.; Vutha, A. C.; West, A. D.; West, E. P.; ACME Collaboration

    2017-07-01

    We recently set a new limit on the electric dipole moment of the electron (eEDM) (J Baron et al and ACME collaboration 2014 Science 343 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many charge-parity-violating extensions to the standard model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.

  7. Comparison of electric dipole moments and the Large Hadron Collider for probing CP violation in triple boson vertices

    CERN Document Server

    Jung, Sunghoon

    2009-01-01

    CP violation from physics beyond the Standard Model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the Large Hadron Collider (LHC). Despite triple boson CP violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.

  8. Direct evaluation of electrical dipole moment and oxygen density ratio at high-k dielectrics/SiO2 interface by X-ray photoelectron spectroscopy analysis

    Science.gov (United States)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-04-01

    The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.

  9. Nuclear reactors for electric power generation

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1987-01-01

    In this article the operation of a nuclear power plant, the status quo about the application of nuclear energy in the world are explained, the subjects of discussion between supporters and adversaries nowadays and the prospects for prolonged usage of nuclear power are summarized, viewed from the actual technical possibilities. 2 refs.; 7 figs.; 2 tabs

  10. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  11. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  12. Nuclear structure and magnetic moment of the unstable 12B-12N mirror pair

    International Nuclear Information System (INIS)

    Zheng Yongnan; Zhou Dongmei; Yuan Daqing; Zuo Yi; Fan Ping; Xu Yongjun; Zhu Jiazheng; Wang Zhiqiang; Luo Hailong; Zhang Xizhen; Zhu Shengyun; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.

    2010-01-01

    Magnetic moments of the A=12 unstable mirror pair nuclides 12 B and 12 N have been measured by the β-NMR technique. The experimentally measured magnetic moments are μ( 12 B)=1.00(17)μ N and μ( 12 N)=0.4571(1)μ N . The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12 B and 12 N. The calculation yields μ( 12 B)=0.929μ N and μ( 12 N)=0.452μ N and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12 B and 12 N. (authors)

  13. Fermion electric dipole moments induced by P- and T-odd WWγ interactions in the minimal supersymmetric standard model and multi-Higgs-boson model

    International Nuclear Information System (INIS)

    West, T.H.

    1994-01-01

    We calculate fermion electric dipole moments generated by P- and T-odd WWγ interactions in the supersymmetry and multi-Higgs-boson models without using an approximation first introduced by Marciano and Queijeiro. In essence, this approximation consists of ignoring the details of the high energy physics responsible for the W electric dipole moment. For the minimal supersymmetry model, our more exact results are roughly three times those obtained from the simplest application of the above-mentioned approximation for gaugino masses larger than m W . However, if the gaugino masses are approx-lt m W , our results are less than would be expected from the Marciano-Queijeiro estimate. In part, because of this suppression, we discover that the experimental bounds on d n place no restrictions on either the allowed values of d W or on the permitted masses of the minimal supersymmetry model. This contradicts the findings of Vendramin who used the Marciano-Queijeiro results to deduce such prohibited regions of parameter space and mildly improves the prospects of observing a nonzero W-boson electric dipole moment in accelerator experiments. In the case of the multi-Higgs-boson model, we again find fermion electric dipole moments that are three times those expected from a simple application of the Marciano-Queijeiro technique. In addition, when this result is combined with a complete two-loop calculation of the W electric dipole moment, we find that the fermion electric dipole moments generated in this way are approximately 30 times those expected from a previous calculation by He and McKellar

  14. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  15. Nuclear Power Plants in a Competitive Electricity Market

    International Nuclear Information System (INIS)

    Jankauskas, V.

    2002-01-01

    Electricity demand is growing in the world by an average rate of 3% and, according to the International Energy Agency, is going to keep this pace of growth for the 1st quarter of the 21st century. At the same time, the role of the nuclear in the world energy mix is diminishing, and in 2020 only 9% of the world electricity will be produced at the nuclear plants versus 17% in 2000. The main reasons for the nuclear power diminishing share in the world market are not environmental or safety problems, as one may assume, but technical and economical. Long construction time, high capital cost, huge liabilities connected with the spent nuclear fuel and radioactive waste treatment, storage and final disposal are the main factors restricting the further growth of the nuclear power. Nevertheless, in the liberalized markets (U.K., Germany, Scandinavian countries) nuclear power plants are operating rather successfully. In a short run nuclear plants may become very competitive as they have very low short-run marginal costs, but in the long run they may become very in competitive. The Ignalina NPP plays the dominant ro]e in the Lithuanian electricity market, producing more than 75% of the total domestic electricity. It produces the cheapest electricity in Lithuania, mostly due to its higher availability, than the thermal power plants. The price of electricity sold by Ignalina is also lower as it does not cover all costs connected with the future decommissioning of the plant, spent fuel storage and final disposal. If at least part of this cost were included into the selling price, Ignalina might become highly competitive in a liberalised electricity market. As the Lithuanian Electricity law requires to deregulate electricity. generation prices, these prices should be set by the market. (author)

  16. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  17. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  18. The nuclear power electricity an opportunity for Mexico. Final report

    International Nuclear Information System (INIS)

    Fernandez de la Garza, R.; Garcia, C. F.; Trejo R, S.; Zazueta R, T.; Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.

    2009-01-01

    Inside this document the outstanding information is presented included in the report that develops the technical, financial, environmental and social aspects to consider for the incorporation from a new power plant to the national interconnected system, which was elaborated and presented to the nuclear power plant of Laguna Verde in August of 2009. The treated topics are: the nuclear power electricity, the experience of Laguna Verde, advanced reactors to consider for a new nuclear power plant, environmental aspects, costs of a new nuclear power plant, financing, socioeconomic impact. This work was prepared to evaluate the feasibility of building a new unit of nuclear power plant in Mexico before the evident resurgence at world level of use of nuclear energy to generate electricity. It is important that Mexico maintains inside its development programs and construction, to the nuclear power electricity like a viable and sure alternative of generating electricity, being able to take advantage of experience won with the operation of Laguna Verde, allowing that the country has diverse technologies for electricity generation and have technical capacity to manage the tip technology. (Author)

  19. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  20. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    Energy Technology Data Exchange (ETDEWEB)

    Talman, Richard [Cornell Univ., Ithaca, NY (United States)

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)