WorldWideScience

Sample records for nuclear medicine technology

  1. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  2. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  3. Medical isotopes and emerging nuclear medicine technologies

    International Nuclear Information System (INIS)

    Urbain, J-L.

    2010-01-01

    This presentation discusses medical isotopes and the emerging nuclear medicine technologies as well as the impact of Chalk River reactor shutdown on patient management and diseases. It outlines the chain of supply of isotopes across the globe and isotope shortage impact. It recommends the following mitigating strategies: modifications of scanning techniques, adjustment of patient scheduling, optimization of Tc-99m generator use, patient prioritization, alternate procedures and PET scanning.

  4. Nuclear Medicine.

    Science.gov (United States)

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  5. New developments in nuclear medicine technology

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.J.

    2000-01-01

    During the past few years, there have been new impulses in the development of a number of technologies employed in Nuclear Medicine imaging. These include new scintillation materials, the way of detecting the scintillation light, and completely novel methods to detect gamma rays by means of semiconductor detectors. In addition to combined instrumentation that can be used for SPECT and PET, already in clinical use, combined scintigraphic and anatomic imaging devices are now becoming available, for example SPECT/CT or PET/CT. This review article describes the most important of the new components, part of which have already entered product development and part of which are still in the research phase. The review focus on the employment of modern semiconductor detectors in Nuclear Medicine. (orig.) [de

  6. Nuclear Medicine Technology Undergraduate Research Methods.

    Science.gov (United States)

    Nielsen, Cybil J

    2017-12-22

    Introduction: The purpose of this article is to introduce nuclear medicine technology (NMT) educators to a method of incorporating research methodologies into the curriculum. Methods: The research methodology in the NMT program at Indiana University (IU) is taught in five steps (1. Introduction to research articles and statistics 2. Mock project and individual project design 3. Data collection 4. Writing the research paper 5. Presenting the abstract and mentoring new students). These steps could be combined for programs of shorter length or with credit hour restrictions. Results: All IU NMT students (100%) presented their research abstracts as part of a continuing education program for technologists. Seventeen of twenty-five (68%) presented their abstracts at a regional professional meeting. Six of twenty-five (24%) presented their research abstracts at a national professional meeting. Three of those six (50%) received travel grants. Two students submitted their research for publication and one was successful. Conclusion: The goal of incorporating a research methodology program into the nuclear medicine program should be to introduce undergraduates to the research process and instill excitement for new technologists to continue participation in research throughout their career. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    Science.gov (United States)

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  8. Frontiers in nuclear medicine and technology. Editorial

    NARCIS (Netherlands)

    Lemahieu, I; Viergever, M.A.; van Rijk, P.P.; Dierckx, R.A.

    This special issue of Computerized Medical Imaging and Graphics contains the full length papers of invited oral communications presented at the symposium entitled: “Frontiers in Nuclear Medicine Technology” held at the Studie Centrum voor Kernenergie — Centre d'Etude de l'Energie Nucléaire (SCK —

  9. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  10. Utilization of nuclear technology in medicine: MINT and USM cooperation

    International Nuclear Information System (INIS)

    Ainul Hayati Daud

    1997-01-01

    Cooperation in the medicial application of nuclear technology between MINT and USM was first started in early 1990 under the technical assistance and cooperation program of International Atomic Energy Agency (IAEA). The cooperation was further strengthened through the Bilateral Technical assistance program of Malaysia-Australia. Under the cooperation, projects related to nuclear technology were implemented and assistance received was in the form of expert service, equipment and training. Several pharmaceutical kits were developed and used for the radiotherapy and radiodiagnotic. The cooperation has led to the establishment of nuclear medicine service center at hospital USM and tissue banks, one at Hospital USM and other at MINT. On the 29 April 1997, a MoU was signed between MINT and USM with the objective to widen the scope of the cooperation, to include human resource developement and commercialization of R and D

  11. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  12. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  13. The application of nuclear medicine technologies to drug discovery

    International Nuclear Information System (INIS)

    Gibson, R.E.; Burns, H.D.; Solomon, H.F.

    1990-01-01

    Radiopharmaceutical chemistry and nuclear medicine technology offer unique tools for drug discovery which yield data on test animals non-invasively or provide data on the pharmacology of a drug under physiological conditions in relevant models, including man. Imaging modalities also allow one to use an animal as its own control for subsequent drug tests. Specific examples in which the authors have used these technologies are (1) the examination of a drug delivery system for a lipophilic drug labeled with C-11; (2) the determination of drug delivery to the CNS in a stroke model using a C-11 labeled analogue of a drug with potential of reducing damage to stroke victims; and (3) evaluation of a drug effect on physiological parameters such as oxygen metabolism in the CNS. Drug candidates can be studied via isotopic substitution with isotopes such as C-11; analogues which are labeled with gamma-emitting isotopes may be used to provide information on relevant disease processes, e.g. changes in receptor number and/or function, or provide useful data on drug interactions using in vivo competition studies

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  15. Nuclear Medicine Technology: A Suggested Two-Year Curriculum Manual.

    Science.gov (United States)

    Hunter, David

    This curriculum guide prescribes an educational program for training nuclear medicine technologists. Following a brief section on program development, the curriculum is both outlined and presented in detail. For each of the 44 courses, the following information is given: (1) sequential placement of the course in the curriculum; (2) course…

  16. Technologists for Nuclear Medicine

    Science.gov (United States)

    Barnett, Huey D.

    1974-01-01

    Physicians need support personnel for work with radioisotopes in diagnosing dangerous diseases. The Nuclear Medicine Technology (NMT) Program at Hillsborough Community College in Tampa, Florida, is described. (MW)

  17. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  18. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  2. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  3. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  5. Applications of nuclear technology in industry, environment and medicine

    International Nuclear Information System (INIS)

    Vera Ruiz, H.

    1998-01-01

    This article contains information on different applications of nuclear technology, such as: sterilization of single use medical products, radiation serialization of pharmaceutical products,radiation treatment of disposable products, in Europe, radiation treatment of micro-titer plates, several crosslinking processes, radiation vulcanization of natural rubber latex, irradiation of polymers to obtain dressings for burns, ulcers bedsores and skin grafts, production of ground water with accelerated electrons in combination with accelerated electrons in combination with ozone, radiation treatment of hospital wastes. (S. Grainger)

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  7. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  8. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  9. Nuclear medicine technology. Review questions for the board examinations. 4. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ramer, Karen [Ochotnicky Partners s.r.o., Marianka (Slovakia); Mantel, Eleanor [Pennsylvania Univ., Hammonton, NJ (United States). Nuclear Medicine/Molecular Imaging; Reddin, Janet S.; Alavi, Abass [Pennsylvania Univ., Philadelphia, PA (United States). Radiology/Nuclear Medicine; Cheng, Gang [Philadelphia VA Medical Center, PA (United States). Radiology

    2013-07-01

    The only comprehensive exam preparation guide on the market. Includes a mock registry exam. Provides expanded coverage of positron emission tomography and other new procedures and practices. This book prepares students and technologists for registry examinations in nuclear medicine technology by providing practice questions and answers with detailed explanations, as well as a mock registry exam. The questions are designed to test the basic knowledge required of nuclear medicine technologists, as well as the practical application of that knowledge. The topics covered closely follow the content specifications and the components of preparedness as published by the certification boards. This 4th edition includes expanded coverage of positron emission tomography and other new procedures and practices in the field of nuclear medicine and molecular imaging.

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  11. 3. Congress of the SA Society of nuclear medicine: Technetium-99m technology

    International Nuclear Information System (INIS)

    Beyers, M.

    1988-08-01

    The Atomic Energy Corporation of SA Limited have been engaged in the manufacture of radioisotopes since 1967, shortly after the SAFARI-1 reactor at Pelindaba was commissioned. Since then the use of radioisotopes in South Africa has grown rapidly and at present 95% of the in vivo diagnostic radioisotopes (radiopharmaceuticals) utilized in nuclear medicine are manufactured locally. Because radioisotopes are applied mainly in sophisticated chemically or mechanically processed forms, production requires not only a skilled production team, but also the appropriate facilities for the manufacture of high-quality products which comply with the necessary safety standards. Compliance with such standards is especially important for the routine production of radiopharmaceuticals for use in nuclear medicine. Over the past 20 years technetium-99m has achieved a dominant position among the diagnostic tools in modern nuclear medicine.The scope of nuclear medicine is expanding continuously and its future lies primarily in the development of new organspecific technetium-99m radiodiagnostic agents. Many improvements and changes have been made to Tc-99m generators, the major source of Tc-99m, since they were introduced to nuclear medicine in the late 1950's. The new Peltek-F sterile Tc-99m generator developed by the Isotope Production Centre is a symbol of progress made. In order to commemorate the launching of the new Peltek-F technetium-99m generator during August 1988 it was decided to publish six papers that were presented at the Third Congress of the Society of Nuclear Medicine held at Bloemfontein during the period 15 - 17 August 1988 by members of the Isotope Production Centre. This will serve as a useful reference on various aspects of technetium-99m technology and will stimulate the use of this product as well as new research in this field

  12. Biological aspects of nuclear technology: nuclear technology potent medicine against malignancy care required to guard against harmful aspects

    International Nuclear Information System (INIS)

    Jain, V.K.

    2005-01-01

    Nuclear technology while producing energy is also used to produce Radioisotopes, so called artificial radioactivity. Radiations emitted by radioisotopes are very helpful in the diagnosis and treatment of malignant diseases. The subject of Radiation Biology developed with the need to study the effects of radiations on specific organs and areas of the human body. Along with the radioisotopes, instruments like Scanners, Cameras and Teletherapy machines were also developed to scan, map, deliver, and treat the specific parts of the body. A very large number of radioisotopes are now made, many of which are used for labeling compounds (radiopharmaceuticals) for targeting specific body organs in the sense that they tend to concentrate in those organs. Thus by scanning the organ, its condition is mapped or seen. This can then be treated by suitable amounts of the radioisotope delivered in a specific manner. Thus new disciplines of Nuclear Medicine and Medical Physics, developed as it became necessary to mark the cancerous area and calculate precisely the dose to be delivered and map its distribution. The other side of radioisotopes applications is their harmful effects on biological material which are also well known and well documented. Maximum limits of dose have been prescribed by National and International Organs to safeguard the health of the users. (author)

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is ... this time is PET/MRI. top of page What are some common uses of the procedure? Children's ( ...

  14. Proceedings of seventh symposium on sharing of computer programs and technology in nuclear medicine, computer assisted data processing

    International Nuclear Information System (INIS)

    Howard, B.Y.; McClain, W.J.; Landay, M.

    1977-01-01

    The Council on Computers (CC) of the Society of Nuclear Medicine (SNM) annually publishes the Proceedings of its Symposium on the Sharing of Computer Programs and Technology in Nuclear Medicine. This is the seventh such volume and has been organized by topic, with the exception of the invited papers and the discussion following them. An index arranged by author and by subject is included

  15. Proceedings of seventh symposium on sharing of computer programs and technology in nuclear medicine, computer assisted data processing

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.Y.; McClain, W.J.; Landay, M. (comps.)

    1977-01-01

    The Council on Computers (CC) of the Society of Nuclear Medicine (SNM) annually publishes the Proceedings of its Symposium on the Sharing of Computer Programs and Technology in Nuclear Medicine. This is the seventh such volume and has been organized by topic, with the exception of the invited papers and the discussion following them. An index arranged by author and by subject is included.

  16. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  17. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  19. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  20. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to ... otherwise, your child may resume his/her normal activities after the nuclear medicine scan. If the child ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... patient story here Images × Image Gallery Radiologist and patient consultation. View full size with caption Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT (Computed Tomography) Epilepsy Images related to Children's (Pediatric) Nuclear Medicine ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... function of the thyroid gland. top of page How does the nuclear medicine procedure work? With ordinary ... area of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed ... the thyroid gland. top of page How does the nuclear medicine procedure work? With ordinary x-ray ...

  14. A scheme for the audit of scientific and technological standards in clinical nuclear medicine

    International Nuclear Information System (INIS)

    Perkins, A.C.; Jarritt, P.H.

    2002-01-01

    Aim: Audit is the process whereby the quality of a service is monitored and optimised. It forms an essential component of the quality assurance process, whether by self-assessment or by external peer review. In the UK the British Nuclear Medicine Society (BNMS) has undertaken external organisational audit of departments providing clinical nuclear medicine services. This work aimed to develop a more thorough and service specific process for the audit of scientific and technological standards in nuclear medicine. Materials and Methods: The audit process has been implemented using written audit documents to facilitate the audit procedure. A questionnaire forms part of the formal documentation for audit of the scientific and technical standards of a clinical service. Scientific and technical standards were derived from a number of sources including legal requirements, regulatory obligations, notes for guidance, peer reviewed publications and accepted good clinical practice (GCP). Results: The audit process graded the standards of an individual department according to legal or safety requirements (Grade A), good practice (Grade B) and desirable aspects of service delivery (Grade C). The standards have been allocated into eight main categories. These are: Instrumentation; Software and data protection; Electrical Safety; Mechanical Safety; Workstation Safety; The Control of Substances Hazardous to Health (COSHH); Radiation Protection; Scientific and Technical staffing levels. During the audit visit a detailed inspection of clinical and laboratory areas and department written documentation is also necessary to validate the data obtained. Conclusion: The printed scheme now provides a means for external audit or self-assessment. There should be evidence of a well-organised and safe environment for both patients and staff. Health and Safety legislation requires written local rules and these records should be available to demonstrate the standard of service provision. Other

  15. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  16. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  17. Advanced technologies of cardiovascular nuclear medicine and their evaluation in clinical practice

    International Nuclear Information System (INIS)

    Murata, Hajime; Iio, Masahiro; Toyama, Hinako.

    1981-01-01

    Currently available advanced methods of cardiovascular nuclear medicine for the diagnosis of ischemic heart disease were studied. The methods included the multigate method by a large capacity gamma camera-computer (128 KW memory with multilayer disc) system which made it possible to acquire the data of either the first pass study or the equilibrium study in ''image mode''. Analyzed data were displayed on a color CRT using our moving image system (MIS) and dynamic image thus obtained serve to help for the high sensitive observation of the regional wall motion as well as the global function of the ventricles. Myocardial tomography by a 7 pinhole collimator designed by us was also reported. The myocardial tomogram obtained was proven to show more sensitivity than two dimensional myocardial scan by the conventional collimator to detect smaller lesion and the lesions at the inferior or posterior wall of the left ventricle. The cardiovascular nuclear medicine with recent advanced technologies was thought to be sensitive and useful method for the diagnosis of the ventricular performance and the myocardial ischemia. (author)

  18. Development of an in vitro laboratory manual for nuclear medicine technology students

    International Nuclear Information System (INIS)

    Meyers, A.

    1989-01-01

    This study evaluated existing in vitro education materials in qualitative and quantitative parameters that currently exist to educate potential clinicians of nationally accredited nuclear medicine programs. A review of over 300 articles, texts, and manuals pertaining to in vitro nuclear medicine procedures clearly demonstrated that no in vitro laboratory manual for undergraduate students presently exited. Every nuclear medicine program director in the United States was surveyed. They were asked for their overall philosophy in terms of developing an in vitro manual and requested to evaluate the significant of 22 general principles/concepts and 34 specific laboratory testing procedures. From the response to the survey, an in vitro nuclear medicine manual was created and appended to the study. The manual consists of lecture and study material, chapter reviews, and laboratory assignments and exercises

  19. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  20. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop ... Nuclear medicine scans are typically used to help ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ... medicine will interpret the images and send a report to your referring physician. top of page What ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during ... Nuclear medicine scans are typically used to ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation ...

  6. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help ... children. epilepsy . location, anatomy and function of the thyroid gland. top of page How does the nuclear ...

  8. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  9. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... in the body. jaundice in newborns and older children. epilepsy . location, anatomy and function of the thyroid gland. ... General Nuclear Medicine Children's (Pediatric) CT (Computed Tomography) Epilepsy Images related to Children's (Pediatric) Nuclear Medicine Videos related to Children's (Pediatric) ...

  11. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  12. Nuclear technology

    International Nuclear Information System (INIS)

    1983-03-01

    This report examines nuclear technology in Canada, with emphasis on Quebec, as a means of revitilizing industry. The historical, present day, and future states of Atomic Energy of Canada Limited are examined. Future research programs are discussed in greatest detail. These range from disposal of porcine wastes to new applications for electricity to nuclear medical techniques (to cite only a few examples). The executive summary is written in English. (23 fig., 16 tab.)

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  15. Your Radiologist Explains Nuclear Medicine

    Science.gov (United States)

    ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  16. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  17. Nuclear Medicine in China

    International Nuclear Information System (INIS)

    Jin, S.

    1998-01-01

    Nuclear Medicine in China was established in 1956, when the first course, Biomedical Applications of Isotopes, was offered in our country by the Peking Union Medical College (PUMC). In 1958, several courses in Clinical Nuclear Medicine brought up the first generation of Nuclear Medicine physicians in China. 99m Tc and 113m In generators were supplied in 1972. The first gamma camera was imported in 1972 and the first homemade gamma camera was installed in 1977. The Chinese Journal of Nuclear Medicine commenced publication in 1981. The first single photon emission computed tomography (SPECT) camera was imported in 1983. At present, there are 800 Nuclear Medicine departments in China with a total of 6,000 staff. Beijing and Shanghai each have a cyclotron of 30 MeV, imported from Belgium, consequently gallium-68, thallium-201, indium-111, iodine-123 are all available for production. There is currently one operating PET camera facility in China, in the Shandong province. A second PET/cyclotron facility is currently being developed in the Nuclear Medicine Department, Huashan Hospital, Shanghai Medical University. The most common clinical Nuclear Medicine applications are in oncological, cardiovascular, cerebrovascular and neuropsychiatric disorders

  18. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  19. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  20. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  1. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  2. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a ... In contrast, nuclear medicine procedures use a radioactive material, called a radiopharmaceutical or radiotracer, which is injected ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... its earliest stages as well as a patient’s immediate response to therapeutic interventions. Children's (pediatric) nuclear medicine ... supplements and if he or she has any allergies. Also inform your doctor of any recent illnesses ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... The exception to this is if the child’s mother is pregnant. When the examination is completed, your ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  9. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    Miller, R.F.; Middlesex Hospital, London

    1990-01-01

    Nuclear medicine has a central role to play in the diagnosis of the malignant and infectious conditions. This article reviews the role of radionuclide studies in the diagnosis of HIV-related disease. (orig./MG)

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... stool. Your child should also drink plenty of water to help flush the radioactive material from his ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... called gamma camera heads, which are encased in metal and plastic and most often shaped like a ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... computer aids in creating the images from the data obtained by the gamma camera. A probe is ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... View full size with caption Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT (Computed Tomography) ... or your insurance provider to get a better understanding of the possible charges you will incur. Web ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... stool. Your child should also drink plenty of water to help flush the radioactive material from his ... radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used ... gas via a mask, such as with a lung scan. Bladder: some exams require a catheter to ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... computer, create pictures offering details on both the structure and function of organs and tissues in your ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk ... long-term adverse effects from such low-dose exposure. For more information about safety in pediatric radiology ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... organs and tissues in your body. Hybrid imaging techniques (PET/CT, SPECT/CT and PET/MR) are ... equipment look like? The special camera and imaging techniques used in nuclear medicine include the gamma camera ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ... differently than when breathing room air or holding his or her breath. With some exams, a catheter ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... body with nuclear medicine may not be as high as with other imaging techniques, such as CT ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... examination table. Sometimes, the gamma camera heads are oriented at a 90 degree angle and placed over ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the examination table which slides in between two parallel gamma camera heads that are positioned above and ... not be as high as with other imaging techniques, such as CT or MRI. However, nuclear medicine ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... medical imaging that uses small amounts of radioactive material to diagnose and determine the severity of or ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... not experience any discomfort. When swallowed, the radiotracer has little or no taste. If inhaled, your child ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ...

  19. Nuclear Medicine Training: What Now?

    Science.gov (United States)

    Mankoff, David; Pryma, Daniel A

    2017-10-01

    Although the multidisciplinary nature of nuclear medicine (NM) and clinical molecular imaging is a key strength of the specialty, the breadth of disciplines involved in the practice of NM creates challenges for education and training. The evolution of NM science and technology-and the practice of clinical molecular imaging and theranostics-has created a need for changes in the approach to specialty training. The broader U.S. community of imaging physicians has been slow to accept this change, in good part due to historical divides between the NM and nuclear radiology (NR) communities. In this Journal of Nuclear Medicine Hot Topics discussion, we review the historical pathways to training; discuss the training needs for the modern practice of NM, clinical molecular imaging, and radionuclide therapy; and suggest a path forward for an approach to training that matches the needs of the evolving clinical specialty. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Nuclear technology in Peru

    International Nuclear Information System (INIS)

    Montoya, M.

    1993-01-01

    This book deals with the Nuclear Energy in Peru. It consists of ten chapters. In the first chapter is presented a rapid overview on nuclear science history. The second chapter describes the nuclear proliferation and the nuclear competition in South America. The nuclear organization in Peru, the Peruvian Institute of Nuclear Energy, and the main centers are described in the third chapter. The following chapters deals with peruvian advances in nuclear medicine, agriculture and food, nuclear application to industry, hydrology, earth sciences and environmental considerations. In the last chapter, the perspectives for nuclear science and technology in Peru are described from the inter institutional cooperation point of view. This book also includes appendix and bibliography. (author)

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... View full size with caption Related Articles and Media General Nuclear ... to Children's (Pediatric) Nuclear Medicine Videos related ...

  2. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  3. 2009 Mississippi Curriculum Framework: Postsecondary Nuclear Medicine Technology. (Program CIP: 51.0905 - Nuclear Medical Technology/Technologist)

    Science.gov (United States)

    Boney, Linda; Lee, Joanne; Pyles, Alice; Whitfield, Stacy

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  4. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  5. Rare earth elements in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Kodina G.E.

    2014-12-01

    Full Text Available The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  6. Publication productivity in nuclear medicine.

    Science.gov (United States)

    McKellar, Cheryl; Currie, Geoff

    2015-06-01

    Publications form the knowledge base of any profession. Patterns in professional publications provide insight into the profession's maturity and global status. To our knowledge, publication productivity in nuclear medicine technology has not been reported. A recent study on publication productivity in radiography and radiation therapy provided interesting insight; however, a sampling bias resulted in study flaws. The most productive medical radiation technologists were determined by collecting data from 7 key, international peer-reviewed journals for the medical radiation sciences over a 5-y period. A full list of the technologists' publications, for the 5-y period, was obtained using a PubMed and ResearchGate search, and the authors were analyzed. In total, 165 medical radiation technologists were identified who had published 3 or more articles between 2009 and 2013. Of these authors, 55.2% (91/165) were radiographers, 35.2% (58/165) were radiation therapists, and 9.6% (16/165) were nuclear medicine technologists. Overall, the majority of the most prolific authors were academics (104/165; 63.0%). After we applied a correction factor (the productivity per member of the registered workforce), radiography had the fewest authors publishing, compared with the relative workflow sizes. Nuclear medicine technologists demonstrated a high degree of productivity both absolutely and relatively. Consequently, nuclear medicine technologists have a productive research culture and command a large footprint within and outside the key medical radiation science journals. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  8. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  9. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  10. Nuclear technology in Canada

    International Nuclear Information System (INIS)

    1983-01-01

    This pamphlet provides a summary of the research being carried out by Atomic Energy of Canada Limited. The design and development of the CANDU type reactor are highlighted and the contribution of nuclear technology to medicine, agriculture and the Canadian economy is briefly discussed

  11. REVIEW: Nuclear medicine dosimetry

    Science.gov (United States)

    Stabin, Michael

    2006-07-01

    A brief overview is provided of the history of the development of internal dose methods for use in nuclear medicine. Basic methods of internal dosimetry and the systems that have been developed for use in nuclear medicine are described. The development of the MIRD system and the International Radiopharmaceutical Dosimetry Symposium series is outlined. The evolution of models and tools for calculating dose estimates is reviewed. Current efforts in developing more patient-specific methods, particularly for use in therapy calculations, development of small scale and microdosimetry techniques, and of relating internal radiation doses to observed biological effects are described and evaluated.

  12. Whistleblowers and nuclear medicine.

    Science.gov (United States)

    Rysavy, C F; Donald, J W

    1999-01-01

    Healthcare facilities that practice nuclear medicine are subject to federal "whistleblower" protection laws when an employee reports a potentially unsafe radiological condition. This article addresses enforcement of the applicable sections of the Atomic Energy Act and the Nuclear Regulatory Commission's regulations in order to help such facilities avoid running afoul of those laws, which can result in fines, generate civil lawsuits by the claimant, and significantly disrupt the operation of a healthcare facility.

  13. Future of nuclear medicine

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    When it comes to setting up nuclear medicine in a developing country, there is a group of people, who feel that such high technology has no place in a developing country. RIA is likely to remain the method of choice for the research laboratory. The use of radioisotopic label has many advantages compared to the use of an enzyme marker. Generally, iodination is simpler than the preparation of an enzyme labelled substance, especially since there has been no agreement as to which enzyme is best for substances as small as steroids or a large as viruses. In addition, there may be some change in the configuration of the enzyme or the substance to be labelled during the conjugation procedure. Monoclonal antibodies can provide virtually unlimited amounts of homogenous antibodies against a specific antigenic site. The heterogeneous antibodies are more likely to provide more sensitive assays than the monoclonal antibodies, although assays employing the latter are likely to be more specific. The optimal choice of the antiserum may depend on whether sensitivity or specificity is required for the assays

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  15. Nuclear medicine in pediatrics

    International Nuclear Information System (INIS)

    Gumplova, H.

    1982-01-01

    The methods of nuclear medicine are outlined used for examining children. The problems are discussed of children's exposure in isotope methods, diagnostic localization methods, in central nervous system examinations, skeleton, hematopoietic organs, gastrointestinal tract, respiratory organs, blood circulation system, and thyroid examinations. (J.B.)

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... The teddy bear denotes child-specific content. Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ...

  17. Nuclear medicine imaging techniques

    NARCIS (Netherlands)

    Noordzij, Walter; Glaudemans, Andor W.J.M.

    2015-01-01

    Nuclear medicine is a rapidly developing field which focuses on the imaging of physiological processes and the evaluation of treatment of specific diseases. It involves the use of radiopharmaceuticals for both purposes. Different radiopharmaceuticals have different kinetics and can therefore be used

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  19. Nuclear medicine in obstetrics

    International Nuclear Information System (INIS)

    Amaral, L.B.D.; Pinto, J.C.M.; Linhares, E.

    1981-01-01

    The possible deleterious effects from the exposition to radiation in the field of obstetrics are studied. The radiological protection since the first week of development until a mature fetus is discussed. The use of nuclear medicine in the diagnostic and treatment in obstetrics is studied. (M.A.C.) [pt

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... about radiology? Share your patient story here Images × ... Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT (Computed Tomography) ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  2. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  3. The opinions of radiographers, nuclear medicine technologists and radiation therapists regarding technology in health care: a qualitative study.

    Science.gov (United States)

    Aarts, Sil; Cornelis, Forra; Zevenboom, Yke; Brokken, Patrick; van de Griend, Nicole; Spoorenberg, Miriam; Ten Bokum, Wendy; Wouters, Eveline

    2017-03-01

    New technology is continuously introduced in health care. The aim of this study was (1) to collect the opinions and experiences of radiographers, nuclear medicine technologists and radiation therapists regarding the technology they use in their profession and (2) to acquire their views regarding the role of technology in their future practice. Participants were recruited from five departments in five hospitals in The Netherlands. All radiographers, nuclear medicine therapists and radiation therapists who were working in these departments were invited to participate (n = 252). The following topics were discussed: technology in daily work, training in using technology and the role of technology in future practice. The recorded interviews were transcribed verbatim and analysed using open and axial coding. A total of 52 participants (57.7% radiographer) were included, 19 men and 33 women (age range: 20-63). Four major themes emerged: (1) technology as an indispensable factor, (2) engagement, support and training in using technology, (3) transitions in work and (4) the radiographer of the future. All participants not only value technological developments to perform their occupations, but also aspects such as documentation and physical support. When asked about the future of their profession, contradictory answers were provided; while some expect less autonomy, others belief they will get more autonomy in their work. Technology plays a major role in all three occupations. All participants believe that technology should be in the best interests of patients. Being involved in the implementation of new technology is of utmost importance; courses and training, facilitated by the managers of the departments, should play a major role. Only when a constant dialogue exists between health care professionals and their managers, in which they discuss their experiences, needs and expectations, technology can be implemented in a safe and effective manner. This, in turn, might

  4. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  5. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  6. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Sharma, Anshu Rajnish

    2010-01-01

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99m Tc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  7. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  8. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  10. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  11. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  12. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  13. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  14. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  15. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  16. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Science.gov (United States)

    2010-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  17. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  18. Technology in respiratory medicine

    African Journals Online (AJOL)

    Repro

    Respiratory medicine is the subspecialty in medicine which requires the most regu- lar and precise evaluation of physiological function for complete assessment of the patient. The very nature of respiratory physiology requires the availability of a range of technological devices. Physiological measurements that may be.

  19. Nuclear technology

    International Nuclear Information System (INIS)

    Steele, L.E.

    1986-01-01

    This book has sixteen peer-reviewed papers divided into four sections that reflect changes in the nuclear power industry occurring since 1981, including escalating capital requirements and a growing worldwide dependence on nuclear power for electricity production. The four sections of this book are: Overview of National Programs; Surveillance and Other Radiation Embrittlement Studies; Pressure Vessel Integrity and Regulatory Considerations; and Mechanisms of Irradiation Embrittlement

  20. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  1. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  2. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  3. Nuclear medicine and neurology

    International Nuclear Information System (INIS)

    Paris, M.; Samarina, G.; Kelk, E.; Poksi, A.; Nazarenko, S.

    2005-01-01

    Methods of nuclear medicine are based on the use of radioactive isotopes bound to specific marker substances. Administered radioactive markers enter metabolic processes. SPET and PET cameras enable, with their detectors, to register gamma quanta resulting from isotope decay, transform the absorbed quanta into visible light and process the registered signals by means of a computer system. Thus the functions of a living organism can be observed at the molecular level. Special markers capable of crossing the haematin-cephalic barrier and targeting neural metabolic processes are used for visualization of brain perfusion and neurotransmission at SPET and PET, serving for defection of diseases. These procedures are of special significance for the diagnosis of neurodegenerative diseases where the diagnostic value of anatomical-structural methods like CT and conventional MRI is low and where timely administration of proper neuroprotecfive measures contributes to improved disease management. SPET studies of brain perfusion enable to make early diagnosis of Alzheimer's disease due to typical perfusion defects which appear at the preclinical stage and allow to distinguish this disease from other dementia syndromes. Parkinson's disease has a latent period of 3-4 years before the clinical signs appear. SPET with dopamine receptors visualizes striatal dopaminergic presynaptic hypofunction providing the diagnosis at the early stage. Procedures of nuclear medicine enable to establish the differential diagnosis of various Parkinsonian syndromes. SPET and PET research helps to understand better pathophysiological processes, pharmacokinetics and pharmacodynamics in living organisms.(authors) [et

  4. Nuclear medicine and prostheses

    International Nuclear Information System (INIS)

    Bordenave, L.; Baquey, Ch.

    2004-01-01

    Whatever the bio-material, prosthesis or medical device concerned, from design to experimental then clinical validation, nuclear medicine (NM) techniques offer a unique opportunity in all indications, (in vitro diagnosis, in vivo diagnosis and therapy) to investigate, assess and predict the behaviour of the device, qualitatively and quantitatively. All research fields involving prostheses and their constitutive biomaterials may take advantage of NM. In order to review published works, one can analyze provided data according to two strategies: an upright one related to medical and surgical specialties that integrate NM and a more horizontal one, that is to describe what kind of contribution is brought by such investigations. The latter approach was preferred in our review. We discuss and illustrate benefits of NM in the following indications: as an in vitro tool, as an in vivo tool for the diagnosis i) of device integration in recipient, ii) of functional outcome after use or implantation, iii) and predictive assessment of undesirable side effects, iv) of occurrence of complications associated to the device implantation, v) of a new therapy efficiency; finally as in vivo tool of therapy. Tissue engineering and regenerative medicine domains with stem cell potential as well as that of medical device associated with vigilance are new fields in basic research and clinical assessment that seem increasingly promising for the nuclear physician and to which NM could and would contribute from molecule to integrated system in order to improve knowledge and achievement of prostheses. (author)

  5. Nuclear medicine in psychiatry

    International Nuclear Information System (INIS)

    Lass, P.; Slawek, P.

    2007-01-01

    In the same way that the symptoms between different diseases in psychiatry overlap, functional brain research frequently shows the same pattern of changes across diagnostic borders; on the other hand, many the other tests, e.g. psychological tests, present the same problem as mentioned above; therefore: The psychiatrist seldom applies to an NM specialist to obtain a diagnosis; instead, a nuclear medicine report will rather confirm, or less frequently exclude, the psychiatrist's diagnosis. Ideally, psychiatric patients should be rescanned after the treatment, and changes in perfusion and/or metabolism discussed between psychiatrist and NM specialist. As shown above, there are few practical applications of nuclear medicine due to low specificity and low spatial resolution, although in the aspect of functional imaging it is still superior to CT/MRI, even in their functional modalities. On the other hand, its investigational potential is still growing, as there is no imaging technique in sight which could replace metabolic and receptor studies, and also because the scope of functional imaging in psychiatric diseases is spreading from its traditional applications, like dementia or depression, towards many poorly investigated fields e.g. hypnosis, suicidal behaviour or sleep disorders. (author)

  6. [Nuclear medicine and radiopharmaceuticals].

    Science.gov (United States)

    Sopena Novales, P; Plancha Mansanet, M C; Martinez Carsi, C; Sopena Monforte, R

    2014-06-01

    Nuclear Medicine is a medical specialty that allows modern diagnostics and treatments using radiopharmaceuticals original radiotracers (drugs linked to a radioactive isotope). In Europe, radiopharmaceuticals are considered a special group of drugs and thus their preparation and use are regulated by a set of policies that have been adopted by individual member countries. The radiopharmaceuticals used in diagnostic examinations are administered in very small doses. So, in general, they have no pharmacological action, side effects or serious adverse reactions. The biggest problem associated with their use are the alterations in their biodistribution that may cause diagnostic errors. Nuclear Medicine is growing considerably influenced by the appearance and development of new radiopharmaceuticals in both the diagnostic and therapeutic fields and primarily to the impact of new multimodality imaging techniques (SPECT-CT, PET-CT, PET-MRI, etc.). It's mandatory to know the limitations of these techniques, distribution and eventual physiological alterations of radiopharmaceuticals, contraindications and adverse reactions of radiological contrasts, and the possible interference of both. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  7. Nuclear medicine and AIDS

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Kent and Canterbury Hospital, Canterbury; Nunan, T.O.

    1993-01-01

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung 99 Tc m -diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author)

  8. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    Costa, E.T.; Martins, H.L.; Muehlen, S.S.; Rockman, T.M.B.

    1992-01-01

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... earliest stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive ...

  10. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  11. Technology and medicine.

    Science.gov (United States)

    Booth, C

    1985-05-22

    Technology, which is older than science, has been of vital importance in the development of modern medicine. Even so, there are voices of dissent to be heard. The disenchantment with technology expressed by Aldous Huxley in Brave new world has been echoed by contemporary writers on the technology of modern medicine. Medicine is seen by some to have been dehumanized by technology, and techniques that are expensive are thought to be consuming a greater proportion of health resources than they deserve. The practice of medicine has, nevertheless, been transformed by modern technology and diagnostic techniques and therapeutic measures undreamed of a few short decades ago are now commonplace. There is no reason why these developments should be any more dehumanizing than the use of similar techniques in modern transportation or communication, nor is their expense out of proportion when compared with other demands on the nation's purse. British workers have been at the forefront of many recent advances. Yet, even though the National Health Service provides a ready market for the products of British medical technology, the nation depends to an inordinate degree on imported products. In the development of appropriate medical technology there is an urgent need for better communication between inventors, scientists, industrialists and the National Health Service. At the same time there is an equal need for improved evaluation of untried techniques. The pressure for a central integrating body to coordinate resources could well be supported by the establishment of evaluation units in the different health authorities in this country.

  12. A Training Manual for Nuclear Medicine Technologists.

    Science.gov (United States)

    Simmons, Guy H.; Alexander, George W.

    This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)

  13. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  14. Nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Leon A, M. C.

    2008-12-01

    In the areas of Nuclear Medicine and Radiopharmacy frequently happens that the personnel that is incorporated as a candidate to serve as personnel occupationally exposed have varied skills, not necessarily have an ingrained culture of safety and radiation protection, some are resistant to adoption a work discipline and have very limited notions of normalization, including the safety basic standards. In fact, referring to the safety basic standards, concepts such as practice justification, protection optimization and dose limitation, can be very abstract concepts for such personnel. In regard to training strategies, it was noted that training in the work is an effective tool although it is very demanding for the learner but mainly for the teaches. The experts number that can occur in this manner is limited because it is an individualized system; however those from the process usually acquire a good preparation, which certainly includes theoretical aspects. For greater efficiency it is necessary that hospitals account facilities, procedures and personnel that might have an exclusive dedication to education and training of human resources. This would create a safety culture, alleviating the burdens of the already existing expertise and improves the training conditions. The Mexican Society of Radiological Safety (SMSR) can help in these efforts through the publication of guides aimed at work training, coordination and articulation of the possible courses already on the market and own the courses organization, workshops and conferences with more frequency. It would also serves that the SMSR acts as speaker with political actors, advocating for the courses validation offered by higher learning institutions, coordinating and promoting postgraduates in Nuclear Medicine and Radiopharmacy. (Author)

  15. Nuclear medicine in emergency

    International Nuclear Information System (INIS)

    Mansi, L.; Rambaldi, P.F.; Cuccurullo, V.; Varetto, T.

    2005-01-01

    The role of a procedure depends not only on its own capabilities but also on a cost/effective comparison with alternative technique giving similar information. Starting from the definition of emergency as a sudden unexpected occurrence demanding immediate action, the role of nuclear medicine (NM) is difficult to identify if it is not possible to respond 24h a day, 365 days a year, to clinical demands. To justify a 24 h NM service it is necessary to reaffirm the role in diagnosis of pulmonary embolism in the spiral CT era, to spread knowledge of the capabilities of nuclear cardiology in reliability diagnosis myocardial infraction (better defining admission and discharge to/from the emergency department), to increase the number of indications. Radionuclide technique could be used as first line, alternative, complementary procedures in a diagnostic tree taking into account not only the diagnosis but also the connections with prognosis and therapy in evaluating cerebral pathologies, acute inflammation/infection, transplants, bleeding, trauma, skeletal, hepatobiliary, renal and endocrine emergencies, acute scrotal pain

  16. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  17. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  18. Nuclear medicine at a crossroads.

    Science.gov (United States)

    Schelbert, Heinrich R

    2011-12-01

    The growth of molecular imaging heightens the promise of clinical nuclear medicine as a tool for individualization of patient care and for improvement of health-care outcomes. Together with greater use of integrated structure-function imaging, clinical nuclear medicine reaches beyond traditional specialty borders into diagnostic radiology and oncology. Yet, there are concerns about the future of nuclear medicine, including progressively declining reimbursement, the competitive advantages of diagnostic radiology, limited translation of research accomplishments to clinical diagnostic imaging and patient care, and an insufficient pool of incoming highly qualified nuclear medicine clinicians. Thus, nuclear medicine views itself as being at a critical crossroads. What will be important is for nuclear medicine to be positioned as the quintessential molecular imaging modality more centrally within medical imaging and for the integration of nuclear medicine with primary care specialties to be driven more by patient needs than by specialty needs. In this way, the full potential of nuclear medicine as an effective and efficient tool for improving patient outcomes can be realized.

  19. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  20. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  1. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  2. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  3. China nuclear science and technology reports

    International Nuclear Information System (INIS)

    1987-01-01

    114 abstracts of nuclear science and technology reports, which were published in 1986-1987 in China, are collected. The subjects inclucled are: nuclear physics, nuclear medicine, radiochemistry, isotopes and their applications, reactors and nuclear power plants, radioactive protection, nuclear instruments etc... They are arranged in accordance with the INIS subject categories, and a report number index is annexed

  4. Distributed nuclear medicine applications using World Wide Web and Java technology

    International Nuclear Information System (INIS)

    Knoll, P.; Hoell, K.; Koriska, K.; Mirzaei, S.; Koehn, H.

    2000-01-01

    At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT). (orig.)

  5. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  6. Maladministrations in nuclear medicine

    International Nuclear Information System (INIS)

    Smart, R.C.

    2002-01-01

    Maladministration has been defined as the mistaken administration of a radiopharmaceutical to a patient. Examples include the administration of the wrong radiopharmaceutical or the wrong activity to the correct patient or the administration of the correct radiopharmaceutical to the wrong patient. Although maladministrations are rare, lessons can be learnt from the incidents that do occur. Medical maladministrations and other radiation incidents are discussed by members of the NSW Hospital and University Radiation Safety Officers Group (HURSOG) at their bi-monthly meetings. During the three years of 1997-1999 fourteen incidents of maladministrations in nuclear medicine were reported. Analysis of these reports indicated that eight (57 %) were due to the wrong radiopharmaceutical having been administered. This usually occurred because the technologist had selected the wrong lyophilised agent when the radiopharmaceutical was being prepared, or selected the wrong vial of the reconstituted agent. For example, in one instance a vial of MAG3 was reconstituted instead of a vial of HMPAO. These mistakes occurred even though the vials were clearly labelled and sometimes had different coloured labels. Of the remaining 6 cases, two involved the wrong activity being administered due to a mis-read dose calibrator, two involved the wrong procedure being performed following a breakdown in communication and the final two incidents resulted in the wrong patient being administered the radiopharmaceutical. In order to minimise the possibility of recurrence of these incidents the NSW Radiation Advisory Council asked the NSW Branch of the Australian and New Zealand Society of Nuclear Medicine and HURSOG to jointly convene a Working Party to prepare Guidelines for the administration of radiopharmaceuticals. The Guidelines specify: 1. the procedure for the validation of the requested investigation on the request form 2. who should reconstitute, dispense and administer radiopharmaceuticals

  7. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  8. Nuclear medicine in oncology

    International Nuclear Information System (INIS)

    Bishop, J.F.

    1999-01-01

    Cancer is increasingly prevalent in our society. There is a life-time risk that 1 in 3 Australian men and 1 in 4 Australian women will get cancer before the age of 75 years. Overall, 27% of the deaths in NSW are currently related to cancer. The common cancers for men are prostate, lung, melanoma, colon, rectum and bladder. For women the common cancers are breast, colon, melanoma, lung and unknown primary. However, overall lung cancer remains the major cause of cancer deaths (20%) followed by colorectal (13%), unknown site (8%), breast and prostate. Breast and lung cancer are the major causes of death in women. Recent information on 5 year survivals reveal good 5 year survival rates for breast (78.6%), prostate (72.4%) and melanoma (92%), while some tumours such as lung cancer (10.7%) have poor survival. Colon cancer has intermediate survival (57.1%). Projections for cancer incidence suggests rates of cancer will increase for colorectal cancer, melanoma, lung cancer in females but decrease for breast, lung in males and prostate cancer. Major strategic directions in cancer research are understanding carcinogenesis, identification of high risk groups, screening and early detection, chemo-prevention, new cancer therapies, combined modality therapy and quality of life issues. Nuclear medicine will play an important part in many of these areas

  9. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  10. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  11. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  12. Nuclear technology review 2004

    International Nuclear Information System (INIS)

    2004-08-01

    The viability and credibility of a wide range of nuclear-based technologies require ready access to high-quality atomic, molecular and nuclear data. The demands of new nuclear technologies continue to determine the direction(s) of future data development, including the requirements for data that address innovative fuel cycles, accelerator-driven systems, nuclear incineration, fusion devices, diagnostic and therapeutic medical treatment by radiation, optimization of medical isotope production, non-destructive materials testing, radiation analytical techniques, minerals exploration and land-mine detection. Some recent data development projects with diverse applications are a search engine for Atomic and Molecular data to permit simultaneous data retrieval from a number of different sources for both numerical and bibliographic databases to aid designers. For over 50 years, research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. They remain core experimental instruments. As of June 2004, 672 research reactors are recorded in the IAEA's Research Reactor Data Base (RRDB), of which 274 are operational in 56 countries (85 in 39 developing countries), 214 are shut down, 168 have been decommissioned and 16 are planned or under construction. Nuclear power supplied 16% of global electricity generation in 2002, and as of 31 December 2003 there were 439 NPPs operating worldwide. Their global energy availability factor has risen steadily from 74.2% in 1991 to approximately 84% in 2003. In 2003 two new NPPs were connected to the grid, a 665 MW(e) pressurized heavy water reactor (PHWR) in China and a 960 MW(e) pressurized water reactor (PWR) in the Republic of Korea. In addition Canada restarted two units that had been shutdown. Construction started on one new NPP in India. Four 50 MW(e) units in the UK were retired, as were one 640 MW

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Spotlight Recently posted: How to Obtain ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ...

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Radiology and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript ... by a special camera and computer to create images of the inside of your body. If you’ ...

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Abdominal Ultrasound Video: Pelvic Ultrasound Medical Imaging Costs Radiology and You Take our survey Sponsored by Image/ ... Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  17. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... any allergies. You may have some concerns about nuclear medicine. However, because the amount of radiotracer used is small, the level of radiation exposure is relatively low and the benefit of ...

  18. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... of radiation exposure is relatively low and the benefit of an accurate diagnosis far outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you ...

  19. Clinical demands on nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.A.E.; Emrich, D. (eds.)

    1987-01-01

    This proceedings volume of the 24th meeting of the Society of Nuclear Medicine - Europe (also 9th meeting of the European Nuclear Medicine Society and 1st meeting of the German Society of Nuclear Medicine) held in Goslar on 2-5 September 1986 comprises 162 summaries (3 pages each), 6 survey articles (5-6 pages each), and the 'von Hevesy Memorial Lecture'. The papers present a status report on the following aspects of nuclear medicine: 1. Methods and fundamentals; 2. Cardiology; 3. Neurology; 4. Pulmonology; 5. Gastroenterology; 6. Nephrology; 7. Osteology; 8. Endocrinology; 9. Oncology and radioimmuno-scintiscanning; 10. Radiopharmaceuticals and pharmacology; 11. Risk assessment. Several records of the papers including the 'von Hevesy Memorial Lecture' are available in the database. (TRV). With 172 figs., 131 tabs.

  20. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  1. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  2. Nuclear Medicine Imaging

    Science.gov (United States)

    ... necesita saber acerca de... Estudios de Imagen de Medicina Nuclear Un procedimiento de medicina nuclear se describe algunas veces como unos rayos- ... través del cuerpo del paciente. Los procedimientos de medicina nuclear utilizan pequeñas cantidades de mate- riales radiactivos, ...

  3. Proceedings of the forty third annual conference of Society of Nuclear Medicine India: empowering modern medicine with molecular nuclear medicine

    International Nuclear Information System (INIS)

    2011-01-01

    Theme of the 43rd Annual Conference of the Society of Nuclear Medicine India is 'empowering modem medicine with molecular nuclear medicine'. Keeping the theme in mind, the scientific committee has arranged an attractive and comprehensive program for both physicians and scientists reflecting the multimodality background of Nuclear Medicine and Metabolic Imaging. During this meeting the present status and future prospects of Nuclear medicine are discussed at length by esteemed faculty in dedicated symposia and interesting featured sessions which are immensely facilitate in educating the participants. Nuclear Medicine has come a long way since the first applications of radioiodine in the diagnosis of thyroid disease. The specialty of nuclear medicine in India is growing very rapidly. Technology continues to push the field in new directions and open new pathways for providing optimal care to patients. It is indeed an exciting time in the world of imaging and in the field of nuclear medicine. Innovative techniques in hardware and software offer advantages for enhanced accuracy. New imaging agents, equipment, and software will provide us with new opportunities to improve current practices and to introduce new technology into the clinical protocols. Papers relevant to INIS are indexed separately

  4. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often before symptoms occur ...

  5. Infection imaging in nuclear medicine

    African Journals Online (AJOL)

    Introduction. Regardless of advances in medicine, infection continues to play a major role in patients' morbidity and mortality. Nuclear medicine techniques have an important role in the evaluation of patients suspected of harbouring infection. Many different agents may be used in an attempt to image infection. ere are ...

  6. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  7. Nuclear technology review 2002

    International Nuclear Information System (INIS)

    2002-08-01

    The unifying theme of the Nuclear Technology Review 2002 (NTR-2002) is the importance of innovation. Innovation makes it possible to step beyond incremental evolutionary improvements constrained by diminishing returns. For crop production and public health, for example, the sterile insect technique created a whole new path for future improvements, distinctly different from applying ever larger amounts of pesticides. Nuclear techniques offer a new and safer approach to removing the world's estimated 60,000,000 abandoned land mines. New precision techniques create the potential for ever less intrusive and more effective radiation treatments for cancer. For nuclear power continuing innovation will be a key factor in closing the projection gap between long term global energy scenarios in which nuclear power expands substantially and near term scenarios with only modest expansion or even decline. While the NTR-2002 presents a worldwide review of the state-of-the-art of nuclear science and technology, and not an annual report on IAEA activities, it notes areas where the Agency has a particularly important role to play. Part I of the NTR-2002 'Fundamentals of Nuclear Development', reviews developments in the field of nuclear, atomic and molecular data. Research reactors remain essential to progress in nuclear science and technology. Part I reviews advances in radioisotope production, the use of accelerators and neutron activation analysis relevant to applications ranging from medicine particularly the light against cancer to industry. Part I also reviews developments in nuclear instrumentation and nuclear fusion, particularly in connection with the International Thermonuclear Experimental Reactor. Part II begins with a summary of nuclear power production in 2001. At the end of 2001 there were 438 nuclear power plants (NPPs) in operation, corresponding to a total capacity of 353 GW(e), more than 10000 reactor-years of cumulative operating experience and about 16% of global

  8. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  9. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  10. Therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Eftekhari, M.; Sadeghi, R.; Takavar, A.; Fard, A.; Saghari, M.

    2002-01-01

    Although there have been very significant development in the field of radionuclide therapy within the past 10 years, radionuclide therapy in the form of 131 I, 33 P,.... have been in use for over 46 years. Palliation of bone pain is a good example for radionuclide therapy. It has an especial role in advanced metastatic cancer. 32 P, 89 Sr-Cl, 186 Re-HEDP, 133 Sm-EDTMP, and 117 mSn-DTPA are used in these patients. They are usually effective and help to maintain a painless life for patients with advanced cancer. Although this kind of therapy is not as rapid as radiotherapy, its effect lasts longer. In addition re-treatment with these agents is safe and effective. Radioimmunotherapy is a new exciting technique in the radionuclide therapy. In this technique monoclonal antibodies or their fragments are labeled with a suitable radionuclide, these antibodies can irradiate tumor cells over a distance of some fraction of a millimeter. Bulky tumors are obviously unsuitable targets for Rit. Several antibodies specific for Cd 20 (B1 and 1 F 5) and CD 37 (Mb-1) labeled with 131 I have been used for hematologic malignancies with good response. Several antigens associated with carcinomas of various histologic types have been targeted for therapeutic purposes by antibodies labeled with different radionuclides. Other routes of administration like intraperitoneal, intrathecal, and intravesical have been used with different rates of success. Pre targeting techniques can be used to reduce unwanted radioactive concentration in normal tissues. The avidin-biotin system is an example, which exploits the high-affinity binding between avidin and biotin, and was first used with anti-Cea antibody. Radiation synovectomy is another aspect of radionuclide therapy 198 Au colloid, 90 Y resin colloid, and 165 Dy-FHMA are some of the radionuclides used in the field of hematology. There has been significant advances in the field of therapy in nuclear medicine in recent years, which are briefly

  11. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  12. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  13. Basic requirements of nuclear medicine services

    International Nuclear Information System (INIS)

    Belcher, E.H.

    1992-01-01

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  14. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  15. Neuroimaging, nuclear medicine

    International Nuclear Information System (INIS)

    Kato, Takashi; Ito, Kengo; Arahata, Yutaka

    2007-01-01

    This chapter describes radionuclide imaging as it related to neurodegenerative dementias like Alzheimer's disease (AD), idiopathic Parkinson's disease (PD), and normal aging, among the various diseases of the elderly. The role of neuroimaging with nuclear medicine is to detect changes in neural activities that are caused by these diseases. Such changes may be indirect phenomena, but the imaging of neural functions provides physicians with useful, objective information regarding pathophysiology in the brain. Brain activities change with age, with the elderly showing decreased brain function in memory, execution, and attention. Age-dependent reduction in the global mean of cerebral blood flow (CBF) has been reported in many studies that have used X-133 and O-15 labeled gas, the spatial resolution of which is low. Partial volume correction (PVC) is available through the segmentation of grey matter from high-resolution T1-weighted magnetic resonance imaging. Meltzer reported that age-related change disappeared after PVC. The relative distribution of CBF and glucose metabolism has been examined on a voxel-by-voxel basis in many studies. The areas negatively correlated with age are the anterior part of the brain, especially the dorsolateral and medial frontal areas, anterior cingulate cortices, frontolateral and perisylvian cortices, and basal ganglia. The areas positively correlated with age are the occipital lobe, temporal lobe, sensorimotor cortex, and primary visual cortex. It is not easy to define ''normal aging''. Aged people tend to have the potential for diseases like cerebral ischemia caused by arteriosclerosis. Ischemia results in volume loss of the gray matter and CBF. The ApoE e4 gene is a risk factor for AD, and carriers of the ApoE e4 allel show CBF-like AD even at a relatively young age. Hypo-glucose metabolism in the posterior cingulate cortex is seen in 5% of normal people over 50 years of age. This Alzheimer-like CBF/metabolic pattern needs further

  16. Nuclear Science and Technology for Thai Society

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology, Bangkok

    2009-07-01

    Full text: Full text: The 11th conference on the nuclear science and technology was held on 2-3 July 2009 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for the infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  17. Nuclear technology review 2006

    International Nuclear Information System (INIS)

    2006-08-01

    Cadarache, France.The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) grew to 24 members, with the addition in 2005 of Ukraine and the United States of America. Current INPRO activities include completion of a user manual on the INPRO methodology, application of the methodology to assessing innovative nuclear energy systems (INSs) in national and multinational studies, analyses of the role and structure of INSs in meeting energy demands in a sustainable manner, and selection of the most suitable areas for collaborative development. Developments in accelerator based techniques, production of radioisotopes and some novel uses of nanotechnology are also reported. Nuclear technologies continue to play key and often unique roles in food production and safety, in human and animal health, in water resource management and in the environment. Mutation breeding of crops, for example, has led to the use of previously unusable land in many countries for rice production. In human health, the use of stable isotopes is becoming an accepted tool for the development of nutrition programmes. Nuclear medicine is benefiting from technological advances in computing. Sustainable water management and desalination remain high on the international agenda. New developments in isotopic analysis of hydrological samples hold promise for increasing the use of isotopes in water resources management. Advances in sampling and analytical techniques have assisted in better understanding of the environment. Developments in all these areas are also reported

  18. Radiation Protection Programme in Nuclear Medicine Practice

    International Nuclear Information System (INIS)

    Alarfaj, Abd-I.M.

    2003-01-01

    This paper specifies the main elements of the radiation protection programma (RPP) that should be estabished for each practice, which involves radiation exposure. Practices of nuclear medicine have been considered as an example, since among the 245 installations which are conducting different practices with radiation sources in the Kingdom of Saudi Arabia, there are 78 installations dealing with nuclear medicine practices. Reviewing the RPP in these nuclear medicine installations, it may be easily concluded that the RPPs for the majority of these installations do not respond to the requirements of the regulatory body of the Kingdom, which is King Abdulaziz City for Science and Technology (KACST). This may be attributed to a set of different reasons, such as shortage in understanding the main elements of the RPP as well as in applying methodologies

  19. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  20. Introduction of nuclear medicine research in Japan.

    Science.gov (United States)

    Inubushi, Masayuki; Higashi, Tatsuya; Kuji, Ichiei; Sakamoto, Setsu; Tashiro, Manabu; Momose, Mitsuru

    2016-12-01

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan.

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and still during imaging. Comfort items such as pacifiers, blankets and books are also very helpful. Often, ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... used in children with cancer, epilepsy and back pain. top of page What does the equipment look ... being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from having to ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... help diagnose childhood disorders that are present at birth or that develop during childhood. It provides unique ... diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... may be placed into the bladder, which may cause temporary discomfort. It is important that your child ... images are being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from ...

  5. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  6. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  8. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  9. Theranostics in nuclear medicine practice

    Science.gov (United States)

    Yordanova, Anna; Eppard, Elisabeth; Kürpig, Stefan; Bundschuh, Ralph A; Schönberger, Stefan; Gonzalez-Carmona, Maria; Feldmann, Georg; Ahmadzadehfar, Hojjat; Essler, Markus

    2017-01-01

    The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices. PMID:29042793

  10. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  11. Challenges for nuclear medicine in the 1990s

    International Nuclear Information System (INIS)

    Ell, P.J.

    1992-01-01

    This article discusses the problems facing nuclear medicine in the coming decade and outlines the areas in which new developments or expansion can be expected. The questions considered include legislative requirements, the need to educate the public and the medical profession on the strengths of nuclear medicine, approaches to cost-benefit analysis, and development of new technologies and new radiopharmaceuticals. There is also an evaluation of expansion in nuclear medicine using both existing methodology and new methodologies. (author)

  12. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type of exam, your doctor will instruct you on ... supplements and if he or she has any allergies. Also inform your doctor of any recent ... on the type of nuclear scan being performed, you will receive ...

  14. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  15. Physics technologies in medicine

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Kreis, Roland; Wildermuth, Simon; Buck, Alfred; Von Schulthess, Gustav K

    2002-01-01

    Modern medicine is a large consumer of physics technologies. The series of lectures covers medical imaging starting with an overview and the history of medical imaging. Then follows four lectures covering x-ray imaging positron emission tomography imaging blood flow by ultrasound magnetic resonance 10 June 2002 100 Years of Medical Imaging Pr. Gustav K. von Schulthess MD, PhD, University of Zurich History and overview of Medical Imaging 11 June 2002 X-rays: still going strong Dr. Simon Wildermuth, MD, University Hospital Zurich Multidetector computed tomography: New developments and applications Since its introduction in 1992, spiral computed tomography (CT) scanners constructed with a single row of detectors have revolutionized imaging of thoracic and abdominal diseases. Current state-of-the-art models use up to 16 detectors and are capable of acquiring 16 contiguous slices of data with each gantry rotation; systems with 32 data acquisition units (and more) are currently in development. The principal advan...

  16. Nuclear medicine; La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Sibille, L. [Hopital Lapeyronie CHU Montpellier, Medecine Nucleaire, 34 - Montpellier (France); Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V. [CHU de Nimes, Service de Medecine Nucleaire et de biophysique, 30 - Nimes (France)

    2011-05-15

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  17. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ...

  19. Nuclear science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as 99 Mo and 131 I, among several others, used in nuclear medicine, by operating the reactor

  20. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  1. Development of nuclear medicine in Mongolia

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Erdenechimeg, S.

    2002-01-01

    , equipment, space and work load. The department replaced its old Siemens gamma camera with a GE gamma camera in the year 1996, and upgraded its RIA laboratory in the year 1999. In tandem with developments in the field of nuclear medicine, the department acquired its first SPECT Elscint camera in 2000, a single detector device with 40-cm field of view. That year, we introduced for the first time Nuclear Cardiology procedures in Mongolia including Myocardial Perfusion Imaging. To-day, the nuclear medicine department of The First State Central Clinic Hospital is a vibrant set-up offering a spectrum of diagnostic and therapeutic procedures to the people of Mongolia. The current staff strength consists of 4 medical doctors, 1 medical physicist, 1 radiopharmacist, 5 technologists and 2 laboratory assistants. During the past 25 years the department has conducted Radionuclide investigations on more than 80,000 patients. The number of nuclear medicine procedures and investigations have been increasing every year. During 2000 the department had conducted more than 4000 diagnostic nuclear medicine procedures. With regard to Radionuclide therapy, the department has been engaged in the radioiodine treatment of thyrotoxicosis since 1982. The departmental activities in the field of therapeutic nuclear medicine took a big leap forward this year, when it introduced the Radionuclide treatment of Liver Cancer using Re-188 Lipiodol in March, 2002. IAEA's contribution to the growth and development of nuclear medicine in Mongolia has been of immense value. The country in general and the department in particular has benefited significantly from IAEA support through its several technical cooperation and coordinated research projects. Such support has provided opportunities to Mongolia in enhancing its human resources in the field of nuclear medicine, upgrading equipment, introducing new technologies and providing the state of the art medical care to its people using nuclear medicine technology

  2. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  3. Radiation Safety in Nuclear Medicine Procedures.

    Science.gov (United States)

    Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun

    2017-03-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  4. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  5. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  6. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  7. Computer networks in nuclear medicine

    International Nuclear Information System (INIS)

    Noelpp, U.B.

    1986-01-01

    For multi-camera and multi-computer departements it is advantageous to connect the computers into a network. Care should be taken to choose an open and reliable solution. For long term, Ethernet is probably a good choice. Several manufactureres already offer networks with big differences. Own Experience shows that networks in nuclear medicine are manageable. (Author)

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by a special camera and computer to create images of the inside of your body. If you’re scheduled for a nuclear medicine exam, there are several things you can do to prepare. First, you may be asked not to eat or drink ... Disorders Video: The Basketball Game: An MRI ...

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  10. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... through the area being examined and gives off energy in the form of gamma rays which are detected by a special camera and computer to create images of the inside of your body. If you’re scheduled for a nuclear medicine exam, there are several things you can ...

  11. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  12. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  13. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  14. Tele-nuclear medicine | Sabbah | SA Journal of Radiology

    African Journals Online (AJOL)

    This article presents a description of tele-nuclear medicine and, after outlining its history, a wide, representative range of its applications. Tele-nuclear medicine has benefited greatly from technological progress, which for several decades has provided greater data transfer rates and storage capacity at steadily decreasing ...

  15. Nuclear medicine physics the basics

    CERN Document Server

    Chandra, Ramesh

    2012-01-01

    For decades this classic reference has been the book to review to master the complexities of nuclear-medicine physics. Part of the renowned The Basics series of medical physics books, Nuclear Medicine Physics has become an essential resource for radiology residents and practitioners, nuclear cardiologists, medical physicists, and radiologic technologists. This thoroughly revised Seventh Edition retains all the features that have made The Basics series a reliable and trusted partner for board review and reference. This handy manual contains key points at the end of each chapter that help to underscore principal concepts. You'll also find review questions at the end of each chapter—with detailed answers at the end of the book—to help you master the material. This edition includes useful appendices that elaborate on specific topics, such as physical characteristics of radionuclides and CGS and SI Units.

  16. The importance of HIFAR to nuclear medicine

    International Nuclear Information System (INIS)

    Wood, N.R.

    1997-01-01

    Since its official opening on 26 January 1960, the HIFAR research reactor operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights near Sydney has been used to support an expanding nuclear medicine market. HIFAR has characteristics which make it very suitable for this role and the effect has been to make ANSTO the dominant supplier of reactor-based radiopharmaceuticals in Australia and a significant exporter. While HIFAR has capacity to support limited increased production, its future requires government decisions. The author concluded that the absence of an operational research reactor in Australia and the lack of another local source of neutrons could directly affect the practice of nuclear medicine in the country and the level of presently increasing exports

  17. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  18. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  19. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  20. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  1. Nuclear medicine. Nuclear medicine in research and practice

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.A.E. (Evangelisches Krankenhaus Bethesda, Duisburg (Germany). Nuklearmedizinische Klinik und Poliklinik); Hoefer, R. (Klinik fuer Nuklearmedizin, Vienna (Austria). 2. Abt. fuer Innere Medizin) (eds.)

    1992-01-01

    The present book contains the papers presented at the 4th Congress of the European Association of Nuclear Medicine. The main headings were as follows: Methods and basics including instrumentation, computers and data analysis, RIA, radiopharmaceuticals, hermatology, and inflammation (76 papers), cardiology (21 papers), neurology (20 papers), pulmonology (6 papers), gastroenterology (10 papers), nephrology (17 papers), osteology (5 papers), endocrinology (6 papers), pediatrics (8 papers), oncology (16 papers) as well as therapy (10 papers). (MG) With 224 figs., 150 tabs.

  2. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  3. Nuclear technology and beyond

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    1997-01-01

    After the confrontation of East and West, and the problem of North and South, we are now facing the era of Globalization in the presence of twenty-first century. Tracing the history of civilization, human being has progressed along with the accumulation of experience, and the development of science and technology. Science and technology bloomed in modern ages, especially, energy technology showed the giant leap in this century. Nuclear science and technology has been developed for peaceful purposes, and for the benefit of humanity. As a result, today, its progress led nuclear science and technology to have the great applicability to the development of the society. Toward the twenty-first century and Globalization, the science and technology developed in nuclear field is hoped to play a great contribution in various area of the society. (author)

  4. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  5. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  6. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  7. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  8. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  9. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  10. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  11. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  12. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    Science.gov (United States)

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  13. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  14. Latest nuclear emulsion technology

    Science.gov (United States)

    Rokujo, Hiroki; Kawahara, Hiroaki; Komatani, Ryosuke; Morishita, Misaki; Nakano, Toshiyuki; Otsuka, Naoto; Yoshimoto, Masahiro

    2017-06-01

    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

  15. Latest nuclear emulsion technology

    Directory of Open Access Journals (Sweden)

    Rokujo Hiroki

    2017-01-01

    Full Text Available Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015 The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

  16. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  17. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  18. Converting Energy to Medical Progress [Nuclear Medicine

    Science.gov (United States)

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  19. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  20. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  1. Nuclear technology and society

    International Nuclear Information System (INIS)

    Suzuki, Tatsujiro; Tanaka, Yutaka; Taniguchi, Taketoshi; Oyama, Kosuke

    1999-01-01

    This special issue of Journal of the Atomic Energy Society of Japan deals with the relation between nuclear technology and society, and is composed of four papers: (1) Nuclear energy and international politics - sociotechnics around plutonium utilization; (2) Risk recognition and benefit recognition of nuclear facilities and social acceptance; (3) Environmental risk management and radioactive waste problem; and, (4) Public administration around the relation between nuclear energy and society. (1) describes the historical development of nuclear energy since its birth, focusing on how the leading countries tried to control nuclear proliferation. Peaceful utilization of nuclear energy is closely connected with the Non-proliferation problem. (1) also discusses the relation of plutonium utilization of Japan with international society. (2) discusses how nuclear facilities can be accepted by society, analyzing the background of risk recognition, in particular, of psychological character of mass society. (3) introduces an new approach (risk-based or risk-informed regulation) of environmental risk management for radioactive waste disposal problem, focusing on HLW (high-level waste). (4) explains the approach from public administration to nuclear energy and general energy policy and introduces PPA (participatory policy analysis) as a means for policy making. (M.M.)

  2. Licensing criteria for nuclear medicine

    International Nuclear Information System (INIS)

    Westerman, B.R.

    1986-01-01

    The use of radioactive materials in medicine is one of the most highly regulated areas the physician has to deal with. There are three basic types of licenses for use of radioactive material defined in the Code of Federal Regulations (CFR), chapter 10, part 35. These are the general license, which is mainly applicable to small volume in vitro work; the specific license, which is used in most medical facilities; and the broad license, which is suited for larger research-oriented practices. Licensing requires proof of competence of the user and of adequate provision for protection of public health. Materials used in medicine are grouped for convenience into three diagnostic categories and two therapeutic categories. A sixth group, for sealed implants, is not generally applicable in nuclear medicine. Training and experience of users may be documented in a number of ways, including board certification in nuclear medicine. Therapeutic applications require additional proof of direct personal experience. The radiation safety officer is a pivotal individual in the licensing procedure, being directly responsible for carrying out the highly detailed requirements for protection of personnel and patients. A radiation safety program based on the as low as reasonably achievable (ALARA) concept requires personal monitoring, inventory control, detection and control of contamination, and strict adherence to licensing rules. Training of personnel and proper maintenance of equipment and facilities are also vital parts of the licensing process. The requirements of licensing and for renewal are clearly spelled out by the various regulatory agencies and require meticulous record keeping with documentation that all prescribed procedures have been followed and duly recorded

  3. Nuclear analytical techniques in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.

  4. Nuclear analytical techniques in medicine

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future

  5. Topics of nuclear medicine research in Europe.

    Science.gov (United States)

    Inubushi, Masayuki; Kaneta, Tomohiro; Ishimori, Takayoshi; Imabayashi, Etsuko; Okizaki, Atsutaka; Oku, Naohiko

    2017-10-01

    Last year in the European Journal of Nuclear Medicine and Molecular Imaging, we introduced some recent nuclear medicine research conducted in Japan. This was favorably received by European readers in the main. This year we wish to focus on the Annals of Nuclear Medicine on some of the fine nuclear medicine research work executed in Europe recently. In the current review article, we take up five topics: prostate-specific membrane antigen imaging, recent advances in radionuclide therapy, [ 18 F]fluorodeoxyglucose positron-emission tomography (PET) for dementia, quantitative PET assessment of myocardial perfusion, and iodine-124 ( 124 I). Just at the most recent annual meeting of the European Association of Nuclear Medicine 2016, Kyoto was selected as the host city for the 2022 Congress of the World Federation of Nuclear Medicine and Biology. We hope that our continuous efforts to strengthen scientific cooperation between Europe and Japan will bring many European friends and a great success to the Kyoto meeting.

  6. Practice of nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Hasan, M.M.; Karim, M.A.; Nahar, N.; Haque, M.M.

    2002-01-01

    For more than a half a century nuclear medicine is contributing in the field of medicine. Still nuclear medicine is not widely available in many countries. Especially in developing countries due to many a reasons nuclear medicine could not flourish in that way. Availability of radioisotope, high cost of instrument and sophistication of the branch are the three main reasons behind. Even the countries where nuclear medicine is functioning for quite a long time, the facilities for proper function are still not adequate. Training of manpower, maintenance of instruments, regular supply of isotopes and kit and cost effectiveness are some of the major problems. We have seen some fast developments in nuclear medicine in last few decades. Development of gamma detecting systems with SPECT, positron emission detector (PET), supported computer technology and introduction of some newer radiopharmaceuticals for functional studies are few of the examples. The developing countries also have a problem to go on parallel with these rapid development of nuclear medicine in other part of the world. In last few decades we have also witnessed development of CT, MRI, Ultrasound and other imaging modalities as our competitor. Specially for developing countries these have posed as a major challenge for nuclear medicine. A better understanding between developed and developing nations is the key point of todays ultimate success in any sector. For real development of nuclear medicine and to give the majority of the people the benefit of nuclear medicine a better and more active co-operation is needed between all the countries. The paper presents the difficulties and some practical problems of practicing nuclear medicine in a developing country. And also appeals for global co-operation to solve the problems for better interest of the subject

  7. Dementia and rural nuclear medicine

    International Nuclear Information System (INIS)

    Cowell, S.F.; Davison, A.; Logan-Sinclair, P.; Sturt University, Dubbo, NSW; Greenough, R.

    2003-01-01

    Full text: The rapid increase in dementia is directly related to the growing number of aged people in developed countries, such as Australia. This increase heightens the need for accurate dementia diagnosis to ensure treatment resources are appropriately allocated. However, current diagnostic methods are unable to determine specific dementia types limiting the effectiveness of many care plans. The lack of specialist resources in rural Australian communities presents nuclear medicine with an opportunity to make a significant impact on the management of this disease. This investigation aimed to identify how SPECT perfusion imaging could maximise its role in the management of dementia in a rural New South Wales setting. The study reviewed all Technetium 99m HMPAO SPECT brain studies over a three-year period. This included a medical record audit, review of all diagnostic imaging reports and an analysis of referral patterns. The results of this study provide compelling evidence that, even in a rural setting, brain SPECT, in conjunction with neuropsychological testing, offers high accuracy in determining the presence and type of dementia. In addition, the study found more than 30% of referrers had no training in SPECT, emphasising the importance of ensuring that brain SPECT reports, in a rural setting, educate and specify to referrers the significance and exact disease type found in the study. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  8. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  9. Radiosanitary control in nuclear medicine

    International Nuclear Information System (INIS)

    Degrossi, O.J.

    1987-01-01

    Nuclear Medicine has recently modified radiosanitary control standards for the three sectors involved: patients, personnel and general population. Nuclear Medicine does not constitute an important source of radiation, including patients and population, compared with radiology. The basic problems of radiosanitary controls are: the absorbed dose and the patient. Low risk deferred stochastic effects may appear with correct use of these controls. On the other hand, risk of stochastic consequences and non stochastic complications appear with incorrect applications. The following aspects should be considered for correct uses: A-1- The critical organ, which is not always the one under study. 2-The rest of the organism, specially the more sensitive organs. B- The radiopharmaceutical used, considering the following periods: physical, biological and effective. C-Technical and human resources that include quality control for the equipment. Radiosanitary control aims at a common objetive: dose limitation to the patient, personnel and general population. For this, it is necessary to accomplish the training programme for proffesional and technical personnel about quality control and to stablish basic standards for the equipment. Current law and regulations assign to the National Atomic Energy Comission the responsibility for controlling the use of radioisotopes and radiations in order to safeguard the health and life of the population. (M.E.L.) [es

  10. Diagnostic interventions in nuclear medicine

    International Nuclear Information System (INIS)

    Thrall, J.H.; Swanson, D.P.

    1989-01-01

    Diagnostic interventions in nuclear medicine may be defined as the coadministration of a nonradioactive drug or application of a physical stimulus or physiologic maneuver to enhance the diagnostic utility of a nuclear medicine test. The rationale for each interventional maneuver follows from the physiology or metabolism of the particular organ or organ system under evaluation. Diagnostic inference is drawn from the pattern of change in the biodistribution of the tracer in response to the intervention-induced change in metabolism or function. In current practice, the most commonly performed interventional maneuvers are aimed at studies of the heart, genitourinary system, hepatobiliary system, and gastrointestinal tract. The single most commonly performed interventional study in the United States is the stress Thallium-201 myocardial perfusion scan aimed at the diagnosis of coronary artery disease. The stress portion of the study is accomplished with dynamic leg exercise on a treadmill and is aimed at increasing myocardial oxygen demands. Areas of myocardium distal to hemodynamically significant lesions in the coronary arteries become ischemic at peak stress due to the inability of the stenotic vessel to respond to the oxygen demand/blood flow needs of the myocardium. Ischemic areas are readily recognized as photopenic defects on scans obtained immediately after exercise, with normalization upon delayed imaging. Diuresis renography is aimed at the differential diagnosis of hydroureteronephrosis. By challenging the urinary tract collecting structures with an augmented urine flow, dilated, unobstructed systems can be differentiated from systems with significant mechanical obstruction. 137 references

  11. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  12. Special monitoring in nuclear medicine

    International Nuclear Information System (INIS)

    Beltran, C.C.; Puerta, J.A.; Morales, J.

    2006-01-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the 131 I and the 99m Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained result of the

  13. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  14. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  15. Nuclear medicine applications for the diabetic foot

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  16. Nuclear Medicine Imaging in Pediatric Neurology

    OpenAIRE

    Akdemir, ?mit ?zg?r; Atay Kapucu, L?tfiye ?zlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with e...

  17. Radionuclides for nuclear medicine: a nuclear physicists' view

    Czech Academy of Sciences Publication Activity Database

    Cantone, M.; Haddad, F.; Harissopoulos, S.; Jensen, M.; Jokinen, A.; Koster, U.; Lebeda, Ondřej; Ponsard, B.; Ratzinger, U.; Stora, T.; Tarkanyi, F.; Van Duppen, P.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S257-S257 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : nuclear physics for medicine * EANM * medical radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  18. Nuclear technology and societal needs

    International Nuclear Information System (INIS)

    2004-11-01

    This volume aims to review the present status of development of nuclear technologies and their applications in the country and also to make projections for future requirements. This will also cover state-of-the-art technologies in these areas. The following topics are covered in detail: nuclear technologies for water desalination, water resources development and management using nuclear technology, industrial applications of isotopes and radiation technology, radiation technology in health care, nuclear technology for food preservation, agricultural applications of nuclear technology. Papers relevant to INIS are indexed separately

  19. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  20. Nuclear science and technology

    International Nuclear Information System (INIS)

    Daud Mohamad; Abd Khalik Wood; Azali Muhammad; Idris Besar; Jaafar Abdullah; Mohd Tadza Abdul Rahman; Muhammad Lebai Juri; Noriah Mod Ali; Samsurdin Ahamad; Syed Abdul Malik Syed Zain; Zaharudin Ahmad

    2005-01-01

    The Nuclear Science and Technology contains valuable information on many aspects of nuclear sciences and technology particularly, its application in various socio-economic sectors, presented in 26 chapters. In general, the book addresses 5 main subjects, covering the following: 1] Introduction; contains basic information on ionising radiation and radioactivity including the what of ionising radiation is all about, interaction with matter and sources of radiation. 2] Detection and measurements; describes detection system and methods capable of detecting specific type of radiation and exposure rate. The QA/QC aspects are also given due consideration in this segment. 3] Safety and health. Outlines the effects of radiation on man, proper working procedures and the organisational radiation protection programme required in accordance to the Atomic Energy Licensing Act 1984 (Act 304) and its subsidiaries. 4] Techniques and applications; as the nucleus of the book, focussing on the various applications and some success stories; power production (for electricity) and other utilizations from both sealed and unsealed sources used in industry, medical and non-medical sectors for the benefit of mankind. 5] Prospects; provides information on the current situation and status of nuclear technology, and prominent organisations responsible in the development of the technology. The direction and future outlook of the technology are also presented to gauge the position and possible contribution that the nuclear technology can play a significant role for the socio-economic progress and nation, well being. Each, chapter in this book is developed around three pillars - basic principle, equipment and system, techniques and operational aspects - as a backbone of the chapter, to ease the understanding of the readers, step by step. Those dealing, with ionising radiation related matters, be it a researcher, a scientist, a laboratory worker or even a member of the public would find this book

  1. Why nuclear technology

    International Nuclear Information System (INIS)

    Vieira, Wilson J.; Ishiguro, Yuji; Urbina, Ligia M. Soto

    1996-01-01

    The importance of nuclear energy in the global society implies the nacional need to give priority and maintain an effective technology policy for nuclear science. In this work, it is considered three points that, although do not represent all the problems in the nuclear sector, were chosen because of their importance and need of change that require: evaluation of the Brazilian scientific policy, which is directed towards the publication in international periodicals, yielding more benefits to the developed countries; evaluation of the few and small investment in laboratories and research institutes, which are the natural producers of technology for the industry and service sectors; evaluation of the lack of concrete of concrete objectives in the universities and research institutes, whose policies are elaborated with-out the due consideration of the collective benefits. It is necessary a national plan for the nuclear are that makes investments in technology development, investments in the laboratories and research institutes, and that makes these universities and research institutes accountable for the success or failure to accomplish the proposed objectives. (author)

  2. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  3. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  4. Nuclear medicine - the condition and prospects

    International Nuclear Information System (INIS)

    Zaredinov, D.A.; Altaeva, B.M.

    2004-01-01

    Full text: The nuclear medicine has rather strongly determined the place in clinical and diagnostic practice. Statistical researches show, that, even despite of the certain successes in treatment of many diseases, rather high death rate at cardiovascular, oncological and many other diseases. The urgency of clinical tasks connected with a state of health of the population puts before nuclear medicine a (task) on development and introduction of new methods of diagnostics and therapy. The nuclear medicine is characterized by some number of diagnostic and therapeutic methods which application frequently does not have other alternative. The methods of visualization used in nuclear medicine, are full informative, exact and have ability to reveal structurally functional changes of bodies and fabrics practically at a cellular level. To present time diagnostic radiopharmacy (Ph) wed practically in all clinical areas of medicine. In world practice steady growth of increase of manufacture as diagnostic and radiotherapeutic RP was planned. The even greater (reduction) of potential risk one and of conditions by which development of nuclear medicine in the near future is defined is at realization of the procedures connected to application of radioactive preparations and reduction of beam loadings on the patient. An important point in the clinic-diagnostic field is replacement the RP on short-lived and ultra short-lived. Among examples of such transition it is necessary to name replacement 131 I in diagnostic application on 123 I, and also active introduction PET. It is possible to call essentially new direction of development of technologies of the directed transport the open radioactive isotopes and RP to pathology changed bodies or organisms demanding realization of diagnostic procedures or selective beam therapy. However, despite of huge potential opportunities of the domestic nuclear industry, even such old method as the radiotherapy I-131 - is used by iodine in our country

  5. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  6. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  7. Nuclear medicine resources in the internet

    International Nuclear Information System (INIS)

    Obaldo, J.M.

    1996-01-01

    The internet is a global collection of networked computers linked by a set of protocols which allows the otherwise disperate computer systems to communicate with each other. In contrast to text-only data available previously, the World Wide Web allows multimedia content to be available on the internet. Graphics can now likewise be used as links. The development of World Wide Web client software such as Mosaic, or the currently more popular Netscape Navigator, makes linking from one document to another (colloquially referred to as 'surfing the Net') fast and simple. While these software are commonly called Web browsers their function extends to the other internet services such as e-mail, file transfer protocol, remote login, Gopher and WAIS. A prototype application being developed as a case-based teaching file which could include clinical data and case discussion, aside of course from the nuclear medicine and related images. Contributions from various institutions can be made available on their own servers and linked together through hypertext. Examples of these are websites of the Mallinckrodt Institute of Radiology and the Joint Program in Nuclear Medicine of the Harvard Medical School. The university of Iowa also has its Virtual Hospital, a collection of clinical cases with radiologic images. Most major universities and medical centers have websites where information on on-going research, facilities and personnel are made available. Links to various special interest discussion groups (e.g. those developing the common image file format) are also accessible and the documents often contain further links to related fields in nuclear technology. The very nature of the hypertext transfer protocol of the World Wide Web makes it a relatively simple matter for a developer of a teaching system to include links to necessary resources. It is envisioned that an internet-based teaching module will be incorporated in some nuclear medicine training programs in the United States

  8. Guidelines for patient information in nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  9. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  10. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  11. Nuclear Medicine Imaging in Pediatric Neurology

    Science.gov (United States)

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy. PMID:27299282

  12. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  13. Experience with Nuclear Medicine Information System

    Science.gov (United States)

    Volkan-Salanci, Bilge; Şahin, Figen; Babekoğlu, Vahide; Uğur, Ömer

    2012-01-01

    Objective: Radiology information system (RIS) is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS) that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven) and steps include, patient scheduling and retrieving information from HIS (hospital information system), radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex©) for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. Conflict of interest:None declared. PMID:23487446

  14. Nuclear Technology Review 2009

    International Nuclear Information System (INIS)

    2009-08-01

    application to build and operate the long planned high level waste repository at Yucca Mountain in Nevada. The ITER International Fusion Energy Organization formally applied for a construction permit to build the International Thermonuclear Experimental Reactor (ITER), an experimental fusion reactor, in Cadarache, France. Water resource management, food security, human health, environmental protection and the use of radioisotopes and radiation are all areas where nuclear and isotopic techniques are making valuable contributions to socioeconomic development around the world. In the food and agriculture area, nuclear techniques are being used, together with complementary techniques, to enhance livestock productivity as well as to prevent the spread of dangerous transboundary animal diseases such as avian flu. As international trade expands, the need to ensure food safety also grows. Isotopic techniques are being used to trace the origin of foods and to track the infiltration of contaminants as a means to ensure the quality of food products. Nuclear imaging is playing a growing role in the development of new drugs. Interventions to improve nutrition are increasingly becoming part of development strategies; the use of stable isotopes to assess key nutritional aspects, such as body composition, can be part of effective strategies to counteract later development of chronic diseases. The long sought 'magic bullet', where a truly targeted substance kills cancer cells without damaging healthy tissue, is progressively, albeit slowly, becoming a reality in therapeutic nuclear medicine.

  15. Nuclear Technology Review 2007

    International Nuclear Information System (INIS)

    2007-08-01

    The year 2006 saw increasing activities in the field of nuclear power. Significant plans for expansion were announced in some countries and plans for introducing nuclear power in some others. The year began with announcements by both the Russian Federation and the United States of America of international fuel cycle proposals in anticipation of a substantial expansion of nuclear power worldwide. In January, Russian President Vladimir Putin outlined a proposal to create 'a system of international centres providing nuclear fuel cycle services, including enrichment, on a non-discriminatory basis and under the control of the IAEA'. In February, the USA proposed a Global Nuclear Energy Partnership to develop advanced recycling technologies that would not separate pure plutonium; international collaboration in supplying fuel for States which agree not to pursue enrichment and reprocessing; advanced reactors to consume recycled spent fuel while providing energy; and safe and secure small reactors suited to the needs of developing countries. New medium-term projections by the IAEA and the International Energy Agency present a picture with opportunities for substantial nuclear expansion, but still with notable uncertainty. A number of countries have announced plans for significant expansion: China, India, Japan, Pakistan, the Russian Federation and the Republic of Korea. Announcements of planned license applications by US companies and consortia mentioned approximately 25 new reactors. Two site preparation applications were submitted in Canada. A major energy review by the United Kingdom concluded that new nuclear power stations would make a significant contribution to meeting the UK's energy policy goals. Utilities from Estonia, Lithuania and Latvia launched a joint feasibility study of a new nuclear power plant to serve all three countries, and Belarus, Egypt, Indonesia, Nigeria and Turkey made announcements of steps they are taking toward their first nuclear power plants

  16. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  17. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  18. BioChroma - A New and Patented Technology for Processing Radioactive Wastewater from Nuclear Medicine Therapy Facilities in Hospitals and Clinics.

    Science.gov (United States)

    Rodríguez, José Canga

    2012-01-01

    After undergoing radionuclide therapy, patients generate wastewater with a considerable amount of radioactivity, which can reach levels of as much as 90% of the administered dose. Due to the risk of accumulation after discharge into the sewer, it is advisable to collect this effluent for its treatment prior to final discharge. Delay and decay (natural decomposition of the isotope) is the most commonly used technical method of abating radioactive iodine, but it is frequently criticized as being complex and very expensive. BioChroma is a technology that has been developed as an alternative to these complicated and expensive systems. This paper describes this new technology and presents, as an example, a system that was installed and successfully commissioned in the middle of 2008 in a nuclear medicine ward with 12 beds in Stuttgart (Germany). Based on existing legislation, the responsible authorities and the company that operated the hospital agreed on a maximum activity level of 5 Bq/l. If a typical delay and decay system would have been installed, the 180 m(3) treatment plant that was already available in the hospital cellar would have to be extended by additional 150 m(3). By implementing the patented BioChroma process, the space requirements were reduced by 75%. For instance, since the new system was integrated into the existing installation, tanks accounting for 120 m³ could be used as buffering volume in the new wastewater treatment plant. The operation of the referred plant is currently producing very good results with values below the specified limit of 5 Bq/l for the isotope (131)I. In addition, (90)Y has been reported to be eliminated at the same time. Over the past 2 years of operation, the wastewater treatment plant has been able to achieve a maximum processing capacity of more than 2,000 l/day, which equates to a nuclear medicine ward with approx. 20 beds. The highest level recorded during the test period (of 180 days after start-up) was a peak of

  19. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  20. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  1. Structure and Activities of Nuclear Medicine in Kuwait.

    Science.gov (United States)

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nuclear Medicine at Charles Sturt University

    International Nuclear Information System (INIS)

    Swan, H.; Sinclair, P.; Scollard, D.

    1998-01-01

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  3. Nuclear Medicine at Charles Sturt University

    Energy Technology Data Exchange (ETDEWEB)

    Swan, H. [Charles Sturt University, Wagga Wagga, NSW (Australia); Sinclair, P. [Charles Sturt University, Dubbo, NSW (Australia); Scollard, D. [Michener Institute, Toronto (Canada)

    1998-06-01

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  4. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  5. Nuclear technologies for Moon and Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  6. Nuclear Technology Review 2008

    International Nuclear Information System (INIS)

    2008-08-01

    , on a non-discriminatory basis and under the control of the IAEA. Nineteen countries signed a statement of principles of the Global Nuclear Energy Partnership, which aims at accelerating development and deployment of advanced fuel cycle technologies to foster development, improve the environment, and reduce the risk of nuclear proliferation. The NRC approved the release of most of the Big Rock Point nuclear power plant site and most of the Yankee Rowe nuclear power plant site for unrestricted public use. Thus, ten power plants around the world have been completely decommissioned with their sites released for unconditional use. Seventeen plants have been partially dismantled and safely enclosed. Thirty-two are being dismantled prior to eventual site release, and thirty-four reactors are undergoing minimum dismantling prior to long term enclosure. In September, the IAEA launched a new Network of Centres of Excellence for Decommissioning to improve the flow of knowledge and experience among those engaged in decommissioning and to encourage organizations in developed Member States to contribute to the activities of Member States requiring decommissioning assistance. Nuclear and isotopic techniques continue to make substantive contributions in agriculture, human health, the marine and terrestrial environments as well as in water resource management. In food and agriculture, plant mutation breeding is supporting the development of new varieties of crops that bring enhanced yields while also providing significant environmental benefits through reduced requirements for fertilizers and increased resistance to biotic and abiotic stresses. The genetic enhancement of biomass crops is useful in responding to increasing demands for biofuels. In addition to the continuing use of irradiation for sanitary purposes, the use of irradiation for phytosanitary applications, especially those applications related to quarantine measures, is increasing.

  7. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  8. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  9. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  10. Nuclear medicine training and practice in Portugal.

    Science.gov (United States)

    Vieira, Rosário; Costa, Gracinda

    2013-07-01

    Nuclear medicine in Portugal has been an autonomous speciality since 1984. In order to obtain the title of Nuclear Medicine Specialist, 5 years of training are necessary. The curriculum is very similar to the one approved under the auspices of the European Union of Medical Specialists, namely concerning the minimum recommended number of diagnostic and therapeutic procedures. There is a final assessment, and during the training the resident is in an approved continuing education programme. Departments are accredited by the Medical College in order to verify their capacity to host nuclear medicine residencies.

  11. South Africa's SAFARI From nuclear weapons to nuclear medicine ...

    African Journals Online (AJOL)

    ... for peaceful uses, such as power generation and nuclear medicine. In respect of the latter, South Africa has skilfully crafted a global niche for itself. Building on its nuclear expertise, South Africa has become one of the world's leading producers of medical isotopes – an under-researched area in South Africa's nuclear and ...

  12. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    International Nuclear Information System (INIS)

    Movahed, Assad; Gnanasegaran, Gopinath; Buscombe, John R.; Hall, Margaret

    2009-01-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  13. History and Perspectives of Nuclear Medicine in Bangladesh

    Science.gov (United States)

    Hussain, Raihan

    2016-01-01

    Bangladesh is one of the smaller states in Asia. But it has a long and rich history of nuclear medicine for over sixty years. The progress in science and technology is always challenging in a developing country. In 1958, work for the first Nuclear Medicine facility was commenced in Dhaka in a tin-shed known as ‘Radioisotope Centre’ and was officially inaugurated in 1962. Since the late 50s of the last century nuclear medicine in Bangladesh has significantly progressed through the years in its course of development, but still the facilities are inadequate. At present there are 20 nuclear medicine establishments with 3 PET-CTs, 42 gamma camera/SPECTs with 95 physicians, 20 physicists, 10 radiochemists and 150 technologists. The Society of Nuclear Medicine, Bangladesh (SNMB) was formed in 1993 and publishing its official journal since 1997. Bangladesh also has close relationships with many international organizations like IAEA, ARCCNM, AOFNMB, ASNM, WFNMB and WARMTH. The history and the present scenario of the status of nuclear medicine in Bangladesh are being described here. PMID:27904875

  14. Nuclear medicine in the first year of life.

    Science.gov (United States)

    Treves, S Ted; Baker, Amanda; Fahey, Frederic H; Cao, Xinhua; Davis, Royal T; Drubach, Laura A; Grant, Frederick D; Zukotynski, Katherine

    2011-06-01

    Nuclear medicine has an important role in the care of newborns and children less than 1 y old. Patients in this age group present with a spectrum of diseases different from those of older children or adults. These patients can benefit from the full range of nuclear medicine studies. In these young children, nuclear medicine studies are more likely to be used to evaluate a wide range of congenital conditions but also can be helpful for evaluating acquired conditions such as infection, cancer, and trauma. This review first will cover the general aspects of nuclear medicine practice with these patients, including the special considerations that can help achieve successful diagnostic imaging. These topics will include clinical indications, imaging technology, instrumentation, software, positioning and immobilization, sedation, local and general anesthesia, radiopharmaceutical doses, radiation risk, and dose reduction. The review then will discuss the specific nuclear medicine studies that typically are obtained in patients in this age group. With extra care and attention to the special needs of this population, nuclear medicine departments can successfully study patients less than 1 y old.

  15. History and Perspectives of Nuclear Medicine in Bangladesh.

    Science.gov (United States)

    Hussain, Raihan

    2016-01-01

    Bangladesh is one of the smaller states in Asia. But it has a long and rich history of nuclear medicine for over sixty years. The progress in science and technology is always challenging in a developing country. In 1958, work for the first Nuclear Medicine facility was commenced in Dhaka in a tin-shed known as 'Radioisotope Centre' and was officially inaugurated in 1962. Since the late 50s of the last century nuclear medicine in Bangladesh has significantly progressed through the years in its course of development, but still the facilities are inadequate. At present there are 20 nuclear medicine establishments with 3 PET-CTs, 42 gamma camera/SPECTs with 95 physicians, 20 physicists, 10 radiochemists and 150 technologists. The Society of Nuclear Medicine, Bangladesh (SNMB) was formed in 1993 and publishing its official journal since 1997. Bangladesh also has close relationships with many international organizations like IAEA, ARCCNM, AOFNMB, ASNM, WFNMB and WARMTH. The history and the present scenario of the status of nuclear medicine in Bangladesh are being described here.

  16. Proceedings of the 3. nuclear science and technology conference

    International Nuclear Information System (INIS)

    1990-01-01

    Non-power applications of nuclear technology in medicine, agriculture and industry are discussed. These applications include irradiation of food for desinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of the nuclear power industry are also discussed

  17. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  18. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  19. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  20. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  1. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  2. An overview of nuclear medicine imaging procedures.

    Science.gov (United States)

    Hogg, Peter; Lawson, Richard

    2015-11-25

    Nuclear medicine imaging is not generally well understood by nurses who work outside this area. Consequently, nurses can find themselves unable to answer patients' questions about nuclear medicine imaging procedures or give them proper information before they attend for a test. This article aims to explain what is involved in some common diagnostic nuclear medicine imaging procedures so that nurses are able to discuss this with patients. It also addresses some common issues about radiation protection that nurses might encounter in their usual working routine. The article includes links to videos showing some typical nuclear medicine imaging procedures from a patient's point of view and links to an e-Learning for Healthcare online resource that provides detailed information for nurses.

  3. Proceedings of the 6th nuclear science and technology conference

    International Nuclear Information System (INIS)

    1996-12-01

    The 6th conference on nuclear science and technology was held on 2 - 4 December, 1996 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  4. Proceedings of the 5th nuclear science and technology conference

    International Nuclear Information System (INIS)

    1994-11-01

    The 5th conference on nuclear science and technology was held on 21-23 November, 1992 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application including irradiation of food for desinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of the nuclear power industry are also discussed

  5. Half Century and Upcoming Decade of Nuclear Technology in Thailand

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology, Bangkok

    2011-06-01

    Full text: The 12 t h conference on the nuclear science and technology was held on 6-7 June 2011 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for the infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  6. Proceedings of the 7. Nuclear Science and Technology Conference

    International Nuclear Information System (INIS)

    1998-12-01

    The 7. conference on nuclear science and technology was held on 1-2 December 1998 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for disinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  7. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  8. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  9. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  10. Trends in nuclear medicine in developing countries.

    Science.gov (United States)

    Dondi, Maurizio; Kashyap, Ravi; Paez, Diana; Pascual, Thomas; Zaknun, John; Bastos, Fernando Mut; Pynda, Yaroslav

    2011-12-01

    This article describes trends in nuclear medicine in the developing world as noted by nuclear medicine professionals at the International Atomic Energy Agency (IAEA). The trends identified are based on data gathered from several sources, including information gathered through a database maintained by the IAEA; evaluation of country program frameworks of various IAEA Member States; personal interactions with representatives in the nuclear medicine field from different regions of the world; official proceedings and meeting reports of the IAEA; participation in numerous national, regional, and international conferences; discussions with the leadership of major professional societies; and relevant literature. The information presented in this article relied on both objective and subjective observations. The aims of this article were to reflect on recent developments in the specialty of nuclear medicine and to envision the directions in which it is progressing. These issues are examined in terms of dimensions of practice, growth, and educational and training needs in the field of nuclear medicine. This article will enable readers to gain perspective on the status of nuclear medicine practice, with a specific focus on the developing world, and to examine needs and trends arising from the observations.

  11. International Nuclear Science and Technology Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Conference Nuclear technology has played an important role in many aspects of our lives, including agriculture, medicine and healthcare, materials, environment, forensics, energy, and frontier advancement. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics and students to share knowledge and experiences about all aspects of nuclear sciences. INST2016 was the second of the INST conference series organized by Thailand Institute of Nuclear Technology. INST has evolved from a national conference series on nuclear science and technology that was held every two years in Bangkok for over a twenty-year period. INST2016 was held from 4 - 6 August 2016 in Bangkok, Thailand, under the central theme “Nuclear for Better Life”. The conference working language was English. The oral and poster research presentations covered seven major topics: • Nuclear physics and engineering (PHY) • Nuclear and radiation safety (SAF) • Medical and nutritional applications (MED) • Environmental applications (ENV) • Radiation processing and industrial applications (IND) • Agriculture and food applications (AGR) • Instrumentation and other related topics (INS) The welcome addresses, committees, program of the conference and the list of presentations can be found in the PDF. (paper)

  12. VIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1983-01-01

    The conference proceedings contain abstracts of 100 presented papers, mainly dealing with radioimmunoassays, radiopharmaceuticals, scintiscanning, computer tomography, radionuclide lymphography, ventriculography, angiography, nuclear cardiology, liquid scintillator techniques, radioisotope generators, radiospirometry and various uses of labelled compounds and tracer techniques in nuclear medicine. (M.D.)

  13. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  14. Instrumentation in the nuclear medicine modern achievements and perspective developments

    International Nuclear Information System (INIS)

    Narkevich, B.Ya.

    1999-01-01

    Most important achievement and tendencies of development of physical maintenance of modern nuclear medicine are analysed. The urgent problems and directions of researches are considered in the field of development of the equipment, technologies of measurements and software maintenance, and also means and procedures of the warranty of radiodiagnostic researches [ru

  15. ACADEMIC TRAINING Physics Technologies in Medicine

    CERN Multimedia

    Françoise Benz

    2002-01-01

    10, 11, 12, 13, 14 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Physics Technologies in Medicine by G. K. Von Schulthess / Univ. of Z rich, S. Wildermuth, A. Buck / Univ. Hospital Z rich, K. Jäger / Univ. Hospital Basel, R. Kreis / Univ. Hospital Bern Modern medicine is a large consumer of physics technologies. The series of lectures covers medical imaging starting with an overview and the history of medical imaging. Then follows four lectures covering x-ray imaging positron emission tomography imaging blood flow by ultrasound magnetic resonance Monday 10 June 100 Years of Medical Imaging Pr. Gustav K. von Schulthess MD, PhD / University of Zurich History and overview of Medical Imaging Tuesday 11 June X-rays: still going strong Dr. Simon Wildermuth / MD, University Hospital Zurich Multidetector computed tomography: New developments and applications Wednesday 12 June Nuclear Medicine: PET Positron Emission Tomography Dr. Alfred Buck / MD, MSc, University Hospital Zurich Elucidati...

  16. ACADEMIC TRAINING: Physics Technologies in Medicine

    CERN Multimedia

    Françoise Benz

    2002-01-01

    10, 11, 12, 13, 14 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Physics Technologies in Medicine by G. K. Von Schulthess / Univ. of Zürich, S. Wildermuth, A. Buck / Univ. Hospital Zürich, K. Jäger / Univ. Hospital Basel, R. Kreis / Univ. Hospital Bern Modern medicine is a large consumer of physics technologies. The series of lectures covers medical imaging starting with an overview and the history of medical imaging. Then follows four lectures covering x-ray imaging positron emission tomography imaging blood flow by ultrasound magnetic resonance Monday 10 June 100 Years of Medical Imaging Pr. Gustav K. von Schulthess MD, PhD / University of Zurich History and overview of Medical Imaging Tuesday 11 June X-rays: still going strong Dr. Simon Wildermuth / MD, University Hospital Zurich Multidetector computed tomography: New developments and applications Wednesday 12 June Nuclear Medicine: PET Positron Emission Tomography Dr. Alfred Buck / MD, MSc, University...

  17. Radiological Protection of Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.

    2011-01-01

    knowing the therapy successful rates, to comparing the dose values with radiobiological findings and to determine late radiation effects to the patient should be a goal for radiological protection of patients in nuclear medicine. Finally, regarding regulations, it is interesting to discuss regulations, a balance should be achieved between: too many or not enough. The challenge for the regulator is to establish a regulatory structure that helps to minimize these unintended risks, while avoiding undue interference in medical judgments. Too many regulations can result in medical or technological needless delay of while too few regulations can lead to an increase in misadministrations and increase the likelihood for patients, medical staff, and the public to receive involuntary exposures. A careful balance must be attained in establishing an appropriate regulatory regime. Regulation should provide the appropriate vehicle for reducing radiation risks, while also minimizing interference with the beneficial uses of medicine. (authors)

  18. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine exam, there are several things you can do to prepare. First, you may be asked not ... To help ensure current and accurate information, we do not permit copying but encourage linking to this ...

  19. Medicine and nuclear war - helpless

    International Nuclear Information System (INIS)

    1983-01-01

    At the end of the ''2nd Medical Congress for the Prevention of Nuclear War'' attention is again drawn to the fact that erroneous or intended use of nuclear weapons can kill hundreds of millions and make the earth unlivable. What physicians are refusing here is not to give whatever help they can or are obliged to. They are on strike against politicians and journalists who ascribe them an ability they do not possess. They refuse to be the objects of false praise pretending that they could be helpers or rescuers in the, unfortunately, not only possible but probable nuclear catastrophe. (orig./HSCH) [de

  20. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    An effective management system that integrates quality management (QM) is essential in modern nuclear medicine departments in Member States. The IAEA, in its Safety Standards Series, has published a Safety Requirement (GS-R-3) and a Safety Guide (GS-G-3.1) on management systems for all facilities. These publications address the application of an integrated management system approach that is applicable to nuclear medicine organizations as well. Quality management systems are maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, and to satisfy its customers. The IAEA has a long history of providing assistance in the field of nuclear medicine to its Member States. Regular quality audits and assessments are essential for modern nuclear medicine departments. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical and medical physics procedures. Aspects of radiation safety and patient protection should also be integral to the process. Such an approach ensures consistency in providing safe, quality and superior services to patients. Increasingly standardized clinical protocol and evidence based medicine is used in nuclear medicine services, and some of these are recommended in numerous IAEA publications, for example, the Nuclear Medicine Resources Manual. Reference should also be made to other IAEA publications such as the IAEA Safety Standards Series, which include the regulations for the safe transport of nuclear material and on waste management as all of these have an impact on the provision of nuclear medicine services. The main objective of this publication is to introduce a routine of conducting an

  1. Physician knowledge of nuclear medicine radiation exposure.

    Science.gov (United States)

    Riley, Paul; Liu, Hongjie; Wilson, John D

    2013-01-01

    Because physician knowledge of patient exposure to ionizing radiation from computed tomography (CT) procedures previously has been recognized as poor, the purpose of this systematic review is to determine whether physician or physician trainee knowledge of patient exposure to radiation from nuclear medicine procedures is similarly insufficient. Online databases and printed literature were systematically searched to acquire peer-reviewed published research studies involving assessment of physician or physician trainee knowledge of patient radiation exposure levels incurred during nuclear medicine and CT procedures. An a priori inclusion/exclusion criteria for study selection was used as a review protocol aimed at extracting information pertaining to participants, collection methods, comparisons within studies, outcomes, and study design. Fourteen studies from 8 countries were accepted into the review and revealed similar insufficiencies in physician knowledge of nuclear medicine and CT patient radiation exposures. Radiation exposure estimates for both modalities similarly featured a strong tendency toward physician underestimation. Discussion Comparisons were made and ratios established between physican estimates of patient radiation exposure from nuclear medicine procedures and estimates of CT procedures. A theoretical median of correct physician exposure estimates was used to examine factors affecting lower and higher estimates. The tendency for ordering physicians to underestimate patient radiation exposures from nuclear medicine and CT procedures could lead to their overuse and contribute to increasing the public's exposure to ionizing radiation.

  2. Nuclear medicine with its interdependencies

    International Nuclear Information System (INIS)

    1980-01-01

    Newly developed nuclear methods and measuring techniques in the diagnosis and therapy of diseases of the blood, heart, vessels, thyroid, gastrointestinal tract, kidneys, skeleton and ophthalmological diseases are described. Occupational radiation exposure is briefly discussed. (AJ) [de

  3. Nuclear medical technology

    International Nuclear Information System (INIS)

    Daga, Avinash; Sharma, Smita; Sharma, K.S.

    2012-01-01

    Nuclear medical technology helps to use radiopharmaceuticals (drugs that give off radiation) to diagnose and treat illness. A more recent development is Positron Emission Tomography (PET) which is a more precise and sophisticated technique that uses isotopes produced in a cyclotron. F-18 in FDG (fluorodeoxyglucose) is one such positron-emitting radionuclide. Chemically, it is 2-deoxy-2-( 18 F) fluoro-D-glucose, a glucose analog with the positron-emitting radioactive isotope fluorine-18 substituted for the normal hydroxyl group at the 2' position in the glucose molecule. It is introduced, usually by injection, and then it gets accumulated in the target tissue. As it decays it emits a positron, which promptly combines with a nearby electron resulting in the simultaneous emission of two identifiable gamma rays in opposite directions. These are detected by a PET camera when the patient is placed in the PET scanner for a series of one or more scans which may take from 20 minutes to as long as an hour. It gives very precise indication of their origin. 18 F in FDG (fluorodeoxyglucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. (author)

  4. Involvement of WHO in the improvement of nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Souchkevitch, G.N.

    1986-01-01

    The World Health Organization's programme on nuclear medicine deals with the organization of nuclear medicine services, the training of personnel, the efficacy and efficiency of nuclear medicine, and quality assurance in nuclear medicine, instrumentation and radiopharmaceuticals. An analysis of the present situation in diagnostic imaging shows that new techniques and especially ultrasonography (US) may successfully compete with nuclear medicine. WHO is therefore concerned to stimulate objective evaluations of the appropriate role of each diagnostic imaging technology and to make relevant recommendations. In diagnostic nuclear medicine, the following main objectives are included in the WHO strategy: to restrict diagnostic nuclear medicine to those diseases where it cannot be substituted by other less costly and complicated methods; to decrease the cost of diagnostic procedures; and to prevent radiation hazard to patients, personnel and the public from the expanded use of radiopharmaceuticals. In the developing world this strategy may be carried out in two stages: (1) implementation of US in diagnostic services and the initiation of a comparative study of the diagnostic value of US and nuclear medicine imaging techniques in common diseases; (2) working out appropriate recommendations on a rational approach in imaging diagnostics and substitution of nuclear medicine by US in appropriate areas. The Intercomparison Study on Quality Performance of Nuclear Medicine Imaging Devices, established by WHO jointly with the International Atomic Energy Agency, and the organization of training workshops are examples of a successful approach to quality improvement in nuclear medicine in developing countries. (author)

  5. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  6. Nuclear medicine. Trends and possibilities in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.A.E. (Evangelisches Krankenhaus Bethesda Gemeinnuetzige G.m.b.H., Duisburg (Germany, F.R.). Nuklearmedizinische Klinik und Poliklinik); Buraggi, G.L. (Istitutio Nazionale dei Tumori, Milan (Italy). Div. of Nuclear Medicine) (eds.)

    1989-01-01

    The present publication contains 189 full text papers presented at the meeting. The subjects are as follows: Methods and basics (41 papers) including the aspects of instrumentation (5), NMR (9), PET (12), labelled blood cells (7), and radiopharmaceuticals (8); cardiology (31), circulation (3), neurology (10), pulmonology (7), gastroenterology (13), nephrology (11), osteology (6), endocrinology (5), pediatrics (4), oncology (40) implying the aspects of immunoscintigraphy (28) and nuclear medical therapy (12), and, at last, work in progress (18). (MG) With 243 figs., 130 tabs.

  7. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  8. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  9. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  10. Nuclear Technology Review 2014

    International Nuclear Information System (INIS)

    2014-08-01

    With 434 nuclear power reactors in operation worldwide at the end of 2013, nuclear energy had a global generating capacity of 371.7 GW(e). There were four new grid connections and ten construction starts on new reactors. Belarus became the second nuclear ‘newcomer’ State in three decades to start building its first nuclear power plant. Near and long term growth prospects remained centred in Asia, particularly in China. The 72 reactors under construction in 2013 represented the highest number since 1989. Of these, 48 were in Asia, as were 42 of the last 52 new reactors to have been connected to the grid since 2000. Thirty States currently use nuclear power and about the same number are considering including it as part of their energy mix. Of the 30 States already operating nuclear power plants, 13 are either constructing new plants or actively completing previously suspended constructions, and 12 are planning to either construct new plants or to complete suspended constructions. The IAEA Ministerial Conference on Nuclear Power in the 21st Century, held in June 2013, reaffirmed that nuclear power remains an important option for many States to improve energy security, reduce the impact of volatile fossil fuels prices and mitigate the effects of climate change. The Concluding Statement said that “nuclear power, as a stable base-load source of electricity in an era of ever increasing global energy demands, complements other energy sources including renewables.” In the IAEA’s 2013 projections, nuclear power is expected to grow by between 17% as the low projection and 94% as the high projection by 2030. These figures are slightly lower than projected in 2012, reflecting the continued impact of the Fukushima Daiichi accident, the low prices of natural gas and the increasing use of renewable energy. Additional information focuses on the linkages between nuclear power and climate change, as nuclear power, hydropower and wind energy have the lowest life cycle

  11. Nuclear medicine in cancer diagnosis and therapy

    Science.gov (United States)

    Chernov, V.; Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.

    2017-09-01

    Early cancer diagnosis remains one of the most actual problems of medicine, since it allows using the most effective methods of cancer treating. Unlike most diagnostic methods used in oncology, the methods of nuclear medicine allow assessing not so much the anatomic changes in the organ as the disturbance of metabolic processes in tumors and surrounding tissues. The authors describe the main radiopharmaceuticals used for diagnose and radiotherapy of malignant tumors.

  12. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  13. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana; Arashiro, Jorge G.; Giannone, Carlos A.

    1999-01-01

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  14. Nuclear medicine environmental discharge measurement. Final report

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Davis, E.M.; Pirtle, O.L.; DiPietro, W.

    1975-06-01

    The discharge of most man-made radioactive materials to the environment is controlled by Federal, State or local regulatory agencies. Exceptions to this control include the radioactive wastes eliminated by individuals who have undergone diagnostic or therapeutic nuclear medicine procedures. The purpose of this study is to estimate the amount of radioactivity released to the environment via the nuclear medicine pathway for a single sewage drainage basin and to measure the amounts discharged to the environment. The report is organized into a review of previous studies, scope of work, facility data, environmental measurements and estimates of population exposure

  15. Role of nuclear medicine in dentistry

    Directory of Open Access Journals (Sweden)

    Shazia Mushtaq

    2013-01-01

    Full Text Available Nuclear medicine studies often play a significant role in the diagnosis and treatment of oral and maxillofacial diseases. While not commonly used in everyday dental practice, the dental provider should have a conversational knowledge of these imaging modalities and understand the indications and limitations of these studies. The purpose of this review is to discuss the nuclear medicine studies that have applications in the head and neck region as well as their indications, limitations, and diagnostic conclusions that can be drawn from these studies.

  16. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  17. Diagnosis of liver lesions in nuclear medicine

    International Nuclear Information System (INIS)

    Krause, T.; Juengling, F.

    2003-01-01

    With the introduction of new imaging protocols for ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI), the importance of conventional nuclear medicine diagnostic procedures has changed fundamentally. With the introduction of positron emission tomography (PET) into routine diagnostics, the assessment of tissue-specific function adds on to the modern, morphological imaging procedures and in principle allows for differentiating benign from malignant lesions. The actual clinical value of nuclear medicine procedures for the diagnostic workup of focal liver lesions is discussed. (orig.) [de

  18. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  19. Nuclear Forensics Technologies in Japan

    International Nuclear Information System (INIS)

    Shinohara, N.; Kimura, Y.; Okubo, A.; Tomikawa, H.

    2015-01-01

    Nuclear forensics is the analysis of intercepted illicit nuclear or radioactive material and any associated material to provide evidence for nuclear attribution by determining origin, history, transit routes and purpose involving such material. Nuclear forensics activities include sampling of the illicit material, analysis of the samples and evaluation of the attribution by comparing the analysed data with database or numerical simulation. Because the nuclear forensics methodologies provide hints of the origin of the nuclear materials used in illegal dealings or nuclear terrorism, it contributes to identify and indict offenders, hence to enhance deterrent effect against such terrorism. Worldwide network on nuclear forensics can lead to strengthening global nuclear security regime. In the ESARDA Symposium 2015, the results of research and development of fundamental nuclear forensics technologies performed in Japan Atomic Energy Agency during the term of 2011-2013 were reported, namely (1) technique to analyse isotopic composition of nuclear material, (2) technique to identify the impurities contained in the material, (3) technique to determine the age of the purified material by measuring the isotopic ratio of daughter thorium to parent uranium, (4) technique to make image data by observing particle shapes with electron microscope, and (5) prototype nuclear forensics library for comparison of the analysed data with database in order to evaluate its evidence such as origin and history. Japan’s capability on nuclear forensics and effective international cooperation are also mentioned for contribution to the international nuclear forensics community.

  20. The Predictive Value of Selected Extrinsic and Intrinsic Indicators of Overall Job Satisfaction in Diagnostic Radiological Technology, Radiation Therapy, and Nuclear Medicine Technology Allied Health Faculty

    Science.gov (United States)

    Beavers, Gregory S.

    2010-01-01

    Healthcare is the largest industry in the United States and 60 percent of its 14 million workers are in allied health jobs. The need to attract and retain allied health faculty is critical to preparing a competent workforce in healthcare. This study reports the results of a survey of 259 faculty members working in diagnostic radiologic technology,…

  1. Nuclear imaging technology and global requirements

    International Nuclear Information System (INIS)

    Lele, R.D.

    1991-01-01

    After a brief review of the present state of availability of nuclear medicine services in the countries of world, a mention has been made of WHO programme on nuclear medicine. Nuclear medicine services in the developing countries are dependent on the availability of appropriate instrumentation and radiopharmaceuticals at affordable costs and existence of basic infrastructure required for giving such services. Basic infrastructure requirements are stable power supplies, air-conditioning systems, preventive maintenance and repair facilities. These are discussed. It is pointed out that the use of rectilinear scanners with 113m In instead of costly gamma cameras is still relevant in the third world countries. Need to develop a too low-cost gamma camera is emphasized. Electronics Corporation of India Ltd has plans to manufacture such cameras. Design of this camera is described. Foreign collaboration or technology transfer through concerned governement department needs to be explored so that the benefits of nuclear medicine can be brought to the third world countries by 2000 AD. (M.G.B.). 2 tabs

  2. IRSN's expertise about nuclear medicine hospital effluents

    International Nuclear Information System (INIS)

    2009-01-01

    This brief note aims at presenting the radioactivity follow up of hospital effluents performed by the French Institute of Radiation Protection and Nuclear Safety (IRSN). This follow up concerns the radioactive compounds and radiopharmaceuticals used in nuclear medicine, and principally technetium 99 and iodine 131. The IRSN has developed a network of remote measurement systems for the monitoring of sewers and waste water cleaning facilities. Data are compiled in a data base for analysis and subsequent expertise. (J.S.)

  3. Correlation of ultrasonic and nuclear medicine techniques

    International Nuclear Information System (INIS)

    Winston, M.A.; Pritchard, J.H.; Blahd, W.H.

    1974-01-01

    The rapid strides made during the past few years in ultrasonic instrumentation and technique have resulted in an extremely useful new diagnostic tool for neoplasms localization. Like radioisotope nuclear scanning, ultrasonography is well adapted to the study of solid organs. The nuclear medicine physician, therefore, should be aware of the many areas in which the two techniques are complementary, as well as those in which the newer modality seems likely to replace the older one. 59 references

  4. The future of nuclear (science and) technology

    International Nuclear Information System (INIS)

    Walker, R.

    2011-01-01

    This paper outlines the future of nuclear science and technology. It discusses the implications of nuclear renaissance, nuclear social contract and Fukushima for nuclear science and technology. Nuclear science and technology priorities for Canada are to understand and address the fear of radiation, reduce the threats and address the fear of nuclear proliferation and terrorism, preclude core melt and make used fuel an asset.

  5. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  6. Positron in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Basu, S.

    2012-01-01

    The last two decades have witnessed a rapid expansion of clinical indications of positron emission tomography (PET) based imaging in assessing a wide range of disorders influencing their clinical management. This is primarily based upon a large dataset of evidence that has been generated over the years. The impact has been most remarkable in the field of cancer, where it takes a pivotal role in the decision making (at initial diagnosis, early response assessment and following completion of therapeutic intervention) of a number of important malignancies. The concept of PET based personalized cancer medicine is an evolving and attractive proposition that has gained significant momentum in recent years. The non-oncological applications of PET and PET/CT are in (A) Cardiovascular Diseases (e.g. Myocardial Viability, Flow reserve with PET Perfusion Imaging and atherosclerosis imaging); (B) Neuropsychiatric disorders (e.g. Dementia, Epileptic Focus detection, Parkinson's Disease, Hyperkinetic Movement Disorders and Psychiatric diseases); (C) Infection and Inflammatory Disorders (e.g. Pyrexia of Unknown origin, complicated Diabetic Foot, Periprosthetic Infection, Tuberculosis, Sarcoidosis, Vasculitic disorders etc). Apart from these, there are certain novel clinical applications where it is undergoing critical evaluation in various large and small scale studies across several centres across the world. The modality represents a classical example of a successful translational research of recent times with a revolutionary and far-reaching impact in the field of medicine. (author)

  7. Nuclear Technology Review 2012

    International Nuclear Information System (INIS)

    2012-09-01

    In 2011, nuclear energy continued to play an important role in global electricity production despite the accident at the Fukushima Daiichi nuclear power plant (NPP). Total generating nuclear power capacity was slightly lower than in previous years due to the permanent shutdown of 13 reactors in 2011, including 8 in Germany and 4 in Japan in the wake of the accident. However, there were 7 new grid connections compared to 5 in 2010, 2 in 2009 and none in 2008. Significant growth in the use of nuclear energy worldwide is still anticipated - between 35% and 100% by 2030 - although the Agency projections for 2030 are 7-8% lower than projections made in 2010. The factors that have contributed to an increased interest in nuclear power did not change: an increasing global demand for energy, concerns about climate change, energy security and uncertainty about fossil fuel supplies. Most of the growth is still expected in countries that already have operating NPPs, especially in Asia, with China and India remaining the main centres of expansion while the Russian Federation will also remain a centre of strong growth. The 7-8% drop in projected growth for 2030 reflects an accelerated phase-out of nuclear power in Germany, some immediate shutdowns and a government review of the planned expansion in Japan, as well as temporary delays in expansion in several other countries. Measures taken by countries as a result of the Fukushima Daiichi nuclear accident have been varied. A number of countries announced reviews of their programmes. Belgium, Germany and Switzerland took additional steps to phase out nuclear power entirely while others re-emphasized their expansion plans. Many Member States carried out national safety assessment reviews in 2011 (often called 'stress tests'), and commitments were made to complete any remaining assessments promptly and to implement the necessary corrective action. In countries considering the introduction of nuclear power, interest remained strong

  8. Technology of nuclear war

    International Nuclear Information System (INIS)

    Broda, E.

    1973-01-01

    This Article is the Note of a lecture, which was hold by Engelbert Borda at the Catholic-Theological Faculty of the University of Vienna in 27. 03. 1973. The author describes the development of modern nuclear weapon systems and the resulting war strategies. He is concerned about a possible end of the ‚balance of terror’ and the development in automation of nuclear strike back strategies. (rössner) [de

  9. Nuclear Technology Review 2015

    International Nuclear Information System (INIS)

    2015-08-01

    With 438 reactors operating at the end of 2014, nuclear energy had a global generating capacity of 376.2 GW(e). There was only one permanent shutdown. There were five new grid connections and three construction starts on new reactors. Near and long term growth prospects remained centred in Asia, particularly in China. Of the 70 reactors under construction, 46 were in Asia, as were 32 of the last 40 reactors that have been connected to the grid since 2004. Thirty countries currently use nuclear power and about the same number are considering, planning or actively working to include it as part of their energy mix. Of the 30 operating countries, 13 are either constructing new plants or actively completing previously suspended construction projects, and 12 are planning either to construct new plants or to complete suspended construction projects. Several countries that have decided to introduce nuclear power are at advanced stages of infrastructure preparation. The IAEA’s 2014 projections show a growth between 8% and 88% in nuclear power capacity by the year 2030. Growth of population and demand for electricity in the developing world, recognition of the role nuclear power plays in reducing greenhouse gas emissions, the importance of security of energy supply and the volatility of fossil fuel prices point to nuclear energy playing an important role in the energy mix in the long run. Safety improvements have continued to be made at nuclear power plants (NPPs) throughout the world. These have included identifying and applying lessons learned from the accident at the Fukushima Daiichi Nuclear Power Plant, improving the effectiveness of defence in depth, strengthening emergency preparedness and response capabilities, enhancing capacity building, and protecting people and the environment from ionizing radiation

  10. Specific filters applied in nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Vitor S.; Crispim, Verginia R., E-mail: verginia@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Brandao, Luis E.B. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Due to its high volatility, medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system where doses of radioactive iodine are fractionated, using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon is effective for I{sub 2} capture for a large or small amount of substrate but its use is restricted due to its low flash point (150 deg C). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH{sub 3}I gas, it was necessary to increase the volume of natural activated carbon since it was not absorbed by SiO{sub 2} + Ag crystals. We concluded that, for an exhaust flow range of (306 {+-} 4) m{sup 3}/h, a double stage filter using SiO{sub 2} + Ag in the first stage and natural activated carbon in the second is sufficient to meet radiological safety requirements. (author)

  11. Determination of efficacy of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Saenger, E.L.; Buncher, C.R.; Specker, B.; McDevitt, R.A.

    1984-01-01

    Nuclear medicine, a high technology field, is evaluated as to its usefulness. This paper describes the SNM study of 2023 patients comparing two methods evaluating efficacy for lung scanning (LS). Only the referring physicians determined the probabilities of the most important (MI) and most likely (ML) diagnoses and management before and after lung scanning. A logistic regression model was developed for probability of a signout diagnosis of PE. Equal patient groups tested the validity of the regression equations for the probability of PE as MI or ML. The models developed on Group I (G-I) and used on Group II (G-II) gave similar results. This shows that LS classifies PE and NOT PE categories where PE was considered both MI and ML. Entropy minimax pattern detection (EMPD) attempts prediction of signout diagnosis and management from prior patient attributes. In 2023 cases, attributes alone could not eliminate the use of LS for all patients. Comparing the two methods, the predictive values, sensitivity and specificity of each method are similar. EMPD predicts on a relatively small percent (40% before LS, 71% post LS) while the logistic equation predicts on 100% of the cases. An advantage of EMPD is that it does not require estimates of prior probability. However, LR, uses this estimate, thus incorporating intuitive knowledge not evaluated by EMPD. These methods are unique in showing that LS can direct the referring physician toward or away from anticoagulant therapy based on findings of the lung scan

  12. VIIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    The conference proceedings contain 92 abstracts of submitted papers dealing with various applications of radioisotopes in diagnosis and therapy. The papers were devoted to scintiscanning, radioimmunoassay, tomography, the applications of nuclear magnetic resonance and electron microscopy in different branches - oncology, cardiology, neurology, histology, gynecology, internal medicine, etc. (M.D.)

  13. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  14. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  15. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  16. Collaborative environment for nuclear medicine training

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Claudia Regio; Dalpiaz, Gabriel Goulart; Giraffa, Lucia Maria, E-mail: claudinharb@gmail.co [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil); Silva, Ana Maria Marques da [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Dept. de Fisica; Silva Junior, Neivo da [Pontificia Universidade Catolica do Rio Grande do Sul (HSL-PUCRS), Porto Alegre, RS (Brazil). Hospital Sao Lucas; Ferreto, Tiago Coelho; Rose, Cesar Augusto Fonticielha de [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Inst. de Informatica; Silva, Vinicius Duval da [Pontificia Universidade Catolica do Rio Grande do Sul (FAMED/PUCRS), Porto Alegre, RS (Brazil). Escola de Medicina. Dept. de Patologia e Radiacoes

    2011-05-15

    Objective: To validate the proposal for development of a virtual collaborative environment for training of nuclear medicine personnel. Materials and Methods: Organizational assumptions, constraints and functionalities that should be offered to the professionals in this field were raised early in the development of the environment. The prototype was developed in the Moodle environment, including data storage and interaction functionalities. A pilot interaction study was developed with a sample of specialists in nuclear medicine. Users' opinions collected by means of semi-structured questionnaire were submitted to quantitative and content analysis. Results: The proposal of a collaborative environment was validated by a learning courses of nuclear medicine professionals and considered as an aid in the training in this field. Suggestions for improvements and new functionalities were made. There is a need to establish a program for education of moderators specifically for this environment, considering the different interaction characteristics as the online and conventional teaching methods are compared. Conclusion: The collaborative environment will allow the exchange of experiences and case discussions among professionals from institutions located in different regions all over the country, enhancing the collaboration among them. Thus, the environment can contribute in the early and continued education of nuclear medicine professionals. (author)

  17. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  18. New nuclear technologies

    International Nuclear Information System (INIS)

    Bouchard, J.; Thomas, J.B.

    2001-01-01

    The potential of nuclear energy for sustainable development is based on its competitiveness, environmental friendliness and sustainability of natural resources. The improvements to be achieved relate to cleanliness (by reducing the production of long lived radioactive waste), safety demonstration and sobriety which contributes to minimise the consumption of natural resources. The current level of competitiveness, which is fairly good, has to be maintained. The required improvements benefit from a high efficiency and a simpler architecture of industrial systems; they imply the recycling of nuclear materials and a high efficiency of nuclear combustion. The latter requires a hardened spectrum using fast neutrons, which makes the nuclear core 'omnivorous' as for transuranics. The studies must take into account reactor design, nuclear fuel and fuel cycle. Diverse coolants (water, gas, liquid metals) are considered, with solid fuel (pins, particles) and reprocessing by hydrometallurgical or pyrochemical processes, as well as liquid fuel reactors. Several ways of combining options look promising. The required time before industrial implementation is highly variable. A nuclear fleet can include diversified, specialized components and new applications (hydrogen production) can be envisaged. The R and D programme will rely on the development of simulation power and will imply a strong international cooperation. (authors)

  19. Nuclear Proliferation Technology Trends Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  20. Nuclear Technology Review 2010

    International Nuclear Information System (INIS)

    2010-09-01

    In 2009, construction started on 12 new nuclear power reactors, the largest number since 1985, and projections of future nuclear power growth were once again revised upwards. However, only two new reactors were connected to the grid, and, with three reactors retired during the year, the total nuclear power capacity around the world dropped slightly for the second year in a row. Current expansion, as well as near term and long term growth prospects, remain centred in Asia. Ten of the 12 construction starts were in Asia, as were both of the new grid connections. Although the global financial crisis that started in the second half of 2008 did not dampen overall projections for nuclear power, it was cited as a contributing factor in near-term delays or postponements affecting nuclear projects in some regions of the world. In some European countries where previously there were restrictions on the future use of nuclear power, there was a trend towards reconsidering these policies. Interest in starting new nuclear power programmes remained high. Over 60 Member States have expressed to the IAEA interest in considering the introduction of nuclear power, and, in 2009, the IAEA conducted its first Integrated Nuclear Infrastructure Review missions in Jordan, Indonesia and Vietnam. Estimates of identified conventional uranium resources (at less than $130/kg U) increased slightly, due mainly to increases reported by Australia, Canada and Namibia. Uranium spot prices declined, and final data for 2009 are expected to show a consequent decrease in uranium exploration and development. The Board of Governors has authorized the IAEA Director General to sign an agreement with the Russian Federation to establish an international reserve of low enriched uranium (LEU). It would contain 120 tonnes of LEU that could be made available to a country affected by a non-commercial interruption of its LEU supply. The agreement between the IAEA and the Russian Federation was signed in March 2010

  1. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  2. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  3. Advanced technology for nuclear powerplants

    International Nuclear Information System (INIS)

    Rohm, H.H.

    1987-01-01

    Advanced technology offers significant potential benefit to the nuclear industry. Improvements can be anticipated in plant performance, reliability, and overall plant safety as well as reduced life cycle costs. Utilizing artificial intelligence and expert systems, robotics, advanced instruments and controls, and modularization technologies can enhance plant operations and provide new insights and perspectives to plant risk and thus focus resources to areas of importance. Plant reliability, operability, availability, accident interdiction and limitation, and plant recovery are expected to improve. However, utilizing these technologies is not an automatic process. In addition to the actual costs associated with developing and implementing the technologies, operator training and acceptance represents a potential significant problem. Traditional plant operators have little or no experience with computer technology. There has already been some difficulty getting nuclear plant operators to accept and use the new technologies that have been implemented to accept and use the new technologies that have been implemented thus far

  4. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  5. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  6. A nuclear chocolate box: the periodic table of nuclear medicine.

    Science.gov (United States)

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  7. Church - Technology - Nuclear Power

    International Nuclear Information System (INIS)

    May, H.

    1982-01-01

    In order to cope with the problems causing a great deal of trouble today, i.e. with fear and with the ethical substantiation of technology, the author considers an integration model necessary which is to link science and technology and religion and philosophy. (RW) [de

  8. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  9. Fourth congress of the South African Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    1990-01-01

    This seminar contains 68 papers. Sixty three papers were indexed. Five papers were considered out of scope for INIS. The implementation of nuclear medicine in the following fields were discussed: neurology, cardiology, monoclonal antibodies, endocrinology, nuclear medicine physics, and radiopharmacy

  10. Nuclear Technology Review 2011

    International Nuclear Information System (INIS)

    2011-09-01

    The accident at the Fukushima-Daiichi Nuclear Power Plant, caused by the extraordinary natural disasters of the earthquake and tsunamis that struck Japan on 11 March 2011, continues to be assessed. As this report focuses on developments in 2010, the accident and its implications are not addressed here, but will be addressed in future reports of the Agency. In 2010, construction started on sixteen new nuclear power reactors, the largest number since 1985. With five new reactors connected to the grid and only one reactor retired during the year, total nuclear power capacity around the world increased to 375 GW(e). Revised projections in 2010 of future nuclear power growth still indicated high expectations for nuclear power expansion. Expansion and near and long term growth prospects remained centred in Asia. Two thirds of the reactors currently under construction are in Asia, as were thirteen of the sixteen construction starts. Of these, ten construction starts were in China alone. Trends of uprates and renewed or extended licences for operating reactors continued in 2010, particularly in some European countries where the trend towards reconsidering policies that restricted the future use of nuclear power continued. Interest in starting new nuclear power programmes remained high, with over 60 Member States having indicated to the Agency their interest in considering the introduction of nuclear power. In the 2010 edition of the OECD/NEA-IAEA 'Red Book', estimates of identified conventional uranium resources at less than $130/kg U decreased slightly compared to the previous edition, but uranium production worldwide significantly increased due largely to increased production in Kazakhstan. Uranium spot prices, which declined in 2009, reached at the end of 2010 their highest levels in over two years topping $160/kg U, despite early and mid-year prices fluctuating between $105/kg U and $115/kg U. The Board of Governors, in December 2010, approved the establishment of an

  11. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  12. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  13. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  14. Checklists for quality assurance and audit in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, E.D.; Harding, L.K.; McKillop, J.H. (Britsh Nuclear Medicine Society, London (UK))

    1989-08-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.).

  15. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  16. Nuclear medicine procedures in lung cancer

    International Nuclear Information System (INIS)

    Chiti, A.; Crippa, F.; Bombardieri, E.; Schreiner, F.A.G.; Pauwels, E.K.J.

    1999-01-01

    Although radiography, computed tomography and magnetic resonance imaging are still the methods of choice for the study of lung cancer, they have certain limitations in the determination of the nature of suspicious lung nodules, the evaluation of mediastinal involvement, the assessment of the viability of previously treated lesions and the diagnosis of tumour relapse. There is a wide range of current oncological requirements related to lung cancer: detection of malignant lesions at the earliest stage and in the most effective way; the definition of the biological characteristics of a lesion (proliferation, aggressiveness, differentiation, etc.); the need to define the operability of the patient (function of residual lung and staging); and the need to evaluate the behaviour of the tumour (response to therapy, early detection of recurrences, metastatic spread). Most of the efforts of the nuclear medicine community have been focussed on diagnosis, staging, restaging and therapy monitoring of lung cancer. Many radiopharmaceuticals have been employed for this, including gallium, monoclonal antibodies, somatostatin analogues, lipophilic cations and positron emission tracers. There is ample evidence that nuclear medicine techniques may provide complementary information with respect to anatomical imaging, for example in the assessment of preoperative function by means of ventilation and perfusion scintigraphy, or in tumour localisation by means of specific tumour-seeking agents. However, clinical data suggest that, when properly used, nuclear medicine procedures in some cases may be not only complementary to radiology but essential for the clinical management of lung cancer. An example of such a procedure is fluorodeoxyglucose positron emission tomography (FDG PET) the introduction of which has greatly contributed to confirmation of the clinical value of nuclear medicine in this field. FDG PET has proved of great help in lung cancer management and its cost-effectiveness in

  17. Dose Estimation in Pediatric Nuclear Medicine.

    Science.gov (United States)

    Fahey, Frederic H; Goodkind, Alison B; Plyku, Donika; Khamwan, Kitiwat; O'Reilly, Shannon E; Cao, Xinhua; Frey, Eric C; Li, Ye; Bolch, Wesley E; Sgouros, George; Treves, S Ted

    2017-03-01

    The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this

  18. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This proceedings contains articles of 2002 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 15-16, 2002 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, General nuclear medicine. (Yi, J. H.)

  19. Nuclear medicine. 4. new rev. and enl. ed.; Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwert, T. [Universitaetsklinikum Erlangen (Germany). Nuklearmedizinische Klinik; Gruenwald, F. [Klinikum der Johann-Wolfgang-Goethe-Univ., Frankfurt (Germany). Klinik fuer Nuklearmedizin; Haberkorn, U. [Universitaetsklinikum Heidelberg (Germany). Abt. Nuklearmedizin; Krause, T. (eds.) [Universitaetsklinik Bern (Switzerland). Dept. Radiologie, Neuroradiologie und Nuklearmedizin

    2008-07-01

    The book on nuclear medicine is devided in three chapters: fundamentals, diagnostics and therapy. The topics within these chapters are the following: 1) fundamentals: molecular imaging; radiation physics, measuring technology and quality control; dosimetry and radiation effects; radiation protection, radiopharmaceutical chemistry; immonoassays and quality control. 2) diagnostics: endocrine organs; oncology; heart, vascular system and blood vessels; brain, lungs, skelton, kidneys, gastrointestine tract; infections; hematology. 3) radiotherapy; radiosynoviorothese; palliative bone pain therapy; radioimmunotherapy; {sup 1}31I-MIBG therapy; therapy with receptor affine peptides; specific nuclear medical therapies.

  20. Solid state detectors in nuclear medicine.

    Science.gov (United States)

    Darambara, D G; Todd-Pokropek, A

    2002-03-01

    Since Nuclear Medicine diagnostic applications are growing fast, room temperature semiconductor detectors such CdTe and CdZnTe either in the form of single detectors or as segmented monolithic detectors have been investigated aiming to replace the NaI scintillator. These detectors have inherently better energy resolution that scintillators coupled to photodiodes or photomultiplier tubes leading to compact imaging systems with higher spatial resolution and enhanced contrast. Advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems are discussed and efforts to develop semiconductor-based planar and tomographic cameras as well as nuclear probes are presented.

  1. Innovation in nuclear technology

    International Nuclear Information System (INIS)

    Bertel, E.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its future. For the continued safe and economically effective operation and maintenance of existing nuclear systems, and to meet the goals set out by projects aiming at designing and implementing advanced systems for the future, efficient innovation systems are needed. Consequently, analysing innovation systems is essential to understand their characteristics and enhance their performance in the nuclear sector. Lessons learnt from innovation programmes that have already been completed can help enhance the effectiveness of future programmes. The analysis of past experience provides a means for identifying causes of failure as well as best practices. Although national and local conditions are important factors, the main drivers for the success of innovative endeavors are common to all countries. Cooperation and coordination among the various actors are major elements promoting success. All interested stakeholders, including research organisations, industrial actors, regulators and civil society, have a role to play in supporting the success of innovation, but governments are an essential trigger, especially for projects with long durations and very ambitious objectives. Governments have a major role to play in promoting innovation because they are responsible for the overall national energy policy which sets the stage for the eventual deployment of innovative products and processes. Moreover, only governments can create the stable legal and regulatory framework favourable to the undertaking and successful completion of innovation programmes. International organisations such as the NEA may help enhance the effectiveness of national policies and innovation programmes by providing a forum for exchanging information, facilitating multilateral collaboration and joint endeavors, and offering technical support for the management of innovative programmes

  2. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, J.J.; Gurney, J.; McClain, W.J. (eds.)

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included. (PCS)

  3. Directory of computer users in nuclear medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Gurney, J.; McClain, W.J.

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included

  4. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  5. New trends and possibilities in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.A.E.; Csernay, L. (eds.)

    1988-01-01

    The abstracts of this book mainly deal with the results of scientific work in diagnostic nuclear medicine, radiobiology, dosimetry, medical physics, radiopharmacology and biochemistry. Clinical and experimental data are presented within the fields of endocrinology, cardiology, pulmonology, gastroenterology, neurology, nephrology, osteology, hematology and oncology (- even including diagnostic and therapeutic aspects of labelled monoclonal antibodies). Basic information about instrumentation (PET, SPECT, NMR), artificial intelligence and qualitiy control is given. Separate abstracts are prepared for 189 papers. (TRV) With 363 figs., 143 tabs.

  6. The Application of Nuclear Technology for a Better World

    International Nuclear Information System (INIS)

    Ita, E.B.

    2015-01-01

    Nuclear Technology is widely used in different areas and sector of our economy to better man kind and his environment. Peaceful applications of nuclear technology have several benefits to the world today. It is widely believed that nuclear technology is mainly used mainly for the production of electricity (Nuclear Power Plants – NPPs). Many are not aware of the other numerous benefits of nuclear technology. Nuclear technology can be applied in different fields for numerous benefits. Different sectors Nuclear Technology application can improve the living standard of man and his environment: – Food and Agriculture; – Medicine; – Industrial; – Energy; – Education; — Research and Development; – Environment. The benefits of the application of nuclear technology cannot be over emphasised. These benefits range from the improved quality of purified water we drink, the textiles we wear, improved quality of stored grains for preservation of foods, water analyses, improved transportation system work, drugs production, medical tests and analysis, clean environment through radioisotope techniques etc. The application of nuclear technology also gives a safer, greener, healthier and pollution free environment and atmosphere for human habitation. In my poster, the numerous benefits of the various applications of Nuclear Technology will be clearly enumerated and heighted. (author)

  7. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  8. Nuclear medicine imaging of posttraumatic osteomyelitis.

    Science.gov (United States)

    Govaert, G A M; Glaudemans, A W J M

    2016-08-01

    Early recognition of a possible infection and therefore a prompt and accurate diagnostic strategy is essential for a successful treatment of posttraumatic osteomyelitis (PTO). However, at this moment there is no single routine test available that can detect osteomyelitis beyond doubt and the performed diagnostic tests mostly depend on personal experience, available techniques and financial aspects. Nuclear medicine techniques focus on imaging pathophysiological changes which usually precede anatomical changes. Together with recent development in hybrid camera systems, leading to better spatial resolution and quantification possibilities, this provides new opportunities and possibilities for nuclear medicine modalities to play an important role in diagnosing PTO. In this overview paper the techniques and available literature results for PTO are discussed for the three most commonly used nuclear medicine techniques: the three phase bone scan (with SPECT-CT), white blood cell scintigraphy (also called leukocyte scan) with SPECT-CT and (18)F-fluorodeoxyglucose (FDG)-PET/CT. Emphasis is on how these techniques are able to answer the diagnostic questions from the clinicians (trauma and orthopaedic surgeons) and which technique should be used to answer a specific question. Furthermore, three illustrative cases from clinical practice are described.

  9. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  10. Graduate diplomas in nuclear technology

    International Nuclear Information System (INIS)

    Bereznai, G.

    2009-01-01

    The University of Ontario Institute of Technology (UOIT) offers a graduate diploma program in nuclear technology that consists of a suite of six sub-specialties: Fuel, Materials and Chemistry; Reactor Systems; Operation and Maintenance; Safety, Licensing and Regulatory Affairs; Health Physics; and Radiological Applications. Four courses selected from a list that covers the knowledge and skill set of each sub-specialty have to be completed in order to gain a graduate diploma in the specific area. The program is designed to accommodate the needs of people working in the nuclear industry to upgrade their knowledge and skills, to promote career advancement and to provide a framework for lifelong learning. (author)

  11. Graduate diplomas in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Bereznai, G. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2009-07-01

    The University of Ontario Institute of Technology (UOIT) offers a graduate diploma program in nuclear technology that consists of a suite of six sub-specialties: Fuel, Materials and Chemistry; Reactor Systems; Operation and Maintenance; Safety, Licensing and Regulatory Affairs; Health Physics; and Radiological Applications. Four courses selected from a list that covers the knowledge and skill set of each sub-specialty have to be completed in order to gain a graduate diploma in the specific area. The program is designed to accommodate the needs of people working in the nuclear industry to upgrade their knowledge and skills, to promote career advancement and to provide a framework for lifelong learning. (author)

  12. The application of nuclear-medicine methods in veterinary medicine

    International Nuclear Information System (INIS)

    Simpraga, M.; Kraljevic, P.; Dodig, D.

    1996-01-01

    X-radiography and ultrasound imaging are well established and widely used in veterinary practice, but it is not the same situation with radioisotope imaging. In veterinary practice the above mentioned methods of nuclear medicine are developed only in two countries in Europe. That is not doubt due, so bar, to the difficulties in obtaining satisfactory supply of radioisotopes and to the relatively high cost of scanning equipment. However, in collaboration with the Department of Radiation Protection and Nuclear Medicine of the Medical Faculty in Zagreb, Croatia, we have chance to develop the use of those methods in clinical veterinary practice in Zagreb. That is way in this paper an overview of the application of radioisotopes imaging in veterinary medicine is given. In small animals skeletal changes, lung perusions, brain lesions, space occupying lesions in the liver and its function and hearth function can be usefully searched by a gamma camera and its associated computer. In equine practice scintigraphy of bones, liver, hearth, pulmonary circulation and ventilation is described. The largest amount of radioactive material is used during gamma camera scanning of the skeletons of horses. In this cases the radiation dose 1-2 m from the animal is approximately 3 μSv/h. That is why the protection of personal involved in radioisotope scanning in veterinary medicine must be also regulated by low of radiation protection. Also, the animals should be confined to a controlled area for 2-3 days after scanning before being returned to their owners. After this period the area must be cleaned. (author)

  13. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  14. Pursuing Humanistic Medicine in a Technological Age.

    Science.gov (United States)

    Bertman, Stephen

    2017-06-01

    The humanistic practice of medicine requires that the practitioner have sufficient time and appropriate focus. Both elements, however, are under assault by the high-speed, distraction-filled environment within which primary care is delivered today. Despite or perhaps because of modern medicine's technological advances, the potentially healing bond between doctor and patient is being frayed and the quality of care consequently degraded.

  15. Anniversary Paper: Nuclear medicine: Fifty years and still counting

    International Nuclear Information System (INIS)

    Williams, Lawrence E.

    2008-01-01

    The history, present status, and possible future of nuclear medicine are presented. Beginning with development of the rectilinear scanner and gamma camera, evolution to the present forms of hybrid technology such as single photon emission computed tomography/computed tomography (CT) and positron emission tomography/CT is described. Both imaging and therapy are considered and the recent improvements in dose estimation using hybrid technologies are discussed. Future developments listed include novel radiopharmaceuticals created using short chains of nucleic acids and varieties of nanostructures. Patient-specific radiotherapy is an eventual outcome of this work. Possible application to proving the targeting of potential chemotherapeutics is also indicated

  16. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  17. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  18. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  19. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  20. Nuclear energy: A female technology

    International Nuclear Information System (INIS)

    Tennenbaum, J.

    1994-01-01

    Amongst the important scientific and technological revolutions of history there is none in which women have played such a substantial and many-sided role as in the development of nuclear energy. The birth of nuclear energy is not only due to Marie Curie and Lise Meitner but also to a large number of courageous 'nuclear women' who decided against all sorts of prejudices and resistances in favour of a life in research. Therefore the revolution of the atom has also become the greatest breakthrough of women in natural sciences. This double revolution is the subject of this book. Here the history of nuclear energy itself is dealt with documented with the original work and personal memories of different persons - mainly women - who have been substantially involved in this development. (orig./HP) [de

  1. Nuclear technology and anthroposophic theory

    International Nuclear Information System (INIS)

    Leben, S.

    1982-01-01

    The construction of nuclear power plants as a solution to the current energy, crisis is controversial. That was not so in the beginning of the 'peaceful' utilization of nuclear power; with thousands of millions to promote it given as subsidies by the governments it was developing fast, until citizens' initiatives asked ecologic and moral questions delaying the further extension of this energy production. Both positions can be substantiated. But can a first judgement, too, be given with any degree of safety. And what cognitive aids are provided by the anthroposophic theory. This is demonstrated in some aspects. From the contents: The energy crisis and its apparent way out; of the causes: modern scientific methods; New forces: some facts and phenomena; Destructive powers as viewed by ancient mysteries; Of desirable states of conscience and technical forms; spelling their distortion; Nuclear powers and morality; Untimeliness in historicity; 'What's the stance of anthroposophic theory with regard to nuclear technology'. (orig./HP) [de

  2. Converging technologies: shaping the future of medicine

    Directory of Open Access Journals (Sweden)

    Iraj nabipour

    2015-01-01

    Full Text Available The miniaturization and virtualization processes drive converging technologies from interactions between the NBIC (Nano, Bio, Info, and Cogno technologies. The converging technologies stimulate innovation, promote research and development in different fields and produce revolutionary progresses in medicine. These technologies enable us to create contacts between brains and machines, the growth in molecular nanotechnology, the construction of respirocytes, chromallocytes, clottocytes, nanorobotic phagocytes, and nanobots. Nanobots would enter the nucleus of a cell and extract all of the genetic material and replace it with a synthetically produced copy of the original that has been manufactured in a laboratory to contain only non-defective base-pairs. It is predicted that “the regenerative medicine”, as a megatrend, will have an enormous effect on medical technologies and clinical sciences. Regenerative medicine is an application field of converging technologies in translational medicine. It attempts to translate the results of tissue engineering to construct 3D tissues and organs. Regenerative medicine is also an exciting field for induced pluripotent stem cell (iPSC and promises to bring about a paradigm shift to health care. Accumulating evidence indicates that converging technologies will offer great potentials for regenerative medicine to create innovative treatments for diseases that the traditional therapies have not been effective yet.

  3. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  4. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...... transport of individual doses lead to a renewed interest in radionuclide generators such as 68Ge/68Ga, 82Sr/82Rb or even 44Ti/44Sc. For long time such generator nuclides were mainly produced at non-European accelerators (BNL, LANL, TRIUMF, iThemba Labs) that are mainly devoted to support nuclear physics...... reliable statistical data. The working group is promoting the collection of data on the production and use of medical radionuclides in European countries. Trends and prospects, in particular for non-conventional radionuclides will be discussed. •Nuclear medicine departments interested in using...

  5. Advanced nuclear energy analysis technology

    International Nuclear Information System (INIS)

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Josce; Young, Michael Francis; Rochau, Gary Eugene

    2004-01-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems

  6. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  7. Absorbed Doses to Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil; Johansson, Lennart

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: 11 C- acetate, 11 C- methionine, 18 F-DOPA, whole antibody labelled with either 99m Tc, 111 In, 123 I or 131 I, fragment of antibody, F(ab') 2 labelled with either 99m Tc, 111 In, 123 I or 131 I and fragment of antibody, Fab' labelled with either 99m Tc, 111 In, 123 I or 131 I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. 14 C-urea (children age 3-6 years), 14 C-glycocholic acid, 14 C-xylose and 14 C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested

  8. Radiation dose to the nuclear medicine nurses

    International Nuclear Information System (INIS)

    Sattari, A.; Dadashzadeh, S.; Nasirgholi, G.; Firoozabadi, H.

    2004-01-01

    Background: people who have been administrated radiopharmaceuticals could be a source of radiation to their relatives, medical nurses, and people who are in contact with them. The aim of this work was to estimate radiation dose received by nuclear medicine nurses. Materials and methods: in this study, the dose rates at various distances of 5-100 cm from 70 patients, who were administrated diagnostic of 201 T1-Chloride and 99m Tc-MIBI , were measured using an ionization chamber. For determination of external radiation dose to the nurses, three different time intervals were used for measurements. Results: The maximum values of external dose rates of 201 T1 and 99m Tc-MIBI were 11.2 μ Sv/h ±2.3 and 43.1μSv/h ±11.9 respectively, at 5cm from the patients. Significant exposure from patients after injection of 99m Tc-MIBI was limited to the day of administration. Departure dose rate of 201 T1 fell gradually; so, it became significant by 3 days after administration. Maximum and average absorbed dose of nuclear medicine staff from 201 T1, was 4.6 and 2.7μSv/h, and for 9 '9 m Tc-MIBI was 18.1 and 9.8 μSv/h in each scan. Conclusion: significant exposure from the patients is limited to the few hours after administration, therefore patients should be recommended to urinate frequently before leaving the nuclear medicine department

  9. Radiological protection of patients in nuclear medicine

    International Nuclear Information System (INIS)

    Harding, L.K.

    2001-01-01

    The key factor in medical exposure is justification, that is ensuring that the benefit exceeds the risk. Nuclear medicine studies are comparable in cost to more sophisticated radiological tests such as ultrasound, computed tomography or magnetic resonance. Radiation doses are similar from X ray and nuclear medicine procedures. Having justified exposures the next step is optimization, namely using a radiation dose as low as is reasonably practicable. Diagnostic reference levels may be set nationally or locally such that the balance of diagnostic quality and radiation burden is optimized. In therapy the aim is to achieve a therapeutic dose while keeping the dose to non-target tissues as low as reasonably practicable. Variations in activities may be required for overweight patients, those in severe pain, those with certain conditions and in the case of tomography. Any woman who has missed a period should be assumed to be pregnant; there should be notices to patients emphasizing this. Following the administration of longer lived pharmaceuticals it is important to avoid pregnancy for a time such that the dose to a foetus will not exceed 1 mGy. A similar situation applies to a child who is being breastfed when a mother receives a radiopharmaceutical. In the case of children undergoing investigations the activity needs to be reduced to maintain the same count density as in adults. With the administration of an incorrect pharmaceutical an attempt should be made to enhance excretion, and the referring doctor and the patient should be informed. Extravasation usually requires no action. Positron emission tomography results in higher doses both to staff and patients. Research should use subjects over the age of 50, and avoid anyone who is pregnant or is a child. Nuclear medicine procedures result in a very small loss in life expectancy compared with other common risks. (author)

  10. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  11. Nuclear fuel manufacture and technology

    International Nuclear Information System (INIS)

    Nuclear power accounts for approximately 17% of the world's total electrical energy production. Over 30 countries operate in excess of 430 nuclear power plants with a combined generating capacity of more than 340 000 MWe. BNFL is a leading force in the international nuclear industry, supplying products and services across the complete fuel cycle business spectrum. These services and products include fuel and intermediate products manufacture, reprocessing, transport, waste management and decommissioning. This paper describes the processes involved in taking uranium ore as a raw material through to the production of advanced fuels and focuses on the manufacture and technology for both uranium oxide (UO 2 ) and mixed oxide (MOX) fuels. As a light water reactor (LWR) fuel fabricator, BNFL is able to manufacture MOX or UO 2 fuel utilizing recycled uranium. This paper discusses the technology involved in the use of plutonium or uranium oxide recovered from reprocessing and other advanced fuel technical issues. Improved production methods and the application of advanced engineering permits the next generation of fuel fabrication plants to capitalize on advances in technology. The long-term research and development (R and D) commitments by BNFL are outlined in this paper, indicating the levels of investment needed in R and D to accommodate a high technology company in an international market. (author)

  12. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    Teresinska, Anna; Birkenfeld, Bozena; Krolicki, Leszek; Dziuk, Miroslaw

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  13. Quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Mould, R.F.

    1983-09-01

    The proceedings of a conference held by the Hospital Physicists' Association in London 1983 on the quality control of nuclear medicine instrumentation are presented. Section I deals with the performance of the Anger gamma camera including assessment during manufacture, acceptance testing, routine testing and long-term assessment of results. Section II covers interfaces, computers, the quality control problems of emission tomography and the quality of software. Section III deals with radionuclide measurement and impurity assessment and Section IV the presentation of images and the control of image quality. (U.K.)

  14. NCT program at Nuclear Medicine, Inc

    International Nuclear Information System (INIS)

    Noonan, D.J.

    1986-01-01

    The Neutron Capture Therapy program at Nuclear Medicine, Inc. (NMI) is focused on obtaining Food and Drug Administration (FDA) approval of the treatment for malignant brain tumors. To minimize both the time and expense of the approval process, research efforts have been strictly focused and Orphan Drug sponsorship of the boron compound, Na 2 B 12 H 11 SH, has been obtained. The significance of Orphan Drug sponsorship and NMI's initial meeting with the FDA to discuss preclinical and clinical protocols are discussed. 9 references, 2 figures

  15. Energy-coded processing in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, R.; Metz, C.; Chen, H.T.

    1981-01-01

    A method for processing image data which takes into account the energy of each detected gamma-ray photon. Weighted spatial averaging of local detected count densities in radionuclide images can increase the visual detectability of abnormalities. In principle, the benefits of image processing in nuclear medicine can be increased by processing the image data in each interval of the detected photon spectrum using a procedure that is appropriate for the spatial resolution and statistical quality associated with that energy interval, and by combining energy-coded processed image components using generally energy-dependent weights. The potential gains in detection performance by implementation of such an approach are examined

  16. Future possibilities in pulmonary nuclear medicine

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    A number of recent developments in the field of nuclear medicine are of significance for future progress in the diagnosis of lung diseases. These developments have occurred in instrumentation and radiopharmaceuticals and have not necessarily been directed toward pulmonary problems. Nevertheless, they may improve the ability to diagnose pulmonary embolism and to recognize pulmonary dysfunction other than that involving ventilation and perfusion. Along with new instrumentation and tracers, one will almost certainly see continued refinement of present techniques and diagnostic criteria which will lead to improved accuracy in interpretation of standard studies

  17. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  18. Nuclear medicine applications and their mathematical basis

    CERN Document Server

    Goris, Michael

    2011-01-01

    This book reviews some principal applications of nuclear medicine, specifically from the viewpoint of the mathematical and physical analyses that support the interpretation. In contradistinction to other approaches, the mathematics does not precede the applications in introductory chapters, but is presented in the application chapters with various degrees of granularity. More details on mathematical derivations are illustrated in the last chapter for interested readers. A more detailed review of Bayes theorem can be found (in Chapter 7) explaining how the literature results were retabulated

  19. Nuclear medicine training and practice in Poland.

    Science.gov (United States)

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  20. Nuclear technology for the year 2000

    International Nuclear Information System (INIS)

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base

  1. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.; Lee, J. H

    2007-02-15

    The objective of the study was to make policy-proposals for enhancing the effectiveness and efficiency of national nuclear technology R and D programs. To do this, environmental changes of international nuclear energy policy and trends of nuclear technology development were surveyed and analyzed. This Study analyzed trends of nuclear technology policies and developed the nuclear energy R and D innovation strategy in a viewpoint of analyzing the changes in the global policy environment associated with nuclear technology development and development of national nuclear R and D strategy.

  2. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This proceedings contains articles of 1998 Autumn meeting of the Korean Society Nuclear Medicine. It was held on November 13-14, 1998 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  3. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings contains articles of 1997 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 21, 1997 in Kwangju, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  4. Availability of oncological nuclear medicine in the regions of Slovakia

    International Nuclear Information System (INIS)

    Lepej, J.; Kaliska, L.

    2004-01-01

    Full text: Nuclear medicine (NM) imaging technology, alone and in combination with other imaging modalities, provides clinically significant and useful information in the staging and treatment of the oncological diseases. The main objective of our study was to find out and present the situation vis-a-vis nuclear medicine facilities in the Central European country that soon becomes the new member of EU. For the purposes statistical data of WHO, Slovak Republic (SR) and nuclear medicine department (NMD) were evaluated for the period 1995-2001. Comparison with Czech Republic (CR) was done because of almost similar occurrence of the malignant diseases in these two republics that were a one country till separation in 1993. First nuclear medicine department in Czechoslovakia was established about 55 years ago. Comparing to CR the expenditures on health care per capita in SR is only 67% of CR. The number of gamma cameras, physicians and number of investigations are far from good standard of CR. The number NM departments are significantly low and growth of only 29% compared to CR is alarming. The one main reason is inadequate financial support to the health care and high debts of hospitals running nuclear medicine facilities. Providing radiology departments with new CT and MRI scanners is another reason of less nuclear medicine facilities. During the last five years, though the number of gamma cameras increased by 10%, but the number of investigations did not rise accordingly. Because of bad management of health care services in Slovakia, the latest facilities availability is greatly delayed. However, the exception is the installation of a new PET scanner in 2001. Of late, sentinel lymph node detection was started only with the help of IAEA. Data shows that most of the nuclear medicine centers are around the state capital. It is imperative to have sufficient diagnostic and therapeutic facilities in each region so as to make these available to patients living away from the

  5. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  6. Interviews concerning topical questions in nuclear technology

    International Nuclear Information System (INIS)

    Segatz, U.; Schatz, A.; Stephany, M.; Michaelis, H.

    1978-01-01

    On the occasion of the Nuclex meeting, October 3-7, 1978, Basle/Switzerland, the editorial department of 'Atom und Strom' questioned some leading scientists in nuclear technology on particularly relevant topics. The following subjects were discussed: - How long can we do without nuclear energy, - Modern technology for nuclear power plants, - Nuclear fuel cycle and environment, - Nuclear energy and European Communities, - Nuclear energy and its risks (reflections on incidents). (orig./UA) [de

  7. Nosocomial Infections in Nuclear Medicine Departments: some considerations

    International Nuclear Information System (INIS)

    Metello, L.F.; Cunha, L.; Martins, M.; Isabel, O.; Ribeiro, G.

    2002-01-01

    Aim: Surveillance for Nosocomial Infection has become an integral part of hospital practice. Studies conducted more than 30 years ago by the Centers for Disease Control and Prevention (CDC) documented the efficacy of these surveillance activities in reducing Nosocomial Infection occurrence. It is clear that surveillance for Nosocomial Infection involves more than just documenting infection rates. However, many times the professionals involved have tended to stop at the point where rates are reported and fail to complete the task of implementing changes based on the analysis of rates or disseminating information. Moreover specific documentation regarding Nuclear Medicine Departments is not available. We therefore decided to produce this work based in the recognition of this specific need. Methods and Conclusions: Having previously defined the 'state-of-the-art' from science and technology concerning Nosocomial Infection Control and after particular study regarding technical/clinical reality of Nuclear Medicine Departments, namely introducing the radioactivity as a factor that must be taken into account with all its implications and interactions, we have obtained a group of considerations and/or recommendations to be considered in order to accomplish the maximum Quality and Efficiency regarding the Control of Nosocomial Infection in Nuclear Medicine Departments

  8. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  9. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  10. Reexamining the Ethics of Nuclear Technology.

    Science.gov (United States)

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  11. The technological singularity and exponential medicine

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2016-01-01

    The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...

  12. The integral formation of the university technologists in nuclear medicine

    International Nuclear Information System (INIS)

    Tossi, Mirta H.; Chwojnik, Abraham; Otero, Dino

    2003-01-01

    Full text: Nuclear medicine has contributed to notable benefits to the human health from the very beginning. The Radioisotopes techniques, as well as the ionizing radiation used, have evolved providing functional and anatomical information of the patient, through non-invasive methods. With reference to Radiological Protection, the justification of each one of these practices and its perfect execution is intimately related to the benefit provided to the patients. The National Atomic Energy Commission apart from favouring the scientific and technological development, considers indispensable to work thoroughly on the professional training of the prospective technologists. Our over twenty-year experience in organizing and delivering courses of Technologists in Nuclear Medicine, although based on a much simpler program, have allowed the Institute of Nuclear Studies of the Ezeiza Atomic Center to acquire the capacity of developing a program to train highly qualified Technologists in that field. This project represents a step forward of great importance to the graduates qualification, since they will have the endorsement of CNEA and of the Faculty of Medicine of the Maimonides University. These are the three outstanding characteristics agreed on: 1.- General Education, carried out by subjects closely related to the optimisation of the relation Technologist - Patient - Environment and represented by: Radiological Protection and Hospital Security, Psychology, Ethics and Professional Medical Ethics, Nursing, English, Hygiene and Hospital Security and Management of the Quality in Services of Health. 2.- Diagnostic Procedures: planned according to organs, apparatuses or systems which are horizontally crossed by the anatomy, physiology and physiopathology Preparation of the patient, indications, main counter indications, radiopharmaceuticals, mechanisms of incorporation, pathologies, clinical protocols, instrumentation, post radiopharmaceuticals administration imaging

  13. Highlights of articles published in annals of nuclear medicine 2016.

    Science.gov (United States)

    Jadvar, Hossein

    2017-10-01

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging.

  14. Highlights of articles published in annals of nuclear medicine 2016

    International Nuclear Information System (INIS)

    Jadvar, Hossein

    2017-01-01

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  15. Highlights of articles published in annals of nuclear medicine 2016

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein [University of Southern California, Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, Los Angeles, CA (United States)

    2017-10-15

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  16. Quality control of nuclear medicine instruments

    International Nuclear Information System (INIS)

    1984-11-01

    This document, which gives detailed guidance on the quality control of the various electronic instruments used for radiation detection and measurement in nuclear medicine, stems from the work of two Advisory Groups convened by the International Atomic Energy Agency (IAEA). A preliminary document, including recommended test schedules but lacking actual protocols for the tests, was drawn up by the first of these groups, meeting at the IAEA Headquarters in Vienna in 1979. A revised and extended version, incorporating recommended test protocols, was prepared by the second Group, meeting likewise in Vienna in 1982. This version is the model for the present text. The document should be of value to all nuclear medicine units, and especially to those in developing countries, in the initiation or revision of schemes for the quality control of their instruments. Its recommendations have provided the basis for instruction in two IAEA regional technical co-operation projects in the subject field, one initiated in 1981 for countries of Latin America and one initiated in 1982 for countries of Asia and the Pacific

  17. Display of nuclear medicine imaging studies

    CERN Document Server

    Singh, B; Samuel, A M

    2002-01-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Disp...

  18. Employment in nuclear medicine during pregnancy

    International Nuclear Information System (INIS)

    Benedetto, A.R.

    1986-01-01

    A nuclear medicine technologist can work throughout a pregnancy with high confidence that her occupational radiation exposure will not add any significant risk to her changes of having a normal pregnancy and child. All that is required is for the employer to provide an ALARA work place and for the technologist to observe carefully all radiation safety guidelines and to maintain her occupational exposure ALARA. Current guidance is that the total uterine dose during gestation be less than 0.5 rem (5 mSv). The vast majority of nuclear medicine technologists can achieve this dose level easily, with no modifications of duties or work practices. Technologists working with generators and radiopharmaceutical kits may wish to temporarily transfer to other duties within the clinic, not necessarily to reduce routine exposures but to minimize the changes of an accident having high-dose or high-contamination potential. All of the available human data show that there is small additional risk to the fetus or neonate due to occupational radiation exposure compared to naturally occurring risks so long as the dose is within recommended guidelines

  19. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  20. Recent developments and future trends in nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Zaidi, H.

    2006-01-01

    Molecular imaging using high-resolution single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has advanced elegantly and has steadily gained importance in the clinical and research arenas. Continuous efforts to integrate recent research findings for the design of different geometries and various detector technologies of SPECT and PET cameras have become the goal of both the academic community and nuclear medicine industry. As PET has recently become of more interest for clinical practice, several different design trends seem to have developed. Systems are being designed for ''low cost'' clinical applications, very high-resolution research applications (including small-animal imaging), and just about everywhere in-between. The development of dual-modality imaging systems has revolutionized the practice of nuclear medicine. The major advantage being that SPECT/PET data are intrinsically aligned to anatomical information from the X-ray computed tomography (CT), without the use of external markers or internal landmarks. On the other hand, combining PET with magnetic resonance imaging (MRI) technology is scientifically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of a prototype small animal PET scanner coupled to three multichannel photomultipliers via optical fibers, so that the PET detector can be operated within a conventional MR system. Thus, many different design paths are being pursued - which ones are likely to be the main stream of future commercial systems? It will be interesting, indeed, to see which technologies become the most popular in the future. This paper briefly summarizes state-of-the art developments in nuclear medicine instrumentation. Future prospects will also be discussed. (orig.)

  1. Nuclear medicine in the countries of Latin America

    International Nuclear Information System (INIS)

    Touya, Eh.

    1987-01-01

    The role of nuclear medicine in protection of health in Latin America states is shown. Nuclear medicine methods are applied in Latin America countries for diagnosis of coronary disease, cancer, malfunctioning of separate organs and transplants, kidney transplants in particular. The present situation in protection of health in the region is evaluated. It is emphasized that nuclear medicine should play its role in the course of public health improvement in those countries

  2. Hamburg Nuclear Medicine Days (last meeting covered: Feb. 1999)

    International Nuclear Information System (INIS)

    Becker, W.; Clausen, M.; Henze, E.; Leisner, B.; Schuemichen, C.

    2000-01-01

    The Hamburg Nuclear Medicine Days is an advanced training seminar offered at varying intervals to doctors with several years of professional experience in their special fields. The lectures are to communicate the progress achieved in techniques and technology and link this information with the then current international standards in the various fields of application, giving a balanced survey of the relevant theory, examination techniques and indications, as well as case reports. Topics of this meeting are: the gastrointestinal tract, kidneys, myocardium, perfusion of the brain, the skeleton/oncology, lungs, thyroid, inflammations. (orig./CB) [de

  3. The 3rd Sino-Japan nuclear medicine conference

    International Nuclear Information System (INIS)

    1999-01-01

    The 3rd Sino-Japan Nuclear Medicine Conference was hold on May 11-13, 1999 in Xi'an of China by Chinese Society of Nuclear Medicine, Japanese Society of Nuclear Medicine, Chinese Medicine Association and Japan-China Medicine Association. 62 articles were published in the proceeding of the conference. The contents of the articles include development and application of the radioisotopes (such as Tc-99, I-125, I-131, F-18, In-111, Tl-201, Ga-67, Sm-153, Re-188) and its radiopharmaceuticals, but application also include radiotherapy and diagnosis in the oncology and pathology by SPECT and PET

  4. The situation of chinese nuclear medicine technologists and strategy in future

    International Nuclear Information System (INIS)

    Zhang Yongxue

    2001-01-01

    Nuclear medicine technologists is an important part of nuclear medicine professionals, and play an important role in the progress of nuclear medicine. The professional quality of nuclear medicine technologists must adapt to the development of nuclear medicine. There is a relatively great gap between China mainland and developed countries in the field of nuclear medicine. In future, it is urgent to improve the professional quality and the educational level of nuclear medicine technologists

  5. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  6. Philosophy, medicine and its technologies.

    Science.gov (United States)

    Almond, B

    1988-01-01

    There is a need to bring ethics and medical practice closer together, despite the risk and problems this may involve. Deontological ethics may promote sanctity of life considerations against the quality of life considerations favoured by consequentialists or utilitarians; while talk of respect for life and the value of life may point to more qualified ethical positions. This paper argues for a respect-for-life position, dismissing a utilitarian cost-benefit outlook as too simplistic; but an unqualified fixed principles approach is also ruled out, both because of its unacceptable consequences in individual cases and also because of its reliance on the slippery slope argument which, it is argued, is logically and psychologically deficient. The case of genetic engineering provides an example in which the notion of respect may operate, but in which broad general principles also apply. A cautious conservatism towards accepted principles is recommended in the development of medical technologies. PMID:3236344

  7. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  8. Analysis of renal nuclear medicine images

    International Nuclear Information System (INIS)

    Jose, R.M.J.

    2000-01-01

    Nuclear medicine imaging of the renal system involves producing time-sequential images showing the distribution of a radiopharmaceutical in the renal system. Producing numerical and graphical data from nuclear medicine studies requires defining regions of interest (ROIs) around various organs within the field of view, such as the left kidney, right kidney and bladder. Automating this process has several advantages: a saving of a clinician's time; enhanced objectivity and reproducibility. This thesis describes the design, implementation and assessment of an automatic ROI generation system. The performance of the system described in this work is assessed by comparing the results to those obtained using manual techniques. Since nuclear medicine images are inherently noisy, the sequence of images is reconstructed using the first few components of a principal components analysis in order to reduce the noise in the images. An image of the summed reconstructed sequence is then formed. This summed image is segmented by using an edge co-occurrence matrix as a feature space for simultaneously classifying regions and locating boundaries. Two methods for assigning the regions of a segmented image to organ class labels are assessed. The first method is based on using Dempster-Shafer theory to combine uncertain evidence from several sources into a single evidence; the second method makes use of a neural network classifier. The use of each technique in classifying the regions of a segmented image are assessed in separate experiments using 40 real patient-studies. A comparative assessment of the two techniques shows that the neural network produces more accurate region labels for the kidneys. The optimum neural system is determined experimentally. Results indicate that combining temporal and spatial information with a priori clinical knowledge produces reasonable ROIs. Consistency in the neural network assignment of regions is enhanced by taking account of the contextual

  9. Aspects on caring in pediatric nuclear medicine

    International Nuclear Information System (INIS)

    Ljung, B.M.L.

    2002-01-01

    During nuclear medicine examinations, the child is exposed to more or less distressful and/or painful procedures. Many children find it difficult to understand why they have to go through a specific examination. In addition, the surrounding is unfamiliar with heavy technical equipment. The first experience is crucial for the child's future attitudes towards hospitals in general and diagnostic procedures in particular. Apart from having child-focused personnel, there are many ways to improve the situation, and I will focus on four corner-stones. 1. Information; 2. Pain relief; 3. Diversion; 4. Sedation. 1. Information should be addressed directly to the child as well as to the parents. Today, children use the computer already from an early age, and we have initiated the use of Internet as a medium for child-adapted information. With texts, photos and multimedia on an interactive site we are able to reach also quite young children as well as children with difficulties to understand only written parts. Pain relief for vein puncture should always be considered. We use the topical anaesthetic EMLA cream in newborns (> 2.800 g) as well as in teenagers. Trained staff is another condition for high success rate in performing vein punctures, and continuous education vouches for that. 3. Diversion (distraction) is a general term for directing the child's attention from the procedures or to make time pass faster. Age adapted diversions should be readily available for every child. Apart from soap bubbles, toys, books, music and videos there are other possibilities, such as 'Guided imagery', a way of day-dreaming initiated by personnel trained in this method. 4. Sedation should be used when other options are not sufficient. For conscious sedation we use midazolam, administered either iv, intranasal, rectally or orally. The nurses/technologists handle the routines. In nuclear medicine, 4-5 % of the children, mostly between 1-3 years old, are sedated either for fear of vein

  10. The Technology of Nuclear Warfare

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The present technical status of the nuclear weapon system and of the systems for their delivery is explained. All these systems have made tremendous progress since the 1960s. Available destructive power now is literally millions of times larger than at the time of Hiroshima. Moreover, technical progress has had, especially through the MIRV principle and the cruise missile, a destabilizing influence and threatens the equilibrium of terror. New strategy doctrines for winning rather than preventing nuclear war are developed. According to the counterforce strategy the retaliation capacity of the opponent is to be destroyed by a surprise attack. Moreover, plans for the tactical first-use of nuclear weapons have been accepted. In a nuclear conflict, the commanders-in-chief are overburdened by the need for ultra-urgent decisions. As a consequence tendencies in the direction of increasing automatization become ever more conspicuous. In the extreme case, decisions may be entirely left to machines, and man would not any more be included in decision-making. The increasing automatization leads to further escalation of insecurity for the whole world. A solution cannot be found on the level of technology, but only on that of practical peace policy. (author)

  11. Special monitoring in nuclear medicine; Monitoreo especial en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C.C.; Puerta, J.A.; Morales, J. [Asociacion Colombiana de Proteccion Radiologica (Colombia)]. e-mail: ccbeltra@gmail.com

    2006-07-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the {sup 131} I and the {sup 99m} Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained

  12. Research and career opportunities for chemists in nuclear medicine

    International Nuclear Information System (INIS)

    Welch, M.J.

    1989-01-01

    Two recent publications [Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas: Report of a Workshop National Academy Press, Washington, D.C., 1988, and Report of the Society of Nuclear Medicine Manpower Committee, Journal of Nuclear Medicine, January, 1989] have emphasized the opportunities for Chemists in Nuclear Medicine. These opportunities exist in Medical Centers, the Radiopharmaceutical Drug Industry as well as the Ethical Drug Industry of particular importance of the need for organic and inorganic chemists with knowledge and experience in radiochemistry to develop and prepare the radiopharmaceuticals needed for the Nuclear Medicine community. The number of positions available at present and anticipated in the future will be compared and the number of training programs listed. Examples of the types of opportunities in this area will be given

  13. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  14. History of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident

  15. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    1977-01-01

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  16. Water Jet Technology Used in Medicine

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Hloch, S.; Magurová, D.; Valíček, Jan; Kozak, D.; Harničárová, M.; Rakin, M.

    2010-01-01

    Roč. 17, č. 7 (2010), s. 237-240 ISSN 1330-3651 Institutional research plan: CEZ:AV0Z3086906 Keywords : abrasive water jet * medicine * technology Subject RIV: JQ - Machines ; Tools Impact factor: 0.083, year: 2010

  17. Veterinary Medicine and Animal Health Technology Handbook.

    Science.gov (United States)

    New York State Education Dept., Albany. Office of the Professions.

    The laws, rules, and regulations of the New York State Education Department that govern professional veterinary medicine and animal health technology practice in the state are presented. Licensure requirements are described, and complete application forms and instructions for obtaining license and first registration as a licensed veterinarian and…

  18. [Information technology in medicine - some legal observations].

    Science.gov (United States)

    Siegal, Gil

    2013-05-01

    Information Technology (IT) and computing capabilities are revolutionizing the practice of medicine in an unprecedented way. Some current legal and ethical concerns evolving from this revolution are addressed, pointing to the emerging concepts in Israeli jurisprudence, which regards medical IT as an important contribution to patient empowerment, to medical risk management and in managing the resources of a national health system.

  19. Pediatric nuclear medicine: A practical approach

    International Nuclear Information System (INIS)

    Pintelon, H.; Piepsz, A.; Dejonckheere, M.

    1997-01-01

    This paper is devoted to the practical aspects of pediatric nuclear medicine, particularly the controversy about drug sedation. The authors conclude that drug sedation should be exceptionally used. There is an alternative way, consisting in an adequate approach of the patient: good information to the parents and the child; taking care of the child's environment, starting from the first contacts in the waiting room; specific education of technologists: this includes injections and blood sampling, but also proper handling of the child during the procedure and adequate psychological attitudes toward child and parents. Taking these factors into account, it is exceptional that a test has to be postponed because of the lack of collaboration of the patient; good quality images, using the recommended paediatric amounts of radioactivity can be achieved even for procedures of prolonged duration

  20. Quality assurance of nuclear medicine computer software

    International Nuclear Information System (INIS)

    Cradduck, T.D.

    1986-01-01

    Although quality assurance activities have become well established for the hardware found in nuclear medicine little attention has been paid to computer software. This paper outlines some of the problems that exist and indicates some of the solutions presently under development. The major thrust has been towards establishment of programming standards and comprehensive documentation. Some manufacturers have developed installation verification procedures which programmers are urged to use as models for their own programs. Items that tend to cause erroneous results are discussed with the emphasis for error detection and correction being placed on proper education and training of the computer operator. The concept of interchangeable data files or 'software phantoms' for purposes of quality assurance is discussed. (Author)