WorldWideScience

Sample records for nuclear medicine physicians

  1. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    International Nuclear Information System (INIS)

    Movahed, Assad; Gnanasegaran, Gopinath; Buscombe, John R.; Hall, Margaret

    2009-01-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  2. Scintigraphic examinations during pregnancy and in breast-feeding women: a survey of Belgian nuclear medicine physician's attitudes

    International Nuclear Information System (INIS)

    Tondeur, M.; Ham, H.; Sand, A.

    2003-01-01

    Radiation protection is of major importance in pregnant and breast feeding women. This work was undertaken to assess the practices of Belgian nuclear medicine physicians towards performing diagnostic tests during pregnancy and in breast feeding women. A questionnaire was sent to 201 Belgian nuclear medicine physicians; 82 answers (41 %) were received. 51 % of the responding physicians agree to perform lung perfusion scan during pregnancy provided a reduced dose is administered, 33% refuse to perform it during first three months and 24% refuse to perform it for pregnancies older than three months. For the Tc-99m ventilation scan 79% and 66% refuse to perform it before and after first three months. Better agreement was observed for other Tc-99m scintigraphies or tests using other radionuclides. In breast feeding women 89% agree to perform Tc-99m tests provided a breast feeding break; however, the duration of this break appears variable. The need for obtaining a written informed consent appears controversial. Given the variability of the attitudes of nuclear medicine physicians, official guidelines for nuclear medicine diagnostic tests during pregnancy is needed. (authors)

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  5. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ ... Nuclear medicine scans are typically used to ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... physician who has specialized training in nuclear medicine will interpret the images and send a report to your referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  8. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  13. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  14. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  15. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  16. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  17. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... drink before the exam, especially if your physician plans to use sedation for the procedure. top of page Who interprets the results and how do we get them? A radiologist or other physician who has specialized training in nuclear medicine will interpret the images and ...

  19. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  20. The American College of nuclear physicians 18th annual meeting and scientific sessions DOE day: Substance abuse and nuclear medicine abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Despite the enormous personal and social cost Of substance abuse, there is very little knowledge with respect to the mechanisms by which these drugs produce addiction as well as to the mechanisms of toxicity. Similarly, there is a lack of effective therapeutic intervention to treat the drug abusers. In this respect, nuclear medicine could contribute significantly by helping to gather information using brain imaging techniques about mechanisms of drug addiction which, in turn, could help design better therapeutic interventions, and by helping in the evaluation and diagnosis of organ toxicity from the use of drugs of abuse. This volume contains six short descriptions of presentations made at the 18th Meeting of the American College of Nuclear Physicians -- DOE Day: Substance Abuse and Nuclear Medicine.

  1. The American College of nuclear physicians 18th annual meeting and scientific sessions DOE day: Substance abuse and nuclear medicine abstracts

    International Nuclear Information System (INIS)

    1992-02-01

    Despite the enormous personal and social cost Of substance abuse, there is very little knowledge with respect to the mechanisms by which these drugs produce addiction as well as to the mechanisms of toxicity. Similarly, there is a lack of effective therapeutic intervention to treat the drug abusers. In this respect, nuclear medicine could contribute significantly by helping to gather information using brain imaging techniques about mechanisms of drug addiction which, in turn, could help design better therapeutic interventions, and by helping in the evaluation and diagnosis of organ toxicity from the use of drugs of abuse. This volume contains six short descriptions of presentations made at the 18th Meeting of the American College of Nuclear Physicians -- DOE Day: Substance Abuse and Nuclear Medicine

  2. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  3. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  4. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  5. Proceedings of the forty third annual conference of Society of Nuclear Medicine India: empowering modern medicine with molecular nuclear medicine

    International Nuclear Information System (INIS)

    2011-01-01

    Theme of the 43rd Annual Conference of the Society of Nuclear Medicine India is 'empowering modem medicine with molecular nuclear medicine'. Keeping the theme in mind, the scientific committee has arranged an attractive and comprehensive program for both physicians and scientists reflecting the multimodality background of Nuclear Medicine and Metabolic Imaging. During this meeting the present status and future prospects of Nuclear medicine are discussed at length by esteemed faculty in dedicated symposia and interesting featured sessions which are immensely facilitate in educating the participants. Nuclear Medicine has come a long way since the first applications of radioiodine in the diagnosis of thyroid disease. The specialty of nuclear medicine in India is growing very rapidly. Technology continues to push the field in new directions and open new pathways for providing optimal care to patients. It is indeed an exciting time in the world of imaging and in the field of nuclear medicine. Innovative techniques in hardware and software offer advantages for enhanced accuracy. New imaging agents, equipment, and software will provide us with new opportunities to improve current practices and to introduce new technology into the clinical protocols. Papers relevant to INIS are indexed separately

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ... Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions ...

  9. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  10. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  11. Nuclear Medicine in a developing country

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.; Ghoorun, S.

    2002-01-01

    Namibia is a country with 1,8 million inhabitants, of whom the majority has limited access to first world facilities. Nevertheless, medical services of high standard are offered. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. Investigations performed include musculoskeletal, liver, hepatobiliary, thyroid, renal studies, ventilation perfusion lung scans as well as the following Nuclear Cardiology studies: Gated blood pool scans, Tc-99m pyrophosphate hot spot scans, Tl-201 myocardial perfusion studies, Tc-99m MIBI myocardial perfusion studies and Tl-201 rest-redistribution studies. Problems experienced at the Windhoek Nuclear Medicine department include: Lack of funding and high cost of equipment and radiopharmaceuticals, lack of understanding of Nuclear Medicine by the hospital management and health administrators, and difficulties in procuring short-lived radiopharmaceuticals. Furthermore, the absence of company representatives and spare parts in Namibia leads to loss of time whenever equipment needs to be repaired. Working as the only nuclear medicine physician in a country also poses major problems. Careful management of resources and information drives have helped to sustain the Nuclear Medicine service despite economic problems in the country. Installation of a tele-link between the department in Windhoek Hospital and Tygerberg Hospital in South Africa has greatly assisted to overcome the problem of isolation and lack of back up from fellow specialists. The IAEA has equipped both departments with Hermes workstations (Nuclear Diagnostics) and a tele-link is maintained via modem. The current software provided with the Hermes system is ideally suited to processing of data such as gated

  12. Protection of the patient in nuclear medicine

    International Nuclear Information System (INIS)

    1987-01-01

    In ICRP Publication 52, the 'Protection of the Patient in Nuclear Medicine', is concerned with exposures of patients resulting from the administration of radiopharmaceuticals for diagnostic, therapeutic and research purposes. The report includes guidelines for nuclear medicine physicians, radiologists, medical physicists and technologists on the factors that influence absorbed doses to patients from different types of nuclear medicine examinations. Other topics in the report include education and training, estimates of absorbed dose, design of facilities, instrumentation, quality assurance and control and preparation, quality assurance and control of radiopharmaceuticals. (U.K.)

  13. Initial experience with a nuclear medicine viewing workstation

    Science.gov (United States)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  14. Supplementary training of nuclear power plant occupational physicians

    International Nuclear Information System (INIS)

    Letard, H.; Carre, M.

    1980-01-01

    A short description is given of the supplementary training course given to nuclear power plant occupational physicians within the frame of the Division of occupational medicine at Electricite de France. Such training is necessary to deal with the specific problems involved. However, it is only a complement to medical studies and the special degree in occupational medicine and industrial hygiene [fr

  15. Misconceptions and misunderstandings about nuclear medicine; are we selling our wares properly (abstract)

    International Nuclear Information System (INIS)

    Durre-e-Sabih

    1998-01-01

    Nuclear Medicine is a powerful but unfamiliar if not esoteric modality. This is not taught in medical schools with the result that clinicians usually learn to use this 'on the job' and by 'word of mouth'. It is thus not surprising that many patients referred for a Nuclear medicine procedure have less than optimum indications for the test. This ties up Nuclear Medicine resources, causes a financial loss to the patient and the State (Nuclear Medicine is still heavily State subsidized) and delivers a radiation burden to a patient who might not benefit from it. This study was done to assess physicians perception of the usefulness of Nuclear Medicine procedures in specific medical conditions. 34 physicians, from both Medical (24) and surgical (10) specialists agreed to participate in this study. There were 6 consultants, 21 post-graduate residents and 7 graduate house officers. They were asked to grade from 1 to 5 (useless to most useful and essential) 46 conditions and 7 types of Nuclear Medicine procedures. The 4398 individual results were averaged to form 138 group results. These were then compared with our own impression of the usefulness of the procedures on the same scale. Our impression for each condition was then standardized to an arbitrary value of 5 and all responses were then corrected for this value. These results show that there was relative agreement (Our score of 5, physician score between 4-6 (-+ 20%) between our and the physicians understanding of the usefulness of these procedures in only 9 cases out of 46 (19%); with a more liberal criterion of - + 25% (score of 3.75-6.25) there was agreement in 16 out of 46 cases (35%). The purpose of the study was not to judge physicians knowledge but to highlight the lack of communication that exists between the Nuclear Medicine community in Multan and the clinical staff. It is our feeling that the situation in the rest of the country might be similar. If that is so, there is a tremendous opportunity of saving

  16. Misconceptions and misunderstandings about nuclear medicine: are we selling our wares properly? (abstract)

    International Nuclear Information System (INIS)

    Dure-e-Sabih

    1999-01-01

    Nuclear medicine is powerful but unfamiliar if not esoteric modality. This is not taught in medical schools with the result that clinicians usually learn to use this ''on the job word of mouth''. It is thus not surprising that many patients referred for a Nuclear Medicine procedure have less than optimum indication for the test. This ties up Nuclear Medicine resources, causes a financial loss to the patient and the State (Nuclear Medicine is still heavily State subsidized) and delivers a radiation burden to a patient who might not benefit from it. This study was done to assess physicians perception of the usefulness of nuclear Medicine procedures in specific medical conditions. 34 physicians, from both Medical (24) and surgical (10) specialists agreed to participate in this study. There were 6 consultants, 21 post-graduate residents and 7 graduates house officer. They were asked to grade from 1 to 5 (useless to most useful and essential) 46 conditions and 7 types of Nuclear Medicine procedures. The 4398 individual results were average to form 138 group results. These were than compared to our own impression of the usefulness of the procedures on the same scale. Out impression for each condition was then standardized to an arbitrary value of 5 and all responses were than corrected for this value. These results show that there was relative agreement (our score of 5, physician score between 4-6 (- +2%) between our and the physicians understanding of the usefulness of these procedures in only 9 cases out of 46 (19%); with a more liberal criterion of -+25% (score of 3.75-6.25) there was agreement in 16 out of 46 cases (35%). The purpose of the study was not to judge physicians knowledge but to highlight the lack of communication that exist between the Nuclear Medicine community in Multan and the clinical staff. It is our feeling that the situation in the rest of the country might be similar. If that is no there is a tremendous opportunity of saving scarce resources and

  17. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  18. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  19. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    Science.gov (United States)

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  1. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  2. Nuclear medicine and its radiological protection in China

    International Nuclear Information System (INIS)

    Wu, J.

    2001-01-01

    The China Society of Nuclear Medicine was established on 27 May 1980. Since then, nuclear medicine in clinical diagnosis and therapy has been developed rapidly in China. So far there are more than 4000 members of the Society, and more than 350 sets of SPECT and 12 sets of PET have been installed and are busily running in clinic nowadays and about 1 million patients with different types of diseases have obtained nuclear medicine imaging examinations per year. Concerning the nuclear medicine therapy, a lot of patients with many types of diseases obtained benefit from radioisotope therapy. Accordingly, several Policies and Regulations have been enacted by the Government for the radiological protection. Furthermore, a special book titled 'Standardization in Diagnostic and Therapeutic Nuclear Medicine' has been promulgated in June, 1997 by the Health Administration of People's Republic of China, and this book is distributed to almost every nuclear medicine physician and technician in China for their reference in routine nuclear medicine work or research. In this book three parts of the contents are covered: Policies and Regulations for the radiological protection, basic knowledge and clinical nuclear medicine applications. (author)

  3. Position on short-lived radionuclides of the American College of Nuclear Physicians

    International Nuclear Information System (INIS)

    Shoop, J.D.

    1985-01-01

    The more than 1100 nuclear medicine physicians who make up the bulk of the ACNP membership have as their goal the optimum practice of nuclear medicine; hence the purpose of the College as their professional association is to help them achieve this goal, acting primarily in areas where as individuals they cannot work effectively, gathering and disseminating information and other resources, assessing the impact of new technology on practice, combating interference with good practice, enhancing the quality of services offered their patients, and striving to maintain economic stability in the nuclear medicine minisystem

  4. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  5. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    Teresinska, Anna; Birkenfeld, Bozena; Krolicki, Leszek; Dziuk, Miroslaw

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  6. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  7. Hospital Intranet and Extranet in nuclear medicine

    International Nuclear Information System (INIS)

    Gambini, D.J.; Baum, T.P.; Spector, M.; Dumas, F.; Elgard, M.C.; Collington, M.A.; Barritault, L.

    1997-01-01

    Since two years ago nuclear medicine service of Laennec Hospital has implemented transmission and distribution networks of scintigraphic images. A new stage was reached at present by developing an Intranet and Extranet system for nursing units and other services of nuclear medicine. The Intranet link to the services of Laennec Hospital and AP HP is based on a image server connected to the service gamma camera and, after a possible post-processing, the images are transmitted in PCX format by e-mail, attached to the medical record. For communication between nuclear medicine services, a heavier procedure making use of a program for image processing under inter-file standards has been implemented. To achieve the Extranet link with services and physicians of town, exterior to AP HP, a procedure was installed which allows reaching any nursing unit or town physicians having at their disposal e-mail on a secured network. This procedure will be generalized when the Health secured network, linking the medical bodies to Health insurance institutions, will be operational. The interactive tele-medicine will be achieved by means of a procedure based on Internet cooperative tools (wild cards, video- and vision-conferences) which will permits in all situations an interactive work on all the transmitted patient files

  8. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  9. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  10. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  11. Generic medicines: Perceptions of Physicians in Basrah, Iraq

    Directory of Open Access Journals (Sweden)

    Adheed Khalid Sharrad

    2009-08-01

    Full Text Available BackgroundThe use of cheaper generic medicines is a strategy promotedin many countries to reduce rising health care costs. The aimof this study was to explore factors affecting generic medicineprescribing by physicians in Basrah, Iraq.MethodologyA purposive sample of ten physicians practicing in Basrahwas interviewed using a semi-structured interview guide.ResultsAnalysis of the interviews identified seven major themes:medicine prescribing practice, knowledge of therapeuticequivalency of generic medicine, patients’ acceptance ofgeneric medicine, counterfeit medicine, drug informationsource and effect of drug advertising on medicines choice,brand substitution practice by community pharmacists, and,finally strategies to improve generic medicine usefulness.Participants identified helpful strategies to increase genericprescribing including; physician and patient education ongeneric medicine; persuading physicians about the safety andefficacy of generic medicines; and finally educating seniormedical students on generic prescribing.ConclusionThe data suggest that participants were enthusiasticabout prescribing generic medicines. However physiciansinsist that pharmacists should not be allowed tosubstitute generic drugs without prior approval ofdoctors.

  12. Medicine against Cold War. Physicians in the anti-nuclear peace movement of the 1980ies

    International Nuclear Information System (INIS)

    Kemper, Claudia

    2016-01-01

    The book on physicians in the anti-nuclear peace movement of the 19080ies covers the following issues: (I) Frame of the subject: methodology, research fields and actors; (II) The social dimension of the physician's movement; (III) IPPNW (International physicians for the prevention of nuclear war) - a political idea is medicalized and organized, 1980 - 1984; (IV) Borderlines of the international peace idea during the Cold War - IPPNW 1980 - 1986.

  13. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  14. Value measurement of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Potchen, E.J.; Harris, G.I.; Schonbein, W.R.; Rashford, N.J.

    1977-01-01

    The difficulty in measuring the benefit component for cost/benefit analysis of diagnostic procedures in medicine is portrayed as a complex issue relating the objective of intent to a classification of types of decisions a physician must make in evaluating a patient's problem. Ultimately, it seems desirable to develop measuring instruments such as attitude measurement tools by which the relative value of alternative diagnostic procedures could be measured in terms of what they contribute to diminishing the patient's personal perception of disease. Even without this idealized objective, it is reasonable to assume that diagnostic tests which do not contain information, defined as a change in the randomness of a state of knowledge, could not be expected to ultimately benefit the patient. Thus diagnostic information should provide a rational direction for the physician to modify the course of the patient's illness. Since information can be measured as a change in randomness of a knowledge state, we can determine the information content of a specific nuclear medicine procedure when faced with an array of diagnostic problems. These measurements remain to be made for clinical nuclear medicine procedures and are currently under study

  15. Doses of radioiodine administered for hyperthyroidism: a sampling of Belgian nuclear medicine physician's attitudes

    International Nuclear Information System (INIS)

    Tondeur Dejonckheere, Marianne; Glinoer, Daniel; Verelst, Jean; Sand, Alain; Ham, Hamphrey

    2005-01-01

    Full text: While radioiodine (RI) is a well established treatment for hyperthyroidism, there is no consensus regarding the administration of fixed or calculated doses. Guidelines from scientific societies do not specify the preferable approach, nor the parameters to be used in order to calculate the latter. Therefore, the doses might, for the same patient, be different with regard to the chosen procedure. This study was undertaken to assess the variability of RI amounts administered in Belgium in various cases of hyperthyroidism. 21 Belgian nuclear medicine physicians issued from different departments and universities participated into the study. They received a file with clinical and biological data, iodine turnover rate, scintigraphic images and calculated thyroid surfaces from 10 patients (8 females, 2 males), 30-77 yrs suffering from hyperthyroidism of various etiologies: 7 patients had clinically overt hyperthyroidism and 3 subclinical hyperthyroidism; 7 patients had toxic goiters of various size (Graves' disease), 2 multi nodular goiter and 1 toxic nodule. None suffered from cardiac anomalies or ophthalmopathy. Participants were asked to define the amount of RI they would give in each case. Answers were received during a 8-week period. Analysing data from case 1 to case 10, the ranges of the proposed doses varied between 8 and 22 milli Curies (mCi) (sd : 2.4 - 6.07). Considering all the patients, the proposed doses varied between 2 mCi and 25 mCi. Analysing answers among the 21 participants, mean proposed doses varied between 4.5 and 17.3 mCi (sd: 0.69 - 7.99). Conclusion: These results demonstrate a wide variability among nuclear medicine physicians in the proposed RI doses and confirm that in Belgium there is no uniformity in the procedure used to determine the amount of RI to administer for various causes of hyperthyroidism. This emphasizes the notion that the determination of the amount of RI to be administered remains a matter of debate. (author)

  16. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  17. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  18. Thirty years from now: future physics contributions in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L [School of Physics and Faculty of Health Sciences, University of Sydney, Sydney, 2006 (Australia); Department of Nuclear Medicine, Royal North Shore Hospital, St. Leonards, NSW 2065 (Australia)

    2014-05-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  19. Thirty years from now: future physics contributions in nuclear medicine

    International Nuclear Information System (INIS)

    Bailey, Dale L

    2014-01-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  20. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  1. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  2. Introductory physics of nuclear medicine

    International Nuclear Information System (INIS)

    Chandra, R.

    1976-01-01

    This presentation is primarily addressed to resident physicians in nuclear medicine, as well as residents in radiology, pathology, and internal medicine. Topics covered include: basic review; nuclides and radioactive processes; radioactivity-law of decay, half-life, and statistics; production of radionuclides; radiopharmaceuticals; interaction of high-energy radiation with matter; radiation dosimetry; detection of high-energy radiation; in-vitro radiation detection; in-vivo radiation detection using external detectors; detectability or final contrast in a scan; resolution and sensitivity of a scanner; special techniques and instruments; therapeutic uses of radionuclides; biological effects of radiation; and safe handling of radionuclides

  3. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  4. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  5. The Current Status and Future Perspectives of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Oh, So Won; Chung, June Key; Lee, Dong Soo

    2010-01-01

    Since the introduction of nuclear medicine in 1959, Korea accomplished a brilliant development in terms of both clinical practice and research activities, which was mainly due to the dedication of nuclear medicine specialists, consisting of physicians, technicians, and scientists, and strong support from the Korean Government. Now, Korea has 150 medical institutes, performing approximately 561,000 nuclear imaging procedures and 11.6 million in vitro studies in 2008, and ranked fourth in the number of presentations at the Annual Meeting of the Society of Nuclear Medicine (SNM) in 2008. The successful progress in this field has allowed Korea to focus on the international promotion of nuclear medicine, especially in the developing and underdeveloped countries. In consequence, the Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was established in 2001, and Seoul hosted the 9th Congress of the World Federation of Nuclear Medicine and Biology (WFNMB) in 2006. In the future, Korea will strive to sustain its rate of advancement in the field and make every effort to share its progress and promote the exchange of scientific information at the international level.

  6. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  7. Justification of the hybrid nuclear medicine examinations

    International Nuclear Information System (INIS)

    Garcheva-Tsacheva, Marina B.

    2015-01-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations. (authors)

  8. Women Physicians: Choosing a Career in Academic Medicine

    Science.gov (United States)

    Borges, Nicole J.; Navarro, Anita M.; Grover, Amelia C.

    2011-01-01

    Purpose Despite recent efforts to understand the complex process of physician career development, the medical education community has a poor understanding of why, how, and when women physicians embark on a career in academic medicine. Method In 2010, the authors phone-interviewed women physicians in academic medicine regarding why, how, and when they chose an academic medicine career. Project investigators first individually and then collectively analyzed transcripts to identify themes in the data. Results Through analyzing the transcripts of the 53 interviews, the investigators identified five themes related to why women choose careers in academic medicine: fit, aspects of the academic health center environment, people, exposure, and clincial medicine. They identified five themes related to how women make the decision to enter academic medicine: change in specialty, dissatisfaction with former career, emotionality, parental influence, and decision-making styles. The authors also identified four themes regarding when women decide to enter academic medicine: as a practicing phyisican, fellow, resident, or medical student. Conclusions Choosing a career in academic medicine is greatly influenced by the environment in which one trains and by people—be they faculty, mentors, role models, or family. An interest in teaching is a primary reason women choose a career in academic medicine. Many women physicians entering acadmic medicine chose this after or during fellowship, which is when they became more aware of academic medicine as a possible career. For many women, choosing academic medicine was not necessarily an active, planned decision; rather it was serendipitous or circumstantial. PMID:22104052

  9. The liability of the radiopharmacist and the nuclear physician in the use of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Coustou, F.

    1986-01-01

    A brief article examines the traditional aspects of the physician's and pharmacist's liability in general followed by a discussion on the liability of the nuclear physician and the radiopharmacist in the use of radiopharmaceuticals. It is concluded that the liabilities involved in the use of radiopharmaceuticals go well beyond the scope of traditional medicine and pharmacy. (UK)

  10. Naturopathic physicians: holistic primary care and integrative medicine specialists.

    Science.gov (United States)

    Litchy, Andrew P

    2011-12-01

    The use of Complimentary and Alternative Medicine (CAM) is increasing in the United States; there is a need for physician level practitioners who possess extensive training in both CAM and conventional medicine. Naturopathic physicians possess training that allows integration of modern scientific knowledge and the age-old wisdom of natural healing techniques. Naturopathic philosophy provides a framework to implement CAM in concert with conventional therapies. The naturopathic physician's expertise in both conventional medicine and CAM allows a practice style that provides excellent care through employing conventional and CAM modalities while utilizing modern research and evidence-based medicine.

  11. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  12. E-Learning Readiness in Medicine: Turkish Family Medicine (FM) Physicians Case

    Science.gov (United States)

    Parlakkiliç, Alaattin

    2015-01-01

    This research investigates e-learning readiness level of family medicine physicians (FM) in Turkey. The study measures the level of e-learning readiness of Turkish FM physicians by an online e-learning readiness survey. According to results five areas are ready at Turkish FM physicians but need a few improvements:…

  13. Burnout among female emergency medicine physicians: A nationwide study.

    Science.gov (United States)

    Soltanifar, Atefeh; Pishbin, Elham; Attaran Mashhadi, Negin; Najaf Najafi, Mona; Siahtir, Maryam

    2018-02-13

    The challenging and stressful nature of emergency medicine place the practitioners of this young branch of medicine at risk of burnout. In Iran, the number of women choosing the specialty of emergency medicine has been increasing in recent years. No studies have focused on burnout among female emergency medicine physicians. We conducted this study to evaluate the level of burnout in female emergency medicine physicians in Iran. In this cross-sectional study, all Iranian female emergency medicine physicians with more than 2 years of work experience as specialists, received a questionnaire containing 22-item Maslach Burnout Inventory scales and 7-item Cassidy social support scale, as well as questions about workload and career satisfaction. In total, 77 questionnaires were analysed (response rate: 75%; median age: 36 years, median for work experience = 3 years). A total of 34% of participants were academic faculties. The level of burnout in three subscales of emotional exhaustion, depersonalisation and perceived low personal accomplishment was moderate to high in 84.5, 48.1 and 80.5% of participants respectively. A total of 94.8% of female emergency medicine physicians perceived their workload to be moderate to high and only 1.3% of them had high job satisfaction. Alarming high rate of burnout and job dissatisfaction among female emergency medicine physicians in our study requires careful attention. Further investigations are suggested to identify the contributory factors to burnout and the probability of some gender disparities in this field. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  15. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  16. Current situation of the facilities, equipments and human resources in nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    Chiliutti, Claudia A.

    2008-01-01

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out. In Argentina, there are 266 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN). Forty four percent of the installed equipment are SPECT of 1 or 2 heads and 39,4 % are gamma camera. Besides, there are eleven PET operating in Argentina. There are 416 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampa, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel present an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of medicine nuclear physicians with individual permits. The number of SPECT and gamma cameras is 7,3 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international information available provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  17. Physicians' group seeks nuclear arms ban.

    Science.gov (United States)

    Litwin, M S

    1985-08-02

    The history and recent activities of the International Physicians for the Prevention of Nuclear War (IPPNW) are reported. Founded in 1980 by cardiologists Bernard Lown of the United States and Eugene Chazov of the Soviet Union, the group has attracted well over 100,000 members from 51 countries. Following the organization's fifth congress in Budapest in June 1985, a four-city tour of the United States by three American and four Soviet physicians was co-sponsored by IPPNW, Physicians for Social Responsibility, and the Soviet Committee of Physicians for the Prevention of Nuclear War. Through separate lecture series aimed at physicians and laypersons, the doctors sought to persuade colleagues to take an active stand against nuclear war, and to increase public awareness of the medical realities of a nuclear attack. A similar tour of the Soviet Union is planned.

  18. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    annual systematic audit process into the clinical arena. Each section is set out as a series of questions related to specific components of nuclear medicine services. The questions are not all-inclusive and professional judgement is essential to ensure that the questions are addressed adequately. It is not intended that all questions will be addressed. The QM audit methodology which is introduced in this publication is designed to be applied to a variety of economic circumstances. A key outcome should be a culture of reviewing essential elements of the clinical service for continuous improvement in nuclear medicine. This publication should be of interest to nuclear medicine physicians, radiologists, radiopharmacists, medical physicists, medical technologists and educationalists. It should also interest those dealing with QM and audit systems. The attached CD-ROM contains the checklists given in this publication for self-appraisal. They can also be used by multidisciplinary teams involved in annual QM checks and audits

  19. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  20. A nuclear medicine information system that allows reporting and sending images through intranet

    International Nuclear Information System (INIS)

    Anselmi, C.E.; Anselmi, O.E.

    2002-01-01

    A nuclear medicine information system that allows reporting and sending images through intranet. Aim: This system was developed in order to improve the processes of typing, correcting, verifying and distribution of the reports and images, improving the efficiency of the personnel in the nuclear medicine department and reducing the time between the creation of the report and its reading by the referring physician. Materials and Methods: The system runs a web server (Personal Web Server, Microsoft) which serves web pages written in hypertext markup language (HTML) and active server pages (ASP). The database utilized is Microsoft Access 97. The whole communication between the web server and the database is performed by the programs written in ASP. Integrating the images from the patients is done through a 486 ibm-pc running Red Hat Linux, which serves as an intermediary between the isolated nuclear medicine network and the hospital's network. Results: The time from report verification and referring physician reading has decreased from approximately 24 hours to 12 hours. It is possible to run queries in the system in order to get productivity reports or clinical research. Imaging storage allows for correlation of current and previous studies. Conclusion: Bureaucratic processes have diminished to a certain extent in the department. Reports are now online as soon as they are verified by the nuclear medicine physician. There is no need to install dedicated software in the viewing stations since the whole system runs in the server

  1. Introduction to the physics of nuclear medicine

    International Nuclear Information System (INIS)

    Goodwin, P.N.; Rao, D.V.

    1977-01-01

    This book presents the fundamentals of physics as they relate to nuclear medicine in as elementary way as possible. The text concentrates solely on those facts which apply directly to the studies or to the instruments which the physician or technician will be using. After an introductory review of the necessary mathematics, the text examines the structure of matter and the nature of radioactivity. The discussion of nuclear decay processes incorporates information on negative beta decay, gamma emission, positron decay, electron capture and isomeric transitions. Alpha particles, beta particles and photons are explored in the chapter on the interaction of radiation with matter. Scintillation detectors, scanners, gamma cameras, and other imaging devices are all explored in detail. This overview of equipment is followed by a study of radionuclides in nuclear medicine and a review of statistics. The final two chapters are concerned with radiation safety and dosimetry

  2. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  5. The practice and earnings of preventive medicine physicians.

    Science.gov (United States)

    Salive, M E

    1992-01-01

    A shortage of preventive medicine (PM) physicians exists in the United States. Researchers know little about these physicians' earnings and practice characteristics. The American College of Preventive Medicine (ACPM) mailed a survey to all self-identified PM physicians on the American Medical Association (AMA) Physician Masterfile. A total of 3,771 (54%) responded; respondents' sex and region of residence were typical for PM physicians in general, with a slight excess of older physicians and those reporting board certification. A total of 2,664 (71%) were working full time, with median earnings of $85,000 (mean $90,000). Among full-time physicians, relatively higher earnings were associated with the following characteristics: male sex; age 45 to 64 years; major source of income from clinical, business, or industrial sources, rather than governmental or academic; and PM board certification. Full-time PM physicians earned much less than office-based private practitioners in several primary care specialties in 1989. The gap in earnings between PM specialists in government positions and those in the private sector is also substantial. Both disparities may require creative solutions.

  6. The physicians and the nuclear war

    International Nuclear Information System (INIS)

    Arruda, W.O.

    1985-01-01

    This paper shows that a lot of physicians in the world are worried about a new nuclear war and they created the International Physicians for Prevention of Nuclear War. The main objectives of the IPPNNW are to amplify the public or people knowledge of the medical aspects of the nuclear war and promote and coordinate researches about the medical and psychological effects of the nuclear weapon race. (author)

  7. Physicians cannot prepare for nuclear disaster

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1985-01-01

    In this paper, the author argues that medical preparations for nuclear war are futile. Not only would few physicians survive a nuclear attack, but these physicians would have the impossible task of caring for hundreds of thousands of injured and dying victims

  8. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  9. Personal and professional profile of mountain medicine physicians.

    Science.gov (United States)

    Peters, Patrick

    2003-01-01

    The purpose of this study was to define and describe the personal and professional profile of mountain medicine physicians including general physical training information and to include a detailed overview of the practice of mountain sports. A group of physicians participating in a specialized mountain medicine education program filled out a standardized questionnaire. The data obtained from this questionnaire were first analyzed in a descriptive way and then by statistical methods (chi2 test, t test, and analysis of variance). Detailed results have been provided for gender, age, marital status, general training frequency and methods, professional status, additional medical qualifications, memberships in professional societies and alpine clubs, mountain sports practice, and injuries sustained during the practice of mountain sports. This study has provided a detailed overview concerning the personal and professional profile of mountain medicine physicians. Course organizers as well as official commissions regulating the education in mountain medicine will be able to use this information to adapt and optimize the courses and the recommendations/requirements as detailed by the UIAA-ICAR-ISMM (Union Internationale des Associations Alpinistes, International Commission for Alpine Rescue, International Society for Mountain Medicine).

  10. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  11. Medical and administrative management of a nuclear medicine department with a microcomputer

    International Nuclear Information System (INIS)

    Legras, B.; Kohler, F.

    1984-01-01

    The use of a microcomputer for data management in a department of Nuclear Medicine has allowed to reduce considerably office work, and supplies the physicians with very useful statistics on the investigations carried out [fr

  12. The radiological protection in the nuclear medicine practice

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2010-09-01

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  13. Aggression and violence directed toward general medicine physicians

    Directory of Open Access Journals (Sweden)

    Petrov-Kiurski Miloranka

    2016-01-01

    Full Text Available Objective: To explore the extent of aggression (verbal abuse and violence (physical abuse directed toward General Medicine physicians by their patients, to identify causes and consequences of such behaviour on physicians' professional work and to establish prevention measures. Method: All general medicine physicians who attended an educational seminar from 28 to 29 February 2015 in Belgrade were given the questionnaire and asked to complete it. Results: 411 general medicine physicians have completed the questionnaire. Both genders were included: 86.37% of them were women. Majority of the participants were in the age group of 51-60 years (45.25%, mean age was 49.27±9.32. Mean number of years in practice was 21.10±9.87. Most of them specialized in General Medicine (62.30%. 85.40% of physicians have encountered some kind of abuse during their work and there was no significant difference regarding physicians' gender or qualifications. In the preceding year 62.3% of participants have encountered aggression or violence in their workplace. Aggression was reported by 82.97% and violence by 8.83% of participants. There were no statistically significant differences in terms of physicians' gender (p=0.859, type of workplace (p=0.097, number of years in practice (p=0.640 and specialty (p=0.537. In 83.2% of cases acts of aggression or violence have been committed by patients and in 40.2% by members of their families. In 44.2% of these cases nobody tried to assist the physicians and even less so if they were male doctors (p=0.05. The most common causes were: patients' dissatisfaction (60.4%, long waiting time for examination (37.0% and patient's alcohol or drug intoxication (35.0%. The most common consequence of this on physicians was decreased satisfaction with their job (53.6%. Prevention measures for this issue would be: decreasing of the number of consultations per day (56.0%, introduction of a new 'in line of duty' status for healthcare workers (55

  14. State-of-the-art of the installations, equipments and human resources of nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    Chiliutti, Claudia A.

    2004-01-01

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out . In Argentina, there are 292 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority. Forty percent of the installed equipment are SPECT of 1 or 2 heads and 40 % are gamma camera. Besides, there are two PET operating in Argentina. There are 402 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampeana, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel presents an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of nuclear medicine physicians with individual permits. The number of SPECT and gamma cameras is 8,65 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international available information provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  15. 10th national conference of Society of Nuclear Medicine, Bangladesh and International symposium, Dhaka, Bangladesh, 10-11 February 2005: A report

    International Nuclear Information System (INIS)

    Alam, F.

    2005-01-01

    The Society of Nuclear Medicine, Bangladesh organized its 10th Annual Conference at Dhaka on 10-11 February 2005. The theme of this year's convention was 'Interventional Nuclear Medicine'. Besides the faculty from Bangladesh including consultants from various clinical specialties, four international experts also participated in the two day meeting. The pre-congress CME was held in the premises of Bangladesh Atomic Energy Commission on 10 February. Several lectures on the management of Thyroid Disorders using radionuclide techniques were delivered by a distinguished national and international faculty. The lectures were attended by a large audience with a packed auditorium, mostly nuclear medicine specialists, general physicians, surgeons and endocrinologists from Dhaka and other places of Bangladesh. There was good interaction and participants took active part in the discussions. The actual Annual Convention of Society of Nuclear Medicine Bangladesh (SNMB) was held in Dhaka on 11 February 2005. The convention was attended by more than 250 registered participants, including nuclear medicine physicians, clinicians, residents, and technologists, representative of the Atomic Energy Commission and pioneers of nuclear medicine in Bangladesh

  16. Maternal-Fetal Medicine Physician and Fellow Perceptions of Business in Medicine.

    Science.gov (United States)

    Porter, Blake; Iriye, Brian; Ghamsary, Mark

    2018-01-01

     Principles of practice management provide a foundation for clinical success and performance improvement. Scant data exist regarding maternal-fetal medicine (MFM) physicians' knowledge of these topics. We hypothesize that physicians enter practice with inadequate education in practice management.  Surveys were emailed to members of the Society for Maternal-Fetal Medicine rating their knowledge and capabilities in practice management topics, and respondents assessed their current institution's business in the medical curriculum.  A total of 325 (14.4%) physicians responded: 63 fellows in training and 262 MFM physician subspecialists. Practicing physicians reported learning most of their knowledge "in practice after fellowship" (85%) or "never at all" (10%). Only 3% of respondents had adequate business education during fellowship, and only 5% felt prepared to teach business principles. However, 85% of those surveyed agreed that this material should be taught during the fellowship. Among MFM subspecialists and fellows in training at institutions with fellowships, 60% reported no current curriculum for practice management, and those with current curricula reported it had "limited" or "no value" (76%).  There is a significant desire for practice management curricula during MFM fellowship, and current training is insufficient. With many MFM physicians ill-prepared to teach these principles, professional education from other financial fields, and standardized education in practice management from current expert sources is needed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Physician Communication to Enhance Patient Acupuncture Engagement in Family Medicine.

    Science.gov (United States)

    Fisher, Carla L; Ledford, Christy J W; Moss, David A; Crawford, Paul

    2018-04-09

    Integrating complementary therapies (acupuncture) into conventional medicine has garnered recent support. Given the health benefits, low cost, and minimal risks, the military has advocated for acupuncture and begun training family medicine physicians. Little is known about the role of physician communication in patients' acupuncture engagement (uptake and adherence) in conventional medicine settings. We interviewed physicians (N = 15) and patients (N = 17) to capture physician communication they perceived affected treatment engagement. Data for each group were thematically analyzed. Physicians and patients prioritized different communication approaches and associated strategies. Physicians identified four approaches that enhance treatment engagement: (1) using shared decision-making (e.g., treatment options); (2) not being pushy (e.g., in tone); (3) carefully choosing language (e.g., Eastern versus Western terms); and (4) explaining treatment outcomes (e.g., efficacy). Patients also prioritized explaining treatment outcomes but differently (e.g., timing clarity), with two additional approaches: (5) talking with the same physician (e.g., continuity) and (6) being responsive to patient (e.g., flexibility). Findings highlight how physicians and patients prioritize patient-centered communication differently and how it is embedded within a unique, complex therapy. Data showcase authentic narratives that could be translated into physician communication skills training to promote treatment engagement in integrative care.

  18. Opinions of Polish occupational medicine physicians on workplace health promotion.

    Science.gov (United States)

    Puchalski, Krzysztof; Korzeniowska, Elzbieta; Pyzalski, Jacek; Wojtaszczyk, Patrycja

    2005-01-01

    According to the current Polish legislation on occupational health services, occupational medicine physicians should perform workplace health promotion (WHP) activities as a part of their professional work. The concept of workplace health promotion or health promotion programs, however, has not been defined in this legislation in any way. Therefore, two essential questions arise. First, what is the physicians' attitude towards workplace health issues and second, what is actually carried out under the label of health promotion? The main objective of the research described in this paper was to answer these questions. The survey was carried out by the National Center for Workplace Health Promotion in 2002. A questionnaire prepared by the Center for the purpose of this survey was sent to a random sample of occupational medicine physicians. The results of the survey showed that 53% of occupational medicine physicians consider WHP just as a new name for prophylactics. On the other hand almost all of the respondents (94%) agree that occupational medicine physicians should perform WHP activities and find them useful in improving patients' health (78%). The main obstacle for the development of this activity in the perception of physicians is the lack of interest in workplace health promotion among employers (86%). In the modern understanding of workplace health promotion concept this type of intervention includes not only safety measures and health education, but also a profound organizational change that allows employers, employees and social partners to improve wellbeing of people at work. Each of such projects should facilitate changes necessary to create a health promoting workplace. It also needs a skilled leader--well trained and aware of a multidisciplinary dimension of WHP interventions. Occupational medicine specialists should become natural partners of employers and employees. The majority of the occupational medicine physicians, however, are not sufficiently

  19. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  20. Nuclear medicine and radiologic imaging in sports injuries

    Energy Technology Data Exchange (ETDEWEB)

    Glaudermans, Andor W.J.M. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Gielen, Jan L.M.A. [Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Radiology; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Sports Medicine; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Medicine; Zwerver, Johannes (ed.) [Groningen Univ. (Netherlands). Center for Sports Medicine

    2015-10-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  1. Nuclear medicine and radiologic imaging in sports injuries

    International Nuclear Information System (INIS)

    Glaudermans, Andor W.J.M.; Gielen, Jan L.M.A.; Antwerp Univ. Hospital, Edegem; Antwerp Univ. Hospital, Edegem; Zwerver, Johannes

    2015-01-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  2. Arrow physicians: are economics and medicine philosophically incompatible?

    Science.gov (United States)

    Tsang, Sandro

    2015-06-01

    Economics is en route to its further expansion in medicine, but many in the medical community remain unconvinced that its impact will be positive. Thus, a philosophical enquiry into the compatibility of economics and medicine is necessary to resolve the disagreements. The fundamental mission of medicine obliges physicians to practise science and compassion to serve the patient's best interests. Conventional (neoclassical) economics assumes that individuals are self-interested and that competitive markets will emerge optimal states. Economics is seemingly incompatible with the emphasis of putting patients' interests first. This idea is refuted by Professor Kenneth Arrow's health economics seminal paper. Arrow emphasizes that medical practice involves agency, knowledge, trust and professionalism, and physician-patient relation critically affects care quality. The term Arrow Physician is used to mean a humanistic carer who has a concern for the patient and acts on the best available evidence with health equity in mind. To make this practice sustainable, implementing appropriate motivations, constitutions and institutions to enable altruistic agency is critical. There is substantial evidence that polycentric governance can encourage building trust and reciprocity, so as to avoid depletion of communal resources. This paper proposes building trusting institutions through granting altruistic physicians adequate autonomy to direct resources based on patients' technical needs. It also summarizes the philosophy bases of medicine and economics. It, therefore, contributes to developing a shared language to facilitate intellectual dialogues, and will encourage trans-disciplinary research into medical practice. This should lead to medicine being reoriented to care for whole persons again. © 2015 John Wiley & Sons, Ltd.

  3. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  4. Study of metrologic characteristics in activimeters used in Nuclear Medicine Centers in Colombia

    International Nuclear Information System (INIS)

    Davila, Hernan Olaya; Flores, Guillermo

    2013-01-01

    In our country currently there is a legislation that regulated de Nuclear Medicine practice, that establish the criteria about quality assurance in Nuclear Medicine and the justification to imparted to medical exposures. In this work includes some tests to the clinical approval in this type of instruments before to be used. The type of tests are linearity, geometric dependence and the energetic response and moreover to evaluate the total uncertainty during the work the physician using this equipment with radioactive sources. (author)

  5. Information demands of occupational health physicians and their attitude towards evidence-based medicine.

    Science.gov (United States)

    Schaafsma, Frederieke; Hulshof, Carel; van Dijk, Frank; Verbeek, Jos

    2004-08-01

    This study assessed the extent and nature of information demands among occupational health physicians and their attitude towards the application of evidence-based medicine in occupational health. A questionnaire survey was carried out among a random sample of 159 physicians practicing occupational medicine in The Netherlands. The questionnaire investigated the type and number of questions encountered in daily practice, the actions taken in response, the physicians' experience in using scientific databases on the Internet, and their attitude towards evidence-based medicine. The occupational health physicians' questions concerned medical, legal, and rehabilitation topics in particular. In pursuing answers to their questions, they generally chose to contact colleagues. Scientific databases were not consulted very often, although, in general, the attitude towards evidence-based medicine was positive. In addition to known barriers for practicing evidence-based medicine, occupational health physicians perceive a lack of scientific evidence in their field. The extensiveness of the field of knowledge in occupational health care was not regarded as an obstacle to their application of evidence-based medicine. Occupational health physicians have a demand for information on a broad range of topics, and, in most cases, their attitude towards evidence-based medicine is fairly positive. Besides education and training in evidence-based medicine, access to the Internet and the presence of a good knowledge infrastructure would help occupational health physicians use evidence-based medicine.

  6. Nuclear medicine in the management of the AIDS patient

    International Nuclear Information System (INIS)

    Kramer, E.L.; Sanger, J.J.

    1990-01-01

    For the medical diagnostic imaging specialist in general, and for the nuclear medicine physician specifically, the AIDS epidemic has generated an enormous demand to develop a means of making early diagnoses of the complications of AIDS. For the most part this has meant the early detection, and when possible, the characterization of the opportunistic infections and neoplasms that are a major source of morbidity and mortality for the AIDS patient. Detection of opportunistic infections has been helpful in reclassifying HIV-seropositive patients as having AIDS. This paper reports on nuclear medicine used to evaluate the efficacy and the complications of treatment in human immunodeficiency virus infection. Most recently, functional brain imaging has been used for the diagnosis and follow-up of the AIDS dementia complex

  7. Why Aren't There More Female Pain Medicine Physicians?

    Science.gov (United States)

    Doshi, Tina L; Bicket, Mark C

    2018-04-09

    Despite a growing awareness about the importance of gender equity and the rising number of women in medicine, women remain persistently underrepresented in pain medicine and anesthesiology. Pain medicine ranks among the bottom quartile of medical specialties in terms of female applicants, female trainees, and proportion of female practitioners. Female pain medicine physicians are also notably disadvantaged compared with their male colleagues in most objective metrics of gender equity, which include financial compensation, career advancement, public recognition, and leadership positions. Increased gender diversity among pain medicine physicians is vital to fostering excellence in pain research, education, and clinical care, as well as creating a high-quality work environment. Pain medicine stands at a crossroads as a specialty, and must examine reasons for its current gender gap and consider a call to action to address this important issue.

  8. Voluntary euthanasia, physician-assisted suicide, and the goals of medicine.

    Science.gov (United States)

    Varelius, Jukka

    2006-04-01

    It is plausible that what possible courses of action patients may legitimately expect their physicians to take is ultimately determined by what medicine as a profession is supposed to do and, consequently, that we can determine the moral acceptability of voluntary euthanasia and physician-assisted suicide on the basis of identifying the proper goals of medicine. This article examines the main ways of defining the proper goals of medicine found in the recent bioethics literature and argues that they cannot provide a clear answer to the question of whether or not voluntary euthanasia and physician-assisted suicide are morally acceptable. It is suggested that to find a plausible answer to this question and to complete the task of defining the proper goals of medicine, we must determine what is the best philosophical theory about the nature of prudential value.

  9. The generation and gender shifts in medicine: an exploratory survey of internal medicine physicians

    Directory of Open Access Journals (Sweden)

    Lemaire Jane

    2006-05-01

    Full Text Available Abstract Background Two striking demographic shifts evident in today's workforce are also apparent in the medical profession. One is the entry of a new generation of physicians, Gen Xers, and the other is the influx of women. Both shifts are argued to have significant implications for recruitment and retention because of assumptions regarding the younger generation's and women's attitudes towards work and patient care. This paper explores two questions regarding the generations: (1 How do Baby Boomer and Generation X physicians perceive the generation shift in work attitudes and behaviours? and (2 Do Baby Boomer and Generation X physicians differ significantly in their work hours and work attitudes regarding patient care and life balance? Gen Xers include those born between 1965 and 1980; Baby Boomers are those born between 1945 and 1964. We also ask: Do female and male Generation X physicians differ significantly in their work hours and work attitudes regarding patient care and life balance? Methods We conducted exploratory interviews with 54 physicians and residents from the Department of Medicine (response rate 91% and asked about their perceptions regarding the generation and gender shifts in medicine. We limit the analyses to interview responses of 34 Baby Boomers and 18 Generation Xers. We also sent questionnaires to Department members (response rate 66%, and this analysis is limited to 87 Baby Boomers' and 65 Generation Xers' responses. Results The qualitative interview data suggest significant generation and gender shifts in physicians' attitudes. Baby Boomers generally view Gen Xer physicians as less committed to their medical careers. The quantitative questionnaire data suggest that there are few significant differences in the generations' and genders' reports of work-life balance, work hours and attitudes towards patient care. Conclusion A combined qualitative and quantitative approach to the generation shift and gender shift in

  10. Nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S M [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1967-01-01

    The article deals with the growth of nuclear medicine in India. Radiopharmaceuticals both in elemental form and radiolabelled compounds became commercially available in India in 1961. Objectives and educational efforts of the Radiation Medicine Centre setup in Bombay are mentioned. In vivo tests of nuclear medicine such as imaging procedures, dynamic studies, dilution studies, thyroid function studies, renal function studies, linear function studies, blood flow, and absorption studies are reported. Techniques of radioimmunoassay are also mentioned.

  11. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  12. Saudi regulations for the accreditation of sleep medicine physicians and technologists

    Directory of Open Access Journals (Sweden)

    Ahmed S BaHammam

    2013-01-01

    Full Text Available The professional content of sleep medicine has grown significantly over the past few decades, warranting the recognition of sleep medicine as an independent specialty. Because the practice of sleep medicine has expanded in Saudi Arabia over the past few years, a national regulation system to license and ascertain the competence of sleep medicine physicians and technologists has become essential. Recently, the Saudi Commission for Health Specialties formed the National Committee for the Accreditation of Sleep Medicine Practice and developed national accreditation criteria. This paper presents the newly approved Saudi accreditation criteria for sleep medicine physicians and technologists.

  13. Concussion Management Practice Patterns Among Sports Medicine Physicians.

    Science.gov (United States)

    Stache, Stephen; Howell, David; Meehan, William P

    2016-09-01

    The primary purpose of this study was to examine concussion management practice patterns among sports medicine physicians in the United States. Cross-sectional study using a web-based survey. Members of the American Medical Society for Sports Medicine (AMSSM). We distributed a questionnaire to physician members of the AMSSM assessing the current practices for evaluating and managing concussions sustained during sports. Specifically, we asked respondents about their use of management guidelines, medications, balance assessments, neuropsychological tests, and return-to-play strategies. Of the 3591 members emailed, 425 (11.8%) respondents responded. Ninety-seven percent of respondents reported basing current management of sport-related concussion on a published set of criteria, with a majority (91.9%) following the guidelines provided by the Fourth International Conference on Concussion in Sport. Seventy-six percent of respondents reported using medication beyond 48 hours postinjury. Acetaminophen was reported as the most commonly administered medication, although tricyclic antidepressants and amantadine were also commonly administered. Vitamins, minerals, and dietary supplements were also reported as commonly administered. Most respondents reported using a form of neuropsychological testing (87.1%). A majority of respondents (88.6%) reported allowing athletes to return to competition after concussion only once the athlete becomes symptom free and completes a return-to-play protocol. Most sports medicine physicians seem to use recently developed guidelines for concussion management, regularly use medications and neuropsychological testing in management strategies, and follow established return-to-play guidelines. Sports medicine physicians seem to have clinical expertise in the management of sport-related concussion.

  14. Nuclear medicine in the management of the aids patient

    International Nuclear Information System (INIS)

    Kramer, E.L.; Sanger, J.J.

    1995-01-01

    For the medical diagnostic imaging specialist in general, and for the nuclear medicine physician specifically, the AIDS epidemic has generated an enormous demand to develop a means of making early diagnoses of the complications of AIDS. For the most part this has meant the early detection, and when possible, the characterization of the opportunistic infections and neoplasms that are a major source of morbidity and mortality for the AIDS patient. Detection of opportunistic infections has been helpful in reclassifying HIV-seropositive patients as having AIDS. This paper reports on nuclear medicine used to evaluate the efficacy and the complications of treatment in human immunodeficiency virus infection. Most recently, functional brain imaging has been used for the diagnosis and follow-up of the AIDS dementia complex. (author). 77 refs., 8 figs

  15. Opinions of Primary Care Family Physicians About Family Medicine Speciality Training Program

    Directory of Open Access Journals (Sweden)

    Hamit Sirri Keten

    2014-04-01

    Material and Method: A total of 170 family physicians working in Kahramanmaras were included in the study. After obtaining informed consent a questionnaire comprising questions regarding socio-demographic properties, conveying contracted family physicians as family medicine specialists and organization of the training program was applied to participants. Results: Among physicians participating in the study 130 (76.5% were male and 40 (23.5% were female, with a mean age of 40.7±7.1 (min = 26 years, max = 64 years. The mean duration of professional experience of physicians was 15.3±7.0 (min = 2 years, max = 40 years years. Of all, 91 (53.5% participants had already read the decree on family medicine specialist training program for contracted family physicians. A hundred and fifteen (67.6% family physicians supported that Family Medicine Specialty program should be taken part-time without interrupting routine medical tasks. Only 51 (30.0% participants stated the requirement of an entrance examination (TUS for family medicine specialty training. Conclusion: Family medicine specialty training program towards family physicians should be considered in the light of scientific criteria. In family medicine, an area exhibited a holistic approach to the patient; specialty training should be through residency training instead of an education program. For this purpose, family medicine departments in medical faculties should play an active role in this process. Additionally further rotations in needed branches should be implemented with a revision of area should be performed. In medicine practical training is of high importance and distant or part-time education is not appropriate, and specialist training shall be planned in accordance with the medical specialty training regulations. [Cukurova Med J 2014; 39(2.000: 298-304

  16. Integrative Medicine as a Bridge to Physician Wellness.

    Science.gov (United States)

    Nguyen, Chau T

    2018-03-01

    Burnout is increasingly recognized as an issue of major importance affecting physicians of all ages and disciplines and thereby patients, systems, and health care in general. At the 2017 American Academy of Otolaryngology-Head and Neck Surgery Foundation Annual Meeting, the scope of burnout in medicine was addressed, along with systematic issues that remain. While changing the culture of medicine and health systems to address this is needed, what strategies can health care providers use in their everyday lives to lessen the impact of burnout? Integrative medicine with its focus on wholeness of patient care, including the emotional, mental, social, and spiritual domains of health, is uniquely positioned in arming physicians with sets of tools to help them navigate patients to better health and healing. These very same methods are invaluable for personal self-care, as we are all potential patients. Integrative medicine is a pathway to improving one's own self-care and, thereby, improving patient care.

  17. Restoration and functional analysis of nuclear medicine images

    International Nuclear Information System (INIS)

    Wendt, R.E. III.

    1982-01-01

    The nuclear medicine physician uses visual interpretation of a movie-like display of the beating human heart to detect wall motion abnormalities which might be related to impaired cardiac function. The present work is directed toward extracting more information from the heart motion study, and presenting it in a useful manner. A spatially adaptive smoothing routine using a quadtree image representation gives an improvement in mean squared error compared to the S9 smoother commonly used for nuclear medicine studies. Functional images show the two-dimensional distribution of parameters of the heart motion. The most popular, the first harmonic phase functional image, formed from the first Fourier harmonic fit to each pixel time-activity curve, is subject to significant artifacts which make a simple interpretation of it difficult. A multi-harmonic approximation is more accurate and offers a wealth of unique parameters with which to construct more directly meaningful functional images

  18. Training in nuclear medicine: Based on the recommendations of IAEA/WHO Seminar, 8-12 August 1988, Vienna, Austria

    International Nuclear Information System (INIS)

    1992-01-01

    Nuclear Medicine is defined as a clinical specialty that utilizes the radionuclides for diagnosis, therapy and medical research. The radionuclides are used as unsealed sources of radioactivity. The diagnostic applications include both in vivo and in vitro uses of radioisotopes. There is hardly any medical research which does not use radioactive compounds. Only clinical research is considered within the purview of nuclear medicine. The Recommendations of IAEA/WHO seminar reviewed the needs of training in nuclear medicine mainly for the physicians with special emphasis on the needs of the developing countries

  19. Training in nuclear medicine: Based on the recommendations of IAEA/WHO Seminar, 8-12 August 1988, Vienna, Austria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Nuclear Medicine is defined as a clinical specialty that utilizes the radionuclides for diagnosis, therapy and medical research. The radionuclides are used as unsealed sources of radioactivity. The diagnostic applications include both in vivo and in vitro uses of radioisotopes. There is hardly any medical research which does not use radioactive compounds. Only clinical research is considered within the purview of nuclear medicine. The Recommendations of IAEA/WHO seminar reviewed the needs of training in nuclear medicine mainly for the physicians with special emphasis on the needs of the developing countries

  20. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  1. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  2. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  3. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  4. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  5. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  6. Concierge Medicine: A Viable Business Model for (Some) Physicians of the Future?

    Science.gov (United States)

    Paul, David P; Skiba, Michaeline

    Concierge medicine is a medical management structure that has been in existence since the 1990s. Essentially, a typical concierge medical practice limits its number of patients and provides highly personalized attention that includes comprehensive annual physicals, same-day appointments, preventive and wellness care, and fast, 24/7 response time. Concierge medicine has become popular among both physicians and patients/consumers who are frustrated by the limitations imposed by managed care organizations. From many physicians' perspectives, concierge medicine offers greater autonomy, the opportunity to return to a more manageable patient load, and the chance to improve their incomes that have declined because of increasingly lowered reimbursements for their services. From many patients'/consumers' perspectives, concierge medicine provides more immediate, convenient, and caring access to their primary care physicians and, regardless of their physician's annual retainer fee, the elimination of third-party insurance coverage costs and hassles. The major criticisms of the concierge medicine model come from some health care policy makers and experts, who believe that concierge medicine is elitist and its widespread implementation will increase the shortage of primary care physicians, which is already projected to become worse because of the Affordable Care Act's individual mandate, which requires everyone to have health insurance.Utilizing these topics as its framework, this article explains why concierge medicine's form of medical management is gaining ground, cites its advantages and disadvantages for stakeholders, and examines some of the issues that will affect its growth.

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... interventions. Children's (pediatric) nuclear medicine refers to imaging examinations done in babies, young children and teenagers. Nuclear ... nuclear medicine procedure work? With ordinary x-ray examinations, an image is made by passing x-rays ...

  8. Nuclear medicine imaging in clinical practice: Current applications and future trends

    International Nuclear Information System (INIS)

    Galli, G.; Maini, C.L.

    1985-01-01

    The following conclusions can be drawn: 1) Even though developments in data digitalization enable also other imaging techniques to extract functional information, it is likely that nuclear medicine will keep and possibly increase its key role for functional studies requiring quantitative data analyses. This statement is true at present and it will probably remain true for a long time to come. 2) Nuclear medicine is and will remain an important clinical tool also for morphological or morphodynamic studies in selected situations. Of course the integration of nuclear medicine studies with other diagnostic procedures is highly desirable. The highest clinical yield of multi-test diagnostic protocols will be anyway obtained by the wisest physician as sophysticated technology is no substitution for intelligent clinical judgment. 3) The development of new radiopharmaceuticals with well characterized biokinetic features allowing precise tissue characterization opens new frontiers to be exploited by nuclear medicine centers equipped with conventional technology (digital gammacameras, SPECT). 4) Positron emission tomography is the most important new development of nuclear medicine imaging. Not only PET has already shown its enormous possibilities for physiological and pathophysiological studies, but the clinical relevance of selected applications has been proved. More experience is however needed to assess systematically the whole impact of PET studies in clinical practice and to perform dependable cost/benefit studies. 5) Among all other imaging techniques NMR is the closest to nuclear medicine because of a strict ''compatibility of aptitudes, training and methodology'' (4). Accordingly future improvements of both methods will be better achieved if they could be integrated and the results compared with the same institutions

  9. Nuclear medicine and prostheses

    International Nuclear Information System (INIS)

    Bordenave, L.; Baquey, Ch.

    2004-01-01

    Whatever the bio-material, prosthesis or medical device concerned, from design to experimental then clinical validation, nuclear medicine (NM) techniques offer a unique opportunity in all indications, (in vitro diagnosis, in vivo diagnosis and therapy) to investigate, assess and predict the behaviour of the device, qualitatively and quantitatively. All research fields involving prostheses and their constitutive biomaterials may take advantage of NM. In order to review published works, one can analyze provided data according to two strategies: an upright one related to medical and surgical specialties that integrate NM and a more horizontal one, that is to describe what kind of contribution is brought by such investigations. The latter approach was preferred in our review. We discuss and illustrate benefits of NM in the following indications: as an in vitro tool, as an in vivo tool for the diagnosis i) of device integration in recipient, ii) of functional outcome after use or implantation, iii) and predictive assessment of undesirable side effects, iv) of occurrence of complications associated to the device implantation, v) of a new therapy efficiency; finally as in vivo tool of therapy. Tissue engineering and regenerative medicine domains with stem cell potential as well as that of medical device associated with vigilance are new fields in basic research and clinical assessment that seem increasingly promising for the nuclear physician and to which NM could and would contribute from molecule to integrated system in order to improve knowledge and achievement of prostheses. (author)

  10. Family medicine physicians' advice about use of nonconventional modalities for menopausal symptom management.

    Science.gov (United States)

    Grant, Kathryn; Burg, Mary Ann; Fraser, Kathryn; Gui, Serena; Kosch, Shae Graham; Nierenberg, Barry; Oyama, Oliver; Pomm, Heidi; Sibille, Kimberly; Spruill, Timothy; Swartz, Virginia

    2007-05-01

    This study explores the beliefs and practices of family medicine physicians regarding the use of nonconventional modalities for menopausal symptom management. Anonymous self-administered questionnaires were distributed to faculty and residents from eight participating family medicine residency programs around Florida, with an overall response rate of 66% (212 respondents). The survey explored what physicians report about patterns of patient inquiries and their responses to patients' inquiries about nonconventional modalities for specific menopausal symptoms and what physicians' report on their advice to patients about using specific herbs and supplements for menopausal symptom relief. Behavioral approaches were encouraged more than herbal therapies, acupuncture, and body therapies for the treatment of most of the menopausal symptoms. However, the most frequent response category was No advice. Resident physicians were significantly more likely than faculty to encourage acupuncture. Faculty physicians were more likely than residents to recommend particular herbal remedies. The majority of the respondents believed there was not sufficient evidence for recommending any of the herbs and supplements listed. These data reveal some important trends about how family medicine physicians respond to nontraditional approaches for menopausal symptom management. Because family medicine physicians typically receive some training in behavioral and psychotherapeutic approaches and there is some evidence for the effectiveness of behavioral strategies in menopausal symptom management, it is not surprising that they are more likely to endorse these approaches. Most family medicine physicians, however, have little or no training in the other nonconventional modalities, and our data show that these modalities received lower levels of endorsement, suggesting that physicians are not clear on their advantages or disadvantages.

  11. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  14. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  15. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety

    OpenAIRE

    Blum, Alexander B; Shea, Sandra; Czeisler, Charles A; Landrigan, Christopher P; Leape, Lucian

    2011-01-01

    Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of...

  16. Radiological Protection of Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.

    2011-01-01

    Full text: This lecture aims at presenting the state of the art of radiological protection of patients in nuclear medicine focusing on three aspects of interest where to achieve improvement. The hierarchy of the justification principle of the radiation protection is one of them. There seems for a change to be presented in the paradigm of the radiological protection of patients. The role of the physician who prescribes the medical practice becomes more relevant, together with the nuclear medicine specialist who should be co-responsible for the application of this justification principle. Regarding the doses optimization and the implementation of Dose Reference Level the involvement extends far beyond the physician and radioprotection officer. It is clear that the Medical Physicist is to play a very relevant role in the coordination of actions, as the nuclear medicine technician is to execute them. Another aspect to consider is patient specific dosimetry. It should become a routine practice through calculation of the absorbed dose based on biodistribution data. It should be assessed for each individual patient, as it depends on a number of patient-specific parameters, such as gender, size and the amount of fatty tissue in the body, as well as the extent and nature of the disease. In most cases, dosimetry calculations are not carried out and patients are administered standard levels of activity. There may be situations with a lack of knowledge on internal dosimetry as in many centers either none or only one or two medical physics experts are available. It shows that a formal training for experts in internal dosimetry at national level is required. However up to now, there has been no satisfactory correlation between absorbed dose estimates and patient response. Moreover, the radiation protection for the patient is not assured, as the dose values given are often numbers without connection to radiobiological and/or hematological findings. Pending tasks related to

  17. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  18. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  19. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  20. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  1. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  2. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Children's (Pediatric) Nuclear Medicine? What are some common uses of the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is ...

  4. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  5. The radiological protection in the nuclear medicine practice; La proteccion radiologica en la practica de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado M, H., E-mail: hmaldonado@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-09-15

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  6. "Physician, Heal Thyself": How Teaching Holistic Medicine Differs from Teaching CAM.

    Science.gov (United States)

    Graham-Pole, John

    2001-01-01

    Describes the fundamental difference between complementary and alternative medicine (CAM) and holistic medicine, highlighting holistic medicine's emphasis on the promotion of healthy lifestyles for practitioners and patients alike. Asserts that offering physicians-to-be more course work in holistic medicine could lay the groundwork for future…

  7. Qualitative Research on Emergency Medicine Physicians

    DEFF Research Database (Denmark)

    Paltved, Charlotte; Musaeus, Peter

    2012-01-01

    Aim: This study aims to systematically review the qualitative research studying Emergency Medicine (EM) physicians in Emergency Departments (ED). Background: Qualitative research aims to study complex social phenomena. EM is a highly complex medical and social environment that can be investigated...... with qualitative research. Methods: Electronic databases of English peer-reviewed articles were searched from 1971 to 2012 using Medline through PubMed and PsychINFO. This search was supplemented with hand-searches of Academic Emergency Medicine and Emergency Medicine Journal from 1999 to 2012 and cross references...... and training, communication, professional roles, and organizational factors, and into 12 sub-themes. Conclusion: The strength of qualitative research is its ability to grasp and operationalize complex relations within EM. Although qualitative research methodologies have gained in rigour in recent years and few...

  8. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic ...

  10. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  11. Fundamentals of nuclear medicine

    International Nuclear Information System (INIS)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth

  12. Investigation on legal problems encountered by emergency medicine physicians in Turkey.

    Directory of Open Access Journals (Sweden)

    Afsin Emre Kayipmaz

    Full Text Available Medicine is a profession that carries certain risks. One risky area of practice is the emergency department. Emergency physicians diagnose and treat a high volume of patients, and are also responsible for preparing reports for forensic cases. In this study, we aim to investigate emergency physicians' legal-administrative problems and reveal their level of understanding on forensic cases.An electronic questionnaire form was prepared after the approval of an ethical committee. This form was sent to the residents, specialists and academicians of emergency medicine by e-mail. The physicians were asked to fill out the form online. All the gathered data was analyzed. Descriptive statistics were presented as frequency percentages with mean and standard deviation. Chi-square tests were used to compare the groups. Correlation between number of complaint cases and age, sex, career, institution, and duration of service in emergency department were investigated. p<0.05 was considered statistically significant.294 physicians participated in the questionnaire. According to the questionnaire, 170 of the physicians were reported to the patient communication units due to medical malpractice. Mean number of compliant reports was 3.20±3.5. 29 of the physicians received administrative penalties. 42 of the physicians were judged in the court for medical malpractice. 1 physician was fined 5000 Turkish Liras as a result of these judgments.We found that the number of complaint reports is negatively correlated with duration of service in emergency medicine and age. There was a significant difference between number of complaint reports and career (p<0.05. The physicians' level of awareness on forensic cases was found to be insufficient. Lack of legislation knowledge may be an important cause of complaint reports concerning emergency physicians, who have a high load of patients. Thus, we think that increasing the frequency of post-graduate education sessions and

  13. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  14. Physician perspectives on education, training, and implementation of complementary and alternative medicine

    Directory of Open Access Journals (Sweden)

    Patel SJ

    2017-07-01

    Full Text Available Sejal J Patel,1 Kathi J Kemper,2 Joseph P Kitzmiller3 1College of Public Health, The Ohio State University, 2Center for Integrative Health and Wellness, The Ohio State Wexner University Medical Center, 3Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA Abstract: Over recent decades, the demand for complementary and alternative medicine (CAM has continued to rise in the US. Like the practice of traditional Western medicine, CAM is associated with not only significant health benefits but also significant risks. Unlike traditional Western medicine, however, much of CAM use is less regulated and often occurs unbeknownst to a patient’s medical doctor. The use of herbals, dietary supplements, and over-the-counter (OTC medications can result in adverse effects, and many significant interactions can occur when their use is combined with allopathic medications. Even the more peripheral CAM practices (eg, acupuncture, massage, yoga, and Reiki have associated risk (eg, adverse effects or worsening of physical injury and conditions. There is, however, impetus for change: both patients and physicians favor increasing physician knowledge of CAM and the synergistic implementation of CAM into routine clinical practice. Although improvement has been achieved from contemporary physician educational efforts, recently published results from patient and physician surveys strongly indicate that additional effort to increase physician knowledge of CAM is needed. Utilizing a 37-item survey and convenience-sampling methodology, we collected detailed information from 114 physicians, fellows, and residents from the Ohio State University Medical Center regarding impediments to increasing physician knowledge of CAM and its implementation in routine clinical practice. The aggregate results of our survey data showed that most physicians 1 desired to increase their knowledge of CAM, 2 believed that less

  15. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    Science.gov (United States)

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    were age 5 years or younger. For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children.

  16. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine

    International Nuclear Information System (INIS)

    Grant, Frederick D.; Drubach, Laura A.; Treves, S. Ted; Fahey, Frederic H.; Gelfand, Michael J.

    2015-01-01

    were age 5 years or younger. For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children. (orig.)

  17. Digital Nuclear Medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Rollo, F.D.

    1982-01-01

    This book is meant ''to provide the most comprehensive presentation of the technical as well as clincial aspects of computerized nuclear medicine''. It covers basic applications, and advice on acquisition and quality control of nuclear medicine computer systems. The book evolved from a series of lectures given by the contributors during the computer preceptorship program at their institution, Vanderbilt University in Nashville

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  20. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  3. Teaching and training programmes in nuclear medicine for medical and paramedical personnel at the Radiation Medicine Centre, Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Sharma, S.M.; Raikar, U.R.

    1986-01-01

    Prior to 1976, the Radiation Medicine Centre had conducted 12 short courses of five weeks' duration on medical uses of radioisotopes. A total of 162 medical and scientific personnel attended the courses from various parts of India. Owing to the rapid advances made in nuclear medicine these courses were becoming inadequate, and in 1973 the Centre introduced one-year full time training courses for doctors and science graduates, peparing them for examinations for the Diploma in Radiation Medicine (DRM) and the Diploma in Medical Radioisotope Techniques (DMRIT) of the University of Bombay. By March 1984, 64 doctors and 53 technologists had obtained the DRM and DMRIT. A recent survey indicated that 70% of the DRM physicians and 68% of the DMRIT technologists are employed in nuclear medicine departments. Besides the formal one-year training courses, the Centre has conducted advanced courses of two weeks' duration on scintigraphy and thyroid function tests. The Radiation Medicine Centre has been the regional reference centre in nuclear medicine for the World Health Organization and International Atomic Energy Agency for more than ten years. The Centre has trained sponsored personnel from other countries of the region. The Centre has also organized seven symposia, workshops and seminars, four of them in collaboration with WHO and one with the IAEA. (author)

  4. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  5. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  6. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  7. Diagnosis of Child Maltreatment: A Family Medicine Physician's Dilemma.

    Science.gov (United States)

    Eniola, Kehinde; Evarts, Lori

    2017-05-01

    Cases of child maltreatment (CM) in the United States remain high, and primary care providers lack the confidence and training to diagnose these cases. This study provides recommendations to improve family medicine physicians' confidence in diagnosing CM. We e-mailed an electronic survey to family medicine residents and physicians practicing in the United States. Responses were collected during August and September 2015. Respondents were asked about their familiarity and competence level regarding the diagnosis of CM. They also were asked about the frequency of their correctly diagnosing CM, timeliness of diagnosis, barriers to a diagnosis or early diagnosis of CM, and receipt of adequate CM training. Of the 420 surveys emailed, 258 (61%) were completed. The majority of respondents stated their self-reported level of competence in diagnosing CM as average or below average, with few (8%) indicating a competence level of above average. A timely diagnosis of child maltreatment was reported by 46% of respondents, whereas 54% were either late (19.2%) in diagnosing or could not recall (34.6%). The barriers to diagnosis cited by responders were inexperience (58%), lack of confidence and certainty (50%), lack of diagnosis protocol (43.3%), lack of confidence in communicating with parents (38.3%), and inadequate training (34.9%). The introduction of CM training into the family medicine residency training curriculum, coupled with the development of a standardized CM diagnosis protocol, may improve self-reported family medicine physicians' confidence and competence levels in diagnosing CM.

  8. Complementary Alternative Medicine for Children with Autism: A Physician Survey

    Science.gov (United States)

    Golnik, Allison E.; Ireland, Marjorie

    2009-01-01

    Previous studies suggest over half of children with autism are using complementary alternative medicine (CAM). In this study, physicians responded (n = 539, 19% response rate) to a survey regarding CAM use in children with autism. Physicians encouraged multi-vitamins (49%), essential fatty acids (25%), melatonin (25%) and probiotics (19%) and…

  9. The Relationship between the Family Physician and Psychosomatic Medicine

    Directory of Open Access Journals (Sweden)

    Farzad Goli

    2017-08-01

    Full Text Available Background: Organizing the health system around family medicine (FM has been a productive approach for developed countries. The aim of this study, which was concurrent with the Iran Health Transform Plan (HTP and the establishment of the family physician in Iran, was to discuss the sufficiency of a family physician training program for their roles and increase their competency.Methods: This descriptive study was conducted in the Psychosomatic Research Center affiliated to Isfahan University of Medical Science, Iran, with the assistance of the Iranian Institute of Higher Health (2015. An expert panel consisting of 6 individuals including specialists, trainers, and researchers in FM and psychosomatic medicine was held for this purpose. Using the World Organization of Family Doctors‎ (WONCA website for the definition of a family physician, the curriculum developed by the Ministry of Health and Medical Education was studied. Data were summarized in one table.Results: The current FM curriculum, with this content and method, does not seem to be capable of enabling physicians to perform their multidisciplinary roles. it still has a reductionist approach and disease orientation instead of a clinical reasoning method and systematic viewpoint. The psychosomatic approach is applicable at all prevention levels and in all diseases‎, since it is basically designed for this longitudinal (between all preventive levels and horizontal (bio-physical–social-spiritual intervention integration.Conclusion: Psychosomatic medicine, not as a biomedical specialty, but rather as a systems thinking model in health, had a rapid rise during previous decades. Now, its services have been integrated into all medical fields. This means that it should be adopted in the core of health care services (i.e., the family physician position before other sections. This would help the implementation of this approach in the health system, and the reduction of patients' pain and

  10. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  11. Study of metrologic characteristics in activimeters used in Nuclear Medicine Centers in Colombia; Estudio de caracteristicas metrologicas en activimetros utilizados en centros de Medicina Nuclear de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Davila, Hernan Olaya; Flores, Guillermo, E-mail: holayadavila@gmail.com [Instituto Colombiano de Geologia y Mineria (INGEOMINAS), Bogota, D.C. (Colombia). Laboratorio de Metrologia de las Radiaciones del Servicio Geologico Colombiano; Cantillo, Juliana I.P., E-mail: julianacantillo5@gmail.com [Universidad Pedagogica y Tecnologica de Colombia, Boyaca (Colombia)

    2013-07-01

    In our country currently there is a legislation that regulated de Nuclear Medicine practice, that establish the criteria about quality assurance in Nuclear Medicine and the justification to imparted to medical exposures. In this work includes some tests to the clinical approval in this type of instruments before to be used. The type of tests are linearity, geometric dependence and the energetic response and moreover to evaluate the total uncertainty during the work the physician using this equipment with radioactive sources. (author)

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resume his/her normal activities after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions ... usually mild. Nevertheless, you should inform the nuclear medicine personnel of any allergies your child may have or other problems that may have ...

  13. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  14. Radionuclides for nuclear medicine: a nuclear physicists' view

    Czech Academy of Sciences Publication Activity Database

    Cantone, M.; Haddad, F.; Harissopoulos, S.; Jensen, M.; Jokinen, A.; Koster, U.; Lebeda, Ondřej; Ponsard, B.; Ratzinger, U.; Stora, T.; Tarkanyi, F.; Van Duppen, P.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S257-S257 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : nuclear physics for medicine * EANM * medical radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  15. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety

    Directory of Open Access Journals (Sweden)

    Blum AB

    2011-06-01

    Full Text Available Alexander B Blum1, Sandra Shea2, Charles A Czeisler3,4, Christopher P Landrigan3-5, Lucian Leape61Department of Health and Evidence Policy, Mount Sinai School of Medicine, New York, NY, USA; 2Committee of Interns and Residents, SEIU Healthcare Division, Service Employees International Union, New York, NY, USA; 3Harvard Work Hours, Health and Safety Group, Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; 4Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; 5Division of General Pediatrics, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA; 6Department of Health Policy and Management, Harvard School of Public Health, Boston, MA, USAAbstract: Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine.

  16. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  17. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  18. Instantaneous exposure to nuclear medicine staff involved in PET-CT imaging in developing countries. Experience from a tertiary care centre in India

    International Nuclear Information System (INIS)

    Kumar, S.; Sharma, P.; Shamim, S.A.; Malhotra, A.; Kumar, R.; Pandey, A.K.

    2012-01-01

    The purpose of this study was to assess the radiation exposure to nuclear medicine staff at a positron emission tomography-computed tomography (PET-CT) centre with high patient throughput. This prospective study included 70 adult patients who underwent 18F-fluorodeoxyglucose (FDG) PET-CT for their clinical indications. The patients' actual injected FDG activity was calculated by subtracting the syringe activity (post-injection) from the loaded syringe activity (pre-injection). The instantaneous exposure to nuclear medicine staff involved in PET-CT imaging was measured. The instantaneous dose rate of the physicians was recorded during FDG injection and that of the technologist was recorded during the patient's positioning, respectively, at 1.0-m distance from the anterior chest using a calibrated portable gamma-ray survey meter. The average FDG activity injected in adult patients was 308.5 MBq (range 173.1-438.8 MBq). The instantaneous exposure to the nuclear medicine (NM) physician during the injection time was 31 μSv/h (14-60 μSv/h). The instantaneous exposure to the NM technologist during positioning was 18 (10-34) μSv/h. With an average of 10 patients per day, the quarterly dose to physicians was 628 μSv and to technologists 182 μSv for 300 patients. The extrapolated annual dose was 2.5 mSv for physicians and 0.7 mSv for technologists, respectively. Instantaneous exposure of nuclear medicine staff involved in PET-CT imaging at a busy tertiary care centre is within permissible limits of the International Commission on Radiological Protection (ICRP-103) (total 50 mSv in a single year) and atomic energy regulatory board (total 30 mSv in a single year). (author)

  19. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  20. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  1. Ultrasound for internal medicine physicians: the future of the physical examination.

    Science.gov (United States)

    Dulohery, Megan M; Stoven, Samantha; Kurklinsky, Andrew K; Kurklinksy, Andrew; Halvorsen, Andrew; McDonald, Furman S; Bhagra, Anjali

    2014-06-01

    With the advent of compact ultrasound (US) devices, it is easier for physicians to enhance their physical examinations through the use of US. However, although this new tool is widely available, few internal medicine physicians have US training. This study sought to understand physicians' baseline knowledge and skill, provide education in US principles, and demonstrate that proper use of compact US devices is a skill that can be quickly learned. Training was performed at the Mayo Clinic in June 2010 and June 2011. The participants consisted of internal medicine residents. The workshop included didactics and hands-on US experiences with human and cadaver models in a simulation center. Pretests and posttests of residents' knowledge, attitudes, and skills with US were completed. We reassessed the 2010 group in the spring of 2012 with a long-term retention survey for knowledge and confidence in viewing images. A total of 136 interns completed the workshop. Thirty-nine residents completed the long-term retention survey. Posttest assessments showed a statistically significant improvement in the knowledge of US imaging, confidence in identifying structures, image identification, and image acquisition (P internal medicine training and practice. © 2014 by the American Institute of Ultrasound in Medicine.

  2. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  3. Team Physicians, Sports Medicine, and the Law: An Update.

    Science.gov (United States)

    Koller, Dionne L

    2016-04-01

    The recognition of sports medicine and promulgation of practice guidelines for team physicians will push general medical malpractice standards to evolve into a more specialized standard of care for those who practice in this area. To the extent that practicing medicine in the sports context involves calculations that do not arise in typical medical practice, the sports medicine community can help elucidate those issues and create appropriate guidelines that can serve to inform athlete-patients and educate courts. Doing so will help best set the terms by which those who practice sports medicine are judged. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nuclear medicine

    International Nuclear Information System (INIS)

    Reichelt, H.G.

    1980-01-01

    Nuclear medicine as a complex diagnostical method is used mainly to detect functional organic disorders, to locate disorders and for radioimmunologic assays (RIA) in vitro. In surgery, its indication range comprises the thyroid (in vivo and in vitro), liver and bile ducts, skeletal and joint diseases, disorders of the cerebro-spinal liquor system and the urologic disorders. In the early detection of tumors, the search for metastases and tumor after-care, scintiscanning and the tumor marcher method (CEA) can be of great practical advantage, but the value of myocardial sciritiscanning in cardiac respectively coronary disorders is restricted. The paper is also concerned with the radiation doses in nuclear medicine. (orig.) [de

  5. Measurements Of Fingers Doses Of Staff Members In Nuclear Medicine Department

    International Nuclear Information System (INIS)

    AL LEHYANI, S.H.; SHOUSHA, H.A.; HASSAN, R.A.

    2009-01-01

    For some occupationally radiation exposed groups, the hands are more heavily exposed to ionizing radiation than the rest of the body. The Egyptian Atomic Energy Authority runs an extensive personal dosimetry service in Egypt, but finger doses have not been measured to a wide extent. In this study, the finger doses were measured for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for nuclear medicine physicians, technologists, nurses and physicists. The nuclear medicine staff working with the radioactive materials wears two TLD dosimeters during the whole period, which lasted from 1 to 4 weeks. The staff performs their work on a regular basis throughout the month, and means annual doses were calculated for these groups. The doses to the fingers for the 99m Tc technologists and nurses of groups (2) and (3) were observed to be 30.24 ± 14.5 μSv/GBq (mean ± SD) and 30.37 ± 17.5 μSv/GBq, respectively. Similarly, the dose to the fingers for the 131 I technologists in group (5) was estimated to be 126.13 ± 38.2μSv/GBq. Finger doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly but their doses were reported in millisieverts that accumulated in 1 week. The doses to the fingers of the physicist were 16.3±7.7 μSv/GBq. The maximum average finger dose in this study was found to be 2.8 mSv for the technologists handled therapeutic 131 I (group 5). It could be concluded that the maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y).

  6. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  7. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    International Nuclear Information System (INIS)

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases

  8. Perspectives of family medicine physicians on the importance of adolescent preventive care: a multivariate analysis.

    Science.gov (United States)

    Taylor, Jaime L; Aalsma, Matthew C; Gilbert, Amy L; Hensel, Devon J; Rickert, Vaughn I

    2016-01-20

    The study objective was to identify commonalities amongst family medicine physicians who endorse annual adolescent visits. A nationally weighted representative on-line survey was used to explore pediatrician (N = 204) and family medicine physicians (N = 221) beliefs and behaviors surrounding adolescent wellness. Our primary outcome was endorsement that adolescents should receive annual preventive care visits. Pediatricians were significantly more likely (p family medicine physicians, bivariate comparisons were conducted between those who endorsed an annual visit (N = 164) compared to those who did not (N = 57) with significant predictors combined into two multivariate logistic regression models. Model 1 controlled for: patient race, proportion of 13-17 year olds in provider's practice, discussion beliefs scale and discussion behaviors with parents scale. Model 2 controlled for the same first three variables as well as discussion behaviors with adolescents scale. Model 1 showed for each discussion beliefs scale topic selected, family medicine physicians had 1.14 increased odds of endorsing annual visits (p family medicine physicians had 1.15 increased odds of also endorsing the importance of annual visits (p Family medicine physicians that endorse annual visits are significantly more likely to affirm they hold strong beliefs about topics that should be discussed during the annual exam. They also act on these beliefs by talking to parents of teens about these topics. This group appears to focus on quality of care in thought and deed.

  9. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  10. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  11. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  12. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  13. Social media beliefs and usage among family medicine residents and practicing family physicians.

    Science.gov (United States)

    Klee, David; Covey, Carlton; Zhong, Laura

    2015-03-01

    Incorporation of social media (SM) use in medicine is gaining support. The Internet is now a popular medium for people to solicit medical information. Usage of social networks, such as Facebook and Twitter, is growing daily and provides physicians with nearly instantaneous access to large populations for both marketing and patient education. The benefits are myriad, but so are the inherent risks. We investigated the role providers' age and medical experience played in their beliefs and use of SM in medicine. Using multiple state-wide and national databases, we assessed social media use by family medicine residents, faculty, and practicing family physicians with a 24-question online survey. Descriptive data is compared by age and level of medical experience. A total of 61 family medicine residents and 192 practicing family physicians responded. There is a trend toward higher SM utilization in the younger cohort, with 90% of resident respondents reporting using SM, half of them daily. A total of 64% of family physician respondents over the age of 45 have a SM account. An equal percentage of senior physicians use SM daily or not at all. Practicing physicians, more than residents, agree that SM can be beneficial in patient care. The vast majority of residents and physicians polled believe that SM should be taught early in medical education. The high utilization of SM by younger providers, high prevalence of patient use of the Internet, and the countless beneficial opportunities SM offers should be catalysts to drive curriculum development and early implementation in medical education. This curriculum should focus around four pillars: professional standards for SM use, SM clinical practice integration, professional networking, and research.

  14. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  15. Recent history of nuclear medicine

    International Nuclear Information System (INIS)

    Potchen, E.J.; Gift, D.A.

    1988-01-01

    Diagnostic nuclear medicine's recent history is characterized both by significant change and by growing participation in efforts to quantify the impact of nuclear medicine procedures on clinical judgment and patient management, as well as to develop methods for studying the efficacy of diagnostic procedures in general. The replacement of many nuclear medicine procedures that at one time were considered essential standards of clinical care by newer, more efficient and effective modalities has been complimented by the continued development of increasingly sophisticated applications of scintigraphic tracer methods

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you about nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often ... may be asked to wear a gown as well. Tell your doctor if there is any possibility ...

  17. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji Rajendran, a radiation ... more about nuclear medicine, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  18. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  19. Availability of oncological nuclear medicine in the regions of Slovakia

    International Nuclear Information System (INIS)

    Lepej, J.; Kaliska, L.

    2004-01-01

    Full text: Nuclear medicine (NM) imaging technology, alone and in combination with other imaging modalities, provides clinically significant and useful information in the staging and treatment of the oncological diseases. The main objective of our study was to find out and present the situation vis-a-vis nuclear medicine facilities in the Central European country that soon becomes the new member of EU. For the purposes statistical data of WHO, Slovak Republic (SR) and nuclear medicine department (NMD) were evaluated for the period 1995-2001. Comparison with Czech Republic (CR) was done because of almost similar occurrence of the malignant diseases in these two republics that were a one country till separation in 1993. First nuclear medicine department in Czechoslovakia was established about 55 years ago. Comparing to CR the expenditures on health care per capita in SR is only 67% of CR. The number of gamma cameras, physicians and number of investigations are far from good standard of CR. The number NM departments are significantly low and growth of only 29% compared to CR is alarming. The one main reason is inadequate financial support to the health care and high debts of hospitals running nuclear medicine facilities. Providing radiology departments with new CT and MRI scanners is another reason of less nuclear medicine facilities. During the last five years, though the number of gamma cameras increased by 10%, but the number of investigations did not rise accordingly. Because of bad management of health care services in Slovakia, the latest facilities availability is greatly delayed. However, the exception is the installation of a new PET scanner in 2001. Of late, sentinel lymph node detection was started only with the help of IAEA. Data shows that most of the nuclear medicine centers are around the state capital. It is imperative to have sufficient diagnostic and therapeutic facilities in each region so as to make these available to patients living away from the

  20. Radiopharmaceutical prescription in nuclear medicine departments; La prescription medicale des radiopharmaceutiques au sein d'un service de medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Biechlin-Chassel, M.L. [Radiopharmacie, service de pharmacie, Centre hospitalier de Chambery, 73 - Chambery (France); Lao, S. [Service de medecine nucleaire, CHU-Hopital de l' Archet, 06 - Nice (France); Bolot, C. [Service de pharmacie, hospices civiles de Lyon, groupement hospitalier Est, 69 - Bron (France); Francois-Joubert, A. [Service de medecine nucleaire, centre hospitalier de Chambery, 73 - Chambery (France)

    2010-11-15

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  1. Hybrid imaging, PET-CT and SPECT-CT: What impact on nuclear medicine education and practice in France?

    International Nuclear Information System (INIS)

    Mundler, O.

    2009-01-01

    To define the policy of our specialty with a consensus opinion, a questionnaire entitled 'hybrid imaging' was sent to practicing nuclear medicine specialist physicians in France to obtain their opinion on the impact of this recent method in training and in the practice of nuclear medicine and on the relations between nuclear medicine specialists and other medical imaging specialists. This questionnaire, written by the office of the French Society of Nuclear Medicine (F.S.N.M.) and molecular imaging, was divided into four parts: Profile and experience in hybrid imaging, Relations with radiologists, Practice of CT scans with hybrid equipment, and the Future of the specialty and of training in nuclear medicine. The response rate was 60%, i.e. 374 completed questionnaires. Overall, the responses were uniform, whatever the respondent's experience, type and place of practice. Regular participation in hybrid imaging practice was the reply provided by the majority of respondents. In terms of relations with radiologists, such contacts existed in over 85% of cases and are considered as being of high quality in over 90% of cases. The vast majority of practitioners believe that hybrid imaging will become the standard. Opinions on the diagnostic use of CT scans are divided, as well as their interpretation by a radiologist, a nuclear medicine specialist or by both. In the opinion of the vast majority, hybrid equipment systems should be managed by nuclear medicine specialists. With regard to the future, nuclear medicine should remain an independent specialty with enhanced training in morphological imaging and a residency training program whose length should be increased to 5 years. (author)

  2. Single-purpose nuclear medicine instruments

    International Nuclear Information System (INIS)

    Boucek, J.

    Nuclear medicine requires the most up-to-date specialized technical facilities. The paper underlines the factor of reliability in purpose-designed equipment used for basic examinations. The possibility is also discussed of the automation of standard nuclear medicine instruments

  3. Integration of PACS and HIS info the workflow of a nuclear medicine department. Experience in Regensburg

    International Nuclear Information System (INIS)

    Maenner, P.; Fuchs, E.; Marienhagen, J.; Schoenberger, J.; Eilles, C.; Tege, B.; Reicherzer, H.G.; Kurz, M.; Boerner, W.

    2006-01-01

    Aim: the development of new diagnostic techniques and the implementation of a modern quality control management system requires the continuous adaptation of existing data processing tools to the nuclear medicine diagnostic workflow. Furthermore, PACS connected to HIS facilitates and enhances the transfer of data and pictures, and satisfies the legal requirements for data retention as regulated by law. Therefore, the aim of this work is to present the architecture, structure and results of such a system newly installed in a department of nuclear medicine. Methods: initially, the nuclear medicine workflow was carefully analyzed and each step was correlated to the corresponding module. The standard SAP R/3 and IS-H / IS-H*med based software used for patient administration at the University of Regensburg Hospital was adapted to the needs of the Nuclear Medicine Department. The networking of the imaging systems was done by integration of a PACS. Finally, the PACS was connected to the HIS to allow the attachment of images to the medical report. Results, conclusion: by connecting the HIS to the nuclear medicine PACS, the workflow was significantly improved. The data management sequence starting at the reception desk, continuing through the nuclear medical examination, to the physician's final written and image report is clearly structured. Although high demands exist on technical support and administration the integration of PACS and HIS into the nuclear medicine workflow leads to enhanced efficiency and reduction in hospital costs. Patient and data management are considerably improved in this way. (orig.)

  4. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  5. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  6. Quality policy at nuclear medicine services

    International Nuclear Information System (INIS)

    Gil Martinez, Eduardo Manuel; Jimenez, Tomas

    2007-01-01

    In the present text we comment about a Quality Policy model to establish in a Nuclear Medicine Service. The need for a strict control in every process that take place in a Nuclear Medicine Service, requires of an exact planification in terms of Quality Policy, specific to the real needs of every Service. Quality Policy must be a live Policy, with capability of changes and must be known for every workers in a Nuclear Medicine Service. Although the 'model' showed in this text is concret for a specific Service type, it must be extrapolated to any Nuclear Medicine Service with the necessary changes (au)

  7. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  8. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  9. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  10. The assessment of pathologists/laboratory medicine physicians through a multisource feedback tool.

    Science.gov (United States)

    Lockyer, Jocelyn M; Violato, Claudio; Fidler, Herta; Alakija, Pauline

    2009-08-01

    There is increasing interest in ensuring that physicians demonstrate the full range of Accreditation Council for Graduate Medical Education competencies. To determine whether it is possible to develop a feasible and reliable multisource feedback instrument for pathologists and laboratory medicine physicians. Surveys with 39, 30, and 22 items were developed to assess individual physicians by 8 peers, 8 referring physicians, and 8 coworkers (eg, technologists, secretaries), respectively, using 5-point scales and an unable-to-assess category. Physicians completed a self-assessment survey. Items addressed key competencies related to clinical competence, collaboration, professionalism, and communication. Data from 101 pathologists and laboratory medicine physicians were analyzed. The mean number of respondents per physician was 7.6, 7.4, and 7.6 for peers, referring physicians, and coworkers, respectively. The reliability of the internal consistency, measured by Cronbach alpha, was > or = .95 for the full scale of all instruments. Analysis indicated that the medical peer, referring physician, and coworker instruments achieved a generalizability coefficient of .78, .81, and .81, respectively. Factor analysis showed 4 factors on the peer questionnaire accounted for 68.8% of the total variance: reports and clinical competency, collaboration, educational leadership, and professional behavior. For the referring physician survey, 3 factors accounted for 66.9% of the variance: professionalism, reports, and clinical competency. Two factors on the coworker questionnaire accounted for 59.9% of the total variance: communication and professionalism. It is feasible to assess this group of physicians using multisource feedback with instruments that are reliable.

  11. Generation of complete electronic nuclear medicine reports including static, dynamic and gated images

    International Nuclear Information System (INIS)

    Beretta, M.; Pilon, R.; Mut, F.

    2002-01-01

    Aim: To develop a procedure for the creation of nuclear medicine reports containing static and dynamic images. The reason for implementing this technique is the lack of adequate solutions for an electronic format of nuclear medicine results allowing for rapid transmission via e-mail, specially in the case of dynamic and gated SPECT studies, since functional data is best presented in dynamic mode. Material and Methods: Clinical images were acquired in static, whole body, dynamic and gated mode, corresponding to bone studies, diuretic renogram, radionuclide cystography and gated perfusion SPECT, as well as respective time-activity curves. Image files were imported from a dedicated nuclear medicine computer system (Elscint XPert) to a Windows-based PC through a standard ethernet network with TCP-IP communications protocol, using a software developed by us which permits the conversion from the manufacturer's original format into a bitmap format (.bmp) compatible with commercially available PC software. For cardiac perfusion studies, background was subtracted prior to transferring to reduce the amount of information in the file; this was not done for other type of studies because useful data could be eliminated. Dynamic images were then processed using commercial software to create animated files and stored in .gif format. Static images were re-sized and stored in .jpg format. Original color or gray scale was always preserved. All the graphic material was then merged with a previously prepared report text using HTML format. The report also contained reference diagrams to facilitate interpretation. The whole report was then compressed into a self-extractable file, ready to be sent by electronic mail. Reception of the material was visually checked for data integrity including image quality by two experienced nuclear medicine physicians. Results: The report presented allows for simultaneous visualization of the text, diagrams and images either static, dynamic, gated or

  12. Assessment of suspected infection of hip or knee endoprosthesis by nuclear medicine techniques

    International Nuclear Information System (INIS)

    Schmidt, M.; Dietlein, M.; Schicha, H.; Delank, K.S.

    2007-01-01

    Complications after hip endoprosthesis operation occur with a frequency of 1-2 % after primary operation and with 3-5 % after revision arthroplasty and are even more frequent after knee arthroplasty. The differentiation between aseptic loosening and bacterial infection is very important. In aseptic loosening a one-step revision is usually possible. In case of bacterial infection, all foreign material has to be removed first to allow cure from the infection. After healing and absence of bacteria a follow-up operation is possible with insertion of a new prosthesis. Diagnosis and therapy of a painful hip or knee endoprosthesis are difficult, because patient history, clinical examination, laboratory results including microbiological investigation of puncture material and results of radiological examinations may all be inconclusive. Quite a number of nuclear medicine procedures have been published in the past to help in the differentiation between aseptic loosening and bacterial infection of a painful hip or knee endoprosthesis. No single method can be regarded as excellent and without disadvantages. In the international literature the combined leucocyte-marrow imaging has been propageted as superior technique. In Germany, combined leucocyte-marrow imaging is not available in the published form. Moreover, this technique is time consuming, cost intensive and requires direct work with blood. Therefore, infection imaging with labelled antibodies or labelled fragments of antibodies may be regarded as the method of choice for most nuclear medicine physicians. With semiquantitative evaluation a comparative diagnostic accuracy may be achieved. 18 F-FDG-PET is not able to differentiate reliably between abacterial polyethylene abrasion and septic inflammation. However, with pattern recognition of the distribution of 18 F-FDG around a hip prosthesis an approach with clinically acceptable results has been published. A normal 18 F-FDG-PET can reliably exclude an infection

  13. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  14. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  15. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  16. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  17. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  18. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  19. Hospital structure and technical efficiency in the production of nuclear medicine. Doctoral thesis

    International Nuclear Information System (INIS)

    Wilson, G.W.

    1976-01-01

    The relationship of hospital structure to production efficiency is explored. The hospital subindustry on which this research centers is nuclear medicine. The hypotheses generated were that technical efficiency is reduced by increased competitive intensity, by a lack of profit incentive, by a broader service range, and by in-house training of technical personnel. Most data employed in the study were gathered from the American College of Radiology and the Energy Research and Development Administration Census of Nuclear Medicine. More specific information came from questionnaires sent to 2,050 short-term general hospitals known to have a nuclear medicine facility. Of the responses 1,362 were usable for the study. A major study finding was that over half of the variations observed in technical efficiency were attributable to the structural elements being studied. The research indicated that competition for staff physicians has a role in reducing technical efficiency; that the output effect of in-house manpower training was relatively unimportant; and that profit incentives do have a significant impact. It is suggested that increased technical efficiency could be achieved through reduced competitive intensity, stronger profit orientation, and reduced service range. A bibliography is included

  20. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  1. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  2. Implementation of a Flipped Classroom for Nuclear Medicine Physician CME.

    Science.gov (United States)

    Komarraju, Aparna; Bartel, Twyla B; Dickinson, Lisa A; Grant, Frederick D; Yarbrough, Tracy L

    2018-06-21

    Increasingly, emerging technologies are expanding instructional possibilities, with new methods being adopted to improve knowledge acquisition and retention. Within medical education, many new techniques have been employed in the undergraduate setting, with less utilization thus far in the continuing medical education (CME) sphere. This paper discusses the use of a new method for CME-the "flipped classroom," widely used in undergraduate medical education. This method engages learners by providing content before the live ("in class") session that aids in preparation and fosters in-class engagement. A flipped classroom method was employed using an online image-rich case-based module and quiz prior to a live CME session at a national nuclear medicine meeting. The preparatory material provided a springboard for in-depth discussion at the live session-a case-based activity utilizing audience response technology. Study participants completed a survey regarding their initial experience with this new instructional method. In addition, focus group interviews were conducted with session attendees who had or had not completed the presession material; transcripts were qualitatively analyzed. Quantitative survey data (completed by two-thirds of the session attendees) suggested that the flipped method was highly valuable and met attendee educational objectives. Analysis of focus group data yielded six themes broadly related to two categories-benefits of the flipped method for CME and programmatic considerations for successfully implementing the flipped method in CME. Data from this study have proven encouraging and support further investigations around the incorporation of this innovative teaching method into CME for nuclear imaging specialists.

  3. Knowledge and perceptions of physicians from private medical centres towards generic medicines: a nationwide survey from Malaysia.

    Science.gov (United States)

    Kumar, Rohit; Hassali, Mohamed Azmi; Saleem, Fahad; Alrasheedy, Alian A; Kaur, Navneet; Wong, Zhi Yen; Kader, Muhamad Ali Sk Abdul

    2015-01-01

    Generic medicine prescribing has become a common practice in public hospitals. However, the trend in private medical centres seems to be different. The objective of this study was to investigate knowledge, perceptions and behavior of physicians from private medical centres in Malaysia regarding generic medicines. This study was a cross-sectional nationwide survey targeting physicians from private medical centres in Malaysia. The survey was conducted using questionnaire having (i) background and demographic data of the physicians, volume of prescription in a day, stock of generic medicines in their hospital pharmacy etc. (ii) their knowledge about bioequivalence (iii) prescribing behavior (iv) physicians' knowledge of quality, safety and efficacy of generic medicines, and their cost (v) perceptions of physicians towards issues pertaining to generic medicines utilization. A total of 263 questionnaires out of 735 were received, giving a response rate of 35.8%. Of the respondents, 214 (81.4%) were male and 49 (18.6%) were females. The majority of the participants were in the age range of 41-50 years and comprised 49.0% of the respondents. Only 2.3% of physicians were aware of the regulatory limits of bioequivalence standards in Malaysia. Of the respondents, 23.2% agreed that they 'always' write their prescriptions using originator product name whereas 50.2% do it 'usually'. A number of significant associations were found between their knowledge, perceptions about generic medicines and their demographic characteristics. The majority of the physicians from private medical centres in Malaysia had negative perceptions about safety, quality and the efficacy of generic medicines. These negative perceptions could be the cause of the limited use of generic medicines in the private medical centres. Therefore, in order to facilitate their use, it is recommended that the physicians need to be reassured and educated about the drug regulatory authority approval system of generic

  4. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  5. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  6. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety.

    Science.gov (United States)

    Blum, Alexander B; Shea, Sandra; Czeisler, Charles A; Landrigan, Christopher P; Leape, Lucian

    2011-01-01

    Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine. In late 2007, at the behest of the US Congress, the Institute of Medicine embarked on a year-long examination of the scientific evidence linking resident physician sleep deprivation with clinical performance deficits and medical errors. The Institute of Medicine's report, entitled "Resident duty hours: Enhancing sleep, supervision and safety", published in January 2009, recommended new limits on resident physician work hours and workload, increased supervision, a heightened focus on resident physician safety, training in structured handovers and quality improvement, more rigorous external oversight of work hours and other aspects of residency training, and the identification of expanded funding sources necessary to implement the recommended reforms successfully and protect the public and resident physicians themselves from preventable harm. Given that resident physicians comprise almost a quarter of all physicians who work in hospitals, and that taxpayers, through Medicare and Medicaid, fund graduate medical education, the public has a deep investment in physician training. Patients expect to receive safe, high-quality care in the nation's teaching hospitals. Because it is their safety that is at issue, their voices should be central in policy decisions affecting patient safety. It is likewise important to integrate the perspectives of resident physicians, policy makers, and other constituencies in designing new policies. However, since its release, discussion of the

  7. Investigation on legal problems encountered by emergency medicine physicians in Turkey.

    Science.gov (United States)

    Kayipmaz, Afsin Emre; Kavalci, Cemil; Gulalp, Betul; Kocalar, Ummu Gulsum; Giray, Tufan Akin; Yesilagac, Hasan; Ozel, Betul Akbuga; Celikel, Elif; Karagun, Ozlem

    2015-01-01

    Medicine is a profession that carries certain risks. One risky area of practice is the emergency department. Emergency physicians diagnose and treat a high volume of patients, and are also responsible for preparing reports for forensic cases. In this study, we aim to investigate emergency physicians' legal-administrative problems and reveal their level of understanding on forensic cases. An electronic questionnaire form was prepared after the approval of an ethical committee. This form was sent to the residents, specialists and academicians of emergency medicine by e-mail. The physicians were asked to fill out the form online. All the gathered data was analyzed. Descriptive statistics were presented as frequency percentages with mean and standard deviation. Chi-square tests were used to compare the groups. Correlation between number of complaint cases and age, sex, career, institution, and duration of service in emergency department were investigated. pmedicine and age. There was a significant difference between number of complaint reports and career (p<0.05). The physicians' level of awareness on forensic cases was found to be insufficient. Lack of legislation knowledge may be an important cause of complaint reports concerning emergency physicians, who have a high load of patients. Thus, we think that increasing the frequency of post-graduate education sessions and periodical reviews might be beneficial.

  8. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  9. Burnout and Physical Activity in Minnesota Internal Medicine Resident Physicians

    Science.gov (United States)

    Olson, Shawn M.; Odo, Nnaemeka U.; Duran, Alisa M.; Pereira, Anne G.; Mandel, Jeffrey H.

    2014-01-01

    Background Regular physical activity plays an important role in the amelioration of several mental health disorders; however, its relationship with burnout has not yet been clarified. Objective To determine the association between achievement of national physical activity guidelines and burnout in internal medicine resident physicians. Methods A Web-based survey of internal medicine resident physicians at the University of Minnesota and Hennepin County Medical Center was conducted from September to October 2012. Survey measures included the Maslach Burnout Inventory-Human Services Survey and the International Physical Activity Questionnaire. Results Of 149 eligible residents, 76 (51.0%) completed surveys, which were used in the analysis. Burnout prevalence, determined by the Maslach Burnout Inventory, was 53.9% (41 of 76). Prevalence of failure to achieve US Department of Health and Human Services physical activity guidelines was 40.8% (31 of 76), and 78.9% (60 of 76) of residents reported that their level of physical activity has decreased since they began medical training. Residents who were able to meet physical activity guidelines were less likely to be burned out than their fellow residents (OR, 0.38, 95% CI 0.147–0.99). Conclusions Among internal medicine resident physicians, achievement of national physical activity guidelines appears to be inversely associated with burnout. Given the high national prevalence of burnout and inactivity, additional investigation of this relationship appears warranted. PMID:26140116

  10. Handbook of nuclear medicine practice in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This ``Handbook of Nuclear Medicine Practices in the Developing Countries`` is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country Figs, tabs

  11. Links between nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Pelegrin, M.; Francois-Joubert, A.; Chassel, M.L.; Desruet, M.D.; Bolot, C.; Lao, S.

    2010-01-01

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  12. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  13. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  14. Diagnosis of regional cerebral blood flow abnormalities using SPECT: agreement between individualized statistical parametric maps and visual inspection by nuclear medicine physicians with different levels of expertise in nuclear neurology

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Euclides Timoteo da, E-mail: euclidestimoteo@uol.com.b [Fundacao Pio XII, Barretos, SP (Brazil). Hospital de Cancer. Dept. de Medicina Nuclear; Buchpiguel, Carlos Alberto [Hospital do Coracao, Sao Paulo, SP (Brazil). Dept. de Medicina Nuclear; Nitrini, Ricardo [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Tazima, Sergio [Hospital Alemao Oswaldo Cruz (HAOC), Sao Paulo, SP (Brazil). Dept. de Medicina Nuclear; Peres, Stela Verzinhase [Fundacao Pio XII, Barretos, SP (Brazil). Hospital de Cancer; Busatto Filho, Geraldo [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Div. de Medicina Nuclear

    2009-07-01

    Introduction: visual analysis is widely used to interpret regional cerebral blood flow (rCBF) SPECT images in clinical practice despite its limitations. Automated methods are employed to investigate between-group rCBF differences in research studies but have rarely been explored in individual analyses. Objectives: to compare visual inspection by nuclear physicians with the automated statistical parametric mapping program using a SPECT dataset of patients with neurological disorders and normal control images. Methods: using statistical parametric mapping, 14 SPECT images from patients with various neurological disorders were compared individually with a databank of 32 normal images using a statistical threshold of p<0.05 (corrected for multiple comparisons at the level of individual voxels or clusters). Statistical parametric mapping results were compared with visual analyses by a nuclear physician highly experienced in neurology (A) as well as a nuclear physician with a general background of experience (B) who independently classified images as normal or altered, and determined the location of changes and the severity. Results: of the 32 images of the normal databank, 4 generated maps showing rCBF abnormalities (p<0.05, corrected). Among the 14 images from patients with neurological disorders, 13 showed rCBF alterations. Statistical parametric mapping and physician A completely agreed on 84.37% and 64.28% of cases from the normal databank and neurological disorders, respectively. The agreement between statistical parametric mapping and ratings of physician B were lower (71.18% and 35.71%, respectively). Conclusion: statistical parametric mapping replicated the findings described by the more experienced nuclear physician. This finding suggests that automated methods for individually analyzing rCBF SPECT images may be a valuable resource to complement visual inspection in clinical practice. (author)

  15. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  16. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  17. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  18. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  19. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  20. Advanced training as a specialized physician for medical radiology in Switzerland

    International Nuclear Information System (INIS)

    Bessler, W.

    1982-01-01

    The complex subject of advanced training of physicians in radiology in Switzerland is treated in this contribution. There is a report on the reorganisation, new guidelines, educational centers, educational catalogues, the specialiced physician's examination and nuclear medicine. (APR) [de

  1. Information demands of occupational health physicians and their attitude towards evidence-based medicine

    NARCIS (Netherlands)

    Schaafsma, Frederieke; Hulshof, Carel; van Dijk, Frank; Verbeek, Jos

    2004-01-01

    Objectives This study assessed the extent and nature of information demands among occupational health physicians and their attitude towards the application of evidence-based medicine in occupational health. Methods A questionnaire survey was carried out among a random sample of 159 physicians

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... help diagnose childhood disorders that are present at birth or that develop during childhood. It provides unique ... diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear ...

  3. Practice of nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Hasan, M.M.; Karim, M.A.; Nahar, N.; Haque, M.M.

    2002-01-01

    For more than a half a century nuclear medicine is contributing in the field of medicine. Still nuclear medicine is not widely available in many countries. Especially in developing countries due to many a reasons nuclear medicine could not flourish in that way. Availability of radioisotope, high cost of instrument and sophistication of the branch are the three main reasons behind. Even the countries where nuclear medicine is functioning for quite a long time, the facilities for proper function are still not adequate. Training of manpower, maintenance of instruments, regular supply of isotopes and kit and cost effectiveness are some of the major problems. We have seen some fast developments in nuclear medicine in last few decades. Development of gamma detecting systems with SPECT, positron emission detector (PET), supported computer technology and introduction of some newer radiopharmaceuticals for functional studies are few of the examples. The developing countries also have a problem to go on parallel with these rapid development of nuclear medicine in other part of the world. In last few decades we have also witnessed development of CT, MRI, Ultrasound and other imaging modalities as our competitor. Specially for developing countries these have posed as a major challenge for nuclear medicine. A better understanding between developed and developing nations is the key point of todays ultimate success in any sector. For real development of nuclear medicine and to give the majority of the people the benefit of nuclear medicine a better and more active co-operation is needed between all the countries. The paper presents the difficulties and some practical problems of practicing nuclear medicine in a developing country. And also appeals for global co-operation to solve the problems for better interest of the subject

  4. Training and other conditioning factors in nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Touya, E.

    1986-01-01

    The aim of the paper is to discuss the validity of nuclear medicine in 1985, in a developing region, on the basis of certain knowledge of the area and with 20 years' experience of the problem in a small country belonging to that region. An attempt is made to identify the factors which have most significance and the action to take so as to arrive at proposals which would be useful in planning this special field. The effect of the difficult economic situation at the present time in the developing regions on health programmes and policies is discussed. The vital need for promoting and giving impetus to primary medical care is recognized and the obligation to provide secondary and tertiary medical care in the same manner in order to restore health standards is pointed out. It is understood that nuclear medicine may have an impact at the three levels of medical care, and that only those studies which strictly valorize the effectiveness and the cost/benefit and risk/benefit ratios should be encouraged. It is believed that criteria of centralization and critical mass should be met when organizing a nuclear medicine programme. The main items of multipurpose nuclear medicine equipment are determined and there is discussion of the problems involved in training for the nuclear physician, radiopharmacist, hospital physicist, electronics engineer, technician and nurse. Mention is made of the most critical aspects of equipment maintenance, availability of spares, supply of radioisotopes and radiopharmaceuticals, quality control and the individual effectiveness of each service. Reasons are given for the advantage of intervening mainly at the level on instruction and through continuous training courses so as to correct deviations and introduce new policies making for greater effectiveness in utilizing the limited economic resources available. (author)

  5. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  6. Quality Assessment of Research Articles in Nuclear Medicine Using STARD and QUADAS-2 Tools

    International Nuclear Information System (INIS)

    Roysri, Krisana; Chotipanich, Chanisa; Laopaiboon, Vallop; Khiewyoo, Jiraporn

    2014-01-01

    Diagnostic nuclear medicine is being increasingly employed in clinical practice with the advent of new technologies and radiopharmaceuticals. The report of the prevalence of a certain disease is important for assessing the quality of that article. Therefore, this study was performed to evaluate the quality of published nuclear medicine articles and determine the frequency of reporting the prevalence of studied diseases. We used Standards for Reporting of Diagnostic Accuracy (STARD) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklists for evaluating the quality of articles published in five nuclear medicine journals with the highest impact factors in 2012. The articles were retrieved from Scopus database and were selected and assessed independently by two nuclear medicine physicians. Decision concerning equivocal data was made by consensus between the reviewers. The average STARD score was approximately 17 points, and the highest score was 17.19±2.38 obtained by the European Journal of Nuclear Medicine. QUADAS-2 tool showed that all journals had low bias regarding study population. The Journal of Nuclear Medicine had the highest score in terms of index test, reference standard, and time interval. Lack of clarity regarding the index test, reference standard, and time interval was frequently observed in all journals including Clinical Nuclear Medicine, in which 64% of the studies were unclear regarding the index test. Journal of Nuclear Cardiology had the highest number of articles with appropriate reference standard (83.3%), though it had the lowest frequency of reporting disease prevalence (zero reports). All five journals had the same STARD score, while index test, reference standard, and time interval were very unclear according to QUADAS-2 tool. Unfortunately, data were too limited to determine which journal had the lowest risk of bias. In fact, it is the author's responsibility to provide details of research methodology so that the

  7. Engaging Australian physicians in evidence-based medicine: a representative national survey.

    Science.gov (United States)

    Toulkidis, V; Donnelly, N J; Ward, J E

    2005-01-01

    To assess Australian adult physicians' views about evidence-based medicine (EBM) and quality improvement (QI). Cross-sectional postal survey of two hundred and forty-four randomly selected Australian physicians (78.5% response rate). Physicians' views about the promotion of EBM and QI and their impact on patient care, strategies to support better clinical practice and self-reported understanding of EBM terms. Sixty-eight per cent (95% confidence interval (CI): 62-74%) of physicians had a positive view of the current promotion of EBM in Australia. Significantly fewer (45%; 95% CI: 38-51%) were so positive about QI (P evidence, significantly fewer (21%; 95% CI: 17-27%) agreed they had sufficient time to do so (P Australian physicians have positive views of EBM, QI appears less well regarded. Initiatives to improve quality and safety that incorporate principles and language of EBM will likely be received better by physicians than isolated QI. Further enhancement of EBM requires concomitant attention to physician training, workplace infrastructure and supportive professional development.

  8. Evidence-based medicine in primary care: qualitative study of family physicians

    Directory of Open Access Journals (Sweden)

    Dantas Guilherme

    2003-05-01

    Full Text Available Abstract Background The objectives of this study were: a to examine physician attitudes to and experience of the practice of evidence-based medicine (EBM in primary care; b to investigate the influence of patient preferences on clinical decision-making; and c to explore the role of intuition in family practice. Method Qualitative analysis of semi-structured interviews of 15 family physicians purposively selected from respondents to a national survey on EBM mailed to a random sample of Canadian family physicians. Results Participants mainly welcomed the promotion of EBM in the primary care setting. A significant number of barriers and limitations to the implementation of EBM were identified. EBM is perceived by some physicians as a devaluation of the 'art of medicine' and a threat to their professional/clinical autonomy. Issues regarding the trustworthiness and credibility of evidence were of great concern, especially with respect to the influence of the pharmaceutical industry. Attempts to become more evidence-based often result in the experience of conflicts. Patient factors exert a powerful influence on clinical decision-making and can serve as trumps to research evidence. A widespread belief that intuition plays a vital role in primary care reinforced views that research evidence must be considered alongside other factors such as patient preferences and the clinical judgement and experience of the physician. Discussion Primary care physicians are increasingly keen to consider research evidence in clinical decision-making, but there are significant concerns about the current model of EBM. Our findings support the proposed revisions to EBM wherein greater emphasis is placed on clinical expertise and patient preferences, both of which remain powerful influences on physician behaviour.

  9. Evidence-based medicine in primary care: qualitative study of family physicians.

    Science.gov (United States)

    Tracy, C Shawn; Dantas, Guilherme Coelho; Upshur, Ross E G

    2003-05-09

    The objectives of this study were: a) to examine physician attitudes to and experience of the practice of evidence-based medicine (EBM) in primary care; b) to investigate the influence of patient preferences on clinical decision-making; and c) to explore the role of intuition in family practice. Qualitative analysis of semi-structured interviews of 15 family physicians purposively selected from respondents to a national survey on EBM mailed to a random sample of Canadian family physicians. Participants mainly welcomed the promotion of EBM in the primary care setting. A significant number of barriers and limitations to the implementation of EBM were identified. EBM is perceived by some physicians as a devaluation of the 'art of medicine' and a threat to their professional/clinical autonomy. Issues regarding the trustworthiness and credibility of evidence were of great concern, especially with respect to the influence of the pharmaceutical industry. Attempts to become more evidence-based often result in the experience of conflicts. Patient factors exert a powerful influence on clinical decision-making and can serve as trumps to research evidence. A widespread belief that intuition plays a vital role in primary care reinforced views that research evidence must be considered alongside other factors such as patient preferences and the clinical judgement and experience of the physician. Primary care physicians are increasingly keen to consider research evidence in clinical decision-making, but there are significant concerns about the current model of EBM. Our findings support the proposed revisions to EBM wherein greater emphasis is placed on clinical expertise and patient preferences, both of which remain powerful influences on physician behaviour.

  10. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  11. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  12. Experimental nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I C [Nuclear Development Corp. of South Africa (Pty.) Ltd., Pelindaba, Pretoria. Inst. of Life Sciences; Du Plessis, M; Jacobs, D J

    1983-07-01

    Exciting investigative research, widening the dimensions of conventional nuclear medicine, is being conducted in Pretoria where the development and evaluation of new radiopharmaceuticals in particular is attracting international attention. Additional to this, the development of new diagnostic techniques involving sophisticated data processing, is helping to place South Africa firmly in the front line of nuclear medical progress.

  13. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  14. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  15. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  16. Radiation protection education and training for physicians. Technical qualification for radiation protection and radiation protection instruction for physicians. More important than ever

    International Nuclear Information System (INIS)

    Loecker, Hubert

    2017-01-01

    The medical application of ionizing radiation - especially X-ray diagnostics - is contributing most of the civilizing radiation exposure of the population. More than 80 percent of occupationally exposed persons work in nuclear medicine. Therefore radiation protection in medicine and instruction and training of physicians is more important than ever.

  17. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    1977-01-01

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  18. Ninth Argentine congress on biology and nuclear medicine; fourth Southernmost sessions of ALASBIMN (Latin-American Association of Biology and Nuclear Medicine); first Spanish-Argentine congress on nuclear medicine; first Argentine sessions on nuclear cardiology

    International Nuclear Information System (INIS)

    1991-01-01

    This work deals with all the papers presented at the 9. Argentine congress on biology and nuclear medicine; IV Southernmost sessions of ALASBIMN; I Spanish-Argentine congress on nuclear medicine and I Sessions Argentine sessions on nuclear cardiology held in Buenos Aires, Argentina, from October 14 - 18, 1991

  19. [Shortage of physicians in anaesthesiology and intensive care medicine - Causes, consequences and solutions].

    Science.gov (United States)

    Papenfuß, Tim; Roch, Carmen

    2012-05-01

    74% of all hospitals had vacant positions in 2011, also departments of anaesthesiology and intensive care medicine. More than 50% of these departments work with locums. There are couple of reasons for the shortage of physicians. The consequences in anaesthesiology and intensive care medicine can result in qualitative and financial loss. To solve the shortage of physicians one has to solve the reasons. Main reasons are increasing feminization of medical profession and part-time-work, work-life-balance and a poor specialised education. © Georg Thieme Verlag Stuttgart · New York.

  20. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  1. [Attitudes of Polish occupational medicine physicians towards a proposal of requirements for occupational medicine training in Europe].

    Science.gov (United States)

    Indulski, J A; Boczkowski, A; Mikulski, M

    1998-01-01

    In order to determine key competences required of occupational medicine specialists, common throughout Europe, a questionnaire has been developed and distributed among several European countries. The questionnaire contained 115 subjects related to 8 fields of activities carried out by occupational medicine physicians (occupational hazards to health, assessment of disability and fitness for work, communications, research methods, management, environmental medicine, occupational health law and ethics, and health promotion). In each of these fields, competences were classified into three following categories: knowledge, experience and skills. Respondents were asked to allocate a score from 0 to 5 for each subject, where 0 = not necessary; 1 = of minimum importance, and 5 = most important or essential. In Poland the questionnaire was distributed among two groups of specialists: group I--experienced specialists in occupational medicine (leading representatives of occupational health care management), and group II--relatively younger and less experienced occupational medicine physicians, participating in the specialist training, organised by The Nofer Institute of Occupational Medicine. A comprehensive analysis of the completed questionnaires was carried out in two dimensions: substantive (the importance of individual competences as perceived by Polish specialists in occupational medicine), and comparative (evaluation and interpretation of similarities and differences between two groups of respondents). A hierarchy of requirements, occupational medicine training in Poland is to satisfy, was reconstructed with two sets of competences, one recognised by respondents as needless and the other recognised as useful with different grades of importance. Some characteristic differences in opinions between two groups studies were highlighted.

  2. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  3. Children in nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.

    2002-01-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [de

  4. Role of nuclear medicine in imaging companion animals

    International Nuclear Information System (INIS)

    Currie, Geoffrey M.; Wheat, Janelle M.

    2005-01-01

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  5. The value of EHR-based assessment of physician competency: An investigative effort with internal medicine physicians.

    Science.gov (United States)

    Venta, Kimberly; Baker, Erin; Fidopiastis, Cali; Stanney, Kay

    2017-12-01

    The purpose of this study was to investigate the potential of developing an EHR-based model of physician competency, named the Skill Deficiency Evaluation Toolkit for Eliminating Competency-loss Trends (Skill-DETECT), which presents the opportunity to use EHR-based models to inform selection of Continued Medical Education (CME) opportunities specifically targeted at maintaining proficiency. The IBM Explorys platform provided outpatient Electronic Health Records (EHRs) representing 76 physicians with over 5000 patients combined. These data were used to develop the Skill-DETECT model, a predictive hybrid model composed of a rule-based model, logistic regression model, and a thresholding model, which predicts cognitive clinical skill deficiencies in internal medicine physicians. A three-phase approach was then used to statistically validate the model performance. Subject Matter Expert (SME) panel reviews resulted in a 100% overall approval rate of the rule based model. Area under the receiver-operating characteristic curves calculated for each logistic regression curve resulted in values between 0.76 and 0.92, which indicated exceptional performance. Normality, skewness, and kurtosis were determined and confirmed that the distribution of values output from the thresholding model were unimodal and peaked, which confirmed effectiveness and generalizability. The validation has confirmed that the Skill-DETECT model has a strong ability to evaluate EHR data and support the identification of internal medicine cognitive clinical skills that are deficient or are of higher likelihood of becoming deficient and thus require remediation, which will allow both physician and medical organizations to fine tune training efforts. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Training physician investigators in medicine and public health research.

    Science.gov (United States)

    Gourevitch, Marc N; Jay, Melanie R; Goldfrank, Lewis R; Mendelsohn, Alan L; Dreyer, Benard P; Foltin, George L; Lipkin, Mack; Schwartz, Mark D

    2012-07-01

    We have described and evaluated the impact of a unique fellowship program designed to train postdoctoral, physician fellows in research at the interface of medicine and public health. We developed a rigorous curriculum in public health content and research methods and fostered linkages with research mentors and local public health agencies. Didactic training provided the foundation for fellows' mentored research initiatives, which addressed real-world challenges in advancing the health status of vulnerable urban populations. Two multidisciplinary cohorts (6 per cohort) completed this 2-year degree-granting program and engaged in diverse public health research initiatives on topics such as improving pediatric care outcomes through health literacy interventions, reducing hospital readmission rates among urban poor with multiple comorbidities, increasing cancer screening uptake, and broadening the reach of addiction screening and intervention. The majority of fellows (10/12) published their fellowship work and currently have a career focused in public health-related research or practice (9/12). A fellowship training program can prepare physician investigators for research careers that bridge the divide between medicine and public health.

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... bear denotes child-specific content. Related Articles and Media General Nuclear ... (Pediatric) Nuclear Medicine Videos related ...

  8. Nuclear medicine applications for the diabetic foot

    International Nuclear Information System (INIS)

    Hartshorne, M.F.; Peters, V.

    1987-01-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described

  9. Nuclear Medicine in the Philippines: A Glance at the Past, a Gaze at the Present, and a Glimpse of the Future

    International Nuclear Information System (INIS)

    Bautista, Patricia A.; Luis, Teofilo O.L. San Jr.

    2016-01-01

    While the introduction of radioactive tracers in the study of metabolic pathways has been well-documented in clinical thyroidology as early as 1924, the widespread utilization in other clinical specialties has been hampered by slow developments in radiation-detecting devices and in the production of appropriate radiopharmaceuticals, in addition to the morbid fear of radiation. In the Philippines, the first radioisotope laboratory was established in 1956. Ten years later, the Philippine Society of Nuclear Medicine was formed. Through the years, challenges were overcome, foundations were laid down, growth was encouraged, friendships with other organizations were built, adjustments were made, and rules were enforced. To date, there are approximately 58 nuclear medicine centers randomly distributed from north to south of the Philippines, 7 accredited nuclear medicine training institutions, 95 board-certified nuclear medicine physicians (a few of whom are also internationally recognized), and a regionally-indexed Philippine Journal of Nuclear Medicine. Qualifying examinations for technologists were also recently instated. International relations are constantly strengthened by sending trainees abroad and accepting foreign trainees here, as well as participating in conferences and other endeavors. While the cost of putting up nuclear medicine centers in the Philippines is still prohibitive, it should not pose too much of a constraint as there are foreign and local parties willing to help. With appropriate instrumentation, targeting radiopharmaceuticals and trained human resources, nuclear medicine can indeed contribute much to health care delivery

  10. Nuclear Medicine in the Philippines: A Glance at the Past, a Gaze at the Present, and a Glimpse of the Future

    Science.gov (United States)

    Bautista, Patricia A.; Luis, Teofilo O.L. San

    2016-01-01

    While the introduction of radioactive tracers in the study of metabolic pathways has been well-documented in clinical thyroidology as early as 1924, the widespread utilization in other clinical specialties has been hampered by slow developments in radiation-detecting devices and in the production of appropriate radiopharmaceuticals, in addition to the morbid fear of radiation. In the Philippines, the first radioisotope laboratory was established in 1956. Ten years later, the Philippine Society of Nuclear Medicine was formed. Through the years, challenges were overcome, foundations were laid down, growth was encouraged, friendships with other organizations were built, adjustments were made, and rules were enforced. To date, there are approximately 58 nuclear medicine centers randomly distributed from north to south of the Philippines, 7 accredited nuclear medicine training institutions, 95 board-certified nuclear medicine physicians (a few of whom are also internationally recognized), and a regionally-indexed Philippine Journal of Nuclear Medicine. Qualifying examinations for technologists were also recently instated. International relations are constantly strengthened by sending trainees abroad and accepting foreign trainees here, as well as participating in conferences and other endeavors. While the cost of putting up nuclear medicine centers in the Philippines is still prohibitive, it should not pose too much of a constraint as there are foreign and local parties willing to help. With appropriate instrumentation, targeting radiopharmaceuticals and trained human resources, nuclear medicine can indeed contribute much to health care delivery. PMID:27408901

  11. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  12. Multiple uses for an old ibm-pc 486 in nuclear medicine using open source software

    International Nuclear Information System (INIS)

    Anselmi, C.E.; Anselmi, O.E.

    2002-01-01

    information back in the workstation. Conclusion: Patient care is thought to have improved by allowing the referring physician to view the patient's images in addition to the online report in the nuclear medicine information system. Backing up files if far less expensive with cd-rom than with magnetic-optical disks. Transfer of data across different hospitals saves physician time. The use of open source software should be encouraged in nuclear medicine because of both its excellent reliability and cost

  13. Clinical nuclear medicine in radiation therapy - state and perspectives; Klinische Nuklearmedizin in der Strahlentherapie - Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Schultze, J. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie)

    1995-08-01

    Clinical nuclear medicine has severely changed due to the technical and pharmacological developments within the last 15 years. An evaluation of the importance of nuclear medicine for treatment planning purposes in radiation therapy revealed in 20.6% of the cases relevant new information due to the scans. That nevertheless the demand for nuclearmedical examinations is decreasing might be a result of an increasing alienation between nuclear medicine and referring physicians of other specialities. Therefore a reapproach of nuclear medicine with her main clinical partners is desireable which could be achieved e.g. by exchange of rotating house officers, participation in tumor conferences and consiliary statements to scan indications. (orig.) [Deutsch] Die klinische Nuklearmedizin hat sich durch die technischen und pharmakologischen Entwicklungen der letzten 15 Jahre erheblich veraendert. Eine Evaluation der Bedeutung nuklearmedizinischer Verfahren fuer die Bestrahlungsplanung in der Strahlentherapie hat in 20,6% der Faelle eine untersuchungsbedingte, planungsrelevante Information erbracht, auf die nicht verzichtet werden konnte. Dass die Nachfrage nach nuklearmedizinischen Untersuchungen in diesem Bereich trotzdem ruecklaeufig ist, duerfte Ergebnis einer zunehmenden Entfremdung der Zuweiser aus den verwandten Faechern von der Nuklearmedizin sein. Es ist deshalb eine Wiederannaeherung der Nuklearmedizin an ihre klinischen Hauptpartner wuenschenswert, die durch Austausch von Rotationsassistenten, die Beteiligung an Tumorkonferenzen und die konsiliarische Stellungnahme zu Untersuchungsindikationen erreicht werden koennte. (orig.)

  14. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    Science.gov (United States)

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.

  15. Pharmacist-Physician Collaboration at a Family Medicine Residency Program: A Focus Group Study

    Directory of Open Access Journals (Sweden)

    Keri Hager

    2018-02-01

    Full Text Available Background: In response to transforming healthcare and pursuit of the Triple Aim, many health systems have added team members to expand the capabilities and effectiveness of the team to facilitate these aims. The objective of this study was to explore knowledge and perceptions of pharmacist-physician collaboration among family medicine residents (FMR, family medicine faculty (FMF, and pharmacist faculty and residents in a practice where clinical pharmacy services were relatively new. Understanding the nuances of pharmacist-physician interactions will provide insight into how to improve FMR education to prepare learners for patient-centered, team-based practice. Methods: An exploratory descriptive qualitative study design was used to articulate perceptions of professional roles and team-based care in an interprofessional family medicine community-based clinical practice. Five, 60-minute focus groups were conducted in a clinical training setting that focuses on preparing family medicine physicians for collaborative rural primary care practice. Results: Twenty-one FMRs, eight FMF, and six clinical pharmacists participated. Three themes emerged from the focus groups and were consistent across the groups: 1 roles of pharmacists recognized by physicians in different settings, 2 benefits to collaboration, and 3 keys to successful pharmacist-physician collaboration which include a developing the relationship, b optimizing communication, c creating beneficial clinical workflow, d clarifying roles and responsibilities, and e increasing opportunities for meaningful interactions. Conclusion: This study demonstrated that by co-locating physicians and pharmacists in the same environment, and providing a basic structure for collaboration, a collaborative working relationship can be initiated. Practices looking to have more effective collaborative working relationships should strive to increase the frequency of interactions of the professions, help the

  16. Clinical preventive services in Guatemala: a cross-sectional survey of internal medicine physicians.

    Directory of Open Access Journals (Sweden)

    Juan E Corral

    Full Text Available Guatemala is currently undergoing an epidemiologic transition. Preventive services are key to reducing the burden of non-communicable diseases, and smoking counseling and cessation are among the most cost-effective and wide-reaching strategies. Internal medicine physicians are fundamental to providing such services, and their knowledge is a cornerstone of non-communicable disease control.A national cross-sectional survey was conducted in 2011 to evaluate knowledge of clinical preventive services for non-communicable diseases. Interns, residents, and attending physicians of the internal medicine departments of all teaching hospitals in Guatemala completed a self-administered questionnaire. Participants' responses were contrasted with the Guatemalan Ministry of Health (MoH prevention guidelines and the US Preventive Services Task Force (USPSTF recommendations. Analysis compared knowledge of recommendations within and between hospitals.In response to simulated patient scenarios, all services were recommended by more than half of physicians regardless of MoH or USPSTF recommendations. Prioritization was adequate according to the MoH guidelines but not including other potentially effective services (e.g. colorectal cancer and lipid disorder screenings. With the exception of colorectal and prostate cancer screening, less frequently recommended by interns, there was no difference in recommendation rates by level.Guatemalan internal medicine physicians' knowledge on preventive services recommendations for non-communicable diseases is limited, and prioritization did not reflect cost-effectiveness. Based on these data we recommend that preventive medicine training be strengthened and development of evidence-based guidelines for low-middle income countries be a priority.

  17. Greek Medicine Practice at Ancient Rome: The Physician Molecularist Asclepiades

    Directory of Open Access Journals (Sweden)

    Luigi Santacroce

    2017-12-01

    Full Text Available Background: In the pre-Hellenistic period, the concept of medicine was not well-defined. Usually, a disease was considered as a divine punishment and its treatment was devolved to the priests who asked for healing from the divinities. The only job that could be compared to medical practice was a kind of itinerant medicine, derived from the Egyptian therapeutic tradition based only on practical experience and performed by people that knew a number of remedies, mostly vegetable, but without any theoretical bases about the possible mechanisms of action. Opinions about the human nature (naturalistic thinking and the origin of the illness and heal were the basis of Greek medicine practiced by ancient priests of Asclepius. However, with the evolution of the thought for the continuous research of “κόσμος” (world knowledge, philosophy woulld become an integral part of medicine and its evolution. This close relationship between philosophy and medicine is confirmed by the Greek physician Galen in the era of the Roman Empire. Methods: Philosophical thought looked for world knowledge starting from mathematics, physics, astronomy, chemistry, medicine, psychology, metaphysics, sociology, and ethics. We must keep in mind that, according to the ancient people, the physicians could not heal the patients without the aid of a “divine God” until medicine, thanks to the Hippocratic practice, became more independent from the supernatural, and contemporary, ethical, and professional. Many physicians were philosophers, as confirmed by their views of life, such as Hippocrates of Cos, Aristotle (hailed as the father of comparative anatomy and physiology, Pythagoras of Samos, Alcmaeon of Croton, Empedocles, Praxagoras, Erasistratus, Galen, and others, including Asclepiades of Bithynia (atomists affinity. Asclepiades, a Greek physician born in Prusa, studied in Athens and Alexandria. His thought was influenced by Democritus’ theories, refusing extensively

  18. Greek Medicine Practice at Ancient Rome: The Physician Molecularist Asclepiades

    Science.gov (United States)

    Santacroce, Luigi; Bottalico, Lucrezia; Charitos, Ioannis Alexandros

    2017-01-01

    Background: In the pre-Hellenistic period, the concept of medicine was not well-defined. Usually, a disease was considered as a divine punishment and its treatment was devolved to the priests who asked for healing from the divinities. The only job that could be compared to medical practice was a kind of itinerant medicine, derived from the Egyptian therapeutic tradition based only on practical experience and performed by people that knew a number of remedies, mostly vegetable, but without any theoretical bases about the possible mechanisms of action. Opinions about the human nature (naturalistic thinking) and the origin of the illness and heal were the basis of Greek medicine practiced by ancient priests of Asclepius. However, with the evolution of the thought for the continuous research of “κόσμος” (world) knowledge, philosophy woulld become an integral part of medicine and its evolution. This close relationship between philosophy and medicine is confirmed by the Greek physician Galen in the era of the Roman Empire. Methods: Philosophical thought looked for world knowledge starting from mathematics, physics, astronomy, chemistry, medicine, psychology, metaphysics, sociology, and ethics. We must keep in mind that, according to the ancient people, the physicians could not heal the patients without the aid of a “divine God” until medicine, thanks to the Hippocratic practice, became more independent from the supernatural, and contemporary, ethical, and professional. Many physicians were philosophers, as confirmed by their views of life, such as Hippocrates of Cos, Aristotle (hailed as the father of comparative anatomy and physiology), Pythagoras of Samos, Alcmaeon of Croton, Empedocles, Praxagoras, Erasistratus, Galen, and others, including Asclepiades of Bithynia (atomists affinity). Asclepiades, a Greek physician born in Prusa, studied in Athens and Alexandria. His thought was influenced by Democritus’ theories, refusing extensively the Hippocratic

  19. Greek Medicine Practice at Ancient Rome: The Physician Molecularist Asclepiades.

    Science.gov (United States)

    Santacroce, Luigi; Bottalico, Lucrezia; Charitos, Ioannis Alexandros

    2017-12-12

    Background: In the pre-Hellenistic period, the concept of medicine was not well-defined. Usually, a disease was considered as a divine punishment and its treatment was devolved to the priests who asked for healing from the divinities. The only job that could be compared to medical practice was a kind of itinerant medicine, derived from the Egyptian therapeutic tradition based only on practical experience and performed by people that knew a number of remedies, mostly vegetable, but without any theoretical bases about the possible mechanisms of action. Opinions about the human nature (naturalistic thinking) and the origin of the illness and heal were the basis of Greek medicine practiced by ancient priests of Asclepius. However, with the evolution of the thought for the continuous research of "κόσμος" (world) knowledge, philosophy woulld become an integral part of medicine and its evolution. This close relationship between philosophy and medicine is confirmed by the Greek physician Galen in the era of the Roman Empire. Methods: Philosophical thought looked for world knowledge starting from mathematics, physics, astronomy, chemistry, medicine, psychology, metaphysics, sociology, and ethics. We must keep in mind that, according to the ancient people, the physicians could not heal the patients without the aid of a "divine God" until medicine, thanks to the Hippocratic practice, became more independent from the supernatural, and contemporary, ethical, and professional. Many physicians were philosophers, as confirmed by their views of life, such as Hippocrates of Cos, Aristotle (hailed as the father of comparative anatomy and physiology), Pythagoras of Samos, Alcmaeon of Croton, Empedocles, Praxagoras, Erasistratus, Galen, and others, including Asclepiades of Bithynia (atomists affinity). Asclepiades, a Greek physician born in Prusa, studied in Athens and Alexandria. His thought was influenced by Democritus' theories, refusing extensively the Hippocratic ideas that

  20. Assessment of nuclear medicine capabilities in responding to a radiological terrorism event. Technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Stodilka, R.Z. [Univ. of Western Ontario, Schulich School of Medicine, London, Ontario (Canada); Wilkinson, D

    2006-09-15

    Substantial effort has been placed into enhancing federal capabilities for responding to a Chemical, Biological, Radiological, or Nuclear (CBRN) terrorist attack. However, little emphasis has been placed on including the local-level medical responders in these efforts. In effecting response to a radiological incident, potentially useful resources to access are health care professionals with training in matters of ionizing radiation, namely: nuclear medicine physicians, radiologists, radiation oncologists, medical physicists, and technologists. In this report, we focus on Nuclear Medicine expertise in Canada, and place this expertise into the context of assisting with a radiological terrorist incident. Nuclear Medicine expertise, along with its supporting infrastructure has already been deployed in proportion to the distribution of the civilian population. Given the expectations that the civilian population places in these health care professionals, their immediate access to specialized equipment, and the delay between a radiological terrorist incident and the arrival of federal expert capabilities, it is likely that these health care professionals will play important roles in emergency response. These roles will likely be: identifying the nature of the incident, triage, decontamination, coordinating with First Responders, and communicating with the media. Acknowledging the potential value of these professionals in responding to a radiological terrorist incident, steps should be taken to enlist their support and integrate them into a coherent national strategy. (author)

  1. Assessment of nuclear medicine capabilities in responding to a radiological terrorism event. Technical memorandum

    International Nuclear Information System (INIS)

    Stodilka, R.Z.; Wilkinson, D.

    2006-09-01

    Substantial effort has been placed into enhancing federal capabilities for responding to a Chemical, Biological, Radiological, or Nuclear (CBRN) terrorist attack. However, little emphasis has been placed on including the local-level medical responders in these efforts. In effecting response to a radiological incident, potentially useful resources to access are health care professionals with training in matters of ionizing radiation, namely: nuclear medicine physicians, radiologists, radiation oncologists, medical physicists, and technologists. In this report, we focus on Nuclear Medicine expertise in Canada, and place this expertise into the context of assisting with a radiological terrorist incident. Nuclear Medicine expertise, along with its supporting infrastructure has already been deployed in proportion to the distribution of the civilian population. Given the expectations that the civilian population places in these health care professionals, their immediate access to specialized equipment, and the delay between a radiological terrorist incident and the arrival of federal expert capabilities, it is likely that these health care professionals will play important roles in emergency response. These roles will likely be: identifying the nature of the incident, triage, decontamination, coordinating with First Responders, and communicating with the media. Acknowledging the potential value of these professionals in responding to a radiological terrorist incident, steps should be taken to enlist their support and integrate them into a coherent national strategy. (author)

  2. Criminal Responsibility on the Use of Ionizing Radiations in Medicine

    International Nuclear Information System (INIS)

    El-Baroodi, M.

    2003-01-01

    The present work has been undertaken to study the existing Egyptian Laws which regulate the applications of ionizing radiations in medicine and the criminal responsibility related to the violations of these regulations by the medical staff and hospital's administrative body. The study involves the nature of physicians relationship and attitudes towards their patients on applying the recent techniques in nuclear medicine and the requirements imposed by law concerning the habilitation of the medical staff, and their licensing. It assumed that the physicians should apply the most recent scientific knowledge and medical practices in nuclear medicine. One of the requirements of the law is that the physician should inform the patient about his medical problem and seek his consent about the radiation treatment necessary for him

  3. The situation of chinese nuclear medicine technologists and strategy in future

    International Nuclear Information System (INIS)

    Zhang Yongxue

    2001-01-01

    Nuclear medicine technologists is an important part of nuclear medicine professionals, and play an important role in the progress of nuclear medicine. The professional quality of nuclear medicine technologists must adapt to the development of nuclear medicine. There is a relatively great gap between China mainland and developed countries in the field of nuclear medicine. In future, it is urgent to improve the professional quality and the educational level of nuclear medicine technologists

  4. Physician training in aerospace medicine--an historical review in the United States.

    Science.gov (United States)

    Doarn, Charles R; Mohler, Stanley R

    2013-02-01

    The training of U.S. physicians in aviation medicine closely followed the development of reliable airplanes. This training has matured as aviation and space travel have become more routine over the past several decades. In the U.S., this training began in support of military pilots who were flying increasingly complex aircraft in the early part of the 20th century. As individuals reached into the stratosphere, low Earth orbit, and eventually to the Moon, physicians were trained not only through military efforts but in academic settings as well. This paper provides an historical summary of how physician training in aerospace medicine developed in the U.S., citing both the development of the military activities and, more importantly, the perspectives of the academic programs. This history is important as we move forward in the development of commercial space travel and the needs that such a business model will be required to meet.

  5. Role of nuclear medicine bone scans in evaluating pain in athletic injuries

    International Nuclear Information System (INIS)

    Martire, J.R.

    1987-01-01

    The utilization of nuclear medicine bone scanning examinations early in the diagnostic process allows physicians to render prompt and correct treatment in urgent or difficult athletic cases. Bone scanning should be performed for athletic injuries whenever (1) x-rays are normal but bone or joint pain persists; (2) x-rays are positive but it cannot be determined if the findings are acute or chronic; (3) soft-tissue injuries present and x-rays are not useful; and (4) bone pain or joint impairment present without a history of trauma.89 references

  6. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  7. Computers for use in nuclear medicine

    International Nuclear Information System (INIS)

    Surova, H.

    1991-01-01

    Brief information is presented on computers for nuclear medicine that are currently available on the market. The treatment is based on print material by various manufacturers and commercial organizations and on the publication ''Nuclear Medicine Computers - A Personal Comparison Chart'' of May 1991, issued by the Reilly Publishing Company. (Z.S.)

  8. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  9. Current Status of The Korean Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    Koh, Chang Soon

    1977-01-01

    As the application of nuclear medicine to clinics became generalized and it held an important position, the Korean Society of Nuclear Medicine was founded in 1961, and today it has become known as one of the oldest nuclear medicine societies not only to Asian nations but also to other advanced countries all over the world. Now it has 100 or so regular members composed of students of each medicine filed unlike other medical societies. Only nuclear medicine research workers are eligible for its membership. The Korean Society of Nuclear Medicine holds its regular general meeting and symposium twice per annom respectively in addition to occasional group gatherings and provincial lectures on nuclear medicine. With an eye to exchanging information on symposium, research and know-how, KSNM issued its initial magazine in 1967. Every year two editions are published. Year after year the contents of treatises are getting elevated with researches on each field including the early study on morphology-greatly improved both in quality and quantity. Of late, a minute and fixed quantity of various matters by dynamical research and radioimmunoassay of every kind has become visibly active. In particular, since KSNM, unlike other local societies, keeps close and frequent contact with the nuclear medicine researchers of world-wide fame, monographs by eminent scholars of the world are carried in its magazine now internationally and well received in foreign countries. Now the magazine has been improved to such an extent that foreign authors quote its contents. KSNM invited many a foreign scholar with a view to exchanging the knowledge of nuclear medicine. Sponsored by nuclear energy institute, the nuclear medicine symposium held in Seoul in October of 1966 was a success with Dr. Wagner participating, a great scholar of world wide fame: It was the first international symposium ever held in Korea, and the Korea Japan symposium held in Seoul 1971 was attended by all distinguished nuclear

  10. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  11. Nuclear medicine. La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Blanquet, P; Blanc, D

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions.

  12. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  13. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  14. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  15. Burnout, coping, and spirituality among internal medicine resident physicians.

    Science.gov (United States)

    Doolittle, Benjamin R; Windish, Donna M; Seelig, Charles B

    2013-06-01

    Burnout in physicians is common, and studies show a prevalence of 30% to 78%. Identifying constructive coping strategies and personal characteristics that protect residents against burnout may be helpful for reducing errors and improving physician satisfaction. We explored the complex relationships between burnout, behaviors, emotional coping, and spirituality among internal medicine and internal medicine-pediatrics residents. We anonymously surveyed 173 internal medicine and medicine-pediatrics residents to explore burnout, coping, and spiritual attitudes. We used 3 validated survey instruments: the Maslach Burnout Inventory, the Carver Coping Orientation to Problems Experienced (COPE) Inventory, and the Hatch Spiritual Involvement and Beliefs Scale (SIBS). A total of 108 (63%) residents participated, with 31 (28%) reporting burnout. Residents who employed strategies of acceptance, active coping, and positive reframing had lower emotional exhaustion and depersonalization (all, P < .03). Residents who reported denial or disengagement had higher emotional exhaustion and depersonalization scores. Personal accomplishment was positively correlated with the SIBS total score (r  =  +.28, P  =  .003), as well as the internal/fluid domain (r  =  +.32, P  =  .001), existential axes (r  =  +.32, P  =  .001), and humility/personal application domain (r  =  +.23, P  =  .02). The humility/personal application domain also was negatively correlated with emotional exhaustion (r  =  -.20, P  =  .04) and depersonalization (r  =  -.25, P  =  .009). No activity or demographic factor affected any burnout domain. Burnout is a heterogeneous syndrome that affects many residents. We identified a range of emotional and spiritual coping strategies that may have protective benefit.

  16. Distribution of nuclear medicine service in Brazil

    International Nuclear Information System (INIS)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos

    2011-01-01

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  17. Computers in nuclear medicine: introductory concepts

    International Nuclear Information System (INIS)

    Weber, D.A.

    1978-01-01

    Computers play an important role in image and data processing in nuclear medicine. Applications extend from relatively simple mathematical processing of in vitro specimen assays to more sophisticated image reconstruction procedures for emission tomography. The basic concepts and terminology associated with computer applications in image and data processing in nuclear medicine are presented here

  18. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  19. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  20. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  1. 22. French language symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1981-01-01

    The 80 papers presented in summary form at the Congress are given. These papers cover three main topics: broncho-pulmonary investigation with radioaerosols; role of nuclear medicine in pharmacokinetics; role of Nuclear Medicine in metabolic investigations [fr

  2. The 3rd Sino-Japan nuclear medicine conference

    International Nuclear Information System (INIS)

    1999-01-01

    The 3rd Sino-Japan Nuclear Medicine Conference was hold on May 11-13, 1999 in Xi'an of China by Chinese Society of Nuclear Medicine, Japanese Society of Nuclear Medicine, Chinese Medicine Association and Japan-China Medicine Association. 62 articles were published in the proceeding of the conference. The contents of the articles include development and application of the radioisotopes (such as Tc-99, I-125, I-131, F-18, In-111, Tl-201, Ga-67, Sm-153, Re-188) and its radiopharmaceuticals, but application also include radiotherapy and diagnosis in the oncology and pathology by SPECT and PET

  3. Report on the second Congress of the Russian nuclear medicine society and on International conference Current problems of nuclear medicine and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lishmanov, Yu.B.; Chernov, V.I.

    2001-01-01

    Information on the work of Second Congress of Russian Nuclear Medicine Society and International Conference - Current problems of nuclear medicine and radiopharmaceuticals, - held in Obninsk in October, 2000, is adduced. Reports presented in the conference are dedicated to various aspects of application of radionuclide methods to cardiology, angiology, oncology, surgery, hematology, endocrinology, pediatrics and neurology. Problems in the development of radiopharmaceutical, training and skill advancement of experts, dosimetry and radiation safety in nuclear medicine were discussed. Congress considered the organizational problems in Russian nuclear medicine [ru

  4. A DICOM based PACS for nuclear medicine

    International Nuclear Information System (INIS)

    Lassmann, M.; Reiners, C.

    2002-01-01

    The installation of a radiology information system (RIS) connected to a hospital information system (HIS) and a picture archiving and communications system (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wuerzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adapted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. (orig.) [de

  5. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  6. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  7. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  8. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  9. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  10. Concomitant Use of Dietary Supplements and Medicines in Patients due to Miscommunication with Physicians in Japan

    Science.gov (United States)

    Chiba, Tsuyoshi; Sato, Yoko; Suzuki, Sachina; Umegaki, Keizo

    2015-01-01

    We previously reported that some patients used dietary supplements with their medication without consulting with physicians. Dietary supplements and medicines may interact with each other when used concomitantly, resulting in health problems. An Internet survey was conducted on 2109 people who concomitantly took dietary supplements and medicines in order to address dietary supplement usage in people who regularly take medicines in Japan. A total of 1508 patients (two admitted patients and 1506 ambulatory patients) and 601 non-patients, who were not consulting with physicians, participated in this study. Purpose for dietary supplement use was different among ages. Dietary supplements were used to treat diseases in 4.0% of non-patients and 11.9% of patients, while 10.8% of patients used dietary supplements to treat the same diseases as their medication. However, 70.3% of patients did not declare dietary supplement use to their physicians or pharmacists because they considered the concomitant use of dietary supplements and medicines to be safe. A total of 8.4% of all subjects realized the potential for adverse effects associated with dietary supplements. The incidence of adverse events was higher in patients who used dietary supplements to treat their disease. Communication between patients and physicians is important for avoiding the adverse effects associated with the concomitant use of dietary supplements and medicines. PMID:25894658

  11. Research and career opportunities for chemists in nuclear medicine

    International Nuclear Information System (INIS)

    Welch, M.J.

    1989-01-01

    Two recent publications [Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas: Report of a Workshop National Academy Press, Washington, D.C., 1988, and Report of the Society of Nuclear Medicine Manpower Committee, Journal of Nuclear Medicine, January, 1989] have emphasized the opportunities for Chemists in Nuclear Medicine. These opportunities exist in Medical Centers, the Radiopharmaceutical Drug Industry as well as the Ethical Drug Industry of particular importance of the need for organic and inorganic chemists with knowledge and experience in radiochemistry to develop and prepare the radiopharmaceuticals needed for the Nuclear Medicine community. The number of positions available at present and anticipated in the future will be compared and the number of training programs listed. Examples of the types of opportunities in this area will be given

  12. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  13. Perceptions of Unprofessional Social Media Behavior Among Emergency Medicine Physicians.

    Science.gov (United States)

    Soares, William; Shenvi, Christina; Waller, Nikki; Johnson, Reuben; Hodgson, Carol S

    2017-02-01

    Use of social media (SM) by physicians has exposed issues of privacy and professionalism. While guidelines have been created for SM use, details regarding specific SM behaviors that could lead to disciplinary action presently do not exist. To compare State Medical Board (SMB) directors' perceptions of investigation for specific SM behaviors with those of emergency medicine (EM) physicians. A multicenter anonymous survey was administered to physicians at 3 academic EM residency programs. Surveys consisted of case vignettes, asking, "If the SMB were informed of the content, how likely would they be to initiate an investigation, possibly leading to disciplinary action?" (1, very unlikely, to 4, very likely). Results were compared to published probabilities using exact binomial testing. Of 205 eligible physicians, 119 (58%) completed the survey. Compared to SMB directors, EM physicians indicated similar probabilities of investigation for themes involving identifying patient images, inappropriate communication, and discriminatory speech. Participants indicated lower probabilities of investigation for themes including derogatory speech (32%, 95% confidence interval [CI] 24-41 versus 46%, P  social identity, compared to SMB directors, particularly for images of alcohol and derogatory speech.

  14. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  16. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  17. Checklists for quality assurance and audit in nuclear medicine

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.)

  18. Highlights of articles published in annals of nuclear medicine 2016

    International Nuclear Information System (INIS)

    Jadvar, Hossein

    2017-01-01

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  19. Highlights of articles published in annals of nuclear medicine 2016

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein [University of Southern California, Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, Los Angeles, CA (United States)

    2017-10-15

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  20. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  1. Estimation of Internal Radiation Dose to Nuclear Medicine Workers at Siriraj Hospital

    International Nuclear Information System (INIS)

    Asawarattanapakdee, J.; Sritongkul, N.; Chaudakshetrin, P.; Kanchanaphiboon, P.; Tuntawiroon, M.

    2012-01-01

    Every type of work performed in a nuclear medicine department will make a contribution to both external and internal exposure of the worker. The purpose of this study is to evaluate the potential risks of internal contamination to staff members during nuclear medicine practices and to conclude about the requirement of a routine internal monitoring. Following the method describes in the ICRP Publication 78 and the IAEA Safety Standard Series No. RS- G-1.2, in vivo thyroid bioassays using NaI(Tl) thyroid probe were performed to determine the intake estimates on 7 groups of nuclear medicine personnel working with I-131 and Tc-99m, based on working conditions and amount of radionuclides being handled. Frequency of measurements was between 7 and 14 days. These include (1) physicians and physicists, (2) radiochemists (3) technologists, (4) nurses and assistant nurses, (5) imaging room assistants, (6) hot lab workers and (7) hospital ward housekeepers/cleaners. Among all workers, the intake estimates of I-131 in the thyroid ranged from 0 to 76.7 kBq and of the technetium-99m from 0 to 35.4 MBq. The mean committed effective dose equivalent (CEDE) from both I-131 and Tc-99m were 0.63, 1.44 0.53, 0.57, 0.73, 0.98, and 1.36, mSv, for group 1 through group 7 respectively. However, the highest mean CEDE of 1.44 (max. 1.75) and 1.36 (max. 2.11) mSv observed in groups of radiochemists and hospital ward housekeepers were within the permissible level. Our results showed that CEDE for internal exposure in this study were less than investigate level of 5 mSv according to the ICRP Publication 78 and the IAEA Basic Safety Standards. However, the mean CEDE for radiochemists and hospital ward housekeepers were considered in exceed of the limits of recording level (1 mSv).The increasing use of I-131 and Tc-99m in nuclear medicine poses significant risks of internal exposure to the staff. This study suggests that a routine monitoring program for internal exposures should be implemented for

  2. Mentoring and the Nuclear Medicine Technologist.

    Science.gov (United States)

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. [Social Security Needs Social Medicine: Self-image of Physicians Practicing Social Medicine in Statutory Health Insurances and Social Security Systems].

    Science.gov (United States)

    Nüchtern, E; Bahemann, A; Egdmann, W; van Essen, J; Gostomzyk, J; Hemmrich, K; Manegold, B; Müller, B; Robra, B P; Röder, M; Schmidt, L; Zobel, A; von Mittelstaedt, G

    2015-09-01

    In January, 2014, the division "Social Medicine in Practice and Rehabilitation" of the German Society for Social Medicine and Prevention established a working group on the self-image of the physicians active in the field of social medicine (medical expertise and counseling). The result of this work is the contribution presented here after consensus was achieved by specialists of social medicine from different fields and institutions (social security etc.) and in good cooperation with Prof. Dr. Gostomzyk and Prof. Dr. Robra. Based on the importance of an up to date social medicine for claimants and recipients of benefits on the one hand and the social security system on the other, and also on a description of the subjects, objectives and methods the following aspects are presented: · The perspective of social medicine. · Qualification in social medicine, concerning specialist training and continuing medical education. · The fields of duty of experts in social medicine. · The proceedings in social medicine. The working group identified challenges for the specialists in social medicine by a narrowed perception of social medicine by physicians in hospitals and practice, accompanied by an enlarged importance of expertise in social medicine, by the demand for more "patient orientation" and gain of transparency, and concerning the scientific foundation of social medicine. The working group postulates: · The perspective of social medicine should be spread more widely.. · Confidence in experts of social medicine and their independency should be strengthened.. · The not case-related consulting of the staff and executives should be expanded.. · Social medicine in practice needs support by politics and society, and especially by research and teaching.. · Good cooperation and transfer of experiences of the different branches of social security are essential for the impact of social medicine.. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  5. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  6. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  7. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  8. Evaluation of systematic I-131 thyroid measurements for nuclear medicine workers

    International Nuclear Information System (INIS)

    Puscalau, M.A.

    2002-01-01

    In Nuclear Medicine, I-131 is used intensively for the diagnosis and for the treatment of the different severities maladies of the thyroid. This radionuclide generates an important internal contamination to the patients, because of its oral administration, and, also, through inhalation, to the workers involved in the radiopharmaceuticals production , to the nursing staff and to the physicians that care and treat the patients in the hospitals. The paper presents the data obtained by systematically thyroid monitoring of the physicians and nurses from the Endocrinology Hospital, that are contaminated by I-131 inhalation because of their permanent relation with the patients treated with 3.7 MBq I-131 for investigation and with activities in the range 1100 MBq - 4000 MBq for therapy. The measurements were carried out with our Body Counter equipped with a NaI(Tl) scintillation detector, 50 mm thickness and 40mm diameter. Values of the estimated committed equivalent doses are, also, reported

  9. 1. A brief history of nuclear medicine

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1989-01-01

    The milestones of history of nuclear medicine are dealt with. A brief account is given of the history of nuclear medicine abroad, and a more in-depth treatment is devoted to Czechoslovakia, where the beginning of this branch of science dates to 1951. (Z.S.)

  10. Handbook on care, handling and protection of nuclear medicine instruments

    International Nuclear Information System (INIS)

    2000-11-01

    Instruments are fundamental to successful nuclear medicine practice. They must be properly installed in an environment in which they can give accurate and uninterrupted service. They have to be properly and carefully operated and supported throughout their life by regular care and maintenance. If something is wrong with a key instrument all well trained staff members are idle and all purchased radiopharmaceuticals become useless. Overall responsibility for instrumentation rests with the directors of nuclear medicine centres. They should support their electronic engineers, medical physicists, technologists and physicians to plan and implement the care and protection of nuclear medicine instruments, see that they are properly maintained, and kept in optimum working condition by regular checks. Protection should be considered, and provided for, before installing any new instrument. The protective devices are part of the new installation and should be well maintained along with the instrument throughout its life. Thus protection needs careful planning, particularly at the beginning of a new instrumentation programme. It can affect selection, procurement, acceptance testing, and the design of quality control and maintenance routines. These activities should be considered as important in their own right. They should not be mixed in with other functions or left to take care of themselves in the daily rush to get through routine work. Experience suggests that more than half of all failures of electronic equipment are due to damage by external electrical disturbances. Section 2 of this handbook aims to help instrument users in nuclear medicine centres to understand the nature of the various types of disturbance, and to protect against them. Section 3 shows how air conditioning can help to protect instrumentation. Section 4 lists some practical tips to avoid accidental damage due to mishandling. A computer program for use with Personal Computers, ''EPC Expert'' is described

  11. Nuclear medicine in the countries of Latin America

    International Nuclear Information System (INIS)

    Touya, Eh.

    1987-01-01

    The role of nuclear medicine in protection of health in Latin America states is shown. Nuclear medicine methods are applied in Latin America countries for diagnosis of coronary disease, cancer, malfunctioning of separate organs and transplants, kidney transplants in particular. The present situation in protection of health in the region is evaluated. It is emphasized that nuclear medicine should play its role in the course of public health improvement in those countries

  12. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  13. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  14. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  15. Nuclear medicine statistics

    International Nuclear Information System (INIS)

    Martin, P.M.

    1977-01-01

    Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors

  16. Computers. A perspective on their usefulness in nuclear medicine

    International Nuclear Information System (INIS)

    Loken, M.K.; Williams, L.E.; Ponto, R.A.; Ganatra, R.D.; Raikar, U.; Samuel, A.M.

    1977-01-01

    To date, many symposia have been held on computer applications in nuclear medicine. Despite all of these efforts, an appraisal of the true utility of computers in the day-to-day practice of nuclear medicine is yet to be achieved. Now that the technology of data storage and processing in nuclear medicine has reached a high degree of sophistication, as evidenced by many reports in the literature, the time has come to develop a perspective on the proper place of computers in nuclear medicine practice. The paper summarizes various uses of a dedicated computer (Nuclear Data Med II) at our two institutions and comments on its clinical utility. (author)

  17. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  18. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  19. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  20. Course on internal dosimetry in nuclear medicine; Curso de dosimetria interna en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine.

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are ...

  2. Development of a clinical forensic medicine curriculum for emergency physicians in the USA.

    Science.gov (United States)

    Smock, W S

    1994-06-01

    To address the forensic needs of living patients, the Department of Emergency Medicine at the University of Louisville School of Medicine in Louisville, Kentucky, USA initiated the first clinical forensic medicine training programme in the USA. In July 1991, formal training in clinical forensic medicine was incorporated into the core curriculum of the USA's second oldest academic emergency medicine training programme. The University of Louisville, in cooperation with the Kentucky Medical Examiner's Office, developed the curriculum to provide the emergency physician with the knowledge base and technical skills to perform forensic evaluations of living patients. Forensic lectures are given monthly by local and regional forensic experts including: forensic pathologists, prosecuting attorneys, firearm and ballistics examiners, law enforcement officers, forensic chemists and forensic odontologists. Topics which are presented include: forensic pathology, forensic photography, ballistics and firearms analysis, paediatric physical and sexual assault, crime scene investigation, forensic odontology, courtroom and expert testimony and the forensic evaluation of penetrating trauma. As a result of the introduction of clinical forensic medicine into the core curriculum of an emergency medicine training programme the residents are now actively addressing the forensic issues encountered in the Emergency department. Key, often short-lived forensic evidence, which was frequently overlooked or discarded while delivering patient care is now recognized, documented and preserved. The development and introduction of a clinical forensic medicine curriculum into emergency medicine training has greatly enhanced the emergency physician's ability to recognize, document and address the forensic needs of their patients who are victims of violent and non-fatal trauma.

  3. Challenges for nuclear medicine in the 1990s

    International Nuclear Information System (INIS)

    Ell, P.J.

    1992-01-01

    This article discusses the problems facing nuclear medicine in the coming decade and outlines the areas in which new developments or expansion can be expected. The questions considered include legislative requirements, the need to educate the public and the medical profession on the strengths of nuclear medicine, approaches to cost-benefit analysis, and development of new technologies and new radiopharmaceuticals. There is also an evaluation of expansion in nuclear medicine using both existing methodology and new methodologies. (author)

  4. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Kaul, A.

    1986-01-01

    'Quality Assurance in Nuclear Medicine' is the title of the English language original that has been translated into German. The manual very extensively deals with quality control of nuclear medical equipment. Tests are explained for checking radioactivity measuring devices, manual and automatic in-vitro sample measuring systems, in-vivo measuring systems with single or multiple detectors, rectlinear scanners, and gamma cameras, including the phantoms required for the methods. Other chapters discuss the quality control of radiopharmaceuticals, or the quality assurance in data recording and evaluation of results. Helpful comments on the organisation of quality assurance programms are given. The book is intended as a practical guide for introducing quality assurance principles in nuclear medicine in the Federal Republic of Germany. With 13 figs., 22 tabs [de

  5. The practice of nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    San Luis, T.O.L.

    1996-01-01

    The advent of nuclear medicine in the early 1940's came with the use of radioiodine in the study of thyroid physiology and eventual treatment of hyperthyroidism. Instrumentation to detect radionuclides introduced into the human body, and the production of various radiopharmaceuticals as tracers or as therapy agents provided the impetus for the rapid development of nuclear medicine as a distinct specialty. In the Philippines, nuclear medicine formally began in 1956 with the establishment of the Radioisotope Laboratory at the Philippine General Hospital. Acquisition of nuclear instrumentation by various institutions, training of medical staff and personnel, sourcing of radiopharmaceuticals proceeded thereafter

  6. Smoking behaviour, knowledge and attitudes among Family Medicine physicians and nurses in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Broers Teresa

    2004-06-01

    Full Text Available Abstract Background Smoking rates among the general population in Bosnia and Herzegovina are extremely high, and national campaigns to lower smoking rates have not yet begun. As part of future activities of the Queen's University Family Medicine Development Program in the Balkans Region, technical assistance may be provided to Bosnia and Herzegovina to develop of national tobacco control strategies. This assistance may focus on training doctors and nurses on smoking cessation strategies with a view to helping their patients to stop smoking. Given this important role that health professionals have, data is needed on smoking rates as well as on smoking behaviour among doctors and nurses in Bosnia and Herzegovina. This study therefore seeks to determine the smoking rates and behaviour of family medicine physicians and nurses in Bosnia and Herzegovina and to determine how well prepared they feel with respect to counselling their patients on smoking cessation strategies. Methods The WHO Global Health Professional Survey, a self-administered questionnaire, was distributed to physicians and nurses in 19 Family Medicine Teaching Centres in Bosnia and Herzegovina in June 2002. Smoking rates and behaviour, as well as information on knowledge and attitudes regarding smoking were determined for both physicians and nurses. Results Of the 273 physicians and nurses currently working in Family Medicine Teaching Centres, 209 (77% completed the questionnaire. Approximately 45% of those surveyed currently smoke, where 51% of nurses smoked, compared to 40% of physicians. With respect to knowledge and attitudes, all respondents agreed that smoking is harmful to one's health. However, "ever" smokers, compared to "never" smokers, were less likely to agree that health professionals who smoke were less likely to advise patients to quit smoking than non-smoking health professionals. Less than half of physicians and nurses had received formal training in smoking

  7. Smoking behaviour, knowledge and attitudes among Family Medicine physicians and nurses in Bosnia and Herzegovina.

    Science.gov (United States)

    Hodgetts, Geoffrey; Broers, Teresa; Godwin, Marshall

    2004-06-11

    Smoking rates among the general population in Bosnia and Herzegovina are extremely high, and national campaigns to lower smoking rates have not yet begun. As part of future activities of the Queen's University Family Medicine Development Program in the Balkans Region, technical assistance may be provided to Bosnia and Herzegovina to develop of national tobacco control strategies. This assistance may focus on training doctors and nurses on smoking cessation strategies with a view to helping their patients to stop smoking. Given this important role that health professionals have, data is needed on smoking rates as well as on smoking behaviour among doctors and nurses in Bosnia and Herzegovina. This study therefore seeks to determine the smoking rates and behaviour of family medicine physicians and nurses in Bosnia and Herzegovina and to determine how well prepared they feel with respect to counselling their patients on smoking cessation strategies. The WHO Global Health Professional Survey, a self-administered questionnaire, was distributed to physicians and nurses in 19 Family Medicine Teaching Centres in Bosnia and Herzegovina in June 2002. Smoking rates and behaviour, as well as information on knowledge and attitudes regarding smoking were determined for both physicians and nurses. Of the 273 physicians and nurses currently working in Family Medicine Teaching Centres, 209 (77%) completed the questionnaire. Approximately 45% of those surveyed currently smoke, where 51% of nurses smoked, compared to 40% of physicians. With respect to knowledge and attitudes, all respondents agreed that smoking is harmful to one's health. However, "ever" smokers, compared to "never" smokers, were less likely to agree that health professionals who smoke were less likely to advise patients to quit smoking than non-smoking health professionals. Less than half of physicians and nurses had received formal training in smoking cessations strategies, but about two thirds of health

  8. Guidelines for patient information in nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  9. Nuclear medicine and related radionuclide applications in developing countries

    International Nuclear Information System (INIS)

    1986-01-01

    The Symposium presentations were divided into sessions devoted to the following topics: Radioimmunoassay and related techniques (4 papers and 4 poster presentations); Radionuclide applications in the diagnosis of parasitic diseases (7 papers and 2 posters); Instrumentation (6 papers and 4 posters); Clinical nuclear medicine: liver, bones, thyroid, cardiovascular system, lungs, kidneys, brain (23 papers and 15 posters); Organization of nuclear medicine services in the developing countries (9 papers and 5 posters); Training in nuclear medicine (4 papers) and the panel discussion. Future of Nuclear Medicine in the developing countries. A separate abstract was prepared for each of these papers and posters

  10. An efficient and cost effective nuclear medicine image network

    International Nuclear Information System (INIS)

    Sampathkumaran, K.S.; Miller, T.R.

    1987-01-01

    An image network that is in use in a large nuclear medicine department is described. This network was designed to efficiently handle a large volume of clinical data at reasonable cost. Small, limited function computers are attached to each scintillation camera for data acquisition. The images are transferred by cable network or floppy disc to a large, powerful central computer for processing and display. Cost is minimized by use of small acquisition computers not equipped with expensive video display systems or elaborate analysis software. Thus, financial expenditure can be concentrated in a powerful central computer providing a centralized data base, rapid processing, and an efficient environment for program development. Clinical work is greatly facilitated because the physicians can process and display all studies without leaving the main reading area. (orig.)

  11. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  12. How alternative payment models in emergency medicine can benefit physicians, payers, and patients.

    Science.gov (United States)

    Harish, Nir J; Miller, Harold D; Pines, Jesse M; Zane, Richard D; Wiler, Jennifer L

    2017-06-01

    While there has been considerable effort devoted to developing alternative payment models (APMs) for primary care physicians and for episodes of care beginning with inpatient admissions, there has been relatively little attention by payers to developing APMs for specialty ambulatory care, and no efforts to develop APMs that explicitly focus on emergency care. In order to ensure that emergency care is appropriately integrated and valued in future payment models, emergency physicians (EPs) must engage with the stakeholders within the broader health care system. In this article, we describe a framework for the development of APMs for emergency medicine and present four examples of APMs that may be applicable in emergency medicine. A better understanding of how APMs can work in emergency medicine will help EPs develop new APMs that improve the cost and quality of care, and leverage the value that emergency care brings to the system. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quality Management Audits in Nuclear Medicine Practices. 2. Ed

    International Nuclear Information System (INIS)

    2015-01-01

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures

  14. Is hybridic positron emission tomography/computerized tomography the only option? The future of nuclear medicine and molecular imaging.

    Science.gov (United States)

    Grammaticos, Philip; Zerva, Cherry; Asteriadis, Ioannis; Trontzos, Christos; Hatziioannou, Kostas

    2007-01-01

    sources of radiation" b) nuclear radiation and c) molecular nuclear medicine. The "European Journal of Nuclear Medicine and Molecular Imaging" shall have to erase the three last words of its title and be renamed. As Professor Abass Alavi et al (2007), have mentioned: "Is PET/CT the only option?" In favor of PET/CT are the following: Attenuation correction (AC) and better anatomical localization of lesions visualized with PET. Also PET/CT can be used as a diagnostic CT scanner (dCT). Against using the PET/CT scanners are the following arguments: a) This equipment is not necessary because we can always ask the Radiologists for a dCT scan. Many patients have already done a dCT scan at the time they are referred for a PET scan to the Nuclear Medicine Department. b) The absolute clinical indications for PET/CT with the use of a contrast agent, are under investigation. c) Although there is at present a list of indications suggested for the PET/CT scanner, there are studies disputing some of these indications, as for example in metastatic colon cancer where a high diagnostic accuracy for PET study alone, has been reported. d) The option of AC performed by the PET/CT scanner has also been questioned. Artifacts may be up to 84%. e) The PET/CT is expensive, time consuming, space occupying, and needs additional medical and technical personnel. f) Not to mention the extra radiation dose to the patients. g) Shall we inform those young medical students who wish to become nuclear medicine physicians, to hold their decision till the content of future Nuclear Medicine is clarified? We may suggest that: Our specialty could be renamed as: "Clinical Nuclear Medicine" and include additional "proper certified education" on the PET/CT equipment. The PET/CT scanner should remain in the Nuclear Medicine Department where Radiologists could act as advisors.

  15. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low ...

  17. The state of the art in nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.

    1999-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been a dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  18. Metabolic radiopharmaceutical therapy in nuclear medicine; Terapia metabolica mediante radiofarmacos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-08-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  19. Nuclear radiation and its role in general nuclear medicine

    International Nuclear Information System (INIS)

    Kempaiah, A.; Ravi, C.

    2012-01-01

    Radiation is really nothing more than the emission of energy through space, as well as through physical objects. Nuclear radiations are emitted due to decay of nuclei of radioactive materials and damage cells and the DNA inside them through its ionizing effect. That causes melanoma and other cancers. Nuclear radiation has a number of beneficial uses especially in medical field with low levels of radioactive compounds, better than X-rays. There are some 440 nuclear reactors worldwide, people around will be under the effect of radiation. In nuclear medicine (medical imaging) small amount of radioactive materials were used to diagnose and determine the severity of or treat a variety of disease, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body it is painless and cost-effective techniques and provides information about both structure and function. Nuclear medicine diagnostic procedures called Gamma camera, single photon emission computed tomography (SPECT) and positron emission tomography (PET) were discussed in this paper. (author)

  20. Current role of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in modern departments

    International Nuclear Information System (INIS)

    Karidova, S.; Velkova, K.; Panamska, K.; Petkova, K.

    2006-01-01

    Full text: In the communication we set out to focus the attention of the medical staff and the public on the place and the constantly growing role (relative burden) of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in the field of modern medicine. The advanced radiographers level and rapid development of the contemporary equipment and apparatuses used in imaging diagnostics, nuclear medicine and radiotherapy, as well as the methods of their utilization, presuppose very good and constantly improving theoretical and practical training of the imaging technician. The radiographer fulfills responsible tasks under the guidance of the physician or independently and bears specific responsibilities. Having mastered the fundamentals of radiation protection, the imaging technician protects both himself and the patient from the impact of ionizing radiation. To be able to fulfill his/her constantly increasing duties and obligations, the imaging radiographer has acquired wide knowledge of general education subjects, subjects of general medicine and special subjects. The radiographer has a good knowledge of Latin and a modern foreign language, and he is also computer literate so as to be able to cope with the widely spread visualizing methods. The radiographer acquires additional post-graduate training to work in narrowly specialized fields as well as to improve his/her qualifications

  1. Benjamin Rush, Edinburgh Medicine and the Rise of Physician Autobiography.

    Science.gov (United States)

    Jones, Catherine

    2014-01-01

    This chapter explores the place of Scottish medicine in the autobiographical writing of the Philadelphia physician and signer of the American Declaration of Independence, Benjamin Rush, who studied at the University of Edinburgh from 1766 to 1768. It focuses on Rush's 'Scottish journal' (his account of his period of study in Edinburgh), his protracted feud from 1797 over his treatment of yellow fever with the English journalist, politician and agriculturalist William Cobbett, and his account in 'Travels through Life' of that feud and of the influence of Cullen on his medical theory and practice. The different rhetorical strategies used by Rush to defend his character and practice and his role in the rise of physician autobiography are examined.

  2. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  3. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  4. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  6. The role of general nuclear medicine in breast cancer

    International Nuclear Information System (INIS)

    Greene, Lacey R; Wilkinson, Deborah

    2015-01-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer

  7. [Evaluation of the professional practices of physicians in transfusion technology and medicine].

    Science.gov (United States)

    Hergon, Eric; Py, Jean-Yves; Jullien, Stéphanie; Quaranta, Jean-François; Folléa, Gilles; Andreu, Georges; Cabaud, Jean-Jacques; Staccini, Pascal; Rouger, Philippe

    2007-08-01

    The evaluation of the professional practices (EPP) is obligatory for all the physicians since July 1, 2005 for a first five-year period. It represents one of the components of the continuous medical training (CMT). The French Society of Blood Transfusion and National Institute of Blood Transfusion are the promoters of the EPP in transfusion technology and medicine. Initially, the programs of EPP will be conceived and controlled by experts and will relate to their basic activities. During a five years cycle, the physician taking part in a program must validate a specific action and take part in a rolling programme. At the end of the programme, the physician will receive a certificate issued by National Institute of Blood Transfusion and will have to submit it to a committee placed under the responsibility of the regional physicians' committee.

  8. Medical History in the Hellenic Journal of Nuclear Medicine.

    Science.gov (United States)

    Otte, Andreas

    2017-01-01

    biological views of the "atomic" philosophers, Leucippus and Democritus. E. Magiorkinis. A. Beloukas, A. Diamantis. 2010; 13(2): 111-117. http://nuclmed.web.auth.gr/magazine/eng/may10/9.pdf Correspondence. Neuroimaging in mild traumatic brain injury and M. Ravel's injury. A. Otte. 2012; 15(1): 76. http://nuclmed. web.auth.gr/magazine/eng/jan12/3.pdf Selected Brief Contributions. The "atomic theory" of Leucippus, and its impact on medicine before Hippocrates. G. Tsoucalas, K. Laios et al. 2013; 16(1): 68-9. http://nuclmed.web.auth.gr/magazine/eng/jan13/72.pdf Selected Brief Contributions. Computed tomography alone reveals the secrets of ancient mummies in medical archaeology. A. Otte, T. Thieme et al. 2013; 16(2): 148-9. http://nuclmed.web.auth.gr/magazine/eng/may13/70.pdf Editorial. The timeless influence of Hippocratic ideas on diet, salicylates and personalized medicine. T.C. Karagiannis. 2014; 17(1): 2-6. http://nuclmed.web.auth.gr/magazine/eng/jan14/1.pdf Historical Article. The physician who first applied radiotherapy, Victor Despeignes, on 1896. M. Sgantzos, G. Tsoucalas et al. 2014; 17(1): 45-6. http://nuclmed.web.auth.gr/magazine/eng/jan14/11.pdf Original Articles. Medical practice applied in the ancient Asclepeion in Kos island. M. Mironidou-Tzouveleki, P.M. Tzitzis. 2014; 17(3): 167-70. http://www.nuclmed.web.auth.gr/magazine/eng/sept14/3.pdf Special Historical Article. How a tertiary medical nuclear medicine department at the Himalayan area in India can be established and function in an exemplary manner. Basic rules revisited. V.K. Dhingra, S. Saini et al. 2015; 18(3): 252-6. http:// nuclmed.web.auth.gr/magazine/eng/sept15/13.pdf Historical and Commentary Note. Johann Sebastian Bach's "Goldberg variations" to treat insomnia from renal lithiasis pain. Sleep research in Nuclear Medicine. A. Otte. 2016; 19(1): 13-4. http://nuclmed.web.auth.gr/magazine/eng/jan16/06.pdf Historical Review. The first medical ethics and deontology in Europe as derived from Greek mythology

  9. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  10. Regulation and quality in nuclear medicine 2 october 1998

    International Nuclear Information System (INIS)

    Kouchner, B.; Huriet, C.; Le Deaut, J.Y.

    1999-01-01

    The aim of this meeting is to examine how the regulations are liable to decrease the patient taking charge. The problem of the public information and opinion in the nuclear medicine domain is also presented. The nineteen presentations are proposed in 2 sessions. The first one deals with the state of the art of the nuclear medicine in France (techniques and regulations). The second one deals with the environment of the nuclear medicine (irradiation limits, public opinion, doctors and medicine quality). (A.L.B.)

  11. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  12. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  13. Sports medicine in The Netherlands: consultation with a sports physician without referral by a general practitioner

    Directory of Open Access Journals (Sweden)

    de Bruijn MC

    2013-01-01

    Full Text Available Matthijs C de Bruijn,1 Boudewijn J Kollen,2 Frank Baarveld21Center for Sports Medicine, 2Department of General Practice, University Medical Center Groningen, University of Groningen, The NetherlandsBackground: In The Netherlands, sports medicine physicians are involved in the care of about 8% of all sports injuries that occur each year. Some patients consult a sports physician directly, without being referred by a general practitioner. This study aims to determine how many patients consult a sports physician directly, and to explore differences in the profiles of these patients compared with those who are referred.Methods: This was an exploratory cross-sectional study in which all new patients presenting with an injury to a regional sports medical center during September 2010 were identified. The characteristics of patients who self-referred and those who were referred by other medical professionals were compared.Results: A total of 234 patients were included (mean age 33.7 years, 59.1% male. Most of the injuries occurred during soccer and running, particularly injuries of the knee and ankle. In this cohort, 39.3% of patients consulted a sports physician directly. These patients were significantly more often involved in individual sports, consulted a sports physician relatively rapidly after the onset of injury, and had received significantly less care before this new event from medical professionals compared with patients who were referred.Conclusion: In this study, 39.3% of patients with sports injuries consulted a sports physician directly without being referred by another medical professional. The profile of this group of patients differed from that of patients who were referred. The specific roles of general practitioners and sports physicians in medical sports care in The Netherlands needs to be defined further.Keywords: sports injuries, sports medicine physician, primary care, secondary care

  14. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  15. The Growing Demand for Hospice and Palliative Medicine Physicians: Will the Supply Keep Up?

    Science.gov (United States)

    Lupu, Dale; Quigley, Leo; Mehfoud, Nicholas; Salsberg, Edward S

    2018-04-01

    The need for hospice and palliative care is growing rapidly as the population increases and ages and as both hospice and palliative care become more accepted. Hospice and palliative medicine (HPM) is a relatively new physician specialty, currently training 325 new fellows annually. Given the time needed to increase the supply of specialty-trained physicians, it is important to assess future needs to guide planning for future training capacity. We modeled the need for and supply of specialist HPM physicians through the year 2040 to determine whether training capacity should continue growing. To create a benchmark for need, we used a population-based approach to look at the current geographic distribution of the HPM physician supply. To model future supply, we calculated the annual change in current supply by adding newly trained physicians and subtracting physicians leaving the labor force. The current U.S. supply of HPM specialists is 13.35 per 100,000 adults 65 and older. This ratio varies greatly across the country. Using alternate assumptions for future supply and demand, we project that need in 2040 will range from 10,640 to almost 24,000 HPM specialist physicians. Supply will range from 8100 to 19,000. Current training capacity is insufficient to keep up with population growth and demand for services. HPM fellowships would need to grow from the current 325 graduates annually to between 500 and 600 per year by 2030 to assure sufficient physician workforce for hospice and palliative care services given current service provision patterns. Copyright © 2018 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  16. Medicine and nuclear war - helpless

    International Nuclear Information System (INIS)

    1983-01-01

    At the end of the ''2nd Medical Congress for the Prevention of Nuclear War'' attention is again drawn to the fact that erroneous or intended use of nuclear weapons can kill hundreds of millions and make the earth unlivable. What physicians are refusing here is not to give whatever help they can or are obliged to. They are on strike against politicians and journalists who ascribe them an ability they do not possess. They refuse to be the objects of false praise pretending that they could be helpers or rescuers in the, unfortunately, not only possible but probable nuclear catastrophe. (orig./HSCH) [de

  17. Why physician-assisted suicide perpetuates the idolatory of medicine.

    Science.gov (United States)

    Cherry, Mark J

    2003-01-01

    Adequate response to physician-assisted suicide and euthanasia depends on fundamental philosophical and theological issues, including the character of an appropriate philosophically and theologically anchored anthropology, where the central element of traditional Christian anthropology is that humans are created to worship God. As I will argue, Christian morality and moral epistemology must be nested within and understood through this background Christian anthropology. As a result, I will argue that physician-assisted suicide and euthanasia can only be one-sidedly and inadequately appreciated through rational appeal to central values, such as "human dignity" and "self determination", or through "sola scriptura" biblical interpretation, or individual judgments of conscience. Adequately addressing physician-assisted suicide and euthanasia will depend on a more fundamental spiritual-therapeutic approach. This cluster of moral, epistemological, anthropological, and bioethical claims will be explored by drawing on the texts of St. Basil the Great, St. Maximos the Confessor, and St. Isaac the Syrian. Their reflections on medicine, the human good, and its relationship to worship, spiritual therapy, and God will be used as a basis to indicate a broader philosophical perspective, which will be needed to avoid a one-sided, incomplete approach to the challenges of physician-assisted suicide and euthanasia. Medical morality, I argue, is best understood within categories that transcend the right, the good, the just, and the virtuous; namely, the holy.

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  19. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  20. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  1. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Gonchigsuren, D.

    2007-01-01

    Full text: Mongolia is a large, landlocked and sparsely populated country in the northern part of Central Asia, located between Russia on the north and China on east, south and west. Its total land area of 1.5 millions square kilometers is about the size if India or large than Alaska, but contains only 2.3 million population or 1.3 person per square kilometer. It is 2400 kilometers long from east to west maximum of 1260 kilometers from north to south.The priority problems in health.Democratic political reforms since 1990 saw a major transformation process, which is aimed at changing the centrally planned economy to one based on market orient principles. Mongolia is in a gradual epidemiological transition from preponderance of infectious diseases towards non-communicable and degenerative diseases. Mean features of this transition are sharp decrease in mortality from infectious and parasitic diseases and sharp increase in mortality from diseases of the circulatory system and neoplasms. Life expectancy at birth was 65.7 year in 1997. Cardiovascular diseases and cancer are among the leading causes of death in Mongolia.Nuclear Medicine in Mongolia-1975-1981 Beginning First Medical Application of radioisotopes in 1972. First Rectilinear scanner. Single and dual scintillation detectors system, Thyroid Uptake Test; 1982-1999 Settlement, IAEA TC Project since 1982, Thematic Program on Health Care (RAS) since 1997, First Gamma Camera since 1997, Radioimmunological Laboratory and first Radioiodine treatment since 1982, Mongolian Society of Nuclear Medicine since 1982, Member of World and Federation of Nuclear Medicine and Biology since 1994, Member of Asia and Oceania Radionuclide Therapy Council , 2000 Development, First SPECT and Quantitative Measurement in 2000 Second Gamma Camera, New Thyroid Uptake System-Atomlab 950 PC Spectrometer Radioimmunological Laboratory replacement, Myocardial Perfusion Scintigraphy, Liver Cancer Treatment with Re-188, Radiosynovectomy with Re

  2. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  3. Views of new internal medicine faculty of their preparedness and competence in physician-patient communication

    Directory of Open Access Journals (Sweden)

    Duncan Alan K

    2006-05-01

    Full Text Available Abstract Background We sought to assess self-rated importance of the medical interview to clinical practice and competence in physician-patient communication among new internal medicine faculty at an academic medical center. Methods Since 2001, new internal medicine faculty at the Mayo Clinic College of Medicine (Rochester, Minnesota have completed a survey on physician-patient communication. The survey asks the new faculty to rate their overall competence in medical interviewing, the importance of the medical interview to their practice, their confidence and adequacy of previous training in handling eight frequently encountered challenging communication scenarios, and whether they would benefit from additional communication training. Results Between 2001 and 2004, 75 general internists and internal medicine subspecialists were appointed to the faculty, and of these, 58 (77% completed the survey. The faculty rated (on a 10-point scale the importance of the medical interview higher than their competence in interviewing; this difference was significant (average ± SD, 9.4 ± 1.0 vs 7.7 ± 1.2, P Conclusion Although new internal medicine faculty rate high the importance of the medical interview, they rate their competence and adequacy of previous training in medical interviewing relatively low, and many indicate that they would benefit from additional communication training. These results should encourage academic medical centers to make curricula in physician-patient communication available to their faculty members because many of them not only care for patients, but also teach clinical skills, including communication skills, to trainees.

  4. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety

    Science.gov (United States)

    Blum, Alexander B; Shea, Sandra; Czeisler, Charles A; Landrigan, Christopher P; Leape, Lucian

    2011-01-01

    Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine. In late 2007, at the behest of the US Congress, the Institute of Medicine embarked on a year-long examination of the scientific evidence linking resident physician sleep deprivation with clinical performance deficits and medical errors. The Institute of Medicine’s report, entitled “Resident duty hours: Enhancing sleep, supervision and safety”, published in January 2009, recommended new limits on resident physician work hours and workload, increased supervision, a heightened focus on resident physician safety, training in structured handovers and quality improvement, more rigorous external oversight of work hours and other aspects of residency training, and the identification of expanded funding sources necessary to implement the recommended reforms successfully and protect the public and resident physicians themselves from preventable harm. Given that resident physicians comprise almost a quarter of all physicians who work in hospitals, and that taxpayers, through Medicare and Medicaid, fund graduate medical education, the public has a deep investment in physician training. Patients expect to receive safe, high-quality care in the nation’s teaching hospitals. Because it is their safety that is at issue, their voices should be central in policy decisions affecting patient safety. It is likewise important to integrate the perspectives of resident physicians, policy makers, and other constituencies in designing new policies. However, since its release

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from ...

  6. Tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana

    1999-01-01

    This book is a contribution to the training and diffusion of the tomography method image diagnosis in nuclear medicine, which principal purpose is the information to professionals and technical personnel, specially for the spanish speaking staff

  7. Poster - 03: How to manage a nuclear medicine PET-CT for radiation oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Hinse, Martin; Létourneau, Étienne; Duplan, Danny; Piché, Émilie; Rivière, Rose Nerla; Bouchard, Guillaume [Centre Intégré de Cancérologie de Laval (Canada)

    2016-08-15

    Purpose: Development of an adapted multidisciplinary procedure designed to optimize the clinical workflow between radiation therapy (RT) and nuclear medicine (NM) for a PET-CT located in the NM department. Methods : The radiation oncologist (RO) prescribes the PET-CT exam and the clinical RT therapist gives all the necessary information to the patient prior to the exam. The immobilization accessories are prepared in the RT department. The RT and NM therapists work together for radiotracer injection, patient positioning and scan acquisition. The nuclear medicine physician (NMP) will study the images, draw Biological Target Volumes (BTVs) and produce a full exam report. Results : All tasks related to a planning PET-CT are done within 48 hours from the request by the RO to the reception of the images with the NMP contours and report. Conclusions : By developing a complete procedure collectively between the RT and NM departments, the patient benefits of a quick access to a RT planning PET-CT exam including the active involvement of every medical practitioners in these fields.

  8. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  9. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  10. Czechoslovak nuclear medicine, development and present state

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)

    1981-01-01

    The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... result, imaging may be done immediately, a few hours later, or even a few days after your ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... small amount of energy in the form of gamma rays. Special cameras detect this energy, and with ... imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... and other metallic accessories should be left at home if possible, or removed prior to the exam ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce ... manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/ ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ... differently than when breathing room air or holding his or her breath. With some exams, a catheter ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... computer, create pictures offering details on both the structure and function of organs and tissues in your ... substantially shorten the procedure time. The resolution of structures of the body with nuclear medicine may not ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... than five decades, and there are no known long-term adverse effects from such low-dose exposure. ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  10. The Present Status of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Mun Ho

    1968-01-01

    It is my privilege to give you a brief history on the status of nuclear medicine in Korea. There is nothing much to mention, as the history of the peaceful use of atomic energy is rather short and the RI facilities are limited in the number. It is my sincere hope, however, that you may understand what steps nuclear medicine in the developing countries did take and how it has been developed, seeing the present status of nuclear medicine in Korea, as one of the models. In our country, the peaceful use of atomic energy was actualized since the Law of Atomic Energy had been enacted in March 1959, and the Office of Atomic Energy and the Atomic Energy Research Institute had been established. The Korea Society of Nuclear Medicine was organized in 1961, which i think is one of the older in the Far East area. The Society now held about 170 members and the annual meetings in addition to the quarterly meeting have been held. The 6th general scientific meeting for 1967 is scheduled to be held in 25 November. The society publishes the Korean Journal of Nuclear Medicine twice a year, and the second issue appeared Oct. 1967. The instruments used in nuclear medicine are mostly expensive, therefore, the hospitals equipped with such instruments are inevitably limited in number and the after-service or repair of such instruments are technically not easy. Some of these difficulties, i hope, shall be overcome in the near future.

  11. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  12. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  13. Training in Techniques and Translation: Novel Nuclear Medicine Imaging Agents for Oncology and Neurology

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhude [Washington Univ., St. Louis, MO (United States)

    2012-08-01

    The goal of this grant was to provide critical interdisciplinary research training for the next generation of radiochemists and nuclear medicine physicians through a collaboration between basic science and clinical faculty who are actively involved in the development, application, and translation of radiopharmaceuticals. Following the four year funding support period, the 10 postdocs, graduate students, as well as clinical physicians who received training have become faculty members, or senior radiochemists at different academic institutes or industry. With respect to scientific accomplishments, 26 peer-reviewed articles have been published to date as well as numerous poster and oral presentations. The goals of all four scientific projects were completed and several promising radiotracers identified for transfer into clinical investigation for human use. Some preliminary data generated from this training grant led several successful NIH grant proposals for the principal investigators.

  14. Report from Uruguay: Nuclear medicine in Latin America

    International Nuclear Information System (INIS)

    Touya, E.

    1987-01-01

    The paper presents some historical aspects concerning the development of nuclear medicine in Latin American countries. The role and the impact of nuclear medicine on health care is analysed and the present needs for the further development of these techniques in developing countries are presented

  15. Self-perception and knowledge of evidence based medicine by physicians.

    Science.gov (United States)

    Aguirre-Raya, Karen A; Castilla-Peón, María F; Barajas-Nava, Leticia A; Torres-Rodríguez, Violeta; Muñoz-Hernández, Onofre; Garduño-Espinosa, Juan

    2016-06-29

    The influence, legitimacy and application of Evidence Based Medicine (EBM) in the world is growing as a tool that integrates, the best available evidence to decision making in patient care. Our goal was to identify the relationship between self-perception about the relevance of Evidence Based Medicine (EBM) and the degree of basic knowledge of this discipline in a group of physicians. A survey was carried out in a third level public hospital in Mexico City. Self-perception was measured by means of a structured scale, and the degree of knowledge through parameter or "rubrics" methodology. A total of 320 questionnaires were given to 55 medical students (17 %); 45 pre-graduate medical interns (14 %); 118 medical residents (37 %) and 102 appointed physicians of different specialties (32 %). Self-perception of EBM: The majority of those surveyed (n = 274, 86 %) declared that they were very or moderately familiar with EBM. The great majority (n = 270, 84 %) believe that EBM is very important in clinical practice and 197 physicians (61 %) said that they implement it always or usually. The global index of self-perception was 75 %. Knowledge of EBM: Definition of EBM; Seven of those surveyed (2 %) included 3 of the 4 characteristics of the definition, 82 (26 %) mentioned only two characteristics of the definition, 152 (48 %) mentioned only one characteristic and 79 (25 %) did not include any characteristic of EBM. Phases of the EBM process: The majority of those surveyed (n = 218, 68 %) did not include the steps that characterize the practice of EBM, of which 79 participants (25 %) mentioned elements not related to it. The global index of knowledge was 19 %. The majority of the surveyed physicians have a high self-perception of the relevance of EBM. In spite of this, the majority of them did not know the characteristics that define the EBM and phases of the process for its practice. A major discrepancy was found between self-perception and the

  16. Determination of efficacy of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Saenger, E.L.; Buncher, C.R.; Specker, B.; McDevitt, R.A.

    1984-01-01

    Nuclear medicine, a high technology field, is evaluated as to its usefulness. This paper describes the SNM study of 2023 patients comparing two methods evaluating efficacy for lung scanning (LS). Only the referring physicians determined the probabilities of the most important (MI) and most likely (ML) diagnoses and management before and after lung scanning. A logistic regression model was developed for probability of a signout diagnosis of PE. Equal patient groups tested the validity of the regression equations for the probability of PE as MI or ML. The models developed on Group I (G-I) and used on Group II (G-II) gave similar results. This shows that LS classifies PE and NOT PE categories where PE was considered both MI and ML. Entropy minimax pattern detection (EMPD) attempts prediction of signout diagnosis and management from prior patient attributes. In 2023 cases, attributes alone could not eliminate the use of LS for all patients. Comparing the two methods, the predictive values, sensitivity and specificity of each method are similar. EMPD predicts on a relatively small percent (40% before LS, 71% post LS) while the logistic equation predicts on 100% of the cases. An advantage of EMPD is that it does not require estimates of prior probability. However, LR, uses this estimate, thus incorporating intuitive knowledge not evaluated by EMPD. These methods are unique in showing that LS can direct the referring physician toward or away from anticoagulant therapy based on findings of the lung scan

  17. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... and are rarely associated with significant discomfort or side effects. If the radiotracer is given intravenously, your child ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... The exception to this is if the child’s mother is pregnant. When the examination is completed, your ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... also very helpful. Often, a monitor with children's programming and/or children’s DVDs are available in the ... techniques for a variety of indications, and the functional information gained from nuclear medicine exams is often ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT ( ... About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  4. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  5. Assessment of knowledge of general practitioners about nuclear medicine

    International Nuclear Information System (INIS)

    Zakavi, R.; Derakhshan, A.; Pourzadeh, Z.

    2002-01-01

    Nuclear medicine is an important department in most of scientific hospitals in the world. Rapid improvement in the filed of nuclear medicine needs continuing education of medical students. We tried to evaluate the knowledge of general practitioners in the flied of nuclear medicine, hoping that this study help mangers in accurate planning of teaching programs. Methods and materials: We prepared a questionnaire with 14 questions regarding applications of nuclear medicine techniques in different specialities of medicine. We selected questions as simple as possible with considering the most common techniques and best imaging modality in some disease. One question in nuclear cardiology, one in lung disease, two questions in thyroid therapy, another two in gastrointestinal system, two in genitourinary system and the last two in nuclear oncology. Also 4 questions were about general aspects of nuclear medicine. We have another 4 questions regarding the necessity of having a nuclear medicine subject during medical study, the best method of teaching of nuclear medicine and the preferred method of continuing education. Also age, sex, graduation date and university of education of all subjects were recorded. Results: One hundred (General practitioners) were studied. including, 58 male and 42 female with age range of 27-45 years did . About 60% of cases were 27-30 years old and 40 cases were older than 40. Seventy two cases were graduated in the last 5 years. Mashad University was the main university of education 52 cases with Tehran University (16 cases) and Tabriz University (6 cases) in the next ranks. Also 26 cases were graduated from other universities. From four questions in the field of general nuclear nedione 27% were correctly answered to all questions, 37% correctly answered two questions and 10% had correct answered only one question. No correct answer was noted in 26% . correct answer was noted in 80% the held of nuclear cardiology and in 72% in the field of lung

  6. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This proceedings contains articles of 2002 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 15-16, 2002 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, General nuclear medicine. (Yi, J. H.)

  7. Quality control in paediatric nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.; Hahn, K.

    1997-01-01

    Nuclear medicine examinations in children require a maximum in quality. This is true for the preparation of the child and parents, the imaging procedure, processing and documentation. It is necessary that quality control through all steps is performed regularly. The aim must be that the children receive a minimum radiation dose, while there needs to be a high quality in imaging and clinical information from the study. Furthermore the child should not be too much psychologically affected by the nuclear medicine examination. (orig.) [de

  8. Involvement of WHO in the improvement of nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Souchkevitch, G.N.

    1986-01-01

    The World Health Organization's programme on nuclear medicine deals with the organization of nuclear medicine services, the training of personnel, the efficacy and efficiency of nuclear medicine, and quality assurance in nuclear medicine, instrumentation and radiopharmaceuticals. An analysis of the present situation in diagnostic imaging shows that new techniques and especially ultrasonography (US) may successfully compete with nuclear medicine. WHO is therefore concerned to stimulate objective evaluations of the appropriate role of each diagnostic imaging technology and to make relevant recommendations. In diagnostic nuclear medicine, the following main objectives are included in the WHO strategy: to restrict diagnostic nuclear medicine to those diseases where it cannot be substituted by other less costly and complicated methods; to decrease the cost of diagnostic procedures; and to prevent radiation hazard to patients, personnel and the public from the expanded use of radiopharmaceuticals. In the developing world this strategy may be carried out in two stages: (1) implementation of US in diagnostic services and the initiation of a comparative study of the diagnostic value of US and nuclear medicine imaging techniques in common diseases; (2) working out appropriate recommendations on a rational approach in imaging diagnostics and substitution of nuclear medicine by US in appropriate areas. The Intercomparison Study on Quality Performance of Nuclear Medicine Imaging Devices, established by WHO jointly with the International Atomic Energy Agency, and the organization of training workshops are examples of a successful approach to quality improvement in nuclear medicine in developing countries. (author)

  9. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  10. Can Physicians Identify Inappropriate Nuclear Stress Tests? An Examination of Inter-rater Reliability for the 2009 Appropriate Use Criteria for Radionuclide Imaging

    Science.gov (United States)

    Ye, Siqin; Rabbani, LeRoy E.; Kelly, Christopher R.; Kelly, Maureen R.; Lewis, Matthew; Paz, Yehuda; Peck, Clara L.; Rao, Shaline; Bokhari, Sabahat; Weiner, Shepard D.; Einstein, Andrew J.

    2014-01-01

    Background We sought to determine inter-rater reliability of the 2009 Appropriate Use Criteria (AUC) for radionuclide imaging (RNI) and whether physicians at various levels of training can effectively identify nuclear stress tests with inappropriate indications. Methods and Results Four hundred patients were randomly selected from a consecutive cohort of patients undergoing nuclear stress testing at an academic medical center. Raters with different levels of training (including cardiology attending physicians, cardiology fellows, internal medicine hospitalists, and internal medicine interns) classified individual nuclear stress tests using the 2009 AUC. Consensus classification by two cardiologists was considered the operational gold standard, and sensitivity and specificity of individual raters for identifying inappropriate tests was calculated. Inter-rater reliability of the AUC was assessed using Cohen’s kappa statistics for pairs of different raters. The mean age of patients was 61.5 years; 214 (54%) were female. The cardiologists rated 256 (64%) of 400 NSTs as appropriate, 68 (18%) as uncertain, 55 (14%) as inappropriate; 21 (5%) tests were unable to be classified. Inter-rater reliability for non-cardiologist raters was modest (unweighted Cohen’s kappa, 0.51, 95% confidence interval, 0.45 to 0.55). Sensitivity of individual raters for identifying inappropriate tests ranged from 47% to 82%, while specificity ranged from 85% to 97%. Conclusions Inter-rater reliability for the 2009 AUC for RNI is modest, and there is considerable variation in the ability of raters at different levels of training to identify inappropriate tests. PMID:25563660

  11. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  12. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  13. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special ... now making single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT) ...

  16. Avoidable challenges of a nuclear medicine facility in a developing nation

    International Nuclear Information System (INIS)

    Adedapo, Kayode Solomon; Onimode, Yetunde Ajoke; Ejeh, John Enyi; Adepoju, Adewale Oluwaseun

    2013-01-01

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation

  17. Some aspects of the development of nuclear medicine in the USSR

    International Nuclear Information System (INIS)

    Kasatkin, Yu.N.

    1989-01-01

    Principle directions of the development of nuclear medicine in the USSR are presented.Some problems, which solution affects the state of nuclear medicine in the country are discussed. Problems of technical equipment of nuclear-diagnostic investigations are considered. Measures, directed to improvement of proffesional traing of specialists dealing with nuclear medicine are planned

  18. Radiation Protection Programme in Nuclear Medicine Practice

    International Nuclear Information System (INIS)

    Alarfaj, Abd-I.M.

    2003-01-01

    This paper specifies the main elements of the radiation protection programma (RPP) that should be estabished for each practice, which involves radiation exposure. Practices of nuclear medicine have been considered as an example, since among the 245 installations which are conducting different practices with radiation sources in the Kingdom of Saudi Arabia, there are 78 installations dealing with nuclear medicine practices. Reviewing the RPP in these nuclear medicine installations, it may be easily concluded that the RPPs for the majority of these installations do not respond to the requirements of the regulatory body of the Kingdom, which is King Abdulaziz City for Science and Technology (KACST). This may be attributed to a set of different reasons, such as shortage in understanding the main elements of the RPP as well as in applying methodologies

  19. [Influence of pharmaceutical advertising on the physician. A contribution to ethics in medicine].

    Science.gov (United States)

    Kalb, Stefanie

    2004-01-01

    Physicians who prescribe medicaments to patients are the preferred target group of sales promotion by pharmaceutical industry. As studies show, pharmaceutical advertising actually exerts some influence on a physician's knowledge and habit of prescribing medicine, to the point of even inducing him to give preference to a special drug. Information on pharmaceuticals given by advertisements may contain some potential of bias, instead of offering the physician a chance of objectives additional training. Free gifts from the pharmaceutical industry may easily plunge a physician into a conflict of interest while giving therapy with drugs. The gift relationship established between him and pharmaceutical enterprises is apt to mutate to some sort of commitment he owes to the givers. Favouring a drug which has come about through he influence of advertising, can thus violate the principles of "good prescribing". For a treatment which contains potential for bias and a conflict of interest cannot possibly match the profession's principles of responsibility, fostering informed choice (autonomy), protecting the patient from harm (nonmaleficence), acting in a patient's best interest (beneficence), and promoting equity in health care (justice). Each physician should therefore be aware of possibly belonging to a preferred target group pharmaceutical sales promotion is aiming at. He should take an independent attitude while acquiring knowledge, and critically view the adequateness of free gifts he is offered. Even students of medicine should be encouraged to critically reflect on the necessary and essential relationship to pharmaceutical industries so that it may be moulded according to the benefit of the patients.

  20. Monitored course at distance Nuclear Medicine: Introduction of Basic Physics Aspects. Preliminary results

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; San Pedro, A.P.; Petrirena, G.

    2007-01-01

    Full text: This project try to evaluated the use of specialized multimedia product for a monitored education at distance of personnel who start to be close related with Nuclear Medicine Techniques like nurse, surgeons, specialized physician, oncologist, etc. The multimedia product included two items: Introduction to Nuclear Medicine Techniques and Basic aspects of radiation physics. Each item contents an audio visual conference (Power Point) and a charter (PDF): with theoretic aspects, understand verification questions and self-evaluation activities. The product need only a PC compatible with window 98 (or more advanced version), and 130MBy of memory spaced for archive. In order to verify the effectiveness of the distance course, we tested its results in 4 specialists: 1 nurse, 1 radio-pharmacist, 1 cardiologist and 1 neurologist. After consult and clarify their doubts, a final test was applied in order to check the knowledge acquired. With 100 point of maximum score and 60-point minimum to pass, the test contented 2 types of questions: true or false choice (with 50 aspects to verify, 1.5 point/ correct answer) and many correct choices (5 questions, 5 point/correct answer). The average result was 91.5 points/ students (89.5- 94 points); the four students pass the test with very good degree of comprehension (1 very good and 3 excellent). The course was polled about the quality of the material and their comprehension degree, asking the student to make suggestions if were needed. The average evaluation was 94 points (91-95 points). The suggestions made were: increase the number of examples and practical sequences, the understand verification questions and include monitored practical exercise. Conclusion: the product can be useful for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques. Recommendation: The program should be enrich with the suggested things and extend to other important items like: radiation protection

  1. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  2. Occupational radiation exposure in nuclear medicine department in Kuwait

    Science.gov (United States)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  3. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  4. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  5. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  6. Opinion: redefining the role of the physician in laboratory medicine in the context of emerging technologies, personalised medicine and patient autonomy ('4P medicine').

    Science.gov (United States)

    Orth, Matthias; Averina, Maria; Chatzipanagiotou, Stylianos; Faure, Gilbert; Haushofer, Alexander; Kusec, Vesna; Machado, Augusto; Misbah, Siraj A; Oosterhuis, Wytze; Pulkki, Kari; Twomey, Patrick J; Wieland, Eberhard

    2017-12-22

    The role of clinical pathologists or laboratory-based physicians is being challenged on several fronts-exponential advances in technology, increasing patient autonomy exercised in the right to directly request tests and the use of non-medical specialists as substitutes. In response, clinical pathologists have focused their energies on the pre-analytical and postanalytical phases of Laboratory Medicine thus emphasising their essential role in individualised medical interpretation of complex laboratory results. Across the European Union, the role of medical doctors is enshrined in the Medical Act. This paper highlights the relevance of this act to patient welfare and the need to strengthen training programmes to prevent an erosion in the quality of Laboratory Medicine provided to patients and their physicians. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  9. Annual congress of the European Association of Nuclear Medicine. EANM'14. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    The proceedings of the annual congress of the European Association of Nuclear Medicine EANM'14 contain abstracts on the following issues: nuclear cardiology practices, PET in lymphoma, advances in nuclear cardiology, dosimetry for intra-arterial treatment in the liver, pediatric nuclear medicine, therapeutic nuclear medicine, SPECT/CT, prostate cancer, extended competencies for nuclear medicine technologists, neurosciences - neurodegeneration and neuroinflammation, radionuclide therapy and dosimetry - preclinical studies, physics and instrumentation, clinical molecular imaging, conventional and specialized nuclear medicine.

  10. The state of the art in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.; University of Melbourne, VIC

    2001-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been an dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  11. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  12. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  13. [Alternative and complementary medicine from the primary care physician's viewpoint].

    Science.gov (United States)

    Soós, Sándor Árpád; Eőry, Ajándék; Eőry, Ajándok; Harsányi, László; Kalabay, László

    2015-07-12

    The patients initiate the use of complementary and alternative medicine and this often remains hidden from their primary care physician. To explore general practitioners' knowledge and attitude towards complementary and alternative medicine, and study the need and appropriate forms of education, as well as ask their opinion on integration of alternative medicine into mainstream medicine. A voluntary anonymous questionnaire was used on two conferences for general practitioners organized by the Family Medicine Department of Semmelweis University. Complementary and alternative medicine was defined by the definition of the Hungarian Academy of Sciences and certified modalities were all listed. 194 general practitioners answered the questionnaire (39.8% response rate). 14% of the responders had licence in at least one of the complementary and alternative therapies, 45% used complementary and alternative therapy in their family in case of illness. It was the opinion of the majority (91.8%) that it was necessary to be familiar with every method used by their patients, however, 82.5% claimed not to have enough knowledge in complementary medicine. Graduate and postgraduate education in the field was thought to be necessary by 86% of the responders; increased odds for commitment in personal education was found among female general practitioners, less than 20 years professional experience and personal experience of alternative medicine. These data suggest that general practitioners would like to know more about complementary and alternative medicine modalities used by their patients. They consider education of medical professionals necessary and a special group is willing to undergo further education in the field.

  14. Physician and patient attitudes towards complementary and alternative medicine in obstetrics and gynecology

    Directory of Open Access Journals (Sweden)

    Sen Ananda

    2008-06-01

    Full Text Available Abstract Background In the U.S., complementary and alternative medicine (CAM use is most prevalent among reproductive age, educated women. We sought to determine general attitudes and approaches to CAM among obstetric and gynecology patients and physicians. Methods Obstetrician-gynecologist members of the American Medical Association in the state of Michigan and obstetric-gynecology patients at the University of Michigan were surveyed. Physician and patient attitudes and practices regarding CAM were characterized. Results Surveys were obtained from 401 physicians and 483 patients. Physicians appeared to have a more positive attitude towards CAM as compared to patients, and most reported routinely endorsing, providing or referring patients for at least one CAM modality. The most commonly used CAM interventions by patients were divergent from those rated highest among physicians, and most patients did not consult with a health care provider prior to starting CAM. Conclusion Although obstetrics/gynecology physicians and patients have a positive attitude towards CAM, physician and patients' view of the most effective CAM therapies were incongruent. Obstetrician/gynecologists should routinely ask their patients about their use of CAM with the goal of providing responsible, evidence-based advice to optimize patient care.

  15. VIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1983-01-01

    The conference proceedings contain abstracts of 100 presented papers, mainly dealing with radioimmunoassays, radiopharmaceuticals, scintiscanning, computer tomography, radionuclide lymphography, ventriculography, angiography, nuclear cardiology, liquid scintillator techniques, radioisotope generators, radiospirometry and various uses of labelled compounds and tracer techniques in nuclear medicine. (M.D.)

  16. A literature review of the cost-effectiveness of nuclear medicine

    International Nuclear Information System (INIS)

    Carter, J.

    1995-01-01

    Nuclear medicine is a medical speciality that uses tiny quantities of radioactivity to produce diagnostic images. It also has a role in therapy for some thyroid diseases and certain tumours. Surveys have shown that nuclear medicine procedures are used significantly less in the UK than in many other countries in Europe. One reason may be that there is inadequate information about the clinical utility of these techniques, particularly their cost-effectiveness in clinical management. To establish what evidence was currently available about the cost-effectiveness of nuclear medicine, the British Nuclear Medicine Society commissioned a worldwide literature review in diseases of the heart, kidney, lung, bone, brain, bowel and thyroid. This volume summarises the findings of the independent study and gives details of the background, clinical utility and limitations of the different nuclear medicine procedures used in the diagnosis and treatment of each disease reviewed. (author)

  17. Medical applications of the nuclear energy

    International Nuclear Information System (INIS)

    Ugarte, Valentin E.

    2001-01-01

    The Nuclear Medicine School Foundation, in Mendoza (Argentina) was created in 1986 by the National Atomic Energy Commission (CNEA) and is supported by the Government of the Mendoza Province, the CNEA, and the National University of Cuyo. The main activities of the school are medical diagnosis using nuclear techniques and the training of physicians and technicians in nuclear medicine. Teletherapy and brachytherapy are also performed. The use of the PET is described in some detail

  18. Do we need a universal 'code of ethics' in nuclear medicine?

    Science.gov (United States)

    Ramesh, Chandakacharla N; Vinjamuri, Sobhan

    2010-06-01

    Recent years have seen huge advances in medicine and the science of medicine. Nuclear medicine has been no exception and there has been rapid acceptance of new concepts, new technologies and newer ways of working. Ethical principles have been traditionally considered as generic skills applicable to wide groups of scientists and doctors, with only token refinement at specialty level. Specialist bodies across the world representing wide groups of practitioners frequently have subgroups dealing exclusively with ethical issues. It could easily be argued that the basic principles of ethical practice adopted by specialist bodies closest to nuclear medicine practice, such as radiology and oncology, will also be applicable to nuclear medicine and that time and effort need not be spent on specifying a separate code for nuclear medicine. It could also be argued that nuclear medicine is an independent specialty and some (if not most) practitioners will not be aware of the guidelines adopted by other specialist societies, and that there is a need for re-iteration of ethical principles at the specialty level and on a worldwide scale.In this article we would like to present a brief history of medical ethics, discuss some of the advances in nuclear medicine and their associated ethical aspects, as well as list a framework of principles for consideration, should a specialist body deem it suitable to establish a 'code of ethics' for nuclear medicine.

  19. Characteristics of training and motivation of physicians working in emergency medicine

    Directory of Open Access Journals (Sweden)

    Gilson Soares Feitosa-Filho

    Full Text Available Summary Introduction: Emergency medicine is an area in which correct decisions often need to be made fast, thus requiring a well-prepared medical team. There is little information regarding the profile of physicians working at emergency departments in Brazil. Objective: To describe general characteristics of training and motivation of physicians working in the emergency departments of medium and large hospitals in Salvador, Brazil. Method: A cross-sectional study with standardized interviews applied to physicians who work in emergency units in 25 medium and large hospitals in Salvador. At least 75% of the professionals at each hospital were interviewed. One hospital refused to participate in the study. Results: A total of 659 physicians were interviewed, with a median age of 34 years (interquartile interval: 29-44 years, 329 (49.9% were female and 96 (14.6% were medical residents working at off hours. The percentage of physicians who had been trained with Basic Life Support, Advanced Cardiovascular Life Support and Advanced Trauma Life Support courses was 5.2, 18.4 and 11.0%, respectively, with a greater frequency of Advanced Cardiovascular Life Support training among younger individuals (23.6% versus 13.9%; p<0.001. Thirteen percent said they were completely satisfied with the activity, while 81.3% expressed a desire to stop working in emergency units in the next 15 years, mentioning stress levels as the main reason. Conclusion: The physicians interviewed had taken few emergency immersion courses. A low motivational level was registered in physicians who work in the emergency departments of medium and large hospitals in Salvador.

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... measure the amount of the radiotracer in a small area of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is usually performed on an ... Intravenous: a small needle is used to inject the radiotracer. The ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  2. Nuclear medicine in sports

    International Nuclear Information System (INIS)

    Sharma, Anshu Rajnish

    2010-01-01

    Nuclear medicine can synergistically contribute to the sports medicine field, in the management of sports-related stress injures. Bone scintigraphy is commonly requested for evaluation of athletes with pain. Three-Phase 99m Tc MDP Bone Scan has emerged as the imaging reference standard for diagnosing such injuries. The inherently high-contrast resolution of the bone scan allows early detection of bone trauma and becomes positive within six to seventy-two hours after the onset of symptoms. The bone scan is able to demonstrate stress injuries days to weeks before the radiograph

  3. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  4. A glance at the history of nuclear medicine

    International Nuclear Information System (INIS)

    Carlsson, S.

    1995-01-01

    The development of nuclear medicine has resulted in several effective routine methods in diagnosis and therapy. There is an ongoing discussion about the future of the activity based on the fast development of ultrasound, CT and MR. In such discussions, it is often forgotten that nuclear medicine is also a dynamic diagnostic tool under continuous progress. As seen from this historical review, nuclear medicine has grown from quite simple in vitro tests to very advanced methods to image organ function. This is the result of the development of radiopharmaceuticals and instrumentation. Today, development is moving towards what is called receptor scintigraphy, i.e., the use of radiopharmaceuticals which are very specific to certain diseases, for instance, tumours. Even at present there is no other method to determine the regional myocardial blood flow both at stress and at rest, than myocardial scintigraphy. Nuclear medicine will remain an important diagnostic tool as long as it employs people with engagement and interest. Such people will also guarantee that the hospital management will supply the activity with funds for the necessary investments. (orig.)

  5. Official Program and Abstracts of the 15. Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97); Iberoamerican Congress of Nuclear Medicine

    International Nuclear Information System (INIS)

    1997-01-01

    This issue contains 117 abstracts of lectures and poster sessions of the 15th Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97) and Iberoamerican Congress of Nuclear Medicine, held in Lima, Peru, from 26 to 30 October 1997. The key subjects addressed are nuclear medicine and diagnostic techniques on brain, liver, lungs, heart, osteo-articular, cardiology, oncology, endocrinology, radiopharmaceuticals, medical physics, SPECT and their applications in diagnostic medicine. (APC)

  6. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  7. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  8. Present situation and proposal for nuclear medicine development

    International Nuclear Information System (INIS)

    Oliva Gonzalez, Juan P.

    2003-01-01

    In the present paper, the current situation of the Cuban nuclear medicine, after its introduction in the country in the 40s of the 20 th century and its expansion since 1962 and, particularly, from the installation of the first gamma camera in 1980, is analyzed. Nowadays, there is a total 14 Nuclear Medicine Departments or Services in our country within the National Oncology Networks and national Health System (SNS), which provide medical attention to the population depending on the nuclear equipment available A Program for the medical and technical personnel's training is proposed, as well as for gradual development of nuclear medicine department's (including the installation of gamma cameras, divided into two stages: 2003-2004 and 2005-2006). The prospective results of the proposed program are analyzed, as well as the impact on the populations health

  9. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... both imaging exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  11. More about ... Nuclear medicine

    African Journals Online (AJOL)

    Thyroid scintigraphy. In neonates with hypothyroidism detected on neonatal screening and confirmed by subsequent testing, a radionuclide thyroid scan should be performed as soon as possible. It must be undertaken in all nuclear medicine departments as a matter of urgency. Any delay in treatment should be avoided.

  12. Occupational exposure of nuclear medicine personnel

    International Nuclear Information System (INIS)

    Roessler, M.

    1982-01-01

    The results are given of measurements of the radiation burden of personnel in departments of nuclear medicine in the years 1979 to 1981 using film dosemeters and ring thermoluminescence dosemeters evaluated by the national personnel dosemeter service. The relations are examined of the exposure of hands and the preparation of radiopharmaceuticals and especially their use for examinations. Certain organizational measures are indicated for reducina radiation burden in a laboratory for the preparation of radiopharmaceuticals. The results of measurements and evaluations of radiation burden of personnel of nuclear medicine departments are confronted with conclusions published in the literature. (author)

  13. Basic requirements of nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, E H

    1993-12-31

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  14. Basic requirements of nuclear medicine services

    International Nuclear Information System (INIS)

    Belcher, E.H.

    1992-01-01

    Technological progress in nuclear medicine continues, not always to the immediate advantage of the developing world. The capital expense, operational demands and maintenance requirements of ever more complex equipment, the consequent need for highly trained staff, the necessity to assure regular supplies of costly radioactive materials, all present problems to which compromise or alternative solutions must often be sought. This chapter constitutes an attempt to define the basic requirements for thr practice of nuclear medicine with respect to staff, equipment, accommodation, supplies and supporting services with particular reference to the needs of institutions in developing countries

  15. Nuclear methods in medicine

    International Nuclear Information System (INIS)

    Wolfe, D.M.

    1997-01-01

    Physicists have created remarkably sophisticated instruments for the performance of experiments. With variable phase lags many of these have become useful in technology. In the medical field NMD techniques have become commonplace under the rubric of Magnetic Resonance Imaging. Particle physics has developed sophisticated detectors for both charged and neutral particles. Many of these also have been adapted to medical uses. In both radiology and nuclear medicine, pixel detectors based on designs originating at large-scale colliders, are becoming highly useful in replacing film and NaI as the primary means of X-ray and (-ray detection. Coupled with high-speed work stations, these new techniques allow exciting new imagining modalities. Many of these are based on the handling of digital images originally developed for astronomy. Thus, once again, fundamental science is making large contributions to the development of technology. In this talk, various examples of developments in digital mammography and digital detectors for nuclear medicine will be given. The possibilities for telemedicine will be discussed. (author)

  16. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  17. National survey: Assessment of the level of satisfaction of clinician prescribers as to the form nuclear medicine reports

    International Nuclear Information System (INIS)

    Bonardel, G.; Mantzarides, M.; Brenot-Rossi, I.; Gibold, C.; Foulquie, P.; Zerdoud, S.; Faraggi, M.; Songy, B.; Hindie, E.; Paycha, F.

    2008-01-01

    Aim Optimization in medical imaging concerns the whole procedures used to improve the quality of an exam. This process includes technical performance of the exam and also relates to the form and the quality of the report provided to the patient and to the referring physician. Sample survey was held under the auspices of the French Nuclear Medicine Society in order to evaluate the level of satisfaction of the clinician prescribers as to the form of the report in nuclear medicine. Materials and methods Questionnaires were sent by postal and electronic means by the nuclear medicine departments of the whole territory to their usual scintigraphic exams prescribers. Results Four hundred and fifteen questionnaires were collected by electronic and postal means coming from the whole metropolitan territory and gathering all the specialties of prescribers. The rate of satisfaction is high to very high (79%). Ninety-one percent of the clinicians attach great importance to the respect of the four parts of the report. A more detailed analysis of the items of the questionnaire is carried out and the free comments of the clinicians are analyzed. Thus, 94 % attach importance to the description of the physiological images and 74 % to quantitative values, 69 % think that a great heterogeneity exists according to centers and 68 % acknowledge that an unstructured report may lead the prescriber not to take the exam into account. Conclusion This survey, rich in learning, urges us to go on with the second part of the study devoted to the constitution of guidelines for the writing of reports in nuclear medicine. (authors)

  18. Activities of radiopharmaceuticals administered for diagnostic and therapeutic procedures in nuclear medicine in Argentina: results of a national survey

    International Nuclear Information System (INIS)

    Bomben, Ana M.; Chiliutti, Claudia A.

    2004-01-01

    Nuclear medicine in Argentine is carried out at 292 centres, distributed all over the country, mainly concentrated in the capital cities of the provinces. With the purpose of knowing the activity levels of radiopharmaceuticals that were administered to patients for diagnostic and therapeutic procedures in nuclear medicine, a national survey was conducted, during 2001 and 2002. This survey was answered voluntarily by 107 centres. Sixty-four percent of the participants centres are equipped with SPECT system while the other centres have a gamma camera or scintiscanner. There were 37 nuclear medicine procedures, chosen among those most frequently performed, were included in the survey. In those diagnostic procedures were included tests for: bone, brain, thyroid, kidney, liver, lung and cardiovascular system; and also activities administered for some therapeutic procedures. The nuclear medicine physicians reported the different radiopharmaceutical activities administered to typical adult patients. In this paper are presented the average radiopharmaceutical activity administered for each of the diagnostic and therapeutic procedures included in the survey and the range and distribution of values. In order to place these data in a frame of reference, these average values were compared to the guidance levels for diagnostic procedures in nuclear medicine mentioned at the Safety Series no. 115. From this comparison it was noticed that the activities administered in the 40% of the diagnostic procedures included in the survey were between ±30% of the reference values. For those nuclear medicine procedures that could not be compared with the above mentioned guidance levels, the comparison was made with values published by UNSCEAR or standards recommended by international bodies. As a result of this study, it is important to point out the need to continue the gathering of data in a wider scale survey to increase the knowledge about national trends. It is also essential to widely

  19. Attitudes to evidence-based medicine of primary care physicians in Asir region, Saudi Arabia.

    Science.gov (United States)

    Khoja, T A; Al-Ansary, L A

    2007-01-01

    A questionnaire survey was made of primary health care physicians in Asir region, Saudi Arabia in 1999 to explore their awareness of and attitude towards evidence-based medicine. The 272 respondents welcomed the principles of evidence-based medicine. Awareness and use of extracting journals, review publications and databases was low. Pharmaceutical company sponsored journals were the most commonly read. Bibliographic databases could only be accessed by 13% of respondents and the Internet by only 6%. There was only partial understanding of technical terms used in evidence-based medicine. Absence of a local library and increased patient workload were seen by most respondents as the main obstacles to practising evidence-based medicine.

  20. The perceived value of clinical pharmacy service provision by pharmacists and physicians: an initial assessment of family medicine and internal medicine providers.

    Science.gov (United States)

    Wietholter, Jon P; Ponte, Charles D; Long, Dustin M

    2017-10-01

    Few publications have addressed the perceptions of pharmacists and physicians regarding the value of clinical pharmacist services. A survey-based study was conducted to determine whether Internal Medicine (IM) and Family Medicine (FM) pharmacists and physicians differed in their attitudes regarding the benefits of collaboration in an acute care setting. The primary objective was to evaluate perceived differences regarding self-assessment of value between IM and FM pharmacists. The secondary objective was to evaluate perceived differences of clinical pharmacist benefit between IM and FM physicians. An eight-item questionnaire assessed the attitudes and beliefs of pharmacists and physicians regarding the value of clinical pharmacy services. Surveys were emailed and participants marked their responses using a 7-point Likert scale for each item. Demographic data and overall comments were collected from each participant. Overall, 167 surveys were completed. When comparing cumulative physician and pharmacist responses, none of the eight questions showed significant differences. Statistically significant differences were noted when comparing IM and FM clinical pharmacists on five of the eight survey items; for each of these items, FM pharmacists had more favourable perceptions than their IM counterparts. No statistically significant differences were noted when comparing responses of IM and FM physicians. This study found that FM pharmacists perceived a greater benefit regarding participation in inpatient acute care rounds when compared to their IM pharmacist counterparts. Future studies are necessary to determine if other medical specialties' perceptions of clinical pharmacy provision differ from our findings and to evaluate the rationale behind specific attitudes and behaviours. © 2016 Royal Pharmaceutical Society.

  1. Past and present of measuring apparatus for nuclear medicine

    International Nuclear Information System (INIS)

    Murayama, Hideo

    2013-01-01

    The history of advancement of measuring apparatus for nuclear medicine is looked back. It is presented that Japanese contribution to these advancement has been in no small quantities. The future view carrying the measuring apparatus for nuclear medicine is also described. (M.H.)

  2. Current trends in nuclear medicine in Pakistan

    International Nuclear Information System (INIS)

    Kamal, S.; Ahmed, S.

    1990-01-01

    This volume is a compilation of dissertations on research projects submitted by the fellows of M. Sc. (Nuclear Medicine) who undertook a two-year intensive course initiated in 1989 by the Centre for Nuclear Studies, PINSTECH, Islamabad. The project covered major aspects of nuclear medicine including the cardiovascular, endocrine, haematopoietic, hepatobiliary, immune and skeletal systems. The results obtained proved interesting and of significant clinical relevance. Majority of essays addressed some new aspects of the problems and the resultants information should prove interesting for both local and foreign enthusiasts. This book proves a reflection of the high quality of work done by the faculty and the fellows. (orig./A.B.)

  3. Fundamentals, constitution and tasks of the German authorities for quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Rink, T.

    2005-01-01

    Among other novelties, the national realization of the European Council Directive 97/43 Euratom demanded the formation of competent authorities for quality assurance in nuclear medicine that have become operative in the meantime. Their tasks are laid down in the revised versions of the German ''Strahlenschutzverordnung'' and ''Richtlinie Strahlenschutz in der Medizin''. They perform periodical investigations in all nuclear medicine installations to verify compliance with legal provisions on radiological protection, functioning as independent mediators between practitioners and persons legally responsible for the medical facilities on the one hand, and the supervisory board of the national administration on the other hand. They assist physicians and managers with fulfillment of the legal requirements and give advise for optimizing medical radiological procedures. The government has to be notified about the summarized results of the regular examinations at least once a year. However, severe infringements, consistent excess of the diagnostic reference levels or refusal to contribute the demanded documents by a facility undergoing an inspection, have to be reported immediately. This section describes the legal fundamentals, the constitution and the tasks of the inspecting authorities in Germany with accentuation on the course of the investigations. (orig.)

  4. Recruitment of minority physicians into careers in internal medicine.

    Science.gov (United States)

    Potts, J T

    1992-06-15

    Despite some initial success in the early 1970s, the important goal of increasing the numbers of underrepresented minorities in medical school and on medical faculties has stalled short of proportionate representation. To further the current efforts of the Association of Professors in Medicine (APM) and other national medical groups that are devoted to improving the numbers of minorities in medicine, ideas and program information must be shared among institutions. In this spirit, we review our experience at Massachusetts General Hospital. We found that the first step toward this goal must be an institutional commitment based on increased awareness and on special effort focused on housestaff recruitment. Once the numbers of minorities increase, the department chairperson, training program directors, and other involved faculty can work with younger minority physicians; the cooperative relationship thus created can guide the development of a strong minority recruitment program without requiring an undue time commitment from minority trainees and faculty. The APM has a combined goal: to achieve early practical results in individual departments, to play a catalytic role with the community and other national medical organizations, and to increase the number of minorities entering medical school and careers in medicine generally.

  5. The teaching of nuclear medicine

    International Nuclear Information System (INIS)

    Bok, B.; Ducassou, D.

    1984-01-01

    Having first recalled the need of a specialized teaching in the field of nuclear medicine, the authors describe the training programmes now available in this sector for doctors, chemists and hospital-attendants [fr

  6. Does Spanish instruction for emergency medicine resident physicians improve patient satisfaction in the emergency department and adherence to medical recommendations?

    Directory of Open Access Journals (Sweden)

    Stoneking LR

    2016-08-01

    Full Text Available LR Stoneking,1 AL Waterbrook,1 J Garst Orozco,2 D Johnston,1 A Bellafiore,1 C Davies,3 T Nuño,1 J Fatás-Cabeza,4 O Beita,5 V Ng,1 KH Grall,6 W Adamas-Rappaport7 1Department of Emergency Medicine, University of Arizona, Tucson, AZ, 2Department of Emergency Medicine, Sinai Health System, Chicago, IL, 3Department of Emergency Medicine, Maricopa Medical Center, Phoenix, AZ, 4Department of Spanish and Portuguese, University of Arizona, Tucson, AZ, 5Department of Family and Community Medicine, University of Arizona, Tucson, AZ, 6Department of Emergency Medicine, Regions Hospital, St Paul, MN, 7Department of Surgery, University of Arizona, Tucson, AZ, USA Background: After emergency department (ED discharge, Spanish-speaking patients with limited English proficiency are less likely than English-proficient patients to be adherent to medical recommendations and are more likely to be dissatisfied with their visit.Objectives: To determine if integrating a longitudinal medical Spanish and cultural competency curriculum into emergency medicine residency didactics improves patient satisfaction and adherence to medical recommendations in Spanish-speaking patients with limited English proficiency.Methods: Our ED has two Emergency Medicine Residency Programs, University Campus (UC and South Campus (SC. SC program incorporates a medical Spanish and cultural competency curriculum into their didactics. Real-time Spanish surveys were collected at SC ED on patients who self-identified as primarily Spanish-speaking during registration and who were treated by resident physicians from both residency programs. Surveys assessed whether the treating resident physician communicated in the patient’s native Spanish language. Follow-up phone calls assessed patient satisfaction and adherence to discharge instructions.Results: Sixty-three patients self-identified as primarily Spanish-speaking from August 2014 to July 2015 and were initially included in this pilot study

  7. Teaching of nuclear medicine at medical faculties

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1987-01-01

    The teaching of nuclear medicine at medical faculties in the CSSR is analyzed. It is shown that the teaching conditions are different at the individual faculties of medicine and the respective conditions are exemplified. (author). 4 tabs

  8. Patients' and physicians' satisfaction with a pharmacist managed anticoagulation program in a family medicine clinic.

    Science.gov (United States)

    Bishop, Lisa; Young, Stephanie; Twells, Laurie; Dillon, Carla; Hawboldt, John

    2015-06-09

    A pharmacist managed anticoagulation service was initiated in a multi-physician family medicine clinic in December 2006. In order to determine the patient and physician satisfaction with the service, a study was designed to describe the patients' satisfaction with the warfarin education and management they received from the pharmacist, and to describe the physicians' satisfaction with the level of care provided by the pharmacist for patients taking warfarin. A self-administered survey was completed by both eligible patients receiving warfarin and physicians prescribing warfarin between December 2006 and May 2008. The patient survey collected information on patient demographics, satisfaction with warfarin education and daily warfarin management. The physician survey collected data about the satisfaction with patient education and daily anticoagulation management by the pharmacist. Seventy-six of 94 (81%) patients completed the survey. Fifty-nine percent were male with a mean age of 65 years (range 24-90). Ninety-six percent agreed/strongly agreed the pharmacist did a good job teaching the importance of warfarin adherence, the necessity of INR testing and the risks of bleeding. Eighty-five percent agreed/strongly agreed the risk of blood clots was well explained, 79% felt the pharmacist did a good job teaching about dietary considerations and 77% agreed/strongly agreed the pharmacist explained when to see a doctor. All patients felt the pharmacist gave clear instructions on warfarin dosing and INR testing. Four of nine physicians (44%) completed the survey. All agreed/strongly agreed the pharmacist was competent in the care provided, were confident in the care their patients received, would like the pharmacist to continue the service, and would recommend this program to other clinics. Patients and family physicians were satisfied with the pharmacist managed anticoagulation program and recommended continuation of the program. These results support the role of the

  9. Nuclear medicine in Tunisia : current status and prospects

    International Nuclear Information System (INIS)

    Hammami, Hatem

    2013-01-01

    Nuclear medicine is concerned with the utilisation of radioactivity in vivo or in vitro for diagnostic or therapeutic purposes. In Tunisia, there are four public departments of nuclear medicine and seven private clinics. 50% of the population is localized in the north, which justifies the existence of 7 public and private departments of nuclear medicine with nine gamma cameras in this region. In the south, there are 30 pour cent of the population that goes to Sfax and 20 pour cent to Sousse where we count two departments with gamma cameras in public services and one in the private sector. The nuclear medicine services in the public sector have 4 SPECT / CT. Siemens is the leading provider of gamma cameras and occupies 73 pour cent of market share, subsequently ranks SMV (13 pour cent) and (GE and GAEDE) have the same proportion of the market share (7 pour cent). For radio-protected rooms, there is a single center with a single chamber from four public services. On the other hand, there are 2/7 private centers that are equipped with five radio-protected electrically rooms. Concerning the human resources, there are 26 doctors and 24 technicians in the public sector. The private sector has 6 doctors and 12 technicians. In 2012, there has been 22000 examinations (diagnostic and therapeutic procedures) in which 14,600 in nuclear medicine departments of public hospitals. Bone scintigraphy ranks first, with a relative frequency of 40-80 pour cent thereafter ranks renal scintigraphy (10-15 pour cent) and then the thyroid scintigraphy (8-12 pour cent). The waiting period is a major problem, especially in the public sector. Taking as an example, for the therapy of thyroid, injection of 100 mCi of I-131 requires a period of waiting more than six months and waiting more than three months for the bone scan. The second problem for patient with cancer is the distance, there are 11 centers concentrated in 3 coastal cities and none in the inner areas of the country, no regional

  10. Diagnosis of liver lesions in nuclear medicine

    International Nuclear Information System (INIS)

    Krause, T.; Juengling, F.

    2003-01-01

    With the introduction of new imaging protocols for ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI), the importance of conventional nuclear medicine diagnostic procedures has changed fundamentally. With the introduction of positron emission tomography (PET) into routine diagnostics, the assessment of tissue-specific function adds on to the modern, morphological imaging procedures and in principle allows for differentiating benign from malignant lesions. The actual clinical value of nuclear medicine procedures for the diagnostic workup of focal liver lesions is discussed. (orig.) [de

  11. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  12. Extract from IAEA's Resources Manual in Nuclear Medicine - Part 2. - Human Resources Development

    International Nuclear Information System (INIS)

    2003-01-01

    The Nuclear Medicine Section of the International Atomic Energy Agency is now engaged in finalizing a reference manual in nuclear medicine, entitled, 'Resources Manual in Nuclear Medicine'. Several renowned professionals from all over the world, from virtually all fields of nuclear medicine have contributed to this manual. The World Journal of Nuclear Medicine will publish a series of extracts from this manual as previews. This is the second extract from the Resources Manual, Part-2 of the chapter on Human Resources Development. (author)

  13. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  14. An internet-based teaching file on clinical nuclear medicine

    International Nuclear Information System (INIS)

    Jiang Zhong; Wu Jinchang

    2001-01-01

    Objective: The goal of this project was to develop an internet-based interactive digital teaching file on nuclide imaging in clinical nuclear medicine, with the capability of access to internet. Methods: On the basis of academic teaching contents in nuclear medicine textbook for undergraduates who major in nuclear medicine, Frontpage 2000, HTML language, and JavaScript language in some parts of the contents, were utilized in the internet-based teaching file developed in this study. Results: A practical and comprehensive teaching file was accomplished and may get access with acceptable speed to internet. Besides basic teaching contents of nuclide imagings, a large number of typical and rare clinical cases, questionnaire with answers and update data in the field of nuclear medicine were included in the file. Conclusion: This teaching file meets its goal of providing an easy-to-use and internet-based digital teaching file, characteristically with the contents instant and enriched, and with the modes diversified and colorful

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  16. Considerations regarding nuclear medicine terminology

    International Nuclear Information System (INIS)

    Als, C.

    2008-01-01

    This article through some examples shows us all the interest of the use of terminology in nuclear medicine. Each would find in it its interest, from the patient to the doctors in different disciplines. (N.C.)

  17. Basic Physics for Nuclear Medicine. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E. B. [Department of Medical Physics, McGill University, Montreal (Canada); Kesner, A. L. [Division of Human Health, International Atomic Energy Agency, Vienna (Austria); Soni, P. S. [Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai (India)

    2014-12-15

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters.

  18. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  19. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine

  20. Radiation exposure of nuclear medicine procedures in Germany

    International Nuclear Information System (INIS)

    Hacker, M.

    2005-01-01

    Nuclear Medicine procedures offer the possibility to detect abnormalities on the basis of physiological and metabolic changes and to treat a growing number of diseases in human beings. However, the use of radiopharmaceuticals for nuclear medicine examinations causes a significant component of the total radiation exposure of populations. In Germany it is an essential task of the Federal Office for Radiation Protection to determinate and assess radiation exposure of the population due to nuclear medicine diagnostics and therapy. An important input for this task is the frequency of nuclear-medical examinations with application of ionising radiation and the radiation exposure of patients related to the various procedures. Additional implementation of age- and gender-specific data today allows more exact risk stratification in focusing on different subgroups of patients. Moreover, the collective effective dose as well as the per caput effective dose of the German population may be estimated and compared with earlier collected data or foreign countries. These data reveal where the indication should be questioned particularly critically and if the dose for the various examinations can be reduced and, thus, contribute to the definition of diagnostic reference levels for nuclear medicine procedures in Germany with the aim of both a sufficient image quality and a minimum of radiation exposure. Exceeding the high- as well as the low-values requires documentation and explanation. (orig.)