Covariant density functional theory for nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Badarch, U.
2007-07-01
The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)
Covariant density functional theory for nuclear matter
International Nuclear Information System (INIS)
Badarch, U.
2007-01-01
The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)
Clustering phenomena in nuclear matter below the saturation density
International Nuclear Information System (INIS)
Takemoto, Hiroki; Fukushima, Masahiro; Chiba, Satoshi; Horiuchi, Hisashi; Akaishi, Yoshinori; Tohsaki, Akihiro
2004-01-01
We investigate density-fluctuated states of nuclear matter as a result of clustering below the saturation density ρ 0 by description in terms of the Bloch function. The Bloch description has the advantage of a unified representation for a density-fluctuated state from an aggregate of uncorrelated clusters in extremely low-density regions to the plane-wave state of uniform matter in relatively high-density regions. We treat the density-fluctuated states due to α and 16 O clustering in symmetric nuclear matter and due to 10 He clustering in asymmetric nuclear matter. The density-fluctuated states develop as the density of matter decreases below each critical density around 0.2-0.4 ρ 0 which depends on what kind of effective force we use
Supernovae and high density nuclear matter
International Nuclear Information System (INIS)
Kahana, S.
1986-01-01
The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs
Supernovae and high density nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Kahana, S.
1986-01-01
The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.
Pion condensation and density isomerism in nuclear matter
International Nuclear Information System (INIS)
Hecking, P.; Weise, W.
1979-01-01
The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely
Three-dimensional structure of low-density nuclear matter
International Nuclear Information System (INIS)
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka
2012-01-01
We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.
Three-dimensional structure of low-density nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2012-07-09
We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.
Simulations of cold nuclear matter at sub-saturation densities
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Nichols, J.I. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); López, J.A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Dorso, C.O. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2014-03-01
Ideal nuclear matter is expected to undergo a first order phase transition at the thermodynamic limit. At such phase transitions the size of density fluctuations (bubbles or droplets) scale with the size of the system. This means that simulations of nuclear matter at sub-saturation densities will inexorably suffer from what is vaguely referred to as “finite size effects”. It is usually thought that these finite size effects can be diminished by imposing periodic boundary conditions and making the system large enough, but as we show in this work, that is actually not the case at sub-saturation densities. In this paper we analyze the equilibrium configurations of molecular dynamics simulations of a classical model for symmetric ideal (uncharged) nuclear matter at sub-saturation densities and low temperatures, where phase coexistence is expected at the thermodynamic limit. We show that the most stable configurations in this density range are almost completely determined by artificial aspects of the simulations (i.e. boundary conditions) and can be predicted analytically by surface minimization. This result is very general and is shown to hold true for several well known semi-classical models of nuclear interaction and even for a simple Lennard-Jones potential. Also, in the limit of very large systems, when “small size” effects can be neglected, those equilibrium configurations seem to be restricted to a few structures reminiscent to the “Pasta Phases” expected in Neutron Star matter, but arising from a completely different origin: In Neutron Star matter, the non-homogeneous structures arise from a competition between nuclear and Coulomb interactions while for ideal nuclear matter they emerge from finite (yet not “small”) size effects. The role of periodic boundary conditions and finite size effects in Neutron Star matter simulations are reexamined.
Simulation study for the nuclear matter below the saturation density
International Nuclear Information System (INIS)
Kido, Toshihiko; Maruyama, Toshiki; Chiba, Satoshi; Niita, Koji
1999-01-01
The infinite nuclear matter that consists of numerous protons and neutrons is described by using periodic boundary conditions. The motion of each nucleon in the fundamental cell is decided by a Molecular Dynamics. The ground states or the excited states of the nuclear matter are simulated. (author)
The determination of nuclear matter temperature and density
International Nuclear Information System (INIS)
Wolf, K.L.
1981-01-01
The purpose of this paper is to review some of the things we have learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies. High energy heavy-ion collisions provide a unique mechanism for exploring the dependence of the nuclear potential energy epsilon(rho,T) on the degree of compression and excitation, and may even show the existence of new phases of matter. Thus the determination of the nuclear equation of state remains the ultimate goal of many researchers in this field. (orig.)
Determination of nuclear-matter temperature and density
International Nuclear Information System (INIS)
Wolf, K.L.
1980-01-01
Some of the things learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies are reviewed. Two developments are discussed. The completion of analyses and publication of results from the impact parameter selected, single-particle inclusive experiments have proven to be important. Preliminary results from the new generation of two-particle correlation and particle-exclusive measurements, especially those using streamer chambers, look even more definitive. Also the measurement of more exotic ejectiles with long mean free paths in nuclear matter promises to provide more basic information. Calculations are offering real guidance and are providing explanations of high energy collisions. The Monte Carlo and intranuclear cascade calculations discussed are especially informative
Nuclear matter studies with density-dependent meson-nucleon coupling constants
International Nuclear Information System (INIS)
Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.
1997-01-01
Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society
Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts
International Nuclear Information System (INIS)
Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A.; Yudin, A. V.
2011-01-01
Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.
Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts
Energy Technology Data Exchange (ETDEWEB)
Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A., E-mail: trusov@itep.ru; Yudin, A. V. [Institute for Theoretical and Experimental Physics (Russian Federation)
2011-03-15
Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.
Formation and disintegration of high-density nuclear matter in heavy-ion collisions
International Nuclear Information System (INIS)
Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo
1976-01-01
The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)
Probing the nuclear matter at high baryon and isospin density with heavy ion collisions
International Nuclear Information System (INIS)
Di Toro, M.; Colonna, M.; Ferini, G.
2010-01-01
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)
International Nuclear Information System (INIS)
Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang
2003-01-01
The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)
Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka
2013-08-01
In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”
DEFF Research Database (Denmark)
da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik
2013-01-01
relativistic fluid of elementary particles is studied. We find that the magnetic field of spin polarized matter with densities of 2 to 30, where 0 is the equilibrium density of nuclear matter, is rather huge, of the order of 1017 Gauss. Finally we look at the chiral nature of nuclear forces and interactions...... as they possibly relate to chirality of nuclei (atoms) in molecules as a source of chirality in amino acids and hence in life. Previous works have not investigated the nuclear forces as a possible bias which initiated the bias towards L-amino acids as the building blocks on proteins, and later life....
Energy Technology Data Exchange (ETDEWEB)
Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC
Tafrihi, Azar
2018-05-01
The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.
Wigner-Kirkwood expansion of the phase-space density for half infinite nuclear matter
International Nuclear Information System (INIS)
Durand, M.; Schuck, P.
1987-01-01
The phase space distribution of half infinite nuclear matter is expanded in a ℎ-series analogous to the low temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood expansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness parameter is defined, which determines the convergence of the series and explains the very rapid convergence of the Wigner-Kirkwood expansion for average (nuclear) binding energies
Liu, Jian; Ren, Zhongzhou; Xu, Chang
2018-07-01
Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV nuclear matter can be obtained together.
Instability in relativistic nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1979-11-01
The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)
Nuclear matter and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Nuclear matter in neutron star crust
International Nuclear Information System (INIS)
Kido, Toshihiko; Maruyama, Toshiki; Chiba, Satoshi; Niita, Koji
2000-01-01
Properties of nuclear matter below the nuclear saturation density is analyzed by numerical simulations with the periodic boundary condition. The equation of state at these densities is softened by the formation of cluster(s) internal density of which is nearly equal to the saturation density. The structure of nuclear matter shows some exotic shapes with variation of the density. Furthermore, it is found that the symmetry parameter a sym (ρ) is not a linear function of density at low density region. (author)
Phase transitions in nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1984-11-01
The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Probing nuclear matter with dileptons
International Nuclear Information System (INIS)
Schroeder, L.S.
1986-06-01
Dileptons are shown to be of interest in helping probe extreme conditions of temperature and density in nuclear matter. The current state of experimental knowledge about dileptons is briefly described, and their use in upcoming experiments with light ions at CERN SPS are reviewed, including possible signatures of quark matter formation. Use of dileptons in an upcoming experiment with a new spectrometer at Berkeley is also discussed. This experiment will probe the nuclear matter equation of state at high temperature and density. 16 refs., 8 figs
Structure of the subsaturated nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Maruyama, Toshiki; Maruyama, Tomoyuki; Chiba, Satoshi; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Niita, Koji; Oyamatsu, Kazuhiro
1998-07-01
Quantum molecular dynamics is applied to study the ground state and excited state properties of nuclear matter at subsaturation densities. The structure of nuclear matter at subsaturation density shows some exotic shapes with variation of the density. However, the structure in our result is rather irregular compared to those of previous works due to the existence of local minimum configurations. (author)
Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density
International Nuclear Information System (INIS)
Smith, Michael Scott; Roberts, Luke F.; Hix, William Raphael; Bruner, Blake D.; Kozub, R.L.; Tytler, David; Fuller, George M.; Lingerfelt, Eric J.; Nesaraja, Caroline D
2008-01-01
We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio η given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the η constraint.
International Nuclear Information System (INIS)
Smith, Michael S.; Roberts, Luke F.; Hix, W. Raphael; Bruner, Blake D.; Kozub, Raymond L.; Tytler, David; Fuller, George M.; Lingerfelt, Eric; Nesaraja, Caroline D.
2008-01-01
We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio η given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the η constraint
International Nuclear Information System (INIS)
Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L.; Roberts, Luke F.; Tytler, David; Fuller, George M.; Lingerfelt, Eric; Hix, William Raphael; Nesaraja, Caroline D
2008-01-01
We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint
Temperature and density of nuclear matter in central CC interactions at P=4.2 GeV/c per nucleon
International Nuclear Information System (INIS)
Didenko, L.A.; Grishin, V.G.; Kowalski, M.; Kuznetsov, A.A.
1984-01-01
An estimation of the temperature and density of nuclear matter in central carbon-carbon interactions at P/A=4.2 GeV/c is presented. It is shown that at energies of about 4 GeV per nucleon it is possible to reach the transitional region between hadronic matter and quark-gluon plasma. The results could be however more convincing if one uses heavier ions than carbon
Symmetric nuclear matter with Skyrme interaction
International Nuclear Information System (INIS)
Manisa, K.; Bicer, A.; Atav, U.
2010-01-01
The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.
International Nuclear Information System (INIS)
Grimes, S.M.
2005-01-01
Recent research in the area of nuclear level densities is reviewed. The current interest in nuclear astrophysics and in structure of nuclei off of the line of stability has led to the development of radioactive beam facilities with larger machines currently being planned. Nuclear level densities for the systems used to produce the radioactive beams influence substantially the production rates of these beams. The modification of level-density parameters near the drip lines would also affect nucleosynthesis rates and abundances
International Nuclear Information System (INIS)
Negele, J.W.; Zabolitzky, J.G.
1978-01-01
It is stated that at the Workshop on Nuclear and Dense Matter held at the University of Illinois in May 1977 significant progress was reported that largely resolves many of the questions raised in this journal Vol. 6, p.149, 1976. These include perturbative versus variational methods as applied to nuclear matter, exact solutions for bosons, what is known as the fermion 'homework problem', and various other considerations regarding nuclear matter, including the use of variational methods as opposed to perturbation theory. (15 references) (U.K.)
Extreme states in nuclear matter
International Nuclear Information System (INIS)
Rafelski, J.; Frankfurt Univ.
1981-01-01
Theory of hot nuclear fireballs consisting of all possible finite size hadronic constituents in chemical and thermal equilibrium is presented. As a complement of this hadronic gas phase characterized by maximal temperature and energy density, the quark bag description of the hadronic fireball is considered. Preliminary calculations of temperatures and mean transverse momenta of particles emitted in high multiplicity relativistic nuclear collisions together with some considereations on the observability of quark matter are offered. (orig.)
Indian Academy of Sciences (India)
QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...
Incompressibility of asymmetric nuclear matter
International Nuclear Information System (INIS)
Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan
2010-01-01
Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)
Isospin dependent properties of asymmetric nuclear matter
Chowdhury, P. Roy; Basu, D. N.; Samanta, C.
2009-01-01
The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic de...
International Nuclear Information System (INIS)
Cardoso Junior, J.L.
1982-10-01
Experimental data show that the number of nuclear states increases rapidly with increasing excitation energy. The properties of highly excited nuclei are important for many nuclear reactions, mainly those that go via processes of the compound nucleus type. In this case, it is sufficient to know the statistical properties of the nuclear levels. First of them is the function of nuclear levels density. Several theoretical models which describe the level density are presented. The statistical mechanics and a quantum mechanics formalisms as well as semi-empirical results are analysed and discussed. (Author) [pt
Soliton matter as a model of dense nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1985-01-01
We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures
International Nuclear Information System (INIS)
Negele, J.W.
1977-01-01
Recent advances in variational and perturbative theories are surveyed which offer genuine promise that nuclear matter will soon become a viable tool for investigating nuclear interactions. The basic elements of the hypernetted chain expansion for Jastrow variational functions are briefly reviewed, and comparisons of variational and perturbative results for a series of increasingly complicated systems are presented. Prospects for investigating realistic forces are assessed and the unresolved, open problems are summarized
International Nuclear Information System (INIS)
Besliu, C.; Popa, L.; Popa, V.
1992-01-01
We discuss some recent ideas concerning the structure and the properties of the dibaryonic resonances, with special emphasis on their behaviour when produced in dense nuclear matter. Some features of their de-excitation mechanism and consequent experimentally identifiable signatures are predicted. (Author)
Energy Technology Data Exchange (ETDEWEB)
Heiselberg, H [NORDITA, Copenhagen (Denmark)
1998-06-01
The kaon energy in a nuclear medium and its dependence on kaon-nucleon and nucleon-nucleon correlations is discussed. The transition from the Lenz potential at low densities to the Hartree potential at high densities can be calculated analytically by making a Wigner-Seitz cell approximation and employing a square well potential. As the Hartree potential is less attractive than the Lenz one, kaon condensation inside cores of neutron stars appears to be less likely than previously estimated. (orig.)
Quantum hadrodynamic and nuclear matter
International Nuclear Information System (INIS)
Serot, B.D.
1984-01-01
The properties of infinite nuclear matter are studied in the model relativistic quantum field theory of Walecka. Neutral scalar and vector meson exchange reproduces the basic Lorentz structure of the observed nucleon-nucleon interaction, and the consequences of this structure are studied in detail. In the mean-field approximation, nuclear saturation involves a cancellation between large attractive and repulsive components in the average potential energy. The attractive scalar field decreases the nucleon mass significantly, and the strong vector repulsion implies a stiff high-density equation of state. Corrections to the mean-field approach arising from vacuum fluctuations, self-consistent nucleon exchange, and two-nucleon correlations are examined. These have a small effect on the condensed meson fields but may produce significant changes in the binding energy. Corrections to the mean-field equation of state are small at high density
Minimal nuclear energy density functional
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas
2018-04-01
We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.
International Nuclear Information System (INIS)
Ilieva, Stoyanka
2008-01-01
In the current experiment, the differential cross sections for proton elastic scattering on the isotopes 7,9,10,11,12,14 Be and 8 B were measured. As results from the experiment, the absolute differential cross sections dσ/dt as a function of the four momentum transfer t were obtained. In this work the differential cross sections for elastic p- 12 Be, p- 14 Be and p- 8 B scattering at low t (t≤0.05(GeV/c) 2 ) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The determined rms matter radius is 3.11±0.04±0.13 fm. In the case of the 12 Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of 2.82±0.03±0.12 fm was determined. An interesting result is that the free 12 Be nucleus behaves differently from the core of 14 Be and is much more extended than it. Preliminary experimental results for the isotope 8 B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is 2.60±0.02±0.26 fm. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented. (orig.)
Ground state of high-density matter
Copeland, ED; Kolb, Edward W.; Lee, Kimyeong
1988-01-01
It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.
Nuclear matter physics at NICA
Energy Technology Data Exchange (ETDEWEB)
Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)
2016-08-15
The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
International Nuclear Information System (INIS)
Kolomeitsev, E.E.
1997-02-01
The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [de
Properties of the cloudy bag in nuclear matter
International Nuclear Information System (INIS)
Bunatyan, G.G.
1986-01-01
Because of the pion mode softening, the pion field of the clody bag in the nuclear matter increases if the nuclear density increases. This causes in its turn the decreasing of the bag size and at a sufficiently large density of the nuclear matter lead to absolute instability of the cloudy bag-nucleon, which means the transition of the nuclear matter in another nonnucleon phase
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Condensed Matter Nuclear Science
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research
Past and present of nuclear matter
International Nuclear Information System (INIS)
Ritter, H.G.
1994-05-01
The subject of nuclear matter is interesting for many fields of physics ranging from condensed matter to lattice QCD. Knowing its properties is important for our understanding of neutron stars, supernovae and cosmology. Experimentally, we have the most precise information on ground state nuclear matter from the mass formula and from the systematics of monopole vibrations. This gives us the ground state density, binding energy and the compression modulus k at ground state density. However, those methods can not be extended towards the regime we are most interested in, the regime of high density and high temperature. Additional information can be obtained from the observation of neutron stars and of supernova explosions. In both cases information is limited by the rare events that nature provides for us. High energy heavy ion collisions, on the other hand, allow us to perform controlled experiments in the laboratory. For a very short period in time we can create a system that lets us study nuclear matter properties. Density and temperature of the system depend on the mass of the colliding nuclei, on their energy and on the impact parameter. The system created in nuclear collisions has at best about 200 constituents not even close to infinite nuclear matter, and it lasts only for collision times of ∼ 10 -22 sec, not an ideal condition for establishing any kind of equilibrium. Extended size and thermal and chemical equilibrium, however, axe a priori conditions of nuclear matter. As a consequence we need realistic models that describe the collision dynamics and non-equilibrium effects in order to relate experimental observables to properties of nuclear matter. The study of high energy nuclear collisions started at the Bevalac. I will try to summarize the results from the Bevalac studies, the highlights of the continuing program, and extension to higher energies without claiming to be complete
Confinement and deconfinement of quarks in nuclear matter
International Nuclear Information System (INIS)
Baym, G.
1982-01-01
Nuclear matter at high baryon density or excitation energy is expected to undergo a transition to deconfined quark matter, a new state of matter, whose production and detection would be an exciting and basic advance in nuclear physics. These lectures summarize current understanding of quark matter and the deconfinement transition. Beginning with a review of elementary models of confinement, the basic properties of quark matter are described, estimates of the transition from hadronic to quark matter are made, and various ways one might see quark matter experimentally by production in nuclear collisions or in the form of metastable exotic nuclear objects are discussed. (author)
Isospin dependent properties of asymmetric nuclear matter
Chowdhury, P. Roy; Basu, D. N.; Samanta, C.
2009-07-01
The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and isovector components of the density dependent M3Y interaction. The incompressibility K∞ for the symmetric nuclear matter, the isospin dependent part Kasy of the isobaric incompressibility, and the slope L are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions and validates the important empirical constraints obtained from recent experimental data.
International Nuclear Information System (INIS)
Zielinska, M.; Zawislawski, Z.; Strugalska-Gola, E.; Strugalski, Z.
1991-01-01
It is shown how it is possible to transform known data on radial distribution of the matter layer thickness to unknown radial distribution of the matter density inside spherically symmetric objects. Appropriate formulas and testing of them are presented. An application of the method for the radial distribution of the matter density inside a target nucleus is discussed as an example. 2 refs.; 2 figs
Density dependence of the nuclear energy-density functional
Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho
2018-01-01
Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic
Nuclear interactions and hadronic matter
International Nuclear Information System (INIS)
Petrovici, Mihai; Pop, Amalia; Stoicea, Gabriel; Berceanu, Ionela; Moisa, Dorin; Petris, Mariana; Simion, Victor; Aiftimiei, Cristina; Cruceru, Ilie; Ciobanu, Mircea; Catanescu, Vasile; Caragheorgheopol; Gheorghe
2002-01-01
The new generation of heavy ion accelerators and complex experimental devices, developed in the last two decades, give access to new information concerning the dynamics of nuclear collisions and allow to obtain and study in the laboratory the nuclear matter under extreme conditions of density and temperature. Of special interest is the intermediate energy region where the reactions are dominated by the competition between the mean field and nucleon-nucleon interaction. Fundamental aspects of nuclear reaction studies are probed at different instants of a nuclear collision. One can learn about the transport properties of nuclear matter in pure nucleonic regime and understand the modification of the nucleon-nucleon cross section due to various in-medium effects: density effects, effective mass, quantum effects, three-body interactions. With increasing energy, fast particle emission associated with direct nucleon-nucleon collisions in the first steps of the reaction come into play too. At higher energy, flow measurements are crucial tests of the influence of medium effects by probing the elastic part of the nucleon-nucleon collisions. On the other side, at higher incident energies, the characteristics of the nuclear equation of state (EoS) can be studied if local thermal and chemical equilibrium turns out to be established. Understanding of the properties of the nuclear matter in extreme conditions is a fundamental goal. The EoS is also an essential ingredient in the description of the massive stars leading to supernova explosion and neutron star formation. Experimental studies of such aspects needs experimental devices of high complexity which can detect and identify event by event all products coming out from heavy ion interactions at intermediate, relativistic and ultra-relativistic energies, having as complete as possible information on their mass, charge, velocity vector. CHIMERA and FOPI are such devices for intermediate and relativistic energy, respectively. Our
Relativity damps OPEP in nuclear matter
International Nuclear Information System (INIS)
Banerjee, M.K.
1998-06-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M * /M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M * it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter
On radii of nuclear potential and density
International Nuclear Information System (INIS)
Bal'butsev, E.B.; Mikhajlov, I.N.
1975-01-01
The Saxon-Woods potential is widely used as an average field in different nuclear models: upsilon(r)=-upsilonsub(0)parameters: upsilonsub(0) is the well depth, Rsub(v) is the well width, a is the diffusivity of the potential edge. The potential parameters should be determined from the data on the nuclear matter distribution. The data available is in agreement with the formula for density: rho(r)=rhosub(0)same sense as Rsub(v), a. The experimental data show that Rsub(v) by 1 Fermi exceed Rsub(rho) approximately. There exist some suggestions that it caused by the finiteness of the radius of action of nuclear forces. It is noted that finiteness of radius of action of forces is a sufficient condition for the presence of this effect. A model is considered in which the matter is limited with a plane surface, so that the density depends only on a single spatial variable normal to the boundary of matter. As is shown by the results, the radius of nuclear potential exceeds that of the volume of the nuclear matter by 0.6 Fermi approximately. The mechanism of this phenomenon takes its origin from a quantum-mechanical effect of turning the wave functions into zero near the infinitely high wall and from their considerable decreasing near the wall of a finite height
Matter density distributions and elastic form factors of some two ...
Indian Academy of Sciences (India)
Ahmed N Abdullah
2017-08-31
Aug 31, 2017 ... include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form ... the nuclear structure models based on the experimental data for stable nuclei ... Most exotic nuclei are so short lived that they cannot be used as targets at rest.
Spectral properties of nuclear matter
International Nuclear Information System (INIS)
Bozek, P
2006-01-01
We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent
Hyperon interactions in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Dhar, Madhumita; Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)
2014-07-01
Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter. A meson exchange model is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effects have been incorporated by including a two particle Pauli projection operator in the scattering equation. The coupling of the various channels of total strangeness S=-1,-2 and conserved total charge is studied in detail. Calculations and the corresponding results are compared for using the isospin and the particle basis. Matrix elements are compared in detail, in particular discussing mixing effects of different hyperon channels. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.
Nuclear matter and its equation of state
International Nuclear Information System (INIS)
Stock, R.
1985-11-01
We can estimate the nuclear bulk compressibility from the excitation energy of the monopole vibration mode, which represents a density oscillation about rho 0 , of extremely small magnitude (a few percent) only. A description of the monopole excitation energy systematics has been obtained by assuming a parabolic shape about rho 0 for the energy-density relation of cold nuclear matter. This implies a linear pressure response to small density changes inside nuclear matter. It enables one to define a nuclear 'sound' mode and the sound velocity turns out to be vsub(s)proportional0.2 c. All of this could be known only for small excursions from rho 0 as long as we were unable to subject nuclei to extreme stresses. The study of head-on collisions of heavy nuclei at high energy has removed this limitation. In these reactions we are reproducing under laboratory conditions the extremely violent transformations of matter occuring in the cosmic and stellar evolution. From the quark-gluon stage of the Big Bang, prior to hadronic freeze-out, to the supernova these cosmic events require an understanding of matter bulk properties over an enormous range of density, from about 10 times rho 0 down to about 10 -3 rho 0 . We will approach them through the compression-expansion-freeze-out cycle of central nucleus-nucleus collisions in the energy range from 50 MeV per projectile nucleon, corresponding to the compression barrier, upwards to 225 GeV/A (the top energy of the CERN SPS), and further into the TeV/A range by observation of events induced by cosmic ray nuclei. In this article I describe some of the results recently obtained at the BEVALAC, i.e. in the GeV/A domain. (orig./HSI)
Probing the density content of the nuclear symmetry energy
Indian Academy of Sciences (India)
Abstract. The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy ...
Coherent scattering of neutrinos by 'nuclear pasta' in dense matter
International Nuclear Information System (INIS)
Sonoda, Hidetaka
2007-01-01
We examine coherent scattering cross section of neutrino and nucleon systems via weak-neutral current at subnuclear densities, which will be important in supernova cores. Below melting density and temparature of nuclei, nuclear shape becomes rodlike and slablike; this is called nuclear 'pasta'. Transition of structure will greatly influence coherent effects which can not easily be predicted. We calculate static structure factor of nuclear matter using data of several nuclear models, and discuss the effects of existence of nuclear pasta on neutrino opacity in hot dense matter
Matter Density Profile Shape Effects at DUNE
Energy Technology Data Exchange (ETDEWEB)
Kelly, Kevin J. [Northwestern U.; Parke, Stephen J. [Fermilab
2018-02-19
Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's matter density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.
Possible new form of matter at high density
International Nuclear Information System (INIS)
Lee, T.D.
1974-01-01
As a preliminary to discussion of the possibility of new forms of matter at high density, questions relating to the vacuum and vacuum excitation are considered. A quasi-classical approach to the development of abnormal nuclear states is undertaken using a Fermi gas of nucleons of uniform density. Discontinuous transitions are considered in the sigma model (tree approximation) followed by brief consideration of higher order loop diagrams. Production and detection of abnormal nuclear states are discussed in the context of high energy heavy ion collisions. Remarks are made on motivation for such research. 8 figures
A fermionic molecular dynamics technique to model nuclear matter
International Nuclear Information System (INIS)
Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.
2009-01-01
Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)
Wanted! Nuclear Data for Dark Matter Astrophysics
International Nuclear Information System (INIS)
Gondolo, P.
2014-01-01
Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei
Ambiguities about infinite nuclear matter
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1978-01-01
Exact solutions of the harmonic-oscillator and infinite hyperspherical well are given for the ground state of a infinitely heavy (N=Z) nucleus. The density of matter is a steadily decreasing function. The kinetic energy per particle is 12% smaller than the one predicted by the Fermi sea
Thermodynamics of neutron-rich nuclear matter
Energy Technology Data Exchange (ETDEWEB)
López, Jorge A., E-mail: jorgelopez@utep.edu [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A (United States); Porras, Sergio Terrazas, E-mail: sterraza@uacj.mx; Gutiérrez, Araceli Rodríguez, E-mail: al104010@alumnos.uacj.mx [Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México (Mexico)
2016-07-07
This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.
Properties of matter at ultra-high densities
International Nuclear Information System (INIS)
Banerjee, B.; Chitre, S.M.
1975-01-01
The recent discovery of pulsars and their subsequent identification with neutron stars has given a great impetus to the study of the behaviour of matter at ultra high densities. The object of these studies is to calculate the equation of state as a function of density. In this paper, the properties of electrically neutral, cold (T=0) matter at unusually high densities has been reviewed. The physics of the equation of state of such matter divides quite naturally in four density ranges. (i) At the very lowest densities the state of minimum energy is a lattice of 56 Fe atoms. This state persists upto 10 7 g/cm 3 . (ii) In the next density region the nuclei at the lattice sites become neutron rich because the high electron Fermi energy makes inverse beta decay possible. (iii) At a density 4.3 x 10 11 the nuclei become so neutron rich that the neutrons start 'dripping' out of the nuclei and form a gas. This density range is characterised by large, neutron-rich nuclei immersed in a neutron gas. (iv) At a density 2.4 x 10 14 g/cm 3 , the nuclei disappear and a fluid of uniform neutron matter with a small percentage of protons and electrons results. The above four density ranges have been discussed in detail as the equation of state is now well established upto the nuclear density 3 x 10 14 g/cm 3 . The problems of extending the equation of state beyond this density are also touched upon. (author)
Instanton vacuum at finite density of quark matter
International Nuclear Information System (INIS)
Molodtsov, S.V.; Zinovjev, G.M.
2002-01-01
We study light quark interactions in the instanton liquid at finite quark/baryon number density analyzing chiral and diquark condensates and investigate the behaviors of quark dynamical mass and both condensates together with instanton liquid density as a function of quark chemical potential. We conclude the quark impact (estimated in the tadpole approximation) on the instanton liquid could shift color superconducting phase transition to higher values of the chemical potential bringing critical quark matter density to the values essentially higher than conventional nuclear one
Meson theory and nuclear matter
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
An attempt is made to justify the use of the concept of a 'mesic fluid' in connection with the structure of nuclear matter. A transformation is made of the usual symmetric pseudo-scalar meson theory to bring into evidence certain saturation properties, which provide a natural basis for the use of a 'self-consistent' field in the discussion of nuclear structure. Fluctuations about this semi-classical saturated state will give rise to residual interparticle forces within the nucleus, and are also briefly considered in relation to electromagnetic interactions. (author). 5 refs
A density functional for sparse matter
DEFF Research Database (Denmark)
Langreth, D.C.; Lundqvist, Bengt; Chakarova-Kack, S.D.
2009-01-01
forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators......Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional...... theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed...
QCD sum rule for nucleon in nuclear matter
International Nuclear Information System (INIS)
Mallik, S.; Sarkar, Sourav
2010-01-01
We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities. (orig.)
Description of a nucleon in nuclear matter
International Nuclear Information System (INIS)
Bunatian, G.G.
1992-01-01
The nonlinear cloudy bag model, CBM, is generalized to describe a nucleon in nuclear matter at various densities ρ and temperatures T. The influence of the nuclear medium on the bag-nucleon in the framework of CBM is due to the modification of the equation describing the CBM pion field π. These changes are accounted for in the CBM by including in the CBM lagrangian the pion polarization operator π(ρ,T). The free pion propagator D is replaced in a nuclear medium by D(ρ,T). The changing of the pion field π and propagator D leads via the CBM equations to the modification of the bag size R and quark momentum p, determined simultaneously from these equations, and then to modifications of other bag-nucleon characteristics: the total energy E, r.m.s. radii, magnetic moment μ, polarizability α and so on, which all are expressed as the expectation values of the corresponding operators in the bag-nucleon state. The quantity π(ρ,T) was studied in the works whose results are used in this investigation. The nucleon size R in the nuclear matter at normal density ρ o and zero temperature decreases by 5% and the quarks momentum p also decreases, however, insignificantly, by 1-2%. On the other hand, the values of the r.m.s. radii increases by 15% for a proton and by 100% for a neutron. The author has also found that the polarizability of a nucleon in nuclear matter is roughly two times as much as in free space
Spin polarized states in strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density
Spin polarization in high density quark matter
DEFF Research Database (Denmark)
Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca
2013-01-01
We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.
1991-01-01
We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)
Quasiparticle interaction in nuclear matter
International Nuclear Information System (INIS)
Poggioli, R.S.; Jackson, A.D.
1975-07-01
A microscopic calculation of the quasiparticle interaction in nuclear matter is detailed. In order to take especial care of the contributions from the low momentum states, a model space is introduced. Excluded from the model space, the high momentum states are absorbed into the model interaction. Brueckner theory suggests the choice of a truncated G-matrix as a good approximation for this model interaction. A simple perturbative approach is attempted within the model space. The calculated quasiparticle interaction is consistent with experimental results. (11 tables, 14 figures)
Towards high-density matter with relativistic heavy-ion collisions
International Nuclear Information System (INIS)
Nagamiya, Shoji.
1990-04-01
Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)
Three-dimensional calculation of inhomogeneous nuclear matter
International Nuclear Information System (INIS)
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka
2012-01-01
We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.
Three-dimensional calculation of inhomogeneous nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka [Graduate School of Pure and Applied Science, University of Tsukuba (Japan); Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Graduate School of Pure and Applied Science, University of Tsukuba (Japan); Department of Physics, Kyoto University (Japan)
2012-11-12
We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.
Binding Energy and Compression Modulus of Infinite Nuclear Matter ...
African Journals Online (AJOL)
... MeV at the normal nuclear matter saturation density consistent with the best available density-dependent potentials derived from the G-matrix approach. The results of the incompressibility modulus, k∞ is in excellent agreement with the results of other workers. Journal of the Nigerian Association of Mathematical Physics, ...
Phase transition from nuclear matter to color superconducting quark matter
Energy Technology Data Exchange (ETDEWEB)
Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W
2003-06-02
We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.
Neutrino neutral current interactions in nuclear matter
International Nuclear Information System (INIS)
Horowitz, C.J.; Wehrberger, K.
1991-01-01
Detailed knowledge of neutrino transport properties in matter is crucial for an understanding of the evolution of supernovae and of neutron star cooling. We investigate screening of neutrino scattering from a dense degenerate gas of electrons, protons and neutrons. We take into account correlations induced by the Coulomb interactions of the electrons and protons, and the strong interactions of the protons and neutrons. Nuclear matter is described by the σω model of quantum hadrodynamics. Results are presented for typical astrophysical scenarios. The differential cross section is strongly reduced at large energy transfer, where electrons dominate, and slightly reduced for small energy transfer, where nucleons dominate. At large densities, the nucleon effective mass is considerably lower than the free mass, and the region dominated by nucleons extends to larger energy transfer than for free nucleons. (orig.)
Pion condensation in a theory consistent with bulk properties of nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1980-01-01
A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures
Strangeness in hot and dense nuclear matter
International Nuclear Information System (INIS)
Nappi, E.
2009-01-01
Ultra-relativistic heavy-ion collisions are believed to provide the extreme conditions of energy densities able to lead to a transition to a short-lived state, called Quark-Gluon Plasma (QGP), where the quarks are no longer bound inside hadrons. The studies performed so far, formerly at SPS (CERN) and later at RHIC (BNL) allowed to achieve a multitude of crucial results consistent with the hypothesis that a new phase of the QCD matter has been indeed created. However, the emerging picture is that of the formation of a strongly interacting medium with negligibly small viscosity, a perfect liquid, rather than the ideal perturbative QCD parton-gas predicted by most theorists. The head-on collision between lead nuclei at the unprecedented energies of the forthcoming Large Hadron Collider (LHC) at CERN, due to start in 2008, will allow to measure the properties of compressed and excited nuclear matter at even higher initial densities and temperatures, far above the predicted QCD phase transition point. The longer duration of the quark-gluon plasma phase and the much more abundant production of hard probes, which depend much less on details of the later hadronic phase, will likely provide a consistent and uncontroversial experimental evidence of the QGP formation. Among the signals what witness the charge in the nature of the state of nuclear matter, the chemical equilibrium value of the strangeness plays a key role since it is directly sensitive to the matter properties and provides information on the link between the partonic and the hadronic phases. The aim of this course is to overview the underlying goals, the current status and the prospect of the physics of the nucleus-nucleus collisions at ultrarelativistic energies. Among the experimental methods adopted to investigate the challenging signatures of the QGP formation, emphasis on those related to the strangeness flavour will be given.
Energy Technology Data Exchange (ETDEWEB)
Ilieva, Stoyanka
2008-07-01
In the current experiment, the differential cross sections for proton elastic scattering on the isotopes {sup 7,9,10,11,12,14}Be and {sup 8}B were measured. As results from the experiment, the absolute differential cross sections d{sigma}/dt as a function of the four momentum transfer t were obtained. In this work the differential cross sections for elastic p-{sup 12}Be, p-{sup 14}Be and p-{sup 8}B scattering at low t (t{<=}0.05(GeV/c){sup 2}) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The determined rms matter radius is 3.11{+-}0.04{+-}0.13 fm. In the case of the {sup 12}Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of 2.82{+-}0.03{+-}0.12 fm was determined. An interesting result is that the free {sup 12}Be nucleus behaves differently from the core of {sup 14}Be and is much more extended than it. Preliminary experimental results for the isotope {sup 8}B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is 2.60{+-}0.02{+-}0.26 fm. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented. (orig.)
D mesons in asymmetric nuclear matter
International Nuclear Information System (INIS)
Mishra, Amruta; Mazumdar, Arindam
2009-01-01
We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures
A new model for nuclear matter
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
The different values obtained for nuclear radii from electromagnetic interactions as compared with specifically nuclear interactions suggested a model of nuclear matter in which the meson field is supposed to condense into an incompressible fluid and the nucleonic sources are confined to its interior by a strong interaction between the sources and the fluid as a whole. The sources are also coupled to spin and charge fluctuations in the fluid, whose exchange leads to further internucleonic forces. It is necessary to postulate that the fluid have a comparatively low density; as a result rotational levels of the fluid are high, leading to a small probability of exchange of angular momentum (and charge coupled to it) with the sources. The values of the anomalous electrical interactions of nucleons deduced are in rough agreement with the facts. The nuclear structure indicated is a shell model embedded in the mesic fluid whose oscillations, strongly coupled to the nucleons, give rise to the collective features of nuclear structure as in the theory of Bohr and Mottelson. It is suggested that this picture of the mesic field may indicate where to look for solutions of the meson field equations. (author). 9 refs
Extreme states of matter high energy density physics
Fortov, Vladimir E
2016-01-01
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
Clustering and Symmetry Energy in a Low Density Nuclear Gas
International Nuclear Information System (INIS)
Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.
2007-01-01
Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation
Phases of kinky holographic nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija [Department of Mathematical Sciences, Durham University,South Road, Durham (United Kingdom)
2016-10-17
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.
Thermal properties of nuclear matter under the periodic boundary condition
International Nuclear Information System (INIS)
Otuka, Naohiko; Ohnishi, Akira
1999-01-01
We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)
López-Martín, María; Knicker, Heike
2017-04-01
Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions, which is in contrast to other studies showing a preferential recovery of BC in the fine particle size fractions. Possibly, the poor interaction between Py
Quark condensates in nuclear matter in the global color symmetry model of QCD
International Nuclear Information System (INIS)
Liu Yuxin; Gao Dongfeng; Guo Hua
2003-01-01
With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks
Nuclear matter as an MIT bag crystal
International Nuclear Information System (INIS)
Zhang, Q.; Derreth, C.; Schaefer, A.; Greiner, W.
1986-01-01
An MIT bag crystal model of nuclear matter is formulated. The energy bands of the quarks are calculated as a function of the overlap between adjacent bags. A clear indication of substantial overlap is found. Accordingly, infinite nuclear matter is more similar to a quark gas than to a nucleonic structure. (author)
Quasiparticle pole strength in nuclear matter
International Nuclear Information System (INIS)
Poggioli, R.S.; Jackson, A.D.
1975-01-01
It is argued that single-particle-like behavior in nuclear matter is much less probable than Brueckner theory suggests. In particular, the quasiparticle pole strength is evaluated for nuclear matter and it is shown that, contrary to the spirit of Brueckner theory, low momentum states play a crucial role in determining the magnitude of z/sub k/sub F/. (auth)
Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.
2015-01-01
This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...
Momentum and density dependence of the nuclear mean field
International Nuclear Information System (INIS)
Behera, B.; Routray, T.R.
1999-01-01
The purpose of this is to analyse the momentum, density and temperature dependence of the mean field in nuclear matter derived from finite range effective interactions and to examine the influence of the functional form of the interaction on the high momentum behaviour of the mean field. Emphasis will be given to use very simple parametrizations of the effective interaction with a minimum number of adjustable parameters and yet capable of giving a good description of the mean field in nuclear matter over a wide range of momentum, density and temperature. As an application of the calculated equation of state of nuclear matter, phase transitions to quark-gluon plasma is studied where the quark phase is described by a zeroth order bag model equation of state
Charge symmetry breaking nuclear forces and the properties of nuclear matter
International Nuclear Information System (INIS)
Haensel, P.
1977-01-01
The charge symmetry breaking (CSB) component of the nuclear forces yields the charge asymmetric term Esub(a)(N-Z)/A in the nuclear binding energy of nuclear matter. Calculation performed with several models of the CSB nuclear forces, and accounting for the strong short-range two-body correlations, gives Esub(a) approximately -0.2 MeV at the normal nuclear density. The charge asymmetry of the effective nucleon-nucleon interaction is determined primarily by the CSB nuclear forces at the neutron excess, observed in finite nuclei. The exclusion principle and dispersion (self-consistency) effects of the nuclear medium decrease this charge asymmetry. (author)
Matter in extremis: Ultrarelativistic nuclear collisions at RHIC
Energy Technology Data Exchange (ETDEWEB)
Jacobs, Peter; Wang, Xin-Nian
2004-08-20
We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.
Matter in extremis: Ultrarelativistic nuclear collisions at RHIC
International Nuclear Information System (INIS)
Jacobs, Peter; Wang, Xin-Nian
2004-01-01
We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at √s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state
Modified quark-meson coupling model for nuclear matter
International Nuclear Information System (INIS)
Jin, X.; Jennings, B.K.
1996-01-01
The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society
CSR of Lanzhou and nuclear physics at high densities
International Nuclear Information System (INIS)
Zhuang Pengfei; Zhao Weiqin
1999-01-01
The possibility to produce highly dense nuclear matter at CSR of Lanzhou and the corresponding signals at final state are discussed. Especially, the maximum baryon density reached at CSR is estimated, and the subthreshold production and hadronic flow risen from the partial restoration of chiral symmetry at CSR energies are analyzed
From quantum to semiclassical kinetic equations: Nuclear matter estimates
International Nuclear Information System (INIS)
Galetti, D.; Mizrahi, S.S.; Nemes, M.C.; Toledo Piza, A.F.R. de
1985-01-01
Starting from the exact microscopic time evolution of the quantum one body density associated with a many fermion system semiclassical approximations are derived to it. In the limit where small momentum transfer two body collisions are dominant we get a Fokker-Planck equation and work out friction and diffusion tensors explicitly for nuclear matter. If arbitrary momentum transfers are considered a Boltzmann equation is derived and used to calculate the viscosity coefficient of nuclear matter. A derivation is given of the collision term used by Landau to describe the damping of zero sound waves at low temperature in Plasmas. Memory effects are essential for this. The damping of zero sound waves in nuclear matter is also calculated and the value so obtained associated with the bulk value of the damping of giant resonances in finite nuclei. The bulk value is estimated to be quite small indicating the importance of the nuclear surface for the damping. (Author) [pt
Vector Mesons in Cold Nuclear Matter
International Nuclear Information System (INIS)
Rodrigues, Tulio E; Arruda-Neto, Joāo Dias de Toledo
2013-01-01
The attenuation of vector mesons in cold nuclear matter is studied through the mechanism of incoherent photoproduction off complex nuclei. The latter is described via the time-dependent multi-collisional Monte Carlo (MCMC) intranuclear cascade model. The results for the transparency ratios of ω mesons reproduce previous measurements of CB-ELSA/TAPS with an inelastic ωN cross section around 40 mb for ρ ω ∼ 1.1 GeV/c. The corresponding in-medium width (nuclear rest frame) is extracted dinamically from the algorithm and depends on the average nuclear density p N and target nucleus: ∼ 49.2 MeV/c 2 for carbon (p N ≈ 0.114 far −3 ) and ∼ 77.3 MeV/c 2 for lead (p N ≈ 0.137 far −−3 ). The calculations fail to reproduce the huge absorption observed at JLab assuming the same inelastic cross section and the discrepancy between the two experiments remains a challenge.
The symmetry energy in nuclei and in nuclear matter
Van Isacker, P.; Dieperink, A. E. L.
2006-01-01
We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In
The symmetry energy in nuclei and in nuclear matter
Dieperink, A. E. L.; Van Isacker, P.
We discuss to what extent information on ground-state properties of finite nuclei ( energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In
Charm and Hidden Charm Scalar Resonances in Nuclear Matter
Tolos, Laura; Molina, Raquel; Gamermann, Daniel; Oset, Eulogio
2009-01-01
We study the properties of the scalar charm resonances D(s0)(2317) and D(0)(2400), and the theoretical hidden charm state X(3700) in nuclear matter. We find that for the D(s0)(2317) and X(3700) resonances, with negligible and small width at zero density, respectively, the width becomes about 100 MeV
α particles and the ''pasta'' phase in nuclear matter
International Nuclear Information System (INIS)
Avancini, S. S.; Barros, C. C. Jr.; Menezes, D. P.; Providencia, C.
2010-01-01
The effects of the α particles in nuclear matter at low densities are investigated within three different parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter (pasta phase) are described for neutral nuclear matter with fixed proton fractions and stellar matter subject to β equilibrium and trapped neutrinos. In homogeneous matter, α particles are present only at densities below 0.02 fm -3 and their presence decreases with increase of the temperature and, for a fixed temperature, the α particle fraction decreases for smaller proton fractions. A repulsive interaction is important to mimic the dissolution of the clusters in homogeneous matter. The effect of the α particles on the pasta structure is very small except close to the critical temperatures and/or proton fractions, when it may still predict a pasta phase while no pasta phase would occur in the absence of light clusters. It is shown that for densities above 0.01 fm 3 the α-particle fraction in the pasta phase is much larger than that in homogeneous matter.
Instability in relativistic mean-field theories of nuclear matter
International Nuclear Information System (INIS)
Friman, B.L.; Henning, P.A.
1988-01-01
We investigate the stability of the nuclear matter ground state with respect to small-perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion-collisions are discussed briefly. (orig.)
Instability in relativistic mean-field theories of nuclear matter
International Nuclear Information System (INIS)
Friman, B.L.; Henning, P.A.
1988-01-01
We investigate the stability of the nuclear matter ground state with respect to small perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion collisions are discussed briefly. (orig.)
Nuclear physics at extreme energy density
International Nuclear Information System (INIS)
Mueller, B.
1992-01-01
This report discusses topics in the following areas: QCD transport theory; minijets in hadronic and nuclear collisions; lattice gauge theory; hadronic matter and other studies; and strong electromagnetic fields
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2017-08-01
Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.
Skyrmions, dense matter and nuclear forces
International Nuclear Information System (INIS)
Pethick, C.J.
1984-12-01
A simple introduction to a number of properties of Skyrme's chiral soliton model of baryons is given. Some implications of the model for dense matter and for nuclear interactions are discussed. (orig.)
Comparative study of three-nucleon potentials in nuclear matter
Lovato, Alessandro; Benhar, Omar; Fantoni, Stefano; Schmidt, Kevin E.
2012-02-01
A new generation of local three-body potentials providing an excellent description of the properties of light nuclei, as well as of the neutron-deuteron doublet scattering length, has been recently derived. We have performed a comparative analysis of the equations of state of both pure neutron matter (PNM) and symmetric nuclear matter (SNM) at zero temperature obtained using these models of three-nucleon forces. In particular, we have carried out both variational and auxiliary field diffusion Monte Carlo calculations of the equation of state of PNM, while in the case of SNM we have only the variational approach has been considered. None of the considered potentials simultaneously explains the empirical equilibrium density and binding energy of symmetric nuclear matter. However, two of them provide reasonable values of the saturation density. The ambiguity concerning the treatment of the contact term of the chiral inspired potentials is discussed.
Level density from realistic nuclear potentials
International Nuclear Information System (INIS)
Calboreanu, A.
2006-01-01
Nuclear level density of some nuclei is calculated using a realistic set of single particle states (sps). These states are derived from the parameterization of nuclear potentials that describe the observed sps over a large number of nuclei. This approach has the advantage that one can infer level density for nuclei that are inaccessible for a direct study, but are very important in astrophysical processes such as those close to the drip lines. Level densities at high excitation energies are very sensitive to the actual set of sps. The fact that the sps spectrum is finite has extraordinary consequences upon nuclear reaction yields due to the leveling-off of the level density at extremely high excitation energies wrongly attributed so far to other nuclear effects. Single-particle level density parameter a parameter is extracted by fitting the calculated densities to the standard Bethe formula
$J/\\Psi$ mass shift in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Gastao Krein, Anthony Thomas, Kazuo Tsushima
2011-02-01
The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.
Nuclear matter as a nonlinear optical medium
International Nuclear Information System (INIS)
Hefter, E.F.; Papini, G.
1986-01-01
This paper is concerned with the question whether nuclear matter should be considered as a nonlinear optical medium. Taking, in a pragmatic way, quality and quantity of the results of well-established linear and nonlinear approaches as the main criterion, an affirmative answer is seen to be consistent with long-standing practices adhered to in nuclear physics
Antiferromagnetism of nuclear matter in the model with effective Gogny interaction
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2006-01-01
The possibility of ferromagnetic (FM) antiferromagnetic (AFM) phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi-liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter undergoes a phase transition to the AFM spin state. The self-consistent equations of spin-polarized nuclear matter have no solutions corresponding to FM spin ordering and, hence, the FM transition does not appear. The AFM spin state properties are investigated [ru
Pure Neutron Matter Constraints and Nuclear Symmetry Energy
International Nuclear Information System (INIS)
Fattoyev, F J; Newton, W G; Xu, Jun; Li, Bao-An
2013-01-01
In this review, we will discuss the results of our recent work [1] to study the general optimization of the pure isovector parameters of the popular relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) nuclear energy-density functionals (EDFs), using constraints on the pure neutron matter (PNM) equation of state (EoS) from recent ab initio calculations. By using RMF and SHF parameterizations that give equivalent predictions for ground-state properties of doubly magic nuclei and properties of symmetric nuclear matter (SNM) and PNM, we found that such optimization leads to broadly consistent symmetry energy J and its slope parameter L at saturation density within a tight range of α(J) sym , (b) the symmetry energy at supra-saturation densities, and (c) the radius of neutron stars.
Review of the theory of infinite nuclear matter
International Nuclear Information System (INIS)
Llano, M. de; Tolmachev, V.V.
1975-01-01
Given a two-body force, there seems to be two distinct starting points in the many-body perturbation-theoretic problem of computing the energy per nucleon of infinite (as well as finite) nuclear matter: ordinary Hartree-Fock theory and the Brueckner theory. The former theory, treated almost exclusively with plane-wave solutions, has long-ago fallen into disuse, to yield to the latter, apparently more sophisticated, theory. After a brief outline of many-fermion diagramatic techniques, the Brueckner-Bethe-Goldstone series expansion in terms of the density is discussed as a low density, non-ideal Fermi gas theory, whose convergence is analyzed. A calculation based on particle-hole Green's function techniques shows that a nucleon gas condenses to the liquid phase at about 3% of the empirical nuclear matter saturation density. The analogy between the BBG expansion and the virial expansion for a classical or quantum gas is studied with special emphasis on the apparent impossibility of analytical-continuing the latter gas theory to densities in the liquid regime, as first elucidated by Lee and Yang. It is finally argued that ordinary HF theory may provide a good starting point for the eventual understanding of nuclear matter as it gives (in the finite nuclear problem, at any rate) not only the basic liquid properties of a definite density and a surface but also provides independent-particle aspects, avoiding at the same time the idea of n-body clusters appropriate only for dilute gases. This program has to date not been carried out for infinite nuclear matter, mainly because of insufficient knowledge regarding low-energy, non-plane-wave solutions of the HF equations, in the thermodynamic limit [pt
Nuclear matter in all its states
International Nuclear Information System (INIS)
Bonche, P.; Cugnon, J.; Babinet, R.; Mathiot, J.F.; Van Hove, L.; Buenerd, M.; Galin, J.; Lemaire, M.C.; Meyer, J.
1986-01-01
This report includes the nine lectures which have been presented at the Joliot-Curie School of Nuclear Physics in 1985. The subjects covered are the following: thermodynamic description of excited nuclei; heavy ion reactions at high energy (theoretical approach); heavy ion reactions at high energy (experimental approach); relativistic nuclear physics and quark effects in nuclei; quark matter; nuclear compressibility and its experimental determinations; hot nuclei; anti p-nucleus interaction; geant resonances at finite temperature [fr
Variational method for infinite nuclear matter with noncentral forces
International Nuclear Information System (INIS)
Takano, M.; Yamada, M.
1998-01-01
Approximate energy expressions are proposed for infinite zero-temperature nuclear matter by taking into account noncentral forces. They are explicitly expressed as functionals of spin- (isospin-) dependent radial distribution functions, tensor distribution functions and spin-orbit distribution functions, and can be used conveniently in the variational method. A notable feature of these expressions is that they automatically guarantee the necessary conditions on the spin-isospin-dependent structure functions. The Euler-Lagrange equations are derived from these energy expressions and numerically solved for neutron matter and symmetric nuclear matter. The results show that the noncentral forces bring down the total energies too much with too dense saturation densities. Since the main reason for these undesirable results seems to be the long tails of the noncentral distribution functions, an effective theory is proposed by introducing a density-dependent damping function into the noncentral potentials to suppress the long tails of the non-central distribution functions. By adjusting the value of a parameter included in the damping function, we can reproduce the saturation point (both the energy and density) of symmetric nuclear matter with the Hamada-Johnston potential. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Investigation of nuclear matter properties by means of high energy nucleus-nucleus collisions
International Nuclear Information System (INIS)
Stock, R.
1985-09-01
We review recent advances towards an understanding of high density nuclear matter, as created in central collisions of nuclei at high energy. In particular, information obtained for the nuclear matter equation of state will be discussed. The lectures focus on the Bevalac energy domain of 0.4 to 2 GeV per projectile nucleon. (orig.)
Properties of nuclear matter from macroscopic–microscopic mass formulas
Directory of Open Access Journals (Sweden)
Ning Wang
2015-12-01
Full Text Available Based on the standard Skyrme energy density functionals together with the extended Thomas–Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic–microscopic mass formulas: Lublin–Strasbourg nuclear drop energy (LSD formula and Weizsäcker–Skyrme (WS* formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞=230±11 MeV and 235±11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L=41.6±7.6 MeV for LSD and 51.5±9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron–proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree–Fock–Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
Skyrme interaction to second order in nuclear matter
Kaiser, N.
2015-09-01
Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.
The effective action approach applied to nuclear matter (1)
International Nuclear Information System (INIS)
Tran Huu Phat; Nguyen Tuan Anh.
1996-11-01
Within the framework of the Walecka model (QHD-I) the application of the Cornwall-Jackiw-Tomboulis (CJT) effective action to nuclear matter is presented. The main feature is the treating of the meson condensates for the system of finite nuclear density. The system of couple Schwinger-Dyson (SD) equations is derived. It is shown that SD equations for sigma-omega mixings are absent in this formalism. Instead, the energy density of the nuclear ground state does explicitly contain the contributions from the ring diagrams, amongst others. In the bare-vertex approximation, the expression for energy density is written down for numerical computation in the next paper. (author). 14 refs, 3 figs
Relativistic density functional for nuclear structure
2016-01-01
This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success. In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.
Magnetic properties of strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Kutschera, M.; Wojcik, W.
1988-01-01
We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)
Ultimate energy density of observable cold baryonic matter.
Lattimer, James M; Prakash, Madappa
2005-03-25
We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.
Color-flavor locked strange quark matter in a mass density-dependent model
International Nuclear Information System (INIS)
Chen Yuede; Wen Xinjian
2007-01-01
Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)
Level densities in nuclear physics
International Nuclear Information System (INIS)
Beckerman, M.
1978-01-01
In the independent-particle model nucleons move independently in a central potential. There is a well-defined set of single- particle orbitals, each nucleon occupies one of these orbitals subject to Fermi statistics, and the total energy of the nucleus is equal to the sum of the energies of the individual nucleons. The basic question is the range of validity of this Fermi gas description and, in particular, the roles of the residual interactions and collective modes. A detailed examination of experimental level densities in light-mass system is given to provide some insight into these questions. Level densities over the first 10 MeV or so in excitation energy as deduced from neutron and proton resonances data and from spectra of low-lying bound levels are discussed. To exhibit some of the salient features of these data comparisons to independent-particle (shell) model calculations are presented. Shell structure is predicted to manifest itself through discontinuities in the single-particle level density at the Fermi energy and through variatons in the occupancy of the valence orbitals. These predictions are examined through combinatorial calculations performed with the Grover [Phys. Rev., 157, 832(1967), 185 1303(1969)] odometer method. Before the discussion of the experimenta results, statistical mechanical level densities for spherical nuclei are reviewed. After consideration of deformed nuclei, the conclusions resulting from this work are drawn. 7 figures, 3 tables
Charmonium formation and suppression in nuclear matter
International Nuclear Information System (INIS)
Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei
2005-01-01
The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)
Universal Nuclear Energy Density Functional
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-01
An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.
Quark mean field theory and consistency with nuclear matter
International Nuclear Information System (INIS)
Dey, J.; Tomio, L.; Dey, M.; Frederico, T.
1989-01-01
1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)
Nuclear physics: the core of matter, the fuel of stars
International Nuclear Information System (INIS)
Schiffer, J.P.
1999-01-01
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe
S-matrix approach to the equation of state of dilute nuclear matter
Indian Academy of Sciences (India)
2014-04-01
matrix framework, a method is presented to calculate the equation of state of dilute warm nuclear matter. The result is a model-independent virial series for the pressure and density that systematically includes contributions from ...
Nonlinear mean field theory for nuclear matter and surface properties
International Nuclear Information System (INIS)
Boguta, J.; Moszkowski, S.A.
1983-01-01
Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Madan, L M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
A combination of the variational method using special momentum conserving canonical transformations and the method of resummation of the infinite series of dominating terms in the low density limit is used to study a strongly interacting N particle system. Under the hypothesis that the excitation energy E{sub k} is convex and everywhere positive after the special canonical transformation minimising the average value of the energy has been performed, we have shown that the t-matrix obtained by the summation of the ascending ladders is free from all singularities. Some particular examples are studied in detail. (author) [French] Une combinaison de la methode variationnelle utilisant des transformations canoniques speciales conservant l'impulsion, et de la methode de resommation infinie des termes dominants a basse densite est utilisee pour etudier l'etat fondamental d'un systeme a N particules en interaction forte. Sous reserve de l'hypotnese que l'energie d'excitation E{sub k} est convexe et partout positive, nous avons demontre la regularite de la matrice t obtenue en resommant des echelles montantes une fois effectuee la transformation canonique speciale qui minimise la valeur moyenne de l'energie. Quelques exemples particuliers sont etudies en detail. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Madan, L. M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
A combination of the variational method using special momentum conserving canonical transformations and the method of resummation of the infinite series of dominating terms in the low density limit is used to study a strongly interacting N particle system. Under the hypothesis that the excitation energy E{sub k} is convex and everywhere positive after the special canonical transformation minimising the average value of the energy has been performed, we have shown that the t-matrix obtained by the summation of the ascending ladders is free from all singularities. Some particular examples are studied in detail. (author) [French] Une combinaison de la methode variationnelle utilisant des transformations canoniques speciales conservant l'impulsion, et de la methode de resommation infinie des termes dominants a basse densite est utilisee pour etudier l'etat fondamental d'un systeme a N particules en interaction forte. Sous reserve de l'hypotnese que l'energie d'excitation E{sub k} est convexe et partout positive, nous avons demontre la regularite de la matrice t obtenue en resommant des echelles montantes une fois effectuee la transformation canonique speciale qui minimise la valeur moyenne de l'energie. Quelques exemples particuliers sont etudies en detail. (auteur)
Compression modes and the nuclear matter incompressibility ...
Indian Academy of Sciences (India)
We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefﬁcient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conﬂicting ...
High Momentum Probes of Nuclear Matter
Energy Technology Data Exchange (ETDEWEB)
Fries, R.
2009-07-24
We discuss how the chemical composition of QCD jets is altered by final state interactions in surrounding nuclear matter. We describe this process through conversions of leading jet particles. We find that conversions lead to an enhancement of kaons at high transverse momentum in Au+Au collisions at RHIC, while their azimuthal asymmetry v{sub 2} is suppressed.
Nuclear and quark matter at high temperature
Energy Technology Data Exchange (ETDEWEB)
Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)
2017-03-15
We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)
Shock waves in relativistic nuclear matter, I
International Nuclear Information System (INIS)
Gleeson, A.M.; Raha, S.
1979-02-01
The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references
Condensed matter studies by nuclear methods
International Nuclear Information System (INIS)
Krolas, K.; Tomala, K.
1988-01-01
The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)
Quark mobility in extended nuclear matter
International Nuclear Information System (INIS)
Sivers, D.
1988-01-01
The propagation of an energetic quark through extended nuclear matter is analyzed in terms of a simple model in which localization of color is imposed through chromoelectric flux tubes. A mobile quark in the nuclear medium creates a disturbance which affects neighboring nucleons. The model suggests that the spatial properties of the disturbance involve a competition among different dynamical mechanisms. Experimental measurements involving the target fragmentation region in deep-inelastic leptoproduction on large nuclei may help specify some of the important features of nuclear dynamics. copyright 1988 Academic Press, Inc
Properties of rho and eta mesons in nuclear matter
International Nuclear Information System (INIS)
Herrmann, M.; Sauermann, C.; Friman, B.L.; Technische Hochschule Darmstadt; Noerenberg, W.; Technische Hochschule Darmstadt
1993-10-01
The properties of ρ- and η-mesons in nuclear matter are studied within the scope of hadronic models. Unknown model parameters are obtained from fits to scattering data. - The treatment of the ρ-meson includes the coupling to two pions which, in matter, are strongly mixed with delta-particle-nucleon-hole states. The ρ-meson self-energy is evaluated in a current conserving approximation with in-medium pion propagators and vertex corrections. While the position of the original peak in the spectral function remains almost unchanged, its width grows rapidly with increasing density. Consequently, the ρ-meson strength function is strongly dispersed at high densities. Due to vertex corrections a new peak at a mass around 3m π emerges with increasing density, while the spectral function around the two-pion threshold is found to be smooth at all densities. The η-meson is strongly mixed with N * (1535)-particle-nucleon-hole states in nuclear matter. The corresponding dispersion relations with an upper and a lower branch look similar to those of the (π, ΔN -1 )-modes. However, since the N * is an S-wave resonance in the ηN-channel, the repulsion of the two branches survives at zero momentum. (orig.)
The public and nuclear matters
International Nuclear Information System (INIS)
O'Riordan, Timothy
1987-01-01
The nuclear industry has an image problem and is facing a major crisis of public confidence. The solution lies not merely in better public relations and advertising campaigns, but in a fundamental reassessment of electricity management, a comprehensive re-examination of the economics of electricity use and generation and, in all probability, a shift towards more public-friendly reactor designs. Over the next decade the industry faces two great forces: the power of public opinion and the momentum of inherent technological advance. Somehow these two elements have to be guided so that they complement each other. This article aims to show how this might be achieved. (author)
Landau parameters for finite range density dependent nuclear interactions
International Nuclear Information System (INIS)
Farine, M.
1997-01-01
The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules
KIDS Nuclear Energy Density Functional: 1st Application in Nuclei
Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok
We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.
Towards a chiral effective field theory of nuclear matter
International Nuclear Information System (INIS)
Mallik, S.
2008-01-01
As a preliminary attempt to formulate an effective theory of nuclear matter, we undertake to calculate the effective pole parameters of nucleon in such a medium. We begin with the virial expansion of these parameters to leading order in nucleon number density in terms of the on-shell NN scattering amplitude. We then proceed to calculate the same parameters in the effective theory, getting a formula for the nucleon mass-shift to leading order, that was known already to give too large a value to be acceptable at normal nuclear density. At this point the virial expansion suggests a modification of this formula, which we carry out following Weinberg's method for the two-nucleon system in the effective theory. The results are encouraging enough to attempt a complete, next-to-leading order calculation of the off-shell nucleon spectral function in nuclear medium. (author)
Thermodynamic instabilities in hot and dense nuclear matter
Directory of Open Access Journals (Sweden)
Lavagno A.
2016-01-01
Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.
Neutrino propagation in neutron matter and the nuclear equation of state
Margueron, J; Nguyen Van Giai; Jiang, W
2001-01-01
We study the propagation of neutrinos inside dense matter under the conditions prevailing in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme type and Gogny type) are first discussed. It is found that for many interactions, spin and/or isospin instabilities occur at densities larger than the saturation density of nuclear matter. From this study we select two representative interactions, SLy230b and D1P. We calculate the response functions in pure neutron matter where nuclear correlations are described at the Hartree-Fock plus RPA level. These response functions allow us to evaluate neutrino mean free paths corresponding to neutral current processes.
Equidistant structure and effective nucleon mass in nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1981-11-01
The effective nucleon mass of the Equidistant Multi-Layer Structure (EMULS) is discussed self-consistently. In the density region where the Fermi gas state in nuclear matter is unstable against the density fluctuation, the EMULS gives lower binding energy. It is, however, shown that such a structure with an ordinary nucleon mass collapses due to too strong attraction. We point out that such a collapse can be avoided by taking account of an effective nucleon mass affected by the localization of nucleons. (author)
Thermostatic properties of semi-infinite polarized nuclear matter
International Nuclear Information System (INIS)
Abd-Alla, M.; Hassan, M.Y.M.; Ramadan, S.
1988-03-01
The surface and curvature properties of semi-infinite polarized nuclear matter (SPNM) are calculated using an expansion for the Fermi integrals up to T 2 . A density matrix expansion is obtained for a modified form of Seyler-Blanchard interaction. New parameters that characterize the surface and curvature properties of SPNM are introduced. The level density parameter is extracted from the low temperature expansion of the free energy and compared with previous calculations. A reasonable agreement is obtained for the parameters calculated before. (author). 78 refs, 1 fig., 5 tabs
No pion condensate in nuclear matter due to fluctuations
International Nuclear Information System (INIS)
Kleinert, H.
1981-01-01
We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)
BCS Theory of Hadronic Matter at High Densities
DEFF Research Database (Denmark)
Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca
2012-01-01
The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state, in...
Matter composition at high density by effective scaled lagrangian
Energy Technology Data Exchange (ETDEWEB)
Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)
1998-06-01
We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)
Spontaneous magnetization in high-density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constanca
2015-01-01
It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnet...
Development of nuclear density and moisture gauges
International Nuclear Information System (INIS)
Zhu Huaian; Zhu Dichen; Jiang Yulan; Yin Xiling; Li Jianwen; Cheng Jianbing; Yan Haiqing
1993-01-01
The model MT5012 nuclear density and moisture gauge is an advanced portable meter to inspect the compactness of a highway roadbed and pavement foundation. It has perfect functions and the advantage of quickness, accuracy and non-destruction. It is also applicable to civil engineering, such as railway, airport and embankment. The model MT5022 nuclear density and moisture gauge is a mobile meter for continuous inspection and control of the compactness of a highway and pavement foundation. It can be installed on road roller, wheelbarrow and other traffic machines while working, and is more efficient than the portable ones
Asymmetric nuclear matter and neutron star properties
International Nuclear Information System (INIS)
Engvik, L.; Hjorth-Jensen, M.; Osnes, E.; Bao, G.; Oestgaard, E.
1994-06-01
Properties of neutron stars such as mass and radius, using a relativistic Dirac-Brueckner-Hartree-Fock approach, are calculated. Modern meson-exchange potential models are used to evaluate the G-matrix for asymmetric nuclear matter. For pure neutron matter the maximum mass is found to be M max ∼ 2.4M for a radius R ∼ 12 km. With a proton fraction of 30% the result is M max ∼ 2.1M for a radius R ∼ 10.5 km, close to the experimental values. The implications are discussed. 20 refs., 3 figs
Directory of Open Access Journals (Sweden)
Rui Wang
2017-10-01
Full Text Available We establish a relation between the equation of state of nuclear matter and the fourth-order symmetry energy asym,4(A of finite nuclei in a semi-empirical nuclear mass formula by self-consistently considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us to extract information on nuclear matter fourth-order symmetry energy Esym,4(ρ0 at normal nuclear density ρ0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4(A via the double difference of the “experimental” symmetry energy extracted from nuclear masses, for the first time, we estimate a value of Esym,4(ρ0=20.0±4.6 MeV. Such a value of Esym,4(ρ0 is significantly larger than the predictions from mean-field models and thus suggests the importance of considering the effects of beyond the mean-field approximation in nuclear matter calculations.
Relativistic nuclear matter with alternative derivative coupling models
International Nuclear Information System (INIS)
Delfino, A.; Coelho, C.T.; Malheiro, M.
1994-01-01
Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)
Two-body correlation functions in dilute nuclear matter
International Nuclear Information System (INIS)
Isayev, A A
2006-01-01
Finding the distinct features of the crossover from the regime of large overlapping Cooper pairs to the limit of non-overlapping pairs of fermions (Shafroth pairs) in multicomponent Fermi systems remains one of the actual problems in a quantum many-body theory. Here this transition is studied by calculating the two-body density, spin and isospin correlation functions in dilute asymmetric nuclear matter. It is shown that criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the quasiparticle density of states
Strange mesons in dense nuclear matter
International Nuclear Information System (INIS)
Senger, P.
2000-10-01
Experimental data on the production of kaons and antikaons in heavy ion collisions at relativistic energies are reviewed with respect to in-medium effects. The K - /K + ratios measured in nucleus-nucleus collisions are 1-2 orders of magnitude larger than in proton-proton collisions. The azimuthal angle distributions of K + mesons indicate a repulsive kaon-nucleon potential. Microscopic transport calculations consistently explain both the yields and the emission patterns of kaons and antikaons when assuming that their properties are modified in dense nuclear matter. The K + production excitation functions measured in light and heavy collision systems provide evidence for a soft nuclear equation-of-state. (orig.)
Systematics of nuclear level density parameters
International Nuclear Information System (INIS)
Bucurescu, Dorel; Egidy, Till von
2005-01-01
The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between 18 F and 251 Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured
Understanding the major uncertainties in the nuclear symmetry energy at suprasaturation densities
International Nuclear Information System (INIS)
Xu Chang; Li Baoan
2010-01-01
Within the interacting Fermi gas model for isospin asymmetric nuclear matter, effects of the in-medium three-body interaction and the two-body short-range tensor force owing to the ρ meson exchange, as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy, are demonstrated respectively in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at suprasaturation densities are discussed.
Properties of the ρ meson in dense nuclear matter
International Nuclear Information System (INIS)
Herrmann, M.
1992-05-01
In order to reach a description of the ρ meson, which is in accordance with the principles of the gauge invariance of the electromagnetic interaction, the vector-dominance hypothesis, and the unitarity a model for the ρ meson in the vacuum is developed. Thereafter follows the calculation of the properties of the ρ meson in nuclear matter. First the connection between the spectral function of the ρ meson and the dilepton production rate for an equilibrium state is derived. Then the model for the pion in nuclear matter is described. Following approximations are applied: The description of the pion-baryon interaction pursues non-relativistically and both the width of the delta resonance and the short-range repulsive delta-nucleon interaction is neglected. The self-energy of the ρ meson in nuclear matter following from this description is formally derived from the requirement to couple the ρ meson to a conserved current. The corrections for the 3-point and 4-point vertex resulting from this are calculated and discussed. Thereafter the physical consequences of the changed self-energy of the ρ meson in nuclear matter are considered. By means of the spectral function it is shown that up to the two-fold of the ground-state density the position of the resonance is nearly not changed. At still higher densities the resonances is a little shifted to higher energies. In the range of an invariant mass of about 400 meV a strong increasement concentrated on a small range results. This is caused by coupling to a naked delta-hole state and a pion. Finally the possibilities are discussed to apply the results of this thesis to the prediction of experimental data. Thereby it is proved to be necessary to base on a simulation of the heavy ion reaction. (orig./HSI) [de
High-density matter: current status and future challenges
Directory of Open Access Journals (Sweden)
Stone J. R.
2015-01-01
Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.
Nuclear matter in relativistic mean field theory with isovector scalar meson.
Energy Technology Data Exchange (ETDEWEB)
Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)
1996-12-01
Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.
Nuclear matter in relativistic mean field theory with isovector scalar meson
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
1996-12-01
Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs
Symmetric and asymmetric nuclear matter in the relativistic approach
International Nuclear Information System (INIS)
Huber, H.; Weber, F.; Weigel, M.K.
1995-01-01
Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Self-consistent determination of quasiparticle properties in nuclear matter
International Nuclear Information System (INIS)
Oset, E.; Palanques-Mestre, A.
1981-01-01
The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)
Is a condensed state of nuclear matter possible?
International Nuclear Information System (INIS)
D'yakonov, D.I.; Mirlin, A.D.
1988-01-01
Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable
Building a universal nuclear energy density functional
International Nuclear Information System (INIS)
Bertsch, G F
2007-01-01
This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes
Foundations of high-energy-density physics physical processes of matter at extreme conditions
Larsen, Jon
2017-01-01
High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...
Rare isotopes and the sound of dilute nuclear matter
Papakonstantinou, P.
2018-04-01
Dilute baryonic matter, at densities below the normal saturation density of symmetric matter, is found on the crust of neutron stars and in collapsing supernova matter, its properties determining the evolution of those stellar objects. It is also readily found on the surface of ordinary and exotic atomic nuclei and lives fleetingly in the form of space-extended resonances of excited nucleons. Liminal states of nuclear matter, between saturation and full evaporation or clusterization, are manifest in the structure of symmetric nuclei through clustering and of very asymmetric rare species in haloes and the neutron skin; they stand literally at the threshold of a nucleus's response to hadronic probes, including processes which hinder or enable fusion. In this contribution I focus on excited states, and in particular exotic or not-so-exotic dipole excitation modes of N = Z nuclei and neutron-rich species, including new theoretical results on threshold strength. Modes of special interest are vibrations of and within diffuse surface layers and alpha-cluster oscillations. The modeling of such processes is relevant, directly or indirectly, for the description of reactions at astrophysical energies.
Study of nuclear level densities for exotic nuclei
International Nuclear Information System (INIS)
Nasrabadi, M. N.; Sepiani, M.
2012-01-01
Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.
Relativistic many-body theory of high density matter
International Nuclear Information System (INIS)
Chin, S.A.
1977-01-01
A fully relativistic quantum many-body theory is applied to the study of high-density matter. The latter is identified with the zero-temperature ground state of a system of interacting baryons. In accordance with the observed short-range repulsive and long-range attractive character of the nucleon--nucleon force, baryons are described as interacting with each other via a massive scalar and a massive vector meson exchange. In the Hartree approximation, the theory yields the same result as the mean-field theory, but with additional vacuum fluctuation corrections. The resultant equation of state for neutron matter is used to determine properties of neutron stars. The relativistic exchange energy, its corresponding single-particle excitation spectrum, and its effect on the neutron matter equation of state, are calculated. The correlation energy from summing the set of ring diagrams is derived directly from the energy-momentum tensor, with renormalization carried out by adding counterterms to the original Lagrangian and subtracting purely vacuum expectation values. Terms of order g 4 lng 2 are explicitly given. Effects of scalar-vector mixing are discussed. Collective modes corresponding to macroscopic density fluctuation are investigated. Two basic modes are found, a plasma-like mode and zero sound, with the latter dominant at high density. The stability and damping of these modes are studied. Last, the effect of vacuum polarization in high-density matter is examined
Organic carbon organic matter and bulk density relationships in arid ...
African Journals Online (AJOL)
Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...
Neutron stars as probes of extreme energy density matter
Indian Academy of Sciences (India)
2015-05-07
May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...
High energy density in matter produced by heavy ion beams
International Nuclear Information System (INIS)
1987-08-01
This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)
Quark mean field theory and consistency with nuclear matter
International Nuclear Information System (INIS)
Dey, J.; Dey, M.; Frederico, T.; Tomio, L.
1990-09-01
1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs
Sound-like collective mode excitation with pion absorption in nuclear matter
International Nuclear Information System (INIS)
Qiu Xijiun; Shen Jianguo; Huang Lingfang
1985-01-01
The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found
Nuclear matter saturation in a U(1) circle-times chiral model
International Nuclear Information System (INIS)
Lin, Wei
1989-01-01
The mean-field approximation in the U(1) circle-times chiral model for nuclear matter maturation is reviewed. Results show that it cannot be the correct saturation mechanism. It is argued that in this chiral model, other than the fact the ω mass can depend on the density of nuclear matter, saturation is still quite like the Walecka picture. 16 refs., 3 figs
Properties of nuclear and neutron matter using D1 Gogny force
International Nuclear Information System (INIS)
Mansour, H.M.M.; Ramadan, Kh.A.; Hammad, M.
2004-01-01
In the present work, we investigate the equation of state of hot and cold nuclear and neutron matter using the Gogny effective interaction. The binding energy per particle, symmetry energies, free energy, and pressure are calculated as a function of the density ρ, fm -3 , for the nuclear and neutron matter. The results are comparable with previous theoretical estimates using the Seyler-Blanchard effective interaction and the famous calculation of Friedman and Pandharipande using a realistic interaction
International Nuclear Information System (INIS)
Fox, Patrick J.; Kribs, Graham D.; Tait, Tim M. P.
2011-01-01
We demonstrate precisely what particle physics information can be extracted from a single direct detection observation of dark matter while making absolutely no assumptions about the local velocity distribution and local density of dark matter. Our central conclusions follow from a very simple observation: the velocity distribution of dark matter is positive definite, f(v)≥0. We demonstrate the utility of this result in several ways. First, we show a falling deconvoluted recoil spectrum (deconvoluted of the nuclear form factor), such as from ordinary elastic scattering, can be 'mocked up' by any mass of dark matter above a kinematic minimum. As an example, we show that dark matter much heavier than previously considered can explain the CoGeNT excess. Specifically, m χ Ge can be in just as good agreement as light dark matter, while m χ >m Ge depends on understanding the sensitivity of xenon to dark matter at very low recoil energies, E R < or approx. 6 keVnr. Second, we show that any rise in the deconvoluted recoil spectrum represents distinct particle physics information that cannot be faked by an arbitrary f(v). As examples of resulting nontrivial particle physics, we show that inelastic dark matter and dark matter with a form factor can both yield such a rise.
Kaon dynamics in dense nuclear matter
International Nuclear Information System (INIS)
David, Ch.
1998-01-01
In this thesis a list of cross sections concerning the kaons and antikaons production, has been presented. A new method for the parametrisation of particles rescattering cross sections, based on the neural networks has been developed. Because of the influence of the nuclear matter on kaons properties, the effect of the optical potential parameters has been studied. In particular a term has been added to the vector part of this potential to determine the relative importance of this part compared to the scalar part. A new parametrisation of the resonance lifetime has been proposed. (A.L.B.)
Covariant description of dynamical processes in relativistic nuclear matter
International Nuclear Information System (INIS)
Celenza, L.S.; Pantziris, A.; Shakin, C.M.
1992-01-01
We report results of covariant calculations of density-dependent polarization processes in relativistic nuclear matter. We consider the polarization induced by those mesons that play an important role in the boson-exchange model of nuclear forces (σ,π,ρ,ω). After obtaining the polarization operators, we construct the propagators for these mesons. The covariant nature of the calculation greatly clarifies the structure of the polarization operators and associated Green's functions. (In addition to the meson momentum, these quantities depend upon another four-vector, η μ , that describes the uniform motion of the medium.) In the case of the pion, we show that the same results are obtained for pseudovector or pseudoscalar coupling to the nucleon, if the associated Lagrangians are related by chiral transformations. Of particular interest are the extremely large values found for the polarization operators of the omega and sigma mesons. It is also found that the coupling of the sigma and omega fields through the polarization process is also extremely large. (Because of these results one cannot usefully consider the sigma and omega fields as independent degrees of freedom in nuclear matter.) We describe methods for reorganizing the calculation of ring diagrams in which we group those diagrams that exhibit strong cancellations. We also comment on the implication of our results for nuclear structure studies
Infinite nuclear matter model and mass formulae for nuclei
International Nuclear Information System (INIS)
Satpathy, L.
2016-01-01
The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole
Bombaci, Ignazio; Logoteta, Domenico
2018-02-01
Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.
Combinatorial nuclear level-density model
International Nuclear Information System (INIS)
Uhrenholt, H.; Åberg, S.; Dobrowolski, A.; Døssing, Th.; Ichikawa, T.; Möller, P.
2013-01-01
A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei
History of the nuclear matter safety and control law
International Nuclear Information System (INIS)
Dean, G.
1994-01-01
In this text we give the history of the law creation on the control and safety of nuclear matter. Initially based on the CEA regulation single owner of nuclear matter, the development of nuclear energy has conducted the French government to edict law in relation with IAEA and Euratom recommendations
International Nuclear Information System (INIS)
Xu Chang; Li Baoan; Chen Liewen; Ko, Che Ming
2011-01-01
Using the Hugenholtz-Van Hove theorem, we derive general expressions for the quadratic and quartic symmetry energies in terms of the isoscalar and isovector parts of single-nucleon potentials in isospin asymmetric nuclear matter. These expressions are useful for gaining deeper insights into the microscopic origins of the uncertainties in our knowledge on nuclear symmetry energies especially at supra-saturation densities. As examples, the formalism is applied to two model single-nucleon potentials that are widely used in transport model simulations of heavy-ion reactions.
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Energy Technology Data Exchange (ETDEWEB)
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Nucleon-nucleon correlations in dense nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1993-02-01
In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de
Pseudo-Goldstone modes in isospin-asymmetric nuclear matter
International Nuclear Information System (INIS)
Cohen, T.D.; Broniowski, W.
1995-01-01
The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter
Hadronic spectral functions in nuclear matter
International Nuclear Information System (INIS)
Post, M.; Leupold, S.; Mosel, U.
2004-01-01
We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small
Sound modes in hot nuclear matter
International Nuclear Information System (INIS)
Kolomietz, V. M.; Shlomo, S.
2001-01-01
The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a nonmonotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer-wavelength region
Big Bang synthesis of nuclear dark matter
International Nuclear Information System (INIS)
Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.
2015-01-01
We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark “nucleon” number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳10 8 , may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫10 8 , are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.
Higgs enhancement for the dark matter relic density
Harz, Julia; Petraki, Kalliopi
2018-04-01
We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.
Central depression of nuclear charge density distribution
International Nuclear Information System (INIS)
Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang
2010-01-01
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models
Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An
2007-01-01
Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...
Building a Universal Nuclear Energy Density Functional
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF
International Nuclear Information System (INIS)
Jardel, John R.; Gebhardt, Karl
2012-01-01
We construct axisymmetric Schwarzschild models to measure the mass profile of the Local Group dwarf galaxy Fornax. These models require no assumptions to be made about the orbital anisotropy of the stars, as is the case for commonly used Jeans models. We test a variety of parameterizations of dark matter density profiles and find cored models with uniform density ρ c = (1.6 ± 0.1) × 10 –2 M ☉ pc –3 fit significantly better than the cuspy halos predicted by cold dark matter simulations. We also construct models with an intermediate-mass black hole, but are unable to make a detection. We place a 1σ upper limit on the mass of a potential intermediate-mass black hole at M . ≤ 3.2 × 10 4 M ☉ .
Strongly Interacting Matter at Very High Energy Density
International Nuclear Information System (INIS)
McLerran, L.
2011-01-01
The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.
Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings
International Nuclear Information System (INIS)
Feldmeier, H.; Noerenberg, W.
1995-01-01
The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)
Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter
International Nuclear Information System (INIS)
Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan
2008-01-01
The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)
Density profiles of supernova matter and determination of neutrino parameters
Chiu, Shao-Hsuan
2007-08-01
The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.
Nuclear matter from chiral effective field theory
International Nuclear Information System (INIS)
Drischler, Christian
2017-01-01
Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal
Nuclear matter from chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Drischler, Christian
2017-11-15
Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the
Short-range correlations in quark and nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Froemel, Frank
2007-06-15
In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)
Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter
Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.
2018-06-01
We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.
Abnormalities in cortical gray matter density in borderline personality disorder
Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B
2015-01-01
Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291
On the thermal properties of polarized nuclear matter
International Nuclear Information System (INIS)
Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.
1979-08-01
The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)
On the spin saturation and thermal properties of nuclear matter
International Nuclear Information System (INIS)
Hassan, M.Y.M.; Ramadan, S.
1983-12-01
The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)
The dark matter density in the solar neighborhood reconsidered
Energy Technology Data Exchange (ETDEWEB)
Boer, W. de; Weber, M., E-mail: wim.de.boer@kit.edu, E-mail: mj.weber@kit.edu [Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie (KIT), P.O. Box 6980, 76128 Karlsruhe (Germany)
2011-04-01
The peculiar dip in the outer rotation curve at a distance of 9 kpc, which was recently confirmed by precise measurements with the VERA VLBI array in Japan, suggests donut-like substructures in the dark matter (DM) halo, since spherical or elliptical distributions will not cause a dip. Additionally, such a donut-like DM structure seems to be required by the dip in the gas flaring of the disk. In this paper we consider the impact of such DM substructure in the disk on the rotation curve, the gas flaring, the local DM density and the local surface density. A global fit shows that the rotation curve is best described by an NFW DM profile complemented by two donut-like DM substructures at radii of 4.2 and 12.4 kpc, which coincide with the local dust ring and the Monocerus ring of stars, respectively. Both regions have been suggested as regions with tidal streams from ''shredded'' satellites, thus enhancing the plausibility for additional DM. If real, the radial extensions of these nearby ringlike structures enhance the local dark matter density by a factor of four to about 1.3±0.3 GeV/cm{sup 3}. We find that i) this higher DM density is perfectly consistent with the local gravitational potential determining the surface density and ii) the s-shaped gas flaring is explained. Such a possible enhancement of the local DM density is of great interest for direct DM searches and the ringlike structure would change the directional dependence of gamma rays for indirect DM searches.
Phase transitions in nuclear matter and consequences for neutron stars
International Nuclear Information System (INIS)
Kaempfer, B.
1983-04-01
Estimates of the minimal bombarding energy necessary to reach the quark gluon phase in heavy ion collisions are presented within a hydrodynamical scenario. Further, the consequences of first-order phase transitions from nuclear/neutron matter to pion-condensed matter or quark matter are discussed for neutron stars. (author)
Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models
Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An
2007-11-01
Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.
Nuclear spectroscopy with density dependent effective interactions
International Nuclear Information System (INIS)
Krewald, S.
1976-07-01
The paper investigates excited nuclear states with density-dependent effective interactions. In the first part of the paper, the structure and the width of the multipole giant resonances discovered in 1972 are derived microscopically. Because of their high excitation energy, these giant resonances are unstable to particle emission and thus often have a considerable decay width. Due to their collective structure, the giant resonances can be described by RPA in good approximation. In this paper, the continuum RPA is applied to the spherical nuclei 16 O, 40 Ca, 90 Zr and 208 Pb. The experimental centroid energy are in very good agreement with the calculations performed in the paper. (orig./WL) [de
Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers
International Nuclear Information System (INIS)
Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd
2014-01-01
We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.
Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach
Energy Technology Data Exchange (ETDEWEB)
S. Lawley; W. Bentz; A.W. Thomas
2006-02-10
We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.
Nucleons, nuclear matter and quark matter: a unified NJL approach
Energy Technology Data Exchange (ETDEWEB)
Lawley, S [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide SA 5005 (Australia); Bentz, W [Department of Physics, School of Science, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A W [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2006-05-01
We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.
Asymmetric nuclear matter in a modified quark meson coupling model
International Nuclear Information System (INIS)
Mishra, R.N.; Sahoo, H.S.; Panda, P.K.; Barik, N.
2014-01-01
In an earlier attempt we have successfully used this model in developing the nuclear equation of state and analysed various other bulk properties of symmetric nuclear matter with the dependence of quark masses. In the present work we want to apply the model to analyze asymmetric nuclear matter with the variation of the asymmetry parameter y p as well as analyze the effects of symmetry energy and the slope of the symmetry energy L
Nuclear Level densities from drip line to drip line
International Nuclear Information System (INIS)
Hilaire, S.; Goriely, S.
2007-01-01
New energy-, spin-, parity-dependent level densities based on the microscopic combinatorial model are presented and compared with available experimental data as well as with other nuclear level densities usually employed in nuclear reaction codes. These microscopic level densities are made available in a table format for nearly 8500 nuclei
Leksin, G A
2002-01-01
Features of deep inelastic nuclear reactions proceeding on dense fluctuations of nuclear matter (fluctons) are briefly considered. Fluctons, which can be many-quark bags or drops of quark-gluon plasma, are studied. Their properties are discussed, viz., characteristic parameters of nuclear matter inside a flucton - temperature and density close to the critical values for a phase transition. These values can be reached or exceeded if the flucton-flucton collision events are separated. The separation method is discussed
Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature
The 132Sn giant dipole resonance as a constraint on nuclear matter properties
Roach, Brandon; Bonasera, Giacomo; Shlomo, Shalom
2015-10-01
Nuclear giant resonances provide a sensitive method for constraining the properties of nuclear matter (NM) - many of which have large uncertainties - and thereby improve the nuclear energy-density functional. In this work, self-consistent Hartree-Fock random-phase approximation (HF-RPA) theory was employed to calculate the strength function and energy of the isovector giant dipole resonance (IVGDR) in the doubly-magic 132Sn nucleus. Several (17) commonly-used Skyrme-type interactions were employed. The correlations between the IVGDR centroid energy and each nuclear matter property were explored, as were correlations between the nuclear matter properties and the 132Sn neutron skin thickness rn -rp . Experimental data for the IVGDR centroid energy was used to constrain the symmetry energy density, the symmetry energy, and its first and second derivatives, respectively, of NM. Further investigation, particularly of nuclides far from stability, will be needed to extend the nuclear energy-density functional to the extremes of density and neutron abundance found in neutron stars and astrophysical nucleosynthesis environments.
Antikaons in infinite nuclear matter and nuclei
International Nuclear Information System (INIS)
Moeller, M.
2007-01-01
In this work we studied the properties of antikaons and hyperons in infinite cold nuclear matter. The in-medium antikaon-nucleon scattering amplitude and self-energy has been calculated within a covariant many-body framework in the first part. Nuclear saturation effects have been taken into account in terms of scalar and vector nucleon mean-fields. In the second part of the work we introduced a non-local method for the description of kaonic atoms. The many-body approach of anti KN scattering can be tested by the application to kaonic atoms. A self-consistent and covariant many-body approach has been used for the determination of the antikaon spectral function and anti KN scattering amplitudes. It considers s-, p- and d-waves and the application of an in-medium projector algebra accounts for proper mixing of partial waves in the medium. The on-shell reduction scheme is also implemented by means of the projector algebra. The Bethe-Salpeter equation has been rewritten, so that the free-space anti KN scattering can be used as the interaction kernel for the in-medium scattering equation. The latter free-space scattering is based on a realistic coupled-channel dynamics and chiral SU(3) Lagrangian. Our many-body approach is generalized for the presence of large scalar and vector nucleon mean-fields. It is supplemented by an improved renormalization scheme, that systematically avoids the occurrence of medium-induced power-divergent structures and kinematical singularities. A modified projector basis has been introduced, that allows for a convenient inclusion of nucleon mean-fields. The description of the results in terms of the 'physical' basis is done with the help of a recoupling scheme based on the projector algebra properties. (orig.)
Study of the Λ(1116 interaction in cold nuclear matter
Directory of Open Access Journals (Sweden)
Arnold Oliver
2014-03-01
Full Text Available The interaction of Λ hyperons with baryonic nuclear matter at saturation density is expected to be attractive. The interaction strength was extracted from hypernuclei data. A different approach to obtain the potential depth of the Λ mean-field potential is to compare experimental data with transport simulations. We analyze experimental data of Λ hyperons measured with the HADES detector in p+93Nb reactions with a kinetic beam energy of 3.5 GeV carried by the proton. The high statistic of measured Λ hyperons allows us to perform a double differential analysis in Lorentz-invariant observables of transverse momentum and rapidity. We present the analysis method and a comparison with simulations.
Hyperon interaction in free space and nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Dhar, Madhumita; Lenske, Horst [Institute for Theoretical Physics, Justus- Liebig-University Giessen (Germany)
2015-07-01
Baryon-baryon interactions within the SU(3)-octet are investigated in free space and nuclear matter.A meson exchange model based on SU(3) symmetry is used for determining the interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. In-medium effect has been incorporated by including a two particle Pauli projector operator in the scattering equation. The coupling of the various channels of total strangeness S and conserved total charge is studied in detail. Special attention is paid to the physical thresholds. The density dependence of interaction is clearly seen in the variation of the in-medium low-energy parameters. The approach is compared to descriptions derived from chiral-EFT and other meson-exchange models e.g. the Nijmegen and the Juelich model.
Kaons in nuclear matter; Kaonen in Kernmaterie
Energy Technology Data Exchange (ETDEWEB)
Kolomeitsev, E.E.
1997-02-01
The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [Deutsch] Die Arbeit befasst sich mit der Untersuchung der Eigenschaften von Kao nen in Kernmaterie. Zu diesem Zweck wurde ein Verfahren entwickelt, di e Kaon- Nukleon- Wechselwirkung und Kaon- Nukleon- Streuung im Vakuumzu beschreiben. Die Hauptherausforderung bestand darin, dass die abgel eiteten Relationen ausserhalb der Kaonen- Massenschale anwendbar werde n. Eine Nebenforderung war, dass die vorgeschlagenen Verfahren moeglic hst modell- unabhaengig sind. Um dieses Ziel zu erreichen, wurden Redu ktionsformeln, Stromalgebra- Relationen und die PCAC- Hypothese angewe ndet.
DEFF Research Database (Denmark)
Nesseris, Savvas
2009-01-01
We consider theories with an arbitrary coupling between matter and gravity and obtain the perturbation equation of matter on subhorizon scales. Also, we derive the effective gravitational constant $G_{eff}$ and two parameters $\\Sigma$ and $\\eta$, which along with the perturbation equation...... of the matter density are useful to constrain the theory from growth factor and weak lensing observations. Finally, we use a completely solvable toy model which exhibits nontrivial phenomenology to investigate specific features of the theory. We obtain the analytic solution of the modified Friedmann equation...... for the scale factor $a$ in terms of time $t$ and use the age of the oldest star clusters and the primordial nucleosynthesis bounds in order to constrain the parameters of our toy model....
International Nuclear Information System (INIS)
Nesseris, Savvas
2009-01-01
We consider theories with an arbitrary coupling between matter and gravity and obtain the perturbation equation of matter on subhorizon scales. Also, we derive the effective gravitational constant G eff and two parameters Σ and η, which along with the perturbation equation of the matter density are useful to constrain the theory from growth factor and weak lensing observations. Finally, we use a completely solvable toy model which exhibits nontrivial phenomenology to investigate specific features of the theory. We obtain the analytic solution of the modified Friedmann equation for the scale factor a in terms of time t and use the age of the oldest star clusters and the primordial nucleosynthesis bounds in order to constrain the parameters of our toy model.
Track theory and nuclear photographic emulsions for Dark Matter searches
International Nuclear Information System (INIS)
Ditlov, V.A.
2013-01-01
This work is devoted to the analysis of possibilities of nuclear emulsions for Dark Matter search, particles of which can produce slow recoil-nuclei. Tracks of such recoil-nuclei in developed nuclear emulsion consist from several emulsion grains. The analysis was carried out with Monte-Carlo calculations made on the basis of the Track Theory and the various factors influencing Dark Matter particles registration efficiency were investigated. Problems, which should be solved for optimal utilization of nuclear emulsions in Dark Matter search, were formulated. B ody - Highlights: ► Specific features of Dark Matter Search in nuclear photographic emulsions. ► Track theory for WIMP search in nuclear emulsions. ► Primary efficiency for single WIMP registration. ► Properties of primary WIMP registration efficiency. ► Primary registration efficiency of WIMP flow
Applications of Density Functional Theory in Soft Condensed Matter
Löwen, Hartmut
Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.
Effect of pairing in nuclear level density at low temperatures
International Nuclear Information System (INIS)
Rhine Kumar, A.K.; Modi, Swati; Arumugam, P.
2013-01-01
The nuclear level density (NLD) has been an interesting topic for researchers, due its importance in many aspects of nuclear physics, nuclear astrophysics, nuclear medicine, and other applied areas. The calculation of NLD helps us to understand the energy distribution of the excited levels of nuclei, entropy, specific heat, reaction cross sections etc. In this work the effect of temperature and pairing on level-density of the nucleus 116 Sn has been studied
Study of nuclear level density parameter and its temperature dependence
International Nuclear Information System (INIS)
Nasrabadi, M. N.; Behkami, A. N.
2000-01-01
The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained
Self-consistent green function calculations for isospin asymmetric nuclear matter
International Nuclear Information System (INIS)
Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.
2010-01-01
The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)
Temperature dependence of single-particle properties in nuclear matter
International Nuclear Information System (INIS)
Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.
2006-01-01
The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed
Neutron star evolution and the structure of matter at high density
International Nuclear Information System (INIS)
Soyeur, Madeleine.
1981-09-01
The structure and properties of neutron stars are determined by the state of cold nuclear matter at high density. In order to investigate the behavior of matter inside neutron stars, observables sensitive to their internal structure have to be calculated and confronted to observations. The thermal radiation of neutron stars seems to be a good candidate to be such observable. It can be shown that the neutrino luminosity of neutron stars, responsible for their cooling in the early stages of their evolution is strongly dependent on possible phase transitions to superfluid nucleons, to pion condensation or to quark matter. The specific heat of matter is also not the same in the various phases expected at high density and is particularly sensitive to the nucleon superfluidity. At present, both the theoretical estimates and the observations of the thermal properties of neutron stars are still quite preliminary. In particular, large uncertainties due to possible reheating mechanisms and magnetic field effects make the theoretical interpretation of the steady radiation of pulsars quite difficult
Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
International Nuclear Information System (INIS)
McDonald, John
2012-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.
Reflection on penal policy in nuclear matters
International Nuclear Information System (INIS)
Cisse, A.
1996-01-01
This document expresses ethical reflexions as far as nuclear energy development is concerned. The potential diversion of the peaceful use of nuclear energy results in the necessity of a criminal policy which would control the nuclear regulations. For each potential nuclear infringement, systems of laws are established either to prevent damages or to penalize them. (TEC)
Description of a nucleon in nuclear matter using the chiral bag model
International Nuclear Information System (INIS)
Bunatyan, G.G.
1990-01-01
The chiral bag (cloudy bag) model, which contains an essentially nonlinear interaction of quarks with both the classical and quantum pion field, is extended for description of a nucleon in nuclear matter. The dependence on the density and temperature of the medium is studied. The pion field in nuclear matter differs considerably from the free field, and this leads to a modification of the nucleon bag. Increase of the density ρ and temperature T causes strengthening of the pion field and growth of its thermodynamic fluctuations. At sufficiently high densities ρ approx-gt ρ CB and temperatures T≥T cr this leads to instability of the three-quark nucleon bag. Under such conditions nuclear matter cannot be composed only of nucleons, and one should expect the appearance of a different, non-nucleon, phase. Estimates of the critical density and temperature are obtained: ρ CB ∼ (1.5-2)ρ 0 and T cr ∼ 200 MeV (where ρ 0 is the conventional nuclear density)
Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon
2012-11-01
In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Monotonous braking of high energy hadrons in nuclear matter
International Nuclear Information System (INIS)
Strugalski, Z.
1979-01-01
Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail
Nuclear matter properties using different sets of parameters in the Gogny interaction
International Nuclear Information System (INIS)
Ramadan, Kh.A.; Mansour, H.M.M.
2002-01-01
In the present work we use the finite range density dependent effective Gogny interaction to study the equation of state of polarized nuclear matter. Six sets of the interaction parameters are used and a comparison is made with the calculations of Friedman and Pandharipande using a realistic interaction. One of the parameter sets (D1) gives similar results for the properties of polarized nuclear matter while the other parameter sets (D1S, D250, D260, D280 and D300) yield results which are reasonably comparable with the realistic interaction calculation of Friedman and Pandharipande. (author)
Symmetric and asymmetric nuclear matter in the Thomas-Fermi model at finite temperatures
International Nuclear Information System (INIS)
Strobel, K.; Weber, F.; Weigel, M.K.
1999-01-01
The properties of warm symmetric and asymmetric nuclear matter are investigated in the frame of the Thomas-Fermi approximation using a recent modern parameterization of the effective nucleon-nucleon interaction of Myers and Swiatecki. Special attention is paid to the liquid-gas phase transition, which is of special interest in modern nuclear physics. We have determined the critical temperature, critical density and the so-called flash temperature. Furthermore, the equation of state for cold neutron star matter is calculated. (orig.)
The stability of nuclear matter in the Nambu-Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. E-mail: athomas@physics.adelaide.edu.au
2001-12-17
Using the Nambu-Jona-Lasinio model to describe the nucleon as a quark-diquark state, we discuss the stability of nuclear matter in a hybrid model for the ground state at finite nucleon density. It is shown that a simple extension of the model to simulate the effects of confinement leads to a scalar polarizability of the nucleon. This, in turn, leads to a less attractive effective interaction between the nucleons, helping to achieve saturation of the nuclear matter ground state. It is also pointed out that that the same effect naturally leads to a suppression of 'Z-graph' contributions with increasing scalar potential.
Nuclear matter with a pseudo-particle model: static bulk and surface properties
International Nuclear Information System (INIS)
Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.
1993-01-01
Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of gaussians per nucleon and the gaussian widths are critical parameters in that semi-classical model. (orig.)
Nuclear matter with pseudo-particle model: static bulk and surface properties
Energy Technology Data Exchange (ETDEWEB)
Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.
1993-12-31
Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a Gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of Gaussian per nucleon and the Gaussian widths are critical parameters in that semi-classical model. (author) 13 refs.; 9 figs.; 2 tabs.
Nuclear matter with pseudo-particle model: static bulk and surface properties
International Nuclear Information System (INIS)
Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.
1993-01-01
Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a Gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of Gaussian per nucleon and the Gaussian widths are critical parameters in that semi-classical model. (author) 13 refs.; 9 figs.; 2 tabs
Nuclear matter with a pseudo-particle model: static bulk and surface properties
Energy Technology Data Exchange (ETDEWEB)
Idier, D. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Benhassine, B. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Farine, M. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France))
1993-11-15
Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of gaussians per nucleon and the gaussian widths are critical parameters in that semi-classical model. (orig.)
3D2 pairing in asymmetric nuclear matter
International Nuclear Information System (INIS)
Alm, T.
1996-01-01
The superfluid 3 D 2 pairing instability in isospin-asymmetric nuclear matter is studied, using the Paris nucleon-nucleon interaction as an input. It is found that the critical temperature associated with the transition to the superfluid phase becomes strongly suppressed with increasing isospin asymmetry, and vanishes for asymmetry parameter values α (≡(n n -n p )/(n n +n p )) that are larger than several percent. It is shown that for neutron star models based on relativistic, field-theoretical equations of state, a large fraction of their interior may exist in a 3 D 2 -paired superfluid phase. The implications of such a 3 D 2 superfluid in massive neutron stars is discussed with respect to observable pulsar phenomena. Another interesting phenomenon, discussed in the paper, concerns the numerical finding of two critical superfluid temperatures for a given density in the case of isospin-asymmetric matter. Using the BCS cut-off ansatz, a mathematical expression for the critical temperature is derived which confirms this finding analytically. (orig.)
Many body effects in nuclear matter QCD sum rules
Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.
2017-12-01
We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.
Many-body theory of nuclear and neutron star matter
Energy Technology Data Exchange (ETDEWEB)
Pandharipande, V R; Akmal, A; Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
1998-06-01
We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)
Many-body theory of nuclear and neutron star matter
International Nuclear Information System (INIS)
Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G.
1998-01-01
We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v 18 two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)
Diquark Bose Condensates in High Density Matter and Instantons
International Nuclear Information System (INIS)
Rapp, R.; Shuryak, E.; Schaefer, T.; Velkovsky, M.
1998-01-01
Instantons lead to strong correlations between up and down quarks with spin zero and antisymmetric color wave functions. In cold and dense matter, n b >n c ≅1 fm -3 and T c ∼50 thinspthinspMeV, these pairs Bose condense, replacing the usual left-angle bar qq right-angle condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-antiparticle symmetry which relates left-angle bar qq right-angle and left-angle qq right-angle condensates. copyright 1998 The American Physical Society
Cosmic selection rule for the glueball dark matter relic density
Soni, Amarjit; Xiao, Huangyu; Zhang, Yue
2017-10-01
We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.
Nuclear incompressibility: from finite nuclei to nuclear matter
International Nuclear Information System (INIS)
Treiner, J.; Krivine, H.; Bohigas, O.
1981-01-01
The recent increase of experimental data concerning the Giant Monopole Resonance Energy Esub(M) gives information on the incompressibility modulus of nuclear matter, provided one can extrapolate the incompressibility of a nucleus Ksub(A) defined by Esub(M)=[h 2 /m KA/ 2 >]sup(1/2), to the infinite medium. We discuss the theoretical interpretation of the coefficients of an Asup(-1/3) - expansion of Ksub(A) by studying the asymptotic behaviour of two RPA sum rules (corresponding to the scaling and the constrained model), evaluated using self-consistent Thomas-Fermi calculations. We show that the scaling model is the most suitable one as it leads to a rapidly converging Asup(-1/3)-expansion of the corresponding incompressibility Ksub(A)sup(S), whereas this is not the case with the constrained model. Some semi-empirical relations between the coefficients of the expansion of Ksub(A)sup(S) are established, which reduce to one the number of free-parameters in a best fit analysis of the experimental data. This reduction is essential due to the still limited number and accuracy of experimental data. We then show the compatibility of the data given by the various experimental groups with this parametrization and obtain a value of Ksub(nm)=220+-20 MeV, in good agreement with more microscopic analysis
Phase transition in dense nuclear matter with quark and gluon condensates
International Nuclear Information System (INIS)
Ellis, J.; Kapusta, J.I.; Olive, K.A.
1991-01-01
Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)
Nuclear symmetry energy in density dependent hadronic models
International Nuclear Information System (INIS)
Haddad, S.
2008-12-01
The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)
The role of meson dynamics in nuclear matter saturation
International Nuclear Information System (INIS)
Goncalves, E.
1988-01-01
The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author) [pt
Photons in dense nuclear matter: Random-phase approximation
Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay
2018-04-01
We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.
The thermal curve of nuclear matter
International Nuclear Information System (INIS)
Ma, Y.G.; Peter, J.; Siwek, A.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Gulminelli, F.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Steckmeyer, J.C.; Tamain, B.; Vient, E.
1997-01-01
Earlier measurements of nuclear matter thermal curve of liquid to gas phase transition presented two limitation: only one temperature measuring method was available and the mass number of the formed nuclei decreased from 190 to 50 when the excitation energy increased. To avoid these limitations experiments with the multidetector INDRA at GANIL were carried-out. Among the quasi-projectiles issued from the 36 Ar collisions at 52, 74, 95 A.MeV on the 58 Ni, nuclei of close masses were selected. The excitation energy was determined by the calorimetry of the charged products emitted by quasi-projectiles while the temperature was measured by three different methods. Very different apparent temperatures were obtained for the same excitation energy/nucleon. Only one curve displays a slope variation but no indication of plateau. With the quasi-projectiles obtained from the collisions of 129 Xe at 50 MeV/u on a 119 Sn target behaviors similar to those of 36 Ar were observed in the covered domain of excitation energy. To solve this puzzle and recover the initial temperatures of interest the only mean was to do a theoretical simulation in which one follows the de-excitation of the nuclei formed at different excitation energies and look for the thermal curve able to reproduce the observed temperatures. Two extreme possibilities were taken into account concerning the de-excitation process: either a sequential process established at E * /A≤ 3 MeV/u or a sudden multifragmentation in several hot fragments, most probably at E * /A≥ 10 MeV/u. In both cases it was possible to reproduce the whole set of experimental results concerning the 36 Ar projectile. The initial temperature increases steadily as a function of excitation energy showing no plateau or singular points. The results indicate that, being a system without external pressure, in its passage from the liquid phase to the gas phase the nucleus does not display necessarily a temperature plateau. Discussions on
Sigma-omega meson coupling and properties of nuclei and nuclear matter
International Nuclear Information System (INIS)
Haidari, Maryam M.; Sharma, Madan M.
2008-01-01
We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model
Recent advances in measurements of the nuclear level density
International Nuclear Information System (INIS)
John, Bency
2007-01-01
A short review of recent advances in measurements of the nuclear level density is given. First results of the inverse level density parameter - angular momentum correlation in a number of nuclei around Z∼50 shell region at an excitation energy around 0.3 MeV/nucleon are presented. Significant variations observed over and above the expected shell corrections are discussed in context of the emerging trends in microscopic calculations of the nuclear level density. (author)
Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei
International Nuclear Information System (INIS)
Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan
2010-01-01
Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δr np of Sn isotopes give an important constraint on the symmetry energy E sym (ρ 0 ) and its density slope L at saturation density ρ 0 . Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E sym (ρ 0 ). The implication of these new constraints on the Δr np of 208 Pb as well as the core-crust transition density and pressure in neutron stars is discussed.
Hadron structure in a simple model of quark/nuclear matter
International Nuclear Information System (INIS)
Horowitz, C.J.; Moniz, E.J.; Negele, J.W.
1985-01-01
We study a simple model for one-dimensional hadron matter with many of the essential features needed for examining the transition from nuclear to quark matter and the limitations of models based upon hadron rather than quark degrees of freedom. The dynamics are generated entirely by the quark confining force and exchange symmetry. Using Monte Carlo techniques, the ground-state energy, single-quark momentum distribution, and quark correlation function are calculated for uniform matter as a function of density. The quark confinement scale in the medium increases substantially with increasing density. This change is evident in the correlation function and momentum distribution, in qualitative agreement with the changes observed in deep-inelastic lepton scattering. Nevertheless, the ground-state energy is smooth throughout the transition to quark matter and is described remarkably well by an effective hadron theory based on a phenomenological hadron-hadron potential
Energy Technology Data Exchange (ETDEWEB)
Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy
2016-10-18
The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.
Low- and high-density nuclear equation of state and the hyperon puzzle
Energy Technology Data Exchange (ETDEWEB)
Colucci, Giuseppe; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2013-07-01
The measurements of the unusually high mass of the millisecond pulsar PSR J1614-2230 (1.97 ± 0.04 M {sub CircleDot}) imposes a strong constraint on the nuclear Equation of State (EoS), in particular for what concerns the finite density behaviour of nuclear and neutron matter. In my talk I first discuss a model for the low-density part of the EoS, based on chiral one-pion exchange. I consider a self-consistent approach at finite temperature and density and show that even in a fully-relativistic theory the one-pion exchange contribution is dominated by a contact interaction. Then, a relativistic mean-field approach is used to discuss the high-density part of the EoS, including the presence of hyperons. In the latter, a density dependent parametrization is used and a parameter study on the hyperon-scalar meson coupling is performed.
Energy Technology Data Exchange (ETDEWEB)
Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.
1999-08-01
We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)
Density content of nuclear symmetry energy from nuclear observables
Indian Academy of Sciences (India)
mail: ... The asymmetry arises due to the requirements that ... nuclear binding energies and the nuclear drip lines and has a crucial role in determining ... neutron-skin thickness based on covariance analysis [6] once again yields a strong cor-.
Solid neutron matter the energy density in the relativistic harmonic approximation
International Nuclear Information System (INIS)
Cattani, M.; Fernandes, N.C.
A relativistic expression for the energy density as a function of particle density for solid neutron matter is obtained using Dirac's equation with a truncated harmonic potential. Ultrabaric and superluminous effects are not found in our approach [pt
Pion absorption in excited nuclear matter
International Nuclear Information System (INIS)
Schmidt, H.R.; Albrecht, R.; Bock, R.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Plasil, F.; Saini, S.; Tincknell, M.; Young, G.R.; Beckmann, P.; Berger, F.; Clewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Peitzmann, T.; Purschke, M.; Santo, R.; Claesson, G.; Eklund, A.; Garpman, S.; Gustafsson, H.A.; Idh, J.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Franz, A.; Jacobs, P.; Poskanzer, A.M.; Ritter, H.G.; Kristiansson, P.; Loehner, H.; Obenshain, F.E.; Sorensen, S.P.; Siemiarczuk, T.
1992-02-01
The target dependence and azimuthal correlations of protons and plons are investigated for pA reactions at 4.9, 60 and 200 GeV. The experimental observations can be understood qualitatively under the assumption that pions are absorbed in excited target spectator matter. (orig.)
Chiral approach to nuclear matter: Role of explicit short-range NN-terms
International Nuclear Information System (INIS)
Fritsch, S.; Kaiser, N.
2004-01-01
We extend a recent chiral approach to nuclear matter by including the most general (momentum-independent) NN-contact interaction. Iterating this two-parameter contact vertex with itself and with one-pion exchange the emerging energy per particle exhausts all terms possible up to and including fourth order in the small momentum expansion. Two (isospin-dependent) cut-offs Λ 0,1 are introduced to regularize the (linear) divergences of some three-loop in-medium diagrams. The equation of state of pure neutron matter, anti E n (k n ), can be reproduced very well up to quite high neutron densities of ρ n =0.5 fm -3 by adjusting the strength of a repulsive nn-contact interaction. Binding and saturation of isospin-symmetric nuclear matter is a generic feature of our perturbative calculation. Fixing the maximum binding energy per particle to - anti E(k f0 )=15.3 MeV we find that any possible equilibrium density ρ 0 lies below ρ 0 max =0.191 fm -3 . The additional constraint from the neutron matter equation of state leads however to a somewhat too low saturation density of ρ 0 =0.134 fm -3 . We also investigate the effects of the NN-contact interaction on the complex single-particle potential U(p,k f )+iW(p,k f ). We find that the effective nucleon mass at the Fermi surface is bounded from below by M * (k f0 ) ≥1.4 M. This property keeps the critical temperature of the liquid-gas phase transition at somewhat too high values T c ≥21 MeV. The downward bending of the asymmetry energy A(k f ) above nuclear-matter saturation density is a generic feature of the approximation to fourth order. We furthermore investigate the effects of the NN-contact interaction on the (vector-∇ρ) 2 -term in the nuclear energy density functional E[ρ,τ]. Altogether, there is within this complete fourth-order calculation no ''magic'' set of adjustable short-range parameters with which one could reproduce simultaneously and accurately all semi-empirical properties of nuclear matter. In
Equation of state of nuclear matter of nucleons and dibaryons
International Nuclear Information System (INIS)
Mrowczynski, St.
1985-01-01
The nuclear matter is considered consisting of nucleons and dibaryons, i.e. elementary particles of double baryon charge. The equation of state of such matter at zero temperature is found. The ideal gas approximation is considered and then the role of interaction is discussed which is included by means of delta-like potential. The peculiarities and possible phisical consequences of the equation of state are considered
Nuclear densities of 1fsub(7/2) nuclei from elastic alpha-particle scattering
International Nuclear Information System (INIS)
Friedman, E.; Gils, H.J.; Rebel, H.
1983-12-01
The elastic scattering of 104 MeV α particles by sup(40,42,43,44,48)Ca, 50 Ti, 51 V, 52 Cr has been analyzed by phenomenological and semimicroscopic optical potentials in order to get information on isotopic and isotonic differences of the α particle optical potentials and of nuclear matter densities. The phenomenological optical potentials based on a Fourier-Bessel description of the real part reveal different behaviour in size and shape for the isotonic chain as compared to the isotopic chain. Odd-even effects are also indicated to be different for isotones and isotopes. The semi-microscopic analyses use a single-folding model with a density-dependent effective αN-interaction including a realistic local density approximation. The calculated potentials are fully consistent with the phenomenological ones. Isopotic and isotonic differences of the nuclear matter densities obtained from the folding model in general show a similar behavior as the optical potential differences. The results on matter densities are compared to other investigations. (orig.) [de
Proton impurity in the neutron matter: a nuclear polaron problem
Energy Technology Data Exchange (ETDEWEB)
Kutschera, M [Institute of Nuclear Physics, Cracow (Poland); Wojcik, W [Politechnika Krakowska, Cracow (Poland)
1992-10-01
We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye approximation. The proton-phonon coupling is of the deformation-potential type at long wavelengths. It is weak at low density and increases with the neutron matter density. We calculate the proton`s effective mass perturbatively for a weak coupling, and use a canonical transformation technique for stronger couplings. The proton`s effective mass grows significantly with density, and at higher densities the proton impurity can be localized. This behaviour is similar to that of the polaron in solids. We obtain properties of the localized proton in the strong coupling regime from variational calculations, treating the neutron in the Thomas-Fermi approximation. (author). 14 refs, 8 figs.
Energy-range relations for hadrons in nuclear matter
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
Lectures notes on phase transformations in nuclear matter
López, Jorge A
2000-01-01
The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The
Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations
International Nuclear Information System (INIS)
Zakout, I.; Jaqaman, H.R.
2000-01-01
Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)
Statistical density of nuclear excited states
Directory of Open Access Journals (Sweden)
V. M. Kolomietz
2015-10-01
Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.
Tables of nuclear level density parameters
International Nuclear Information System (INIS)
Chatterjee, A.; Ghosh, S.K.; Majumdar, H.
1976-03-01
The Renormalized Gas Model (RGM) has been used to calculate single particle level density parameters for more than 2000 nucleides over the range 9<=Z<=126 (15<=A<=338). Three separate tables present the elements on or near the valley of beta stability, neutron-rich fission fragment nucleides, and transitional nuclei, actinides and light-mass super heavy elements. Each table identifies the nucleus in terms of Z and N and presents the RGM deformation energy of binding, the total RGM structural energy correction over the free gas Fermi surface, and the level density parameter
Quark distributions in nuclear matter and the EMC effect
Energy Technology Data Exchange (ETDEWEB)
Mineo, H.; Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Ishii, N.; Thomas, A.W.; Yazaki, K
2004-05-03
Quark light cone momentum distributions in nuclear matter and the structure function of a bound nucleon are investigated in the framework of the Nambu-Jona-Lasinio model. This framework describes the nucleon as a relativistic quark-diquark state, and the nuclear matter equation of state by using the mean field approximation. The scalar and vector mean fields in the nuclear medium couple to the quarks in the nucleon and their effect on the spin independent nuclear structure function is investigated in detail. Special emphasis is placed on the important effect of the vector mean field and on a formulation which guarantees the validity of the number and momentum sum rules from the outset.
High energy density in matter produced by heavy ion beams
International Nuclear Information System (INIS)
1989-07-01
This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)
Properties of high-density matter in the electroweak symmetric phase
International Nuclear Information System (INIS)
Chandra, D.; Goyal, A.
1992-01-01
We examine the bulk properties of matter at high densities and finite temperatures in the phase where electroweak symmetry is exact and fermions are massless, by taking the strong interactions into account perturbatively to lowest order in the quark-gluon chromodynamic coupling constant α c . We also discuss the possibility of a phase transition of strange quark matter into this high-density matter in the electroweak symmetric phase at densities likely to be present in the core of dense neutron stars or collapsing stars. Finally, we study the properties of finite-size chunks of this matter by taking surface effects into account and give an estimate of the surface tension
High energy-density physics: From nuclear testing to the superlasers
International Nuclear Information System (INIS)
Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.
1995-01-01
The authors describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program
High energy-density physics: From nuclear testing to the superlasers
Energy Technology Data Exchange (ETDEWEB)
Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.
1995-10-20
We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.
High energy-density physics: From nuclear testing to the superlasers
International Nuclear Information System (INIS)
Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.
1995-01-01
We describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program
High energy-density physics: From nuclear testing to the superlasers
Energy Technology Data Exchange (ETDEWEB)
Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.
1995-08-14
The authors describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program.
Effect of vibrational states on nuclear level density
International Nuclear Information System (INIS)
Plujko, V. A.; Gorbachenko, O. M.
2007-01-01
Simple methods to calculate a vibrational enhancement factor of a nuclear level density with allowance for damping of collective state are considered. The results of the phenomenological approach and the microscopic quasiparticle-phonon model are compared. The practical method of calculation of a vibrational enhancement factor and level density parameters is recommended
Detailed study of nuclear charge and mass densities. Pt. 1
International Nuclear Information System (INIS)
Berdichevsky, D.; Mosel, U.
1982-01-01
Theoretical and experimental densities are analyzed and compared in detail, in particular in the surface region. For this purpose nuclear size parameters are discussed and new sets of surface parameters are proposed. It is shown that the densities are very close to the error function in the external part of the surface and can be characterized there by two new parameters. For very large r the densities show an exponential behaviour which is analyzed in terms of single-particle density distributions. Furthermore, the effects of the asymmetry, spin-orbit and Coulomb forces on the density distributions are discussed. (orig.)
Measurements Matter in Nuclear Safeguards & Security
International Nuclear Information System (INIS)
Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.
2015-01-01
The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards
High dark matter densities and the formation of extreme dwarf galaxies
International Nuclear Information System (INIS)
Lake, G.
1990-01-01
The extreme dwarfs of the Local Group, GR 8, Draco, and Ursa Minor have high densities of dark matter. If the dark matter is dissipationless, then there is a simple relation between the redshift of turnaround z(turn) and its current mean density. Three alternatives for the dSphs are discussed. If the dark matter follows the light, then z(turn) is greater than 30. If a density profile is adopted so that the mean density becomes low enough to be barely consistent with the standard density fluctuation spectrum of cold dark matter, then the mass-to-light ratios are greater than 1000 solar mass/solar luminosity. The last alternative is dissipational dark matter. In this case, the additional collapse factor owing to dissipation allows a later epoch of formation. 39 refs
Fluctuation effects on bubble growth in hot nuclear matter
International Nuclear Information System (INIS)
Santiago, A.J.; Chung, K.C.
1991-01-01
The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)
Neutron optical potentials in unstable nuclei and the equation of state of asymmetric nuclear matter
International Nuclear Information System (INIS)
Oyamatsu, K.; Iida, K.
2003-01-01
Neutron single particle potential is one of the basic macroscopic properties to describe structure and reactions of nuclei in nuclear reactors and in the universe. However, the potential is quite uncertain for unstable nuclei primarily because the equation of state (EOS) of asymmetric nuclear matter is not known well. The present authors studied systematically the empirical EOS of asymmetric nuclear matter using a macroscopic nuclear model; about two hundred EOS's having empirically allowed values of L (symmetry energy density derivative coefficient) and K 0 (incompressibility) were obtained from the fittings to masses and radii of stable nuclei. It was suggested that the L value could be determined from global (Z, A) dependence of nuclear radii. In the present study, the single particle potential is examined assuming kinetic energies of non-interacting Fermi gases. The potential in a nucleus can be calculated easily, once the density distribution is solved using the effective nuclear interaction (EOS). Neutron and proton single particle potentials are calculated systematically for 80 Ni using the two hundred EOS's. It is found that the neutron-proton potential difference has clear and appreciable L dependence, while the potential for each species does not show such simple dependence on L. (author)
Saturation properties of asymmetric nuclear matter to be obtained from unstable nuclei
Energy Technology Data Exchange (ETDEWEB)
Oyamatsu, Kazuhiro [Aichi Shukutoku Univ., Dept. of Media Production and Theories, Nagakute, Aichi (Japan); Iida, Kei [Institute of Physical and Chemical Research, Wako, Saitama (Japan)
2002-09-01
We examine relations among the parameters characterizing the phenomenological equation of state (EOS) of nearly symmetric, uniform nuclear matter near the saturation density from experimental data on radii and masses of stable nuclei. The EOS parameters of interest are the symmetry energy S{sub 0}, the symmetry energy density-derivative coefficient L and the incompressibility K{sub 0} at the normal nuclear density. The calculations of the nuclear properties were performed with a simplified Thomas-Fermi model. We find a constraint on (K{sub 0}, L) values from the slope of the saturation line (the line joining the saturation points of asymmetric matter EOS with fixed proton abundance). A strong correlation between S{sub 0} and L, which was discussed in the Skyrme Hartree-Fock theory for relatively small L values, is found to hold for such larger values as a relativistic mean field theory predicts. In the light of the uncertainties in the (K{sub 0}, L) values, we calculate radii of unstable nuclei as expected to be produced in future facilities. We find that the matter radii depend strongly on L almost independently of K{sub 0}, and that systematic detection of the radii of such nuclei will help to determine the L value. (author)
Effects of Brown-Rho scalings in nuclear matter, neutron stars and finite nuclei
Kuo, T. T. S.; Dong, Huan
2011-01-01
We have carried out calculations for nuclear matter, neutron stars and finite nuclei using NN potentials with and without the medium-dependent modifications based on the Brown-Rho (BR) scalings. Using the Vlow-k low-momentum interactions derived from such potentials, the equations of state (EOS) for symmetric and asymmetric nuclear matter, for densities up to ~ 5ρ0, are calculated using a RPA method where the particle-particle hole-hole ring diagrams are summed to all orders. The medium effects from both a linear BR scaling (BR1) and a non-linear one (BR2) are considered, and they both are essential for our EOSs to reproduce the nuclear matter saturation properties. For densities ρ below ρ0, results from BR1 and BR2 are close to each other. For higher densities, the EOS given by BR2 is more desirable and is well reproduced by that given by the interaction (Vlow-k+TBF) where Vlow-k is the unsealed low-momentum interaction and TBF is an empirical Skyrme three-body force. The moment of inertia of neutron stars is ~ 60 and ~ 25Modotkm2 respectively with and without the inclusion of the above BR2 medium effects. Effects from the BR scaling are important for the long half-life, ~ 5000yrs, of the 14C - 14N β-decay.
The single-particle potential of nuclear matter in the LOCV framework
Energy Technology Data Exchange (ETDEWEB)
Modarres, M., E-mail: mmodares@ut.ac.ir [Physics Department, University of Tehran, North-Kargar Ave., 1439955961 Tehran (Iran, Islamic Republic of); Rajabi, A. [Physics Department, Shahid Rajaei Teacher Training University, Lavizan, 16788 Tehran (Iran, Islamic Republic of)
2011-10-01
The density and momentum dependence of single-particle potential (SPP) and effective mass of symmetric nuclear matter are studied in the framework of lowest order constrained variational (LOCV) method. The Reid68, the Reid68-{Delta} and the Av{sub 18} interactions are considered as the input nucleon-nucleon potentials. It is shown that the SPP of nuclear matter, at fixed density, is an increasing function of nucleon momentum, and it has different behavior for the Reid type potentials with respect to Av{sub 18} interaction. We find good agreements between our LOCV SPP and those coming from others many-body techniques such as the (Dirac-)Brueckner-Hartree-Foch ((D)BHF), the fermion hypernetted chain (FHNC), mean field (MF), etc. On the other hand SPP dramatically depends on the density at low and high nucleon momentums. While the effective mass of nuclear matter increases as we increase the nucleon momentum, it decreases at the Fermi surface. Again, good agreements are observed between our calculated effective mass and those coming from the methods mentioned above.
International Nuclear Information System (INIS)
Xu Jun; Ma Hongru; Chen Liewen; Li Baoan
2008-01-01
Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum-dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundaries of these instabilities and the phase-coexistence region generally shrink with increasing temperature and are sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures
The impact of the phase-space density on the indirect detection of dark matter
International Nuclear Information System (INIS)
Ferrer, Francesc; Hunter, Daniel R.
2013-01-01
We study the indirect detection of dark matter when the local dark matter velocity distribution depends upon position, as expected for the Milky Way and its dwarf spheroidal satellites, and the annihilation cross-section is not purely s-wave. Using a phase-space distribution consistent with the dark matter density profile, we present estimates of cosmic and gamma-ray fluxes from dark matter annihilations. The expectations for the indirect detection of dark matter can differ significantly from the usual calculation that assumes that the velocity of the dark matter particles follows a Maxwell-Boltzmann distribution
QUANTUM TRANSPORT-THEORY OF NUCLEAR-MATTER
BOTERMANS, W; MALFLIET, R
1990-01-01
Quantum kinetic equations are derived using the Keldysh Green's function formalism to describe non-equilibrium processes in nuclear matter and nucleus-nucleus collisions. A general transport equation is proposed which includes energy spreading effects. We discuss a number of specific kinetic
Nuclear symmetry energy and stability of matter in neutron stars
International Nuclear Information System (INIS)
Kubis, Sebastian
2007-01-01
It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star
Nuclear matter equation of state and σ-meson parameters
Indian Academy of Sciences (India)
We try to determine phenomenologically the extent of in-medium modification of -meson parameters so that the saturation observables of the nuclear matter equation of state (EOS) are reproduced. To calculate the EOS we have used Brueckner–Bethe–Goldstone formalism with Bonn potential as two-body interaction.
High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.
High density matter in AGS, SPS and RHIC collisions. Proceedings. Volume 9
International Nuclear Information System (INIS)
1998-01-01
This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Meson production in nuclear collisions and the equation of state of hadronic matter
International Nuclear Information System (INIS)
Grosse, E.
1993-01-01
Whereas nuclear matter at saturation, i.e. at its ground state density [ρ o ≅ 1 nucleon per 6 fm 3 ] is realized in the center of nuclei, it is compressed to much higher density in neutron stars and during explosive stellar processes like novae and supernovae. The hard core repulsion in the nucleon-nucleon potential and also the Pauli principle counteract such a compression and the stiffness of the equation of state of this matter is determined by these two effects - at least up to a certain density. For very high density and temperature it is believed that the nucleons dissociate into a plasma of quarks and gluons. On the other hand there are detailed theoretical arguments and also experimental evidence shown here, that in the intermediate density range the equation of state is influenced by a different scenario. The conversion of nucleons into heavier baryons leads directly to an additional mass density and at the same time their different quantum numbers allow a higher particle number in a given volume of phase space. The heavy baryons in question are nucleon resonances (Δ,N*) and to smaller extent also hyperons; to conserve strangeness the formation of the latter is associated with the production of kaons whereas Δ's and N*'s are strongly coupled to the pions in the hadronic matter in the collision zone. (author)
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
Energy Technology Data Exchange (ETDEWEB)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-11-07
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
International Nuclear Information System (INIS)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-01-01
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
International Nuclear Information System (INIS)
Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe
2016-01-01
Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.
Fermi liquid, clustering, and structure factor in dilute warm nuclear matter
Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.
2018-02-01
Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.
Variational theory of nuclear and neutron matter
International Nuclear Information System (INIS)
Pandharipande, V.R.; Wiringa, R.B.
1989-06-01
In these lectures we will discuss attempts to solve the A = 3 to ∞ nuclear many-body problems with the variational method. We choose the form of a variational wave function Χ v (1, 2 hor-ellipsis A) to describe the ground state. The Χ v and the ground-state energy E v are obtained by minimizing E v = left-angle Χ v |H|Χ v right-angle/left-angle Χ v |Χ v right-angle with respect to variations in Χ v . If the form of the variational wave function is chosen properly we can expect Χ v ∼ Χ 0 and E v ∼ E 0 where Χ 0 and E 0 are the exact ground-state wave function and energy. In general E v ≥ E 0 in variational calculations. 63 refs., 11 figs
The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons
Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop
2018-05-01
We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
The MSW conversion of solar neutrinos and random matter density perturbations
International Nuclear Information System (INIS)
Nunokawa, H.; Rossi, A.; Valle, J.W.F.
1997-01-01
A generalization of the resonant neutrino conversion in matter, including a random component in the matter density profile is presented. The study is focused on the effect of such matter perturbations upon both large and small mixing angle MSW solutions to the solar neutrino problem. This is carried out both for the active-active ν e → ν μ , τ as well as active-sterile ν e → conversion channels. The small mixing MSW solution is much more stable than the large mixing solution has been found. Future solar neutrino experiments, such as Borexino, could probe solar matter density noise at the few percent level
Nuclear Matter Bulk Parameter Scales and Correlations
International Nuclear Information System (INIS)
Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.
2015-01-01
We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
Energy Technology Data Exchange (ETDEWEB)
Robert J. Goldston
2010-03-03
Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
International Nuclear Information System (INIS)
Goldston, Robert J.
2010-01-01
Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.
Thermodynamics of excited nuclei and nuclear level densities
International Nuclear Information System (INIS)
Ramamurthy, V.S.
1977-01-01
A review has been made of the different approaches that are being used for a theoretical calculation of nuclear level densities. It is pointed out that while the numerical calculations based on the partition function approach and shell model single particle level schemes have shed important insight into the influence of nuclear shell effects on level densities and its excitation energy dependence and have brought out the inadequacy of the conventional Bethe Formula, these calculations are yet to reach a level where they can be directly used for quantitative comparisons. Some of the important drawbacks of the numerical calculations are also discussed. In this context, a new semi-empirical level density formula is described which while retaining the simplicity of analytical formulae, takes into account nuclear shell effects in a more realistic manner. (author)
Systematics of nuclear mass and level density formulas
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hisashi [Fuji Electric Co. Ltd., Kawasaki, Kanagawa (Japan)
1998-03-01
The phenomenological models of the nuclear mass and level density are close related to each other, the nuclear ground and excited state properties are described by using the parameter systematics on the mass and level density formulas. The main aim of this work is to provide in an analytical framework the improved energy dependent shell, pairing and deformation corrections generalized to the collective enhancement factors, which offer a systematic prescription over a great number of nuclear reaction cross sections. The new formulas are shown to be in close agreement with not only the empirical nuclear mass data but the measured slow neutron resonance spacings, and experimental systematics observed in the excitation energy dependent properties. (author)
Variational theory of nuclear and neutron matter
Energy Technology Data Exchange (ETDEWEB)
Pandharipande, V.R.; Wiringa, R.B. (Illinois Univ., Urbana, IL (USA). Dept. of Physics; Argonne National Lab., IL (USA))
1989-06-01
In these lectures we will discuss attempts to solve the A = 3 to {infinity} nuclear many-body problems with the variational method. We choose the form of a variational wave function {Chi}{sub v}(1, 2{hor ellipsis}A) to describe the ground state. The {Chi}{sub v} and the ground-state energy E{sub v} are obtained by minimizing E{sub v} = {l angle}{Chi}{sub v}{vert bar}H{vert bar}{Chi}{sub v}{r angle}/{l angle}{Chi}{sub v}{vert bar}{Chi}{sub v}{r angle} with respect to variations in {Chi}{sub v}. If the form of the variational wave function is chosen properly we can expect {Chi}{sub v} {approx} {Chi}{sub 0} and E{sub v} {approx} E{sub 0} where {Chi}{sub 0} and E{sub 0} are the exact ground-state wave function and energy. In general E{sub v} {ge} E{sub 0} in variational calculations. 63 refs., 11 figs.
Nuclear matter descriptions including quark structure of the hadrons
International Nuclear Information System (INIS)
Huguet, R.
2008-07-01
It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)
Velocity fields and transition densities in nuclear collective modes
Energy Technology Data Exchange (ETDEWEB)
Stringari, S [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy
1979-08-13
The shape of the deformations occurring in nuclear collective modes is investigated by means of a microscopic approach. Analytical solutions of the equations of motion are obtained by using simplified nuclear potentials. It is found that the structure of the velocity field and of the transition density of low-lying modes is considerably different from the predictions of irrotational hydrodynamic models. The low-lying octupole state is studied in particular detail by using the Skyrme force.
RPA correlations and nuclear densities in relativistic mean field approach
International Nuclear Information System (INIS)
Van Giai, N.; Liang, H.Z.; Meng, J.
2007-02-01
The relativistic mean field approach (RMF) is well known for describing accurately binding energies and nucleon distributions in atomic nuclei throughout the nuclear chart. The random phase approximation (RPA) built on top of the RMF is also a good framework for the study of nuclear excitations. Here, we examine the consequences of long range correlations brought about by the RPA on the neutron and proton densities as given by the RMF approach. (authors)
Baryons and baryon resonances in nuclear matter
Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu
2018-01-01
Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.
Nuclear level density parameter 's dependence on angular momentum
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2009-01-01
Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions
Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory
Holt, J. W.; Kaiser, N.; Whitehead, T. R.
2018-05-01
We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.
Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond
Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.
2018-05-01
The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
International Nuclear Information System (INIS)
Goldston, Robert J.
2011-01-01
Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ∼12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ∼30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
Energy Technology Data Exchange (ETDEWEB)
Robert J. Goldston
2011-04-28
Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.
Role of strangeness and isospin in low density expansions of hadronic matter
de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca
2018-05-01
We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.
Equation of state of neutron-rich nuclear matter from chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Norbert; Strohmeier, Susanne [Technische Universitaet Muenchen (Germany)
2016-07-01
Based on chiral effective field theory, the equation of state of neutron-rich nuclear matter is investigated systematically. The contributing diagrams include one- and two-pion exchange together with three-body terms arising from virtual Δ(1232)-isobar excitations. The proper expansion of the energy per particle, anti E(k{sub f},δ) = anti E{sub n}(k{sub f}) + δB{sub 1}(k{sub f}) + δ{sup 5/3}B{sub 5/3}(k{sub f}) + δ{sup 2}B{sub 2}(k{sub f}) +.., for the system with neutron density ρ{sub n} = k{sub f}{sup 3}(1-δ)/3π{sup 2} and proton density ρ{sub p} = k{sub f}{sup 3}δ/3π{sup 2} is performed analytically for the various interaction contributions. One observes essential structural differences to the commonly used quadratic approximation. The density dependent coefficient B{sub 1}(k{sub f}) turns out to be unrelated to the isospin-asymmetry of nuclear matter. The coefficient B{sub 5/3}(k{sub f}) of the non-analytical δ{sup 5/3}-term receives contributions from the proton kinetic energy and from the one- and two-pion exchange interactions. The physical consequences for neutron star matter are studied.
International Nuclear Information System (INIS)
Goedde, E.; Weber, M.
1977-01-01
In order to estimate the phenomena of the flow in horizontal hydraulic transport of solid matter, measuring the density structure along the vertical pipe diameter is of vital interest for basic investigations. The measurement technology in mixed flows of solid matter and water is very difficult and therefore only few publications on characteristic flow profiles in horizontal pipes are known. In a research programme advanced by the Deutsche Forschungsgemeinschaft investigations were made on the possibility to measure the density profile by means of plain measuring equipment based upon radiometrics. In this paper a combination of a nuclear radiometric polar and parallel scanning method is shown to be suitable for this kind of measurements. (orig.) [de
Neutron stars as probes of extreme energy density matter
Indian Academy of Sciences (India)
2015-05-07
May 7, 2015 ... and the orbital period decay due to the emission of gravitational radiation. ˙P = −. 192π ... masses severely restrict the EoS of neutron star matter. Masses ..... (9) Is unstable burning of carbon (C) the real cause of superbursts?
International Nuclear Information System (INIS)
Starodubskij, V.E.; Shaginyan, V.R.
1979-01-01
Friar-Negele method is applied to determine the static densities of neutrons and nuclear matter from the fast proton-nuclei elastic scattering data. This model-independent analysis (MIA) has been carried out for 28 Si, sup(32,34)S, sup(40,42,44,48)Ca, 48 Ti, sup(58,60)Ni, 90 Zr, 208 Pb nuclei. The binding energies, rms radii, densities and scattering cross sections of 1 GeV-proton are calculated in the framework of the Hartree-Fock theory (HF) with Skyrme's interaction. The HF and MIA densities and cross sections have been compared to draw a conclusion on the quality of the HF densities. Calculation of the cross sections has included the spin-orbit interaction with parameters taken from the polarization data
Radiative corrections for the direct detection of neutralino dark matter and its relic density
Energy Technology Data Exchange (ETDEWEB)
Steppeler, Patrick Norbert
2016-07-01
entering the Boltzmann equation in many scenarios of the MSSM. The Boltzmann equation allows to determine the neutralino relic density, i.e. to predict their present abundance. This prediction can be checked experimentally and is thus of great phenomenological relevance. Measurements of the temperature fluctuations of the cosmic microwave background permit to determine the relic density precisely. Comparing the theoretical prediction with the experimental finding allows to exclude large fractions of the MSSM parameter space. In order to maximally benefit from the experimental precision, it is necessary to minimise theoretical uncertainties and to include the aforementioned radiative corrections. The radiative corrections to the elastic neutralino-nucleon scattering and the corresponding relic density have been implemented into the numerical package Dark matter at next-to-leading order. With the help of this program, we perform a phenomenological investigation and analyse the impact of the radiative corrections. It turns out that the neutralino relic density depends not on a single but a multitude of gaugino (co)annihilation processes in parallel quite often. The calculated radiative corrections lead to a relative shift of the relic density of up to 10%, which is significantly larger than the experimental uncertainty (±2% at the 1σ confidence level) and demonstrates that these corrections should be included when identifying the cosmologically preferred region of the MSSM. Moreover, we investigate the relation between the relic density and the neutralino-nucleon cross sections. In the spin-independent case, the inclusion of radiative corrections leads to a relative shift roughly +14% in comparison to a tree-level calculation. This shift is comparable to typical recent nuclear uncertainties, which influence the prediction as well. The spin-dependent cross section is subject to even larger shifts and modified by up to -50% by radiative corrections.
From meson- and photon-nucleon scattering to vector mesons in nuclear matter
International Nuclear Information System (INIS)
Wolf, Gy.; Lutz, M.F.M.; Friman, B.
2003-01-01
A relativistic and unitary approach to pion- and photon-nucleon scattering taking into account the πN, ρN, ωN, ηN, πΔ, KΛ and KΣ channels is presented. The scheme dynamically generates the s- and d-wave baryon resonances N(1535), N(1650), N(1520) and N(1700) and as well as Δ(1620) and Δ(1700) in terms of quasi-local two-body interaction terms. A fair description of the experimental data relevant to the properties of slow vector mesons in nuclear matter is obtained. The resulting s-wave ρ- and ω-meson-nucleon scattering amplitudes which define the leading density modification of the ρ- and ω-meson spectral functions in nuclear matter are presented. (author)
Two-loop corrections for nuclear matter in the Walecka model
International Nuclear Information System (INIS)
Furnstahl, R.J.; Perry, R.J.; Serot, B.D.; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405)
1989-01-01
Two-loop corrections for nuclear matter, including vacuum polarization, are calculated in the Walecka model to study the loop expansion as an approximation scheme for quantum hadrodynamics. Criteria for useful approximation schemes are discussed, and the concepts of strong and weak convergence are introduced. The two-loop corrections are evaluated first with one-loop parameters and mean fields and then by minimizing the total energy density with respect to the scalar field and refitting parameters to empirical nuclear matter saturation properties. The size and nature of the corrections indicate that the loop expansion is not convergent at two-loop order in either the strong or weak sense. Prospects for alternative approximation schemes are discussed
Nuclear pasta in hot dense matter and its implications for neutrino scattering
Roggero, Alessandro; Margueron, Jérôme; Roberts, Luke F.; Reddy, Sanjay
2018-04-01
The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Ye>0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T =0 , dissolve at a relatively low temperature Tu as protons leak out of nuclei and pasta. For matter at β equilibrium with a negligible neutrino chemical potential we find that Tuβ≃4 ±1 MeV for realistic equations of state. This is lower than the maximum temperature Tmaxβ≃9 ±1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Implications for neutrino signals from galactic supernovas are briefly discussed.
International Nuclear Information System (INIS)
Gubler, Philipp; Ohtani, Keisuke
2015-01-01
The modification of the ϕ-meson at finite density is studied by using QCD sum rules in combination with the maximum entropy method. As a result, it is found that the mass shift of the ϕ-meson is strongly correlated to the strangeness content of the nucleon, , which governs the depletion of the strange quark condensate in nuclear matter. (author)
Strangeness in nuclear matter at DAΦNE
International Nuclear Information System (INIS)
Gianotti, P.
1998-01-01
The low energy kaons from the φ meson produced at DAΦNE offer a unique opportunity to study strangeness in nuclear matter. The interaction of kaons with hadronic matter can be investigated at DAΦNE using three main approaches: study of hypernuclei production and decay, kaons scattering on nucleons, kaonic atoms formation. These studies explore kaon-nucleon and hyperon-nucleon forces at very low energy, the nuclear shell model in presence of strangeness quantum number and eventual quarks deconfinement phenomena. The experiments devoted to study this physical program at DAΦNE are FINUDA and DEAR. The physics topics of both experiments are illustrated together with a detailed descriptions of the two detectors
Combined backscatter and transmission method for nuclear density gauge
Directory of Open Access Journals (Sweden)
Golgoun Seyed Mohammad
2015-01-01
Full Text Available Nowadays, the use of nuclear density gauges, due to the ability to work in harsh industrial environments, is very common. In this study, to reduce error related to the ρ of continuous measuring density, the combination of backscatter and transmission are used simultaneously. For this reason, a 137Cs source for Compton scattering dominance and two detectors are simulated by MCNP4C code for measuring the density of 3 materials. Important advantages of this combined radiometric gauge are diminished influence of μ and therefore improving linear regression.
Unified model of nuclear mass and level density formulas
International Nuclear Information System (INIS)
Nakamura, Hisashi
2001-01-01
The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)
Investigation of the organic matter in inactive nuclear tank liquids
International Nuclear Information System (INIS)
Schenley, R.L.; Griest, W.H.
1990-08-01
Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes
Self-Energy of Decuplet Baryons in Nuclear Matter
Ouellette, Stephen M.; Seki, Ryoichi
1997-01-01
We calculate, in chiral perturbation theory, the change in the self-energy of decuplet baryons in nuclear matter. These self-energy shifts are relevant in studies of meson-nucleus scattering and of neutron stars. Our results are leading order in an expansion in powers of the ratio of characteristic momenta to the chiral symmetry-breaking scale (or the nucleon mass). Included are contact diagrams generated by 4-baryon operators, which were neglected in earlier studies for the $\\Delta$ isomulti...
Mass shift of σ-meson in nuclear matter
Indian Academy of Sciences (India)
Mass shift of σ-meson in nuclear matter. J R MORONES-IBARRA1, MÓNICA MENCHACA MACIEL1,∗. ,. AYAX SANTOS-GUEVARA2 and FELIPE ROBLEDO PADILLA1. 1Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, UANL,. Av. Universidad S/N Ciudad Universitaria, San Nicolás de los ...
Conversion width of Σ-hyperon in nuclear matter
International Nuclear Information System (INIS)
Filimonov, V.A.
1983-01-01
Width G of ΣN→ΛN conversion for Σ - hyperon in nuclear matter on the base of one-boson exchange model is calculated. Essential compensation of contributions of diffe-- rent mesons to amplitude of the conversiop is shown to take place. As a result G decreases approximately twice as compaped with the value from exchange only by π-meson. Without accout of Pauli principle it is obtained G=15-25 MeV
Comments on nucleon mean free paths in nuclear matter
International Nuclear Information System (INIS)
Blann, M.
1977-01-01
It is suggested that recent evidence cited for a fourfold increase in the mean free path of nucleons in nuclear matter results from an error in formulation of the exciton model. The literature cited as being in support of the longer mean free path is reviewed and found to be in disagreement with the new value, and in quite reasonable agreement with results used over the past 30 years. (Auth.)
Time characteristics for the spinodal decomposition in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.
1992-12-31
Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs.
Time characteristics for the spinodal decomposition in nuclear matter
International Nuclear Information System (INIS)
Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.
1992-01-01
Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs
International Nuclear Information System (INIS)
Li, Z.; Zhuo, Y.; Li, Z.; Mao, G.; Zhuo, Y.; Mao, G.; Greiner, W.
1997-01-01
An investigation of the transition to Δ matter is performed based on a relativistic mean field formulation of the nonlinear σ and ω model. We demonstrate that in addition to the Δ-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m * and K, the Δ isomer exists at baryon density ∼2 3ρ 0 if β=1.31 is adopted. For universal coupling of the nucleon and Δ, the Δ density at baryon density ∼2 3ρ 0 and temperature ∼0.4 0.5 fm -1 is about normal nuclear matter density, which is in accord with a recent experimental finding. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Li Baoan; Chen Liewen; Wen Dehua; Xiao Zhigang; Xu Chang; Yong Gaochan; Zhang Ming
2010-01-01
The nuclear symmetry energy E sym (ρ) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E sym (ρ) especially at supra-saturation densities, the circumstantial evidence for a super-soft E sym (ρ) from analyzing π - /π + ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.
Infinite nuclear matter based for mass of atomic nuclei
International Nuclear Information System (INIS)
Satpathy, L.
1987-01-01
The ground-state energy of an atomic nucleus with asymmetry β is considered to be equivalent to the energy of a perfect sphere made up of infinite nuclear matter of the same asymmetry plus a residual energy eta, called the local energy. Eta represents the energy due to shell, deformation, diffuseness and exchange Coulomb effects, etc. Using this picture and the generalised Hugenholtz-Van Hove theorem of many-body theory, the previously proposed mass relation is derived in a transport way in which eta drops away in a very natural manner. The validity of this mass relation is studied globally using the latest mass table. The model is suitable for the extraction of the saturation properties of nuclear matter. The binding energy per nucleon and the saturation Fermi momentum of nuclear matter obtained through this model are 18.33 MeV and 1.48 fm -1 respectively. It is shown in several representative cases in the Periodic Table that the masses of nuclei in the far unknown region can be reliably predicted. (author)
Electron density interferometry measurement in laser-matter interaction
International Nuclear Information System (INIS)
Popovics-Chenais, C.
1981-05-01
This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr
On an inversion procedure for nuclear transition densities
International Nuclear Information System (INIS)
Overveld, C.W.A.M. van.
1985-01-01
The aim of this thesis is to present a method by means of which experimental results can be analysed to establish transition densities of nuclear reactions. The necessity of such a method is explained together with the reaction theory involved. A chapter is devoted to the extension of a computer code for the scattering calculations in order to include the spin-orbit coupling. Detailed attention is paid to the mathematical and numerical properties of the method. The method is applied to some simple one-step reactions. The resulting transition densities are interpreted in terms of the shell model theory of nuclear structure. The final chapter deals with an entirely different approach to the extraction of transition densities from experimental data. Here the possibilities of the classical scattering theory as a method to solve the problem are studied. (Auth.)
Nuclear level density variation with angular momentum induced shape transition
International Nuclear Information System (INIS)
Aggarwal, Mamta
2016-01-01
Variation of Nuclear level density (NLD) with the excitation energy and angular momentum in particular has been a topic of interest in the recent past and there have been continuous efforts in this direction on the theoretical and experimental fronts but a conclusive trend in the variation of nuclear level density parameter with angular momentum has not been achieved so far. A comprehensive investigation of N=68 isotones around the compound nucleus 119 Sb from neutron rich 112 Ru (Z=44) to neutron deficient 127 Pr (Z= 59) nuclei is presented to understand the angular momentum induced variations in inverse level density parameter and the possible influence of deformation and structural transitions on the variations on NLd
Combinatorial nuclear level density by a Monte Carlo method
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations
The local dark matter phase-space density and impact on WIMP direct detection
International Nuclear Information System (INIS)
Catena, Riccardo; Ullio, Piero
2012-01-01
We present a new determination of the local dark matter phase-space density. This result is obtained implementing, in the limit of isotropic velocity distribution and spherical symmetry, Eddington's inversion formula, which links univocally the dark matter distribution function to the density profile, and applying, within a Bayesian framework, a Markov Chain Monte Carlo algorithm to sample mass models for the Milky Way against a broad and variegated sample of dynamical constraints. We consider three possible choices for the dark matter density profile, namely the Einasto, NFW and Burkert profiles, finding that the velocity dispersion, which characterizes the width in the distribution, tends to be larger for the Burkert case, while the escape velocity depends very weakly on the profile, with the mean value we obtain being in very good agreement with estimates from stellar kinematics. The derived dark matter phase-space densities differ significantly — most dramatically in the high velocity tails — from the model usually taken as a reference in dark matter detection studies, a Maxwell-Boltzmann distribution with velocity dispersion fixed in terms of the local circular velocity and with a sharp truncation at a given value of the escape velocity. We discuss the impact of astrophysical uncertainties on dark matter scattering rates and direct detection exclusion limits, considering a few sample cases and showing that the most sensitive ones are those for light dark matter particles and for particles scattering inelastically. As a general trend, regardless of the assumed profile, when adopting a self-consistent phase-space density, we find that rates are larger, and hence exclusion limits stronger, than with the standard Maxwell-Boltzmann approximation. Tools for applying our result on the local dark matter phase-space density to other dark matter candidates or experimental setups are provided
Cosmological implications of a dark matter self-interaction energy density
International Nuclear Information System (INIS)
Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen
2010-01-01
We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.
Equation of state and stability of hot asymmetric nuclear matter
International Nuclear Information System (INIS)
Samaddar, S.K.
1989-01-01
The nuclear incompressibility as obtained from different sources, from nuclei, high energy nuclear collisions, supernova and neutron stars are briefly reviewed. All these data in general favour a compression modulus, K α ∼ 300 Mev with a minimum uncertainty ∼ 50 MeV. Using a finite rang e density and momentum dependent two-body effective interaction, variation of nucl ear incompressibility with temperature, asymmetry and density is discussed in a non-relativistic mean field approach. The same formalism has also been used to study the limiting temperatures of infinite as well as finite nuclear systems in the astrophysical context as well as in high energy heavy ion collisions. (autho r). 16 refs., 6 figs., 1 tab
Influence of tracks densities in solid state nuclear track detectors
International Nuclear Information System (INIS)
Guedes O, S.; Hadler N.; Lunes, P.; Saenz T, C.
1996-01-01
When Solid State Nuclear Track Detectors (SSNTD) is employed to measure nuclear tracks produced mainly by fission fragments and alpha particles, it is considered that the tracks observation work is performed under an efficiency, ε 0 , which is independent of the track density (number of tracks/area unit). There are not published results or experimental data supporting such an assumption. In this work the dependence of ε 0 with track density is studied basing on experimental data. To perform this, pieces of CR-39 cut from a sole 'mother sheet' were coupled to thin uranium films for different exposition times and the resulting ratios between track density and exposition time were compared. Our results indicate that ε 0 is constant for track densities between 10 3 and 10 5 cm -2 . At our etching conditions track overlapping makes impossible the counting for densities around 1.7 x 10 5 cm -2 . For track densities less than 10 3 cm -2 , ε 0 , was not observed to be constant. (authors). 4 refs., 2 figs
High energy density in matter produced by heavy ion beams
International Nuclear Information System (INIS)
1986-05-01
In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)
Uncovering the Density of Matter from Multiplicity Distribution
International Nuclear Information System (INIS)
Bialas, A.
2010-01-01
Multiplicity distributions in the form of superposition of Poisson distributions which are observed in multiparticle production are interpreted as reflection of a two-step nature of this process: the creation and evolution of the strongly interacting fluid, followed by its uncorrelated decay into observed hadrons. A method to uncover the density of the fluid from the observed multiplicity distribution is described. (author)
Simultaneous generation of WIMP miracle-like densities of baryons and dark matter
International Nuclear Information System (INIS)
McDonald, John
2011-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) colored scalars which are responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low-temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) colored scalars have large hypercharge, |Y|>4/3. Production of such scalars at the LHC would be a clear signature of the model.
Finite size effects in liquid-gas phase transition of asymmetric nuclear matter
International Nuclear Information System (INIS)
Pawlowski, P.
2001-01-01
Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb
Angular momentum dependence of the nuclear level density parameter
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2010-01-01
Dependence of nuclear level density parameter on the angular momentum and temperature is investigated in a theoretical framework using the statistical theory of hot rotating nuclei. The structural effects are incorporated by including shell correction, shape, and deformation. The nuclei around Z≅50 with an excitation energy range of 30 to 40 MeV are considered. The calculations are in good agreement with the experimentally deduced inverse level density parameter values especially for 109 In, 113 Sb, 122 Te, 123 I, and 127 Cs nuclei.
General aspects of the nucleon-nucleon interaction and nuclear matter properties
Energy Technology Data Exchange (ETDEWEB)
Plohl, Oliver
2008-07-25
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
General aspects of the nucleon-nucleon interaction and nuclear matter properties
International Nuclear Information System (INIS)
Plohl, Oliver
2008-01-01
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state
International Nuclear Information System (INIS)
Weber, F.; Meixner, M.; Negreiros, R.P.; Malheiro, M.
2007-01-01
With central densities way above the density of atomic nuclei, neutron stars contain matter in one of the densest forms found in the universe. Depending of the density reached in the cores of neutron stars, they may contain stable phases of exotic matter found nowhere else in space. This article gives a brief overview of the phases of ultra-dense matter predicted to exist deep inside neutron stars and discusses the equation of state (EoS) associated with such matter. (author)
Exploring high-density baryonic matter: Maximum freeze-out density
Energy Technology Data Exchange (ETDEWEB)
Randrup, Joergen [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)
2016-08-15
The hadronic freeze-out line is calculated in terms of the net baryon density and the energy density instead of the usual T and μ{sub B}. This analysis makes it apparent that the freeze-out density exhibits a maximum as the collision energy is varied. This maximum freeze-out density has μ{sub B} = 400 - 500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of 20-30 GeV/N well within the parameters of the proposed NICA collider facility. (orig.)
Constraining the Milky Way dark matter density profile with gamma-rays with Fermi-LAT
International Nuclear Information System (INIS)
Bernal, Nicolás; Palomares-Ruiz, Sergio
2012-01-01
We study the abilities of the Fermi-LAT instrument on board of the Fermi mission to simultaneously constrain the Milky Way dark matter density profile and some dark matter particle properties, as annihilation cross section, mass and branching ratio into dominant annihilation channels. A single dark matter density profile is commonly assumed to determine the capabilities of gamma-ray experiments to extract dark matter properties or to set limits on them. However, our knowledge of the Milky Way halo is far from perfect, and thus in general, the obtained results are too optimistic. Here, we study the effect these astrophysical uncertainties would have on the determination of dark matter particle properties and conversely, we show how gamma-ray searches could also be used to learn about the structure of the Milky Way halo, as a complementary tool to other type of observational data that study the gravitational effect caused by the presence of dark matter. In addition, we also show how these results would improve if external information on the annihilation cross section and on the local dark matter density were included and compare our results with the predictions from numerical simulations
Two-body tensor interactions in the nuclear matter response function
International Nuclear Information System (INIS)
Besprosvany, J.
1997-01-01
The inclusive scattering response of nuclear matter is studied in the regime of large momentum transfer q, and around the quasielastic peak. We review interaction corrections to free propagation as embodied in the impulse approximation. Calculations of the two-body and many-body corrections within an eikonal approach are presented. These use an approximated two-body density matrix which takes account of spin and isospin degrees of freedom. Both calculations give similar and sizable corrections at q = 550 MeV and reproduce data extrapolated from finite nuclei; this indicates the relevance of two-body tensor contributions in this regime. (Author)
International Nuclear Information System (INIS)
Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan
2009-01-01
Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.
In situ determination of Earth matter density in a neutrino factory
Minakata, Hisakazu; Uchinami, Shoichi
2007-04-01
We point out that an accurate in situ determination of the earth matter density ρ is possible in neutrino factory by placing a detector at the magic baseline, L=2π/GFNe where Ne denotes electron number density. The accuracy of matter density determination is excellent in a region of relatively large θ13 with fractional uncertainty δρ/ρ of about 0.43%, 1.3%, and ≲3% at 1σ CL at sin22θ13=0.1, 10-2, and 3×10-3, respectively. At smaller θ13 the uncertainty depends upon the CP phase δ, but it remains small, 3% 7% in more than 3/4 of the entire region of δ at sin22θ13=10-4. The results would allow us to solve the problem of obscured CP violation due to the uncertainty of earth matter density in a wide range of θ13 and δ. It may provide a test for the geophysical model of the earth, or it may serve as a method for a stringent test of the Mikheyev-Smirnov-Wolfenstein theory of neutrino propagation in matter once an accurate geophysical estimation of the matter density is available.
Relations among several nuclear and electronic density functional reactivity indexes
Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel
2003-11-01
An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.
Building a universal nuclear energy density functional (UNEDF)
Energy Technology Data Exchange (ETDEWEB)
Nazarewicz, Witold [Univ. of Tennessee, Knoxville, TN (United States)
2012-07-01
The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Mass terms in effective theories of high density quark matter
Schäfer, T.
2002-04-01
We study the structure of mass terms in the effective theory for quasiparticles in QCD at high baryon density. To next-to-leading order in the 1/pF expansion we find two types of mass terms: chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Schäfer. We show that to leading order in the coupling constant g there is no antiparticle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.
Density oscillations of nuclear matter probed via Bremsstrahlung photons
International Nuclear Information System (INIS)
Marques, F.M.; Ostendorf, R.W.
1996-01-01
From the extended experimental data on hard-photon production at intermediate energies the dominant source of hard-photons has been attributed to the Bremsstrahlung radiation emitted in first-chance proton-neutron (pn) collisions. Aside of the dominant source which produces direct hard-photons, at intermediate energies BUU calculations predict the existence of a second source of pn Bremsstrahlung photons occurring at a later stage of the heavy-ion collision when the system is almost fully thermalized, thermal hard-photons. The existence of this second photon source is searched for by analysing the energy spectra of inclusive and exclusive hard-photons and the photon-photon correlation function for three different systems. (K.A.)
Onset of superfluidity in hot asymmetric nuclear matter
International Nuclear Information System (INIS)
Alm, T.; Roepke, G.; Friman, B.L.
1991-05-01
The onset of superfluidity in hot asymmetric nuclear matter is studied within a generalized Beth-Uhlenbeck approach. The finite tempeature t-matrix is of the Bethe-Goldstone type and contains hole-hole propagation not considered in the Brueckner G-matrix approach. It is shown that the phase contour for the onset of superfluidity in this approach is identical to that obtained within Gorkov's approach to BCS theory. Results for the realistic Paris potential imply that the critical temperature in the neutron-proton triplet channel is on the order of 6-8 MeV and thus much larger than that for singlet pairing. (orig.)
Mass shift of σ-meson in nuclear matter
International Nuclear Information System (INIS)
Morones-Ibarra, J.R.; Maciel, Mónica Menchaca; Padilla, Felipe Robledo; Santos-Guevara, Ayax
2013-01-01
The propagation of σ-meson in nuclear matter is studied in the Walecka model, by assuming that sigma couples to a pair of nucleon-antinucleon states to particle-hole states. The in-medium effect of σ-ω mixing is also studied. For completeness, the coupling of sigma to two virtual pions was also considered. It is found that the σ-meson mass decreases with respect to its value in vacuum and that the contribution of the σ-ω mixing effect on the mass shift is relatively small. (author)
Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C
2007-01-01
The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.
Development of density and moisture gauge by nuclear techniques
International Nuclear Information System (INIS)
Mangelaviraj, V.; Karasuddhi, P.; Banchornthevakal, V.; Punyachaiya, S.
1981-08-01
A combined soil moisture/density gauge using nuclear technique was developed. Simultaneous density and moisture measurements can take place by means of gamma and neutron sources which are attached to the moisture probe. Backscattered gamma radiation giving information on density is detected by a G.M. counter while slow neutron radiation containing moisture information is detected by a boron-lined proportional counter. The instrument makes use of a 30 mCi americium 241-beryllium neutron source and a 10 mCi cesium 137 gamma source. The instrument was calibrated using soil and sand filled in a 200 litre-barrel in laboratory and field work which was carried out to check the correctness of the calibration curves. (author)
Probing the nuclear symmetry energy at high densities with nuclear reactions
Leifels, Y.
2017-11-01
The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.
Nuclear ``pasta'' phase within density dependent hadronic models
Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.
2009-03-01
In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.
Nuclear 'pasta' phase within density dependent hadronic models
International Nuclear Information System (INIS)
Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W. de; Brito, L.; Providencia, C.; Santos, A. M.
2009-01-01
In the present paper, we investigate the onset of the 'pasta' phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations
Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D
2017-11-15
Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to
Energy Technology Data Exchange (ETDEWEB)
Margueron, J
2001-07-01
We study the elementary interactions between neutrinos and dense matter in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme, Gogny, Relativistic Lagrangians) are first discussed. Then, we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G{sup {pi}}{sup {pi}}{sup '}{sub 0} (where {pi}, {pi}' = proton or neutron). From this work, we select a parametrization for each of the 3 effective forces: Sly230b,D1P,NL3. We calculate the pure neutron matter and asymmetric nuclear matter response functions with and without charge exchange, describing nuclear correlations in both approaches: non-relativistic (Hartree-Fock with Skyrme forces, then complete RPA) and relativistic (in the Hartree approximation). At the end, we calculate neutrino mean free paths neutral current and charged current reactions. Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density. RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas. The importance of the effective mass in mean free path calculations is also shown. (author)
Nuclear matter calculations with a pseudoscalar-pseudovector chiral model
Energy Technology Data Exchange (ETDEWEB)
Niembro, R.; Marcos, S.; Bernardos, P. [University of Cantabria, Faculty of Sciences, Department of Modern Physics, 39005 Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 197341 St Petersburg (Russian Federation); Savushkin, L.N. [St Petersburg University for Telecomunications, Department of Physics, 191065 St Petersburg (Russian Federation); Lopez-Quelle, M. [University of Cantabria, Faculty of Sciences, Department of Applied Physics, 39005 Santander, Spain (Spain)
1998-10-01
A mixed pseudoscalar-pseudovector {pi}N coupling relativistic Lagrangian is obtained from a pure pseudoscalar chiral one, by transforming the nucleon field according to a generalized Weinberg transformation, which depends on a mixing parameter. The interaction is generated by the {sigma}, {omega} and {pi} meson exchanges. Within the Hartree-Fock context, pion polarization effects, including the {delta} isobar, are considered in the random phase approximation in nuclear matter. These effects are interpreted, in a non-relativistic framework, as a modification of the range and intensity of a Yukawa-type potential by means of a simple function which takes into account the nucleon-hole and {delta}-hole excitations. Results show stability of relativistic nuclear matter against pion condensation. Compression modulus is diminished by the combined effects of the nucleon and {delta} polarization towards the usually accepted experimental values. The {pi}N interaction strength used in this paper is less than the conventional one to ensure the viability of the model. The fitting parameters of the model are the scalar meson mass m{sub {sigma}} and the {omega}-N coupling constant g{sub {omega}}. (author)
Neutron star properties and the relativistic nuclear equation of state of many-baryon matter
International Nuclear Information System (INIS)
Weber, F.; Weigel, M.K.
1989-01-01
A relativistic model of baryons interacting via the exchange of σ-, ω-, π- and ρ-mesons (scalar-vector-isovector (SVI) theory) is used to describe the properties of both dense and superdense matter. For the theoretical frame, we used the temperature-dependent Green's function formalism. The equation of state (EOS) is calculated for nuclear as well as neutron matter in the Hartree (H) and Hartree-Fock (HF) approximation. The existence of phase transitions has been investigated. The isotherms of pressure as a function of density show for nuclear matter a critical temperature of about T c HF =16.6 MeV. (As in the usual scalar-vector (SV) theory, the phase transition is absent for neutron matter. A phase transition of both many-baryon systems in the high-pressure and high-density region, which has been found within the SV many-baryon theory, appears in the SVI theory too. The calculated maximum stable masses of neutron stars depend on 1. the underlying parameter set and/or 2. on the chosen approximation (i.e., H, HF; SV-, SVI theory, respectively). Hartree calculations lead to a mass stability limit of M max H ≤2.87 M sun (M max H ≤2.44 M sun when hyperons are taken into account). For the HF calculations we obtained M max HF ≤3.00 M sun (M max HF ≤2.85 M sun ). The corresponding maximum radii are (same notation as above) R H ≤13.2 km (R H ≤11.8 km), R HF ≤14.0 km (R HF ≤13.94 km).) The influence of the approximations, parameter sets and hyperons on the neutron star's moment of inertia is exhibited. (orig.)
Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam
2003-03-07
We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.
Strange quark matter in the Universe and accelerator nuclear beams
International Nuclear Information System (INIS)
Okonov, Eh.
1995-01-01
An almost symmetric mixture of u, d and s-quarks - Strange Quark Matter (SQM) is strongly argued to be the ground and absolutely stable of the matter. Astrophysical objects, supposed to be the SQM states, could be formed as the result of the Big Bang (in the early Universe) and the conversion of neutron stars into strange ones. Such objects are considered to be favourable candidates as black holes. The unique possibility to produce the SQM under terrestrial conditions (at accelerator laboratories) are violent relativistic nucleus-nucleus collisions so called 'little big bang'. The expected singulares of SQM are reviewed which could be revealed from astrophysical observations of peculiarities of large SQM objects as well as from accelerator experiments with searching smaller SQM states including the simplest one - metastable six-quark H dihyperon. The first results of the Dubna search experiments, with considerable heating of matter and formation a dense strangeness abundant fireball (mixed phase?) in central nuclear collisions, is presented. Under these favourable conditions a candidate for H dihyperon is observed and an upper limit of production cross sections of this SQM state is estimated. Some prospects and advantages of further searches for light SQM states, using the JINR new superconducting accelerator - Nuclotron with energy 5-6 GeV per nucleon, are briefly outlined. 19 refs., 7 figs
Discovery potential for directional dark matter detection with nuclear emulsions
Guler, A. M.; NEWSdm Collaboration
2017-06-01
Direct Dark Matter searches are nowadays one of the most exciting research topics. Several Experimental efforts are concentrated on the development, construction, and operation of detectors looking for the scattering of target nuclei with Weakly Interactive Massive Particles (WIMPs). In this field a new frontier can be opened by directional detectors able to reconstruct the direction of the WIMP-recoiled nucleus thus allowing to extend dark matter searches beyond the neutrino floor. Exploiting directionality would also give a proof of the galactic origin of dark matter making it possible to have a clear and unambiguous signal to background separation. The angular distribution of WIPM-scattered nuclei is indeed expected to be peaked in the direction of the motion of the Solar System in the Galaxy, i.e. toward the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on the use of gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we show the potentiality in terms of exclusion limit of a directional experiment based on the use of a solid target made by newly developed nuclear emulsions and read-out systems reaching sub-micrometric resolution.
Boiling Patterns of Iso-asymmetric Nuclear Matter
International Nuclear Information System (INIS)
Tõke, Jan
2013-01-01
Limits of thermodynamic metastability of self-bound neutron-rich nuclear matter are explored within the framework of microcanonical thermodynamics of interacting Fermi Gas model in Thomas-Fermi approximation. It is found that as the excitation energy per nucleon of the system is increased beyond a certain limiting value, the system loses metastability and becomes unstable with respect to joint fluctuations in excitation energy per nucleon and in isospin per nucleon. As a result, part of the system is forced to boil off in a form of iso-rich non-equilibrated vapors. Left behind in such a process, identifiable with distillation, is a more iso-symmetric metastable residue at a temperature characteristic of its residual isospin content. With a progressing increase in the initial excitation energy per nucleon, more neutron-rich matter is boiled off and a more iso-symmetric residue is left behind with progressively increasing characteristic temperature. Eventually, when all excess neutrons are shed, the system boils uniformly with a further supply of excitation energy, leaving behind a smaller and smaller residue at a characteristic boiling-point temperature of iso-symmetric matter.
SIGNATURES OF DARK MATTER BURNING IN NUCLEAR STAR CLUSTERS
International Nuclear Information System (INIS)
Casanellas, Jordi; Lopes, IlIdio
2011-01-01
In order to characterize how dark matter (DM) annihilation inside stars changes the aspect of a stellar cluster, we computed the evolution until the ignition of the He burning of stars from 0.7 M sun to 3.5 M sun within halos of DM with different characteristics. We found that, when a cluster is surrounded by a dense DM halo, the positions of the cluster' stars in the H-R diagram have a brighter and hotter turnoff point than in the classical scenario without DM, therefore giving the cluster a younger appearance. The high DM densities required to produce these effects are expected only in very specific locations, such as near the center of our Galaxy. In particular, if DM is formed by the 8 GeV weakly interacting massive particles recently invoked to reconcile the results from direct detection experiments, then this signature is predicted for halos of DM with a density ρ χ = 3 x 10 5 GeV cm -3 . A DM density gradient inside the stellar cluster would result in a broader main sequence, turnoff, and red giant branch regions. Moreover, we found that for very high DM halo densities the bottom of the isochrones in the H-R diagram rises to higher luminosities, leading to a characteristic signature on the stellar cluster. We argue that this signature could be used to indirectly probe the presence of DM particles in the location of a cluster.
Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions
Energy Technology Data Exchange (ETDEWEB)
Arellano, Hugo F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France); Isaule, Felipe [University of Chile, Department of Physics - FCFM, Santiago (Chile); Rios, Arnau [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom)
2016-09-15
We investigate homogeneous nuclear matter within the Brueckner-Hartree-Fock (BHF) approach in the limits of isospin-symmetric nuclear matter (SNM) as well as pure neutron matter at zero temperature. The study is based on realistic representations of the internucleon interaction as given by Argonne v{sub 18}, Paris, Nijmegen I and II potentials, in addition to chiral N{sup 3}LO interactions, including three-nucleon forces up to N{sup 2}LO. Particular attention is paid to the presence of di-nucleon bound states structures in {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels, whose explicit account becomes crucial for the stability of self-consistent solutions at low densities. A characterization of these solutions and associated bound states is discussed. We confirm that coexisting BHF single-particle solutions in SNM, at Fermi momenta in the range 0.13-0.3 fm{sup -1}, is a robust feature under the choice of realistic internucleon potentials. (orig.)
Properties of nuclear and neutron matter in a relativistic Hartree-Fock theory
International Nuclear Information System (INIS)
Horowitz, C.J.; Serot, B.D.
1983-01-01
Relativistic-Hartree-Fock (HF) equations are derived for an infinite system of mesons and baryons in the framework of a renormalizable relativistic quantum field theory. The derivation is based on a diagrammatic approach and Dyson's equation for the baryon propagator. The result is a set of coupled, nonlinear integral equations for the baryon self-energy with a self-consistency condition on the single-particle spectrum. The HF equations are solved for nuclear and neutron matter in the Walecka model, which contains neutral scalar and vector mesons. After renormalizing model parameters to reproduce nuclear matter saturation properties, HF results at low to moderate densities are similar to those in the mean-field (Hartree) approximation. Self-consistent exchange corrections to the Hartree equation of state become negligible at high densities. Rho- and pi-meson exchanges are incorporated using a renormalizable gauge-theory model. A chiral transformation of the lagrangian is used to replace the pseudoscalar πN coupling with a pseudovector coupling, for which one-pion exchange is a reasonable first approximation. This transformation maintains the model's renormalizability so that corrections may be evaluated. Pion exchange has a small effect on the HF results of the Walecka model and brings HF results in closer in closer agreement with the mean-field theory. The diagrammatic techniques used here retain the mesonic degrees of freedom and are simple enough to be extended to more refined self-consistent approximations. (orig.)
Correlations between the nuclear matter symmetry energy, its slope, and curvature
International Nuclear Information System (INIS)
Santos, B M; Delfino, A; Dutra, M; Lourenço, O
2015-01-01
By using point-coupling versions of finite range nuclear relativistic mean field models containing cubic and quartic self interactionsin the scalar field σ, a nonrelativistic limit is achieved. This approach allows for an analytical expression for the symmetry energy (J) as a function of its slope (L) in a unified form, namely, L = 3J + f(m*, ρ o , B o , K o ), where the quantities m*, p o , B o and K o are bulk parameters at the nuclear matter saturation density ρ o . This result establishes a linear correlation between L and J which is reinforced by exact relativistic calculations we have performed. An analogous analytical correlation can also be found for J, L and the symmetry energy curvature (K sym ). Based on these results, we propose a graphic constraint in L × J plane which finite range models should satisfy. (paper)
J/psi production in proton-nucleus collisions at ALICE: cold nuclear matter really matters
CERN. Geneva
2013-01-01
Heavy quarkonia are expected to be sensitive to the properties of strongly interacting matter, at both low and high temperatures. In nucleus-nucleus collisions, a phase transition to a deconfined state of quarks and gluons (Quark-Gluon Plasma) is thought to take place once the temperature of the system exceeds a critical temperature of the order of 150-200 MeV. The deconfined state can induce a suppression of charmonium (due to color screening, dominant at SPS and RHIC energies), which can be overturned at LHC energy by the (re)combination of the large number of free c and cbar quarks, taking place when the system cools down below the critical temperature. Cold nuclear matter also has an influence on heavy quarkonia. Such effects can be studied in proton-nucleus collisions, where no deconfined state is expected to be created. At LHC energy, they mainly include nuclear shadowing, gluon saturation, break-up of the quarkonium states, and parton energy loss in the initial and final state. The study of these eff...
Building A Universal Nuclear Energy Density Functional (UNEDF)
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Furnstahl, Dick [The Ohio State Univ., Columbus, OH (United States); Horoi, Mihai [Central Michigan Univ., Mount Pleasant, MI (United States); Lusk, Rusty [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, Witek [Univ. of Tennessee, Knoxville, TN (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James [Iowa State Univ., Ames, IA (United States)
2012-09-30
During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
International Nuclear Information System (INIS)
Bethe, H.A.; Brown, G.E.; Cooperstein, J.
1987-01-01
We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)
Nuclear matter flow in the Kr+Au collisions at 43 MeV/u
International Nuclear Information System (INIS)
Bougault, R.; Delaunay, F.; Genoux-Lubain, A.; Lebrun, C.; Lecolley, J.F.; Lefebvres, F.; Louvel, M.; Steckmeyer, J.C.; Aloff, J.C.; Bilwes, B.; Bilwes, R.; Glaser, M.; Rudolf, G.; Scheibling, F.; Stuttge, L.
1989-01-01
When heavy nuclei collide at energy far above the Coulomb barrier we may study the property of nuclear matter in temperature and also density regions far away from the equilibrium. We then hope to study dynamical effects related to the compressibility and the two body collision term. At relativistic energies, some collective effects (flow, bounce off) have been established from a shape analysis done with a large number of light particles with Z ≤ 10. For incident energies lower than 100 MeV/u we may expect that the number of nuclear species formed will be smaller and that a large part of the nuclear matter involved in the collision will be shared in a limited number of heavy fragments (Z ≥ 10). If dynamical effects are still present at GANIL energies they ought to manifest themselves through the properties of the produced fragments (masses, emission angles, velocities and correlated variables). We will present an analysis of heavy nuclei collisions at 43 MeV/u based on as exclusive as possible detection of large fragments
Response functions of cold neutron matter: density, spin and current fluctuations
Energy Technology Data Exchange (ETDEWEB)
Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)
2014-07-01
We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.
A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors
Energy Technology Data Exchange (ETDEWEB)
Westerdale, Shawn S. [Princeton Univ., NJ (United States)
2016-01-01
Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and
A study of nuclear recoil backgrounds in dark matter detectors
Westerdale, Shawn S.
Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development
Chiral approach to nuclear matter: role of two-pion exchange with virtual delta-isobar excitation
Fritsch, virtual delta-isobar excitation S.; Kaiser, N.; Weise, W.
2005-04-01
We extend a recent three-loop calculation of nuclear matter by including the effects from two-pion exchange with single and double virtual Δ(1232)-isobar excitation. Regularization dependent short-range contributions from pion-loops are encoded in a few NN-contact coupling constants. The empirical saturation point of isospin-symmetric nuclear matter, E=-16 MeV, ρ=0.16 fm, can be well reproduced by adjusting the strength of a two-body term linear in density (and tuning an emerging three-body term quadratic in density). The nuclear matter compressibility comes out as K=304 MeV. The real single-particle potential U(p,k) is substantially improved by the inclusion of the chiral πNΔ-dynamics: it grows now monotonically with the nucleon momentum p. The effective nucleon mass at the Fermi surface takes on a realistic value of M(k)=0.88M. As a consequence of these features, the critical temperature of the liquid-gas phase transition gets lowered to the value T≃15 MeV. In this work we continue the complex-valued single-particle potential U(p,k)+iW(p,k) into the region above the Fermi surface p>k. The effects of 2 π-exchange with virtual Δ-excitation on the nuclear energy density functional are also investigated. The effective nucleon mass associated with the kinetic energy density is M(ρ)=0.64M. Furthermore, we find that the isospin properties of nuclear matter get significantly improved by including the chiral πNΔ-dynamics. Instead of bending downward above ρ as in previous calculations, the energy per particle of pure neutron matter E(k) and the asymmetry energy A(k) now grow monotonically with density. In the density regime ρ=2ρnuclear physics our results agree well with sophisticated many-body calculations and (semi)-empirical values.
Predicting soil particle density from clay and soil organic matter contents
DEFF Research Database (Denmark)
Schjønning, Per; McBride, R.A.; Keller, T.
2017-01-01
Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...
The maximal-density mass function for primordial black hole dark matter
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
Spin-polarized versus chiral condensate in quark matter at finite temperature and density
DEFF Research Database (Denmark)
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao
2016-01-01
It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...
Spin polarization in high density quark matter under a strong external magnetic field
DEFF Research Database (Denmark)
Tsue, Yasuhiko; Da Providência, João; Providência, Constança
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...
Interplay between spin polarization and color superconductivity in high density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constança
2013-01-01
Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...
Spin polarization versus color–flavor locking in high-density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constança
2015-01-01
It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...
International Nuclear Information System (INIS)
Calvin W. Johnson
2005-01-01
The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A ∼ 50-100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. Second year goals and milestones: Develop two or three competing interactions (based upon surface-delta, Gogny, and NN-scattering) suitable for application to nuclei up to A = 100. Begin calculations for nuclides with A = 50-70
Differential isospin-fractionation in dilute asymmetric nuclear matter
International Nuclear Information System (INIS)
Li Baoan; Chen Liewen; Ma Hongru; Xu Jun; Yong Gaochan
2007-01-01
The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction
Effective pion--nucleon interaction in nuclear matter
International Nuclear Information System (INIS)
Celenza, L.S.; Liu, L.C.; Nutt, W.; Shakin, C.M.
1976-01-01
We discuss the modification of the interaction between a pion and a nucleon in the presence of an infinite medium of nucleons (nuclear matter). The theory presented here is covariant and is relevant to the calculation of the pion--nucleus optical potential. The specific effects considered are the modifications of the nucleon propagator due to the Pauli principle and the modification of the pion and nucleon propagators due to collisions with nucleons of the medium. We also discuss in detail the pion self-energy in the medium, paying close attention to off-shell effects. These latter effects are particularly important because of the rapid variation with energy of the fundamental pion--nucleon interaction. Numerical results are presented, the main feature being the appearance of a significant damping width for the (3, 3) resonance
Accurate estimate of the relic density and the kinetic decoupling in nonthermal dark matter models
International Nuclear Information System (INIS)
Arcadi, Giorgio; Ullio, Piero
2011-01-01
Nonthermal dark matter generation is an appealing alternative to the standard paradigm of thermal WIMP dark matter. We reconsider nonthermal production mechanisms in a systematic way, and develop a numerical code for accurate computations of the dark matter relic density. We discuss, in particular, scenarios with long-lived massive states decaying into dark matter particles, appearing naturally in several beyond the standard model theories, such as supergravity and superstring frameworks. Since nonthermal production favors dark matter candidates with large pair annihilation rates, we analyze the possible connection with the anomalies detected in the lepton cosmic-ray flux by Pamela and Fermi. Concentrating on supersymmetric models, we consider the effect of these nonstandard cosmologies in selecting a preferred mass scale for the lightest supersymmetric particle as a dark matter candidate, and the consequent impact on the interpretation of new physics discovered or excluded at the LHC. Finally, we examine a rather predictive model, the G2-MSSM, investigating some of the standard assumptions usually implemented in the solution of the Boltzmann equation for the dark matter component, including coannihilations. We question the hypothesis that kinetic equilibrium holds along the whole phase of dark matter generation, and the validity of the factorization usually implemented to rewrite the system of a coupled Boltzmann equation for each coannihilating species as a single equation for the sum of all the number densities. As a byproduct we develop here a formalism to compute the kinetic decoupling temperature in case of coannihilating particles, which can also be applied to other particle physics frameworks, and also to standard thermal relics within a standard cosmology.
Static and Covariant Meson-Exchange Interactions in Nuclear Matter
International Nuclear Information System (INIS)
Carlson, B.V.; Hirata, D.
2011-01-01
The Dirac version of static meson exchange interactions provides a good description of low-energy NN scattering as well as very reasonable saturation properties in Dirac-Brueckner calculations of nuclear matter. We include retardation terms to make these interactions covariant and readjust the coupling constants so as to maintain a reasonable description of NN scattering. In this case, we find the Dirac-Brueckner approximation to nuclear matter to be extremely overbound. The Bonn meson-exchange interactions provide a good fit to low-energy nucleon-nucleon scattering and the deuteron binding energy using a static interaction and the Thompson form of the reduced two-nucleon interaction. We have readjusted the coupling constants of the these interactions to obtain almost equivalent fits to the scattering data and deuteron binding energy with a static interaction and the Blankenbecler-Sugar form of the reduced two-nucleon propagator and using both forms of the propagator with a covariant interaction. Dirac-Brueckner calculations using the static interactions furnish saturation properties similar to those found for the Bonn interactions. The covariant interactions, on the contrary, yield extreme overbinding and do not show signs of saturation before our calculations diverge. One of the advantages claimed for Dirac mean field calculations over nonrelativistic ones has been the fact that they yield reasonable saturation properties without the necessity of a three-body interaction. This is usually credited to the three-body effects introduced by virtual scattering through the Dirac sea states. These are included, in part, through the Dirac form of the self-energy in our calculations. However, we have explicitly excluded their contribution to the Brueckner scattering kernel. Dirac-Brueckner calculations in which both the positive and negative energy states are included in the scattering kernel result in less binding than those that include only the positive-energy ones
Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter
Azizi, K.; Er, N.
2018-02-01
The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.
Energy Technology Data Exchange (ETDEWEB)
Radice, David [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Bernuzzi, Sebastiano [Department of Mathematical, Physical and Computer Sciences, University of Parma, I-43124 Parma (Italy); Pozzo, Walter Del [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa I-56127 (Italy); Roberts, Luke F. [NSCL/FRIB and Department of Physics and Astronomy, Michigan State University, 640 S Shaw Lane, East Lansing, MI 48824 (United States); Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States)
2017-06-20
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
International Nuclear Information System (INIS)
Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del; Roberts, Luke F.; Ott, Christian D.
2017-01-01
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
2010-03-09
... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for... this Demand for Information, the following information, in writing, and under oath or affirmation: 1...
Limit cycle analysis of nuclear coupled density wave oscillations
International Nuclear Information System (INIS)
Ward, M.E.
1985-01-01
An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened
Parity dependence of the nuclear level density at high excitation
International Nuclear Information System (INIS)
Rao, B.V.; Agrawal, H.M.
1995-01-01
The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)
Historical trend of nuclear matter calculation and its recent developments
International Nuclear Information System (INIS)
Kohno, Michio
2006-01-01
He guide line to understand nuclear properties on the basis of nuclear force was started in the 1950's by the Brueckner theory. The theory established the fundamental framework to formulate the picture to consider both the two nucleon and tensor correlations as well as Pauli effect inside the nuclei. In the 1960's the theory was developed to obtain ground state energy on the perturbation many-body theory. The growth and refinement of the Brueckner theory in the 1970's and after are overviewed and the computer code developments in the 1980's are mentioned. Concerning the many-body correlation problem Italian group has calculated up to three-body correlations in the Brueckner theory. At present, effective interaction nuclear theory is coming into a new level and actively studied by the introduction of low momentum interaction based on the renormalization group theory, by full application of the coupled cluster method, by the application of Skyrme Hartree-Fock method in wide range and by the reconsideration of the energy density functional method in relation to the relativistic mean field method. Owing to the recent remarkable progress of computers, calculations which were impossible to be executed in old days are now done rather easily. (S. Funahashi)
Microscopic equation of state calculations: 1. Nuclear matter. 2. Liquid helium 3
International Nuclear Information System (INIS)
Heyer, J.P.
1989-01-01
A new method for calculating the equation of state of extended Fermi systems is proposed and applied to nuclear matter and liquid 3 He. New techniques are developed for summing up the particle-particle (pp) and particle-hole (ph) ring diagrams to all orders in the calculation of the ground state shift ΔE 0 for many-body systems. Analytic expressions for ΔE pp P 0 , the contribution from all of the pp ring diagrams to ΔE 0 , and ΔE ph 0 , the corresponding contribution from all of the ph ring diagrams, have been obtained. It has been shown that the pp ring diagram sum may be written as an integral over frequency, involving the particle-particle Green's function. A similar integral expression is derived for the ph ring diagram sum. Two methods are developed for carrying out the frequency integrations, namely the multipole and transition amplitude methods. These methods have been tested on an exactly-solvable many-fermion model, a modified Lipkin model, and compared. The author has studied the instability of nuclear matter at both zero and finite temperature within the pp ring diagram framework. He has found using the Gogny D1 effective nucleon-nucleon interaction, complex eigenvalues of an RPA-type secular equation are obtained in a well-defined temperature-density region. When complex eigenvalues occur, the thermodynamic potential becomes complex. The possible connection between the occurrence of complex eigenvalues and liquid-gas phase separation is discussed. The pp ring diagrams are also found to lower the compression modulus of nuclear matter. Lastly, the pp ring diagram method is applied to the calculation of the ground state energy of normal and spin-polarized liquid 3 He. We have found a binding energy per particle (BE/A) of 1.45 degree K and 1.79 degree K for the normal and spin-polarized systems, respectively
Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University
1985-01-01
Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...
Non-empirical energy density functional for the nuclear structure
International Nuclear Information System (INIS)
Rot ival, V.
2008-09-01
The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)
International Nuclear Information System (INIS)
Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.
1992-01-01
Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
International Nuclear Information System (INIS)
1979-01-01
These Regulations prescribe, for the purposes of the definition of 'excepted matter' in the Nuclear Installations Act 1965, certain specified quantities and forms of nuclear matter, and supersede the Nuclear Installations (excepted Matter) Regulations 1965. They bring the definition of excepted matter in those Regulations into line with the decisions of 27 October 1977 of the OECD Nuclear Energy Agency's Steering Committee excluding certain kinds and quantities of nuclear substances from the scope of the Paris Convention on Third Party Liability in the Field of Nuclear Energy. Compared with the 1965 Regulations, the principal changes in relation to consignments are that activity limits and packing requirements now take account of the most recent IAEA Regulations. (NEA) [fr
Compressed Baryonic Matter of Astrophysics
Guo, Yanjun; Xu, Renxin
2013-01-01
Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.
Particle production in hot and dense nuclear matter
International Nuclear Information System (INIS)
Eklund, A.
1992-08-01
The charged particle production in heavy ion reactions at 200 A GeV has been studied for projectiles of 16 O and 32 S on targets of Al, Cu, Ag and Au. Up to 700 charged particles are measured in the pseudorapidity region -1.7 32 S+Au. The measured particle density is used to estimate the energy density attained in central collisions and gives a values of ≅2 GeV/fm 3 . This is close to the energy density predicted for the phase transition from hadronic matter to a quark-gluon plasma. To measure the large number of charged particle produced, finely granulated detector systems are employed. Streamer tube detectors with pad readout and large area, multi-step avalanche chambers with optical readout have been developed for the measurements. The widths of the pseudorapidity distributions of charged particles increase with decreasing centrality of the collision as well as with increasing mass of the target nucleus. This behaviour is assumed to be due to the target fragmentation. The Monte-Carlo model for nucleus-nucleus collisions, VENUS 3.11, which includes rescattering, is in reasonable agreement with the data. The yield of charged particles for central collisions of the heavy targets with 33 S is found to be proportional to the target mass, A, at target rapidity. At midrapidity it is approximately proportional to A 0.3 . At midrapidity the charged particle measurements are supplemented by measurements of the transverse energy. The dimensionless, normalized variances of the multiplicity and transverse energy distributions are, to a large extent, governed by the collision geometry. The change in the normalized variance when studying the charged particle distribution in a narrow angular region is explained as being of statistical nature. (au)
Meyer, Bradley S.; Krishnan, Tracy D.; Clayton, Donald D.
1998-05-01
Our first purpose is construction of a formal theory of quasi-equilibrium. We define quasi-equilibrium, in its simplest form, as statistical equilibrium in the face of an extra constraint on the nuclear populations. We show that the extra constraint introduces a uniform translation of the chemical potentials for the heavy nuclei and derive the abundances in terms of it. We then generalize this theory to accommodate any number of constraints. For nucleosynthesis, the most important constraint occurs when the total number of heavy nuclei Yh within a system of nuclei differs from the number that would exist in nuclear statistical equilibrium (NSE) under the same conditions of density and temperature. Three situations of high relevance are (1) silicon burning, wherein the total number of nuclei exceeds but asymptotically approaches the NSE number; (2) alpha-rich freezeout expansions of high entropy, wherein Yh is less than the NSE number; and (3) expansions from high temperature of low-entropy matter, in which Yh exceeds the NSE number. These are of importance, respectively, within (1) supernova shells, (2) Type II supernova cores modestly outside the mass cut, and (3) Type Ia supernova cores in near-Chandrasekhar-mass events. Our next goal is the detailed analysis of situation (2), the high-entropy alpha-rich neutron-rich freezeout. We employ a nuclear reaction network, which we integrate, to compare the actual abundances with those obtained at the same thermal conditions by the quasi-equilibrium (QSE) theory and by the NSE theory. For this detailed comparison, we choose a high-entropy photon-to-nucleon ratio φ = 6.8, for which we conduct expansions at initial bulk neutron excess η0 = 0.10. We demonstrate that the abundance populations, as they begin expansion and cooling from temperature 10 × 109 K, are characterized by three distinct phases: (1) NSE, (2) QSE having Yh smaller than the NSE value, and (3) final reaction rate-dependent freezeout modifications of the
Nuclear level density and gamma strength function in 64Fe
Smith, M. K.; Spyrou, A.; Ahn, T.; Dombos, A. C.; Liddick, S. N.; Montes, F.; Naqvi, F.; Richman, D.; Schatz, H.; Brown, J.; Childers, K.; Crider, B. P.; Prokop, C. J.; Deleeuw, E.; Deyoung, P. A.; Langer, C.; Lewis, R.; Meisel, Z.; Pereira, J.; Quinn, S. J.; Schmidt, K.; Larsen, A. C.; Guttormsen, M.
2017-09-01
The Fe-Cd mass region exhibits enhanced collectivity and an unexpected increased in gamma-decay probability at low energies. These effects could be significant for r-process nucleosynthesis, where masses, beta-decay probabilities, and neutron capture cross sections are among the most important inputs. Neutron capture is notoriously difficult to measure; so the recent development of an indirect technique to constrain neutron-captures far from stability is especially valuable. This is the beta-Oslo method, which allows the extraction of the nuclear level density and gamma-ray strength function to compute neutron-capture cross sections. This work reports on 64Fe, populated via beta-decay of 64Mn at the National Superconducting Cyclotron Laboratory and measured with the 4pi Summing NaI (SuN) total gamma-ray spectrometer.
Shear viscosity to entropy density ratio in nuclear multifragmentation
International Nuclear Information System (INIS)
Pal, Subrata
2010-01-01
Nuclear multifragmentation in intermediate-energy heavy-ion collisions has long been associated with liquid-gas phase transition. We calculate the shear viscosity to entropy density ratio η/s for an equilibrated system of nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model. The temperature dependence of η/s exhibits behavior surprisingly similar to that of H 2 O. In the coexistence phase of fragments and light particles, the ratio η/s reaches a minimum of depth comparable to that for water in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and surface symmetry energy on η/s in multifragmentation are studied.
IAEA advisory group meeting on basic and applied problems of nuclear level densities
International Nuclear Information System (INIS)
Bhat, M.R.
1983-06-01
Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data
Hyperon interaction in free space and nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Dhar, Madhumita [Justus-Liebig University Giessen (Germany); Lenske, Horst [Justus-Liebig University Giessen (Germany); GSI, Darmstadt (Germany)
2016-07-01
A new approach to the SU(3) flavour symmetric meson-exchange model is introduced to describe free space baryon-baryon interaction. The Bethe-Salpeter equations are solved in a 3-D reduction scheme. The coupling of the various channels of total strangeness S and conserved total charge Q is studied in detail. Special attention is paid to the physical thresholds. The derived vacuum interaction has then been used to derive nuclear medium effect by employing the Pauli projector operator in 3-D reduced Bethe-Salpeter equation. The in-medium properties of the interaction are clearly seen in the variation of the in-medium low-energy parameters as a function of density.
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Relating the baryon asymmetry to the thermal relic dark matter density
International Nuclear Information System (INIS)
McDonald, John
2011-01-01
We present a generic framework, baryomorphosis, which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic weakly interacting massive particle (WIMP) density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ('annihilons'), φ B , φ-circumflex B , of mass ∼100 GeV-1 TeV. φ B φ-circumflex B annihilations convert the initial φ B , φ-circumflex B asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter, i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the 'WIMP miracle'), may be understood. The model may be tested by the production of annihilons at colliders.
Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P
2016-03-01
Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.
Pain sensitivity is inversely related to regional grey matter density in the brain.
Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C
2014-03-01
Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Determining the Local Dark Matter Density with SDSS G-dwarf data
Silverwood, Hamish; Sivertsson, Sofia; Read, Justin; Bertone, Gianfranco; Steger, Pascal
2018-04-01
We present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwood et al. (2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data using MultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbender et al. (2015), yielding a result of ρDM = 0.46+0.07 -0.09 GeV cm-3 = 0.012+0.001 -0.002 M⊙ pc-3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.
Quark matter formation in dense stellar objects
Indian Academy of Sciences (India)
Although not much is known about the density at which the phase transition takes place at small temperatures, it is expected to occur around the nuclear densities of few times nuclear matter density. Also, there is a strong reason to believe that the quark matter formed after the phase transition is in colour superconducting ...
Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover
Energy Technology Data Exchange (ETDEWEB)
Stein, Martin; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2013-07-01
We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a {sup 3}S{sub 1}-{sup 3}D{sub 1} condensate at non-zero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase diagram comprising three superfluid phases, namely a LOFF phase, the ordinary BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains two tri-critical points (one a Lifshitz point), which may degenerate into a single tetra-critical point for some degree of isospin asymmetry.
Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN
Schukraft, Jurgen
2015-01-01
Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra-relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program.
Effects of isospin and momentum-dependent interactions on thermal properties of nuclear matter
International Nuclear Information System (INIS)
Xu Jun; Ma Hongru; Chen Liewen; Li Baoan
2009-01-01
In this article, three models with different isospin and momentum dependence are used to study the thermodynamical properties of asymmetric nuclear matter. They are isospin and momentum-dependent MDI interaction constrained by the isospin diffusion data of heavy ion collision, the momentum-independent MID interaction and the isoscalar momentum-dependent eMDYI interaction. Temperature effects of symmetry energy, mechanical and chemical instability and liquid-gas phase transition are analyzed. It is found that for MDI model the temperature effects of the symmetry energy attribute from both the kinetic and potential energy, while only potential part contributes to the decreasing of the symmetry energy for MID and eMDYI models. We also find that the mechanical instability, chemical instability and liquid-gas phase transition are all sensitive to the isospin and momentum dependence and the density dependence of the symmetry energy. (authors)
Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †
Directory of Open Access Journals (Sweden)
M. W. C. Dharma-wardana
2016-03-01
Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm
New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars
Kumar, Bharat; Patra, S. K.; Agrawal, B. K.
2018-04-01
We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.
International Nuclear Information System (INIS)
de Jong, F.; Malfliet, R.
1991-01-01
Starting from a relativistic Lagrangian we derive a ''conserving'' approximation for the description of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner scheme. The saturation point of the equation of state calculated agrees very well with the empirical saturation point. The conserving character of the approach is tested by means of the Hugenholtz--van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for compression modulus is derived, K=310 MeV. Also we calculate the occupation probabilities at normal nuclear matter densities by means of the spectral function. The average depletion κ of the Fermi sea is found to be κ∼0.11
International Nuclear Information System (INIS)
Schlei, B.R.
1998-01-01
Experimental spectra of the CERN/SPS experiments NA44 and NA49 are fitted while using four different equations of state of nuclear matter within a relativistic hydrodynamic framework. For the freeze-out temperatures, T f = 139 MeV and T f = 116 MeV, respectively, the corresponding freeze-out hypersurfaces and Bose-Einstein correlation functions for identical pion pairs are discussed. It is concluded, that the Bose-Einstein interferometry measures the relation between the temperature and the energy density in the equation of state of nuclear matter at the late hadronic stage of the fireball expansion. It is necessary, to use the detailed detector acceptances in the calculations for the Bose-Einstein correlations
Dark matter and gas density profiles - a consequence of entropy bifurcation
International Nuclear Information System (INIS)
Leubner, M. P.
2006-01-01
The radial profiles of dark matter and hot plasma density distributions of relaxed galaxies and clusters were hitherto commonly fitted by empirical functions. On the other hand, the fundamental concept of non-extensive statistics accounts for long-range interactions and correlations present in gravitationally coupled ensembles and plasmas. We provide a theoretical link of non-extensive statistics to large scale astrophysical structures and show that the underlying tandem character of the entropy results in a bifurcation of the density distribution. A kinetic dark matter and thermodynamic gas branch turn out as natural consequence within the theory and is controlled by one single parameter, measuring physically the degree of correlations in the system. The theoretically derived density profiles are shown to represent accurately the characteristics of both, DM and hot plasma distributions, as observed or generated in N-body and hydro-simulations. The significant advantage over empirical fitting functions is provided by the physical content of the non-extensive approach wherefore it is proposed to model observed density profiles of astrophysical structures within the fundamental context of entropy generalization, accounting for nonlocality and long-range interactions in gravitationally coupled systems
Determination of the equation of state of asymmetric nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Tsang, Manyee Betty [Michigan State Univ., East Lansing, MI (United States)
2016-12-30
A new Time Projection Chamber (TPC), called the SπRIT (SAMURAI pion Reconstruction Ion Tracker) TPC was constructed and used successfully in two experiments with the SAMURAI spectrometer at RIKEN, Japan to study the equation of state of neutron rich matter. As a result of the project, the SπRIT collaboration, an international collaboration consisting of groups from US, Japan, Korea, Poland, China and Germany, has been formed to pursue the science opportunities provided by the SπRIT TPC. After completion of the TPC and the two experiments, the collaboration continues to develop the software to analyze the SπRIT experiments and extract constraints of symmetry energy at supra-saturation densities. Over 250 TB of data have been obtained in the last SπRIT TPC experimental campaign. Construction of the TPC provided opportunities for the scientists to develop new designs for the light-weight and thin-walled field cage for the large pad plane and for the gating grid. Two PhD students (1 US and 1 Korea) graduated in 2016 based on their research on the TPC. At least four more doctoral theses (2 US, 1 Japan and 1 Korea) based on physics from the SπRIT experiments are expected.
Chiral symmetry, scalar field and confinement: from nucleon structure to nuclear matter
International Nuclear Information System (INIS)
Chanfray, Guy; Ericson, Magda
2010-01-01
We discuss the relevance of the scalar modes appearing in chiral theories with spontaneous symmetry breaking such as the NJL model for nuclear matter studies. We show that it depends on the relative role of chiral symmetry breaking and confinement in the nucleon mass origin. It is only in the case of a mixed origin that nuclear matter can be stable and reach saturation. We describe models of nucleon structure where this balance is achieved. We show how chiral constarints and confinement modify the QCD sum rules for the mass evolution in nuclear matter.
Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter
International Nuclear Information System (INIS)
Hrayr Matevosyan
2007-01-01
-type interaction density functional, thus providing a direct link to well modeled nuclear forces. Moreover, it allows for a derivation of the equation of state for cold uniform dense nuclear matter for application to calculations of the properties of neutron stars
EVOLUTION OF DARK MATTER PHASE-SPACE DENSITY DISTRIBUTIONS IN EQUAL-MASS HALO MERGERS
International Nuclear Information System (INIS)
Vass, Ileana M.; Kazanzidis, Stelios; Valluri, Monica; Kravtsov, Andrey V.
2009-01-01
We use dissipationless N-body simulations to investigate the evolution of the true coarse-grained phase-space density distribution f(x, v) in equal-mass mergers between dark matter (DM) halos. The halo models are constructed with various asymptotic power-law indices ρ ∝ r -γ ranging from steep cusps to core-like profiles and we employ the phase-space density estimator 'EnBid' developed by Sharma and Steinmetz to compute f(x, v). The adopted force resolution allows robust phase-space density profile estimates in the inner ∼1% of the virial radii of the simulated systems. We confirm that merger events result in a decrease of the coarse-grained phase-space density in accordance with expectations from Mixing Theorems for collisionless systems. We demonstrate that binary mergers between identical DM halos produce remnants that retain excellent memories of the inner slopes and overall shapes of the phase-space density distribution of their progenitors. The robustness of the phase-space density profiles holds for a range of orbital energies, and a variety of encounter configurations including sequences of several consecutive merger events, designed to mimic hierarchical merging, and collisions occurring at different cosmological epochs. If the progenitor halos are constructed with appreciably different asymptotic power-law indices, we find that the inner slope and overall shape of the phase-space density distribution of the remnant are substantially closer to that of the initial system with the steepest central density cusp. These results explicitly demonstrate that mixing is incomplete in equal-mass mergers between DM halos, as it does not erase memory of the progenitor properties. Our results also confirm the recent analytical predictions of Dehnen regarding the preservation of merging self-gravitating central density cusps.
Can tonne-scale direct detection experiments discover nuclear dark matter?
Energy Technology Data Exchange (ETDEWEB)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom)
2017-10-01
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .
Can tonne-scale direct detection experiments discover nuclear dark matter?
International Nuclear Information System (INIS)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.
2017-01-01
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .
Large model-space calculation of the nuclear level density parameter
International Nuclear Information System (INIS)
Agrawal, B.K.; Samaddar, S.K.; De, J.N.; Shlomo, S.
1998-01-01
Recently, several attempts have been made to obtain nuclear level density (ρ) and level density parameter (α) within the microscopic approaches based on path integral representation of the partition function. The results for the inverse level density parameter K es and the level density as a function of excitation energy are presented
Energy Technology Data Exchange (ETDEWEB)
Vasconcellos, C. A. Zen, E-mail: cesarzen@cesarzen.com [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre (Brazil); International Center for Relativistic Astrophysics Network (ICRANet), Piazza della Repubblica 10, 65122 Pescara (Italy)
2015-12-17
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
International Nuclear Information System (INIS)
Rho, Mannque.
1980-04-01
The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology
Studies on the production of high energy densities in matter by intense heavy-ion beams
International Nuclear Information System (INIS)
Jacoby, J.
1989-08-01
In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de
Studies on the production of high energy density in matter with intense heavy-ion beams
International Nuclear Information System (INIS)
Jacoby, J.
1989-01-01
In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de
Evaluation of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. Research report (Interim)
International Nuclear Information System (INIS)
Solaimanian, M.; Holmgreen, R.J.; Kennedy, T.W.
1990-07-01
The report describes the results of a research study to determine the effectiveness of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. The densities obtained from cores and the nuclear density gauge from seven construction projects were compared. The projects were either newly constructed or under construction when the tests were performed. A linear regression technique was used to investigate how well the core densities could be predicted from nuclear densities. Correlation coefficients were determined to indicate the degree of correlation between the core and nuclear densities. Using a statistical analysis technique, the range of the mean difference between core and nuclear measurements was established for specified confidence levels for each project. Analysis of the data indicated that the accuracy of the gauge is material dependent. While relatively acceptable results were obtained with limestone mixtures, the gauge did not perform satisfactorily with mixtures containing siliceous aggregate
Hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)
2016-01-15
Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)
International Nuclear Information System (INIS)
Messina, A.
2000-01-01
This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina
The Local Dark Matter Density from SDSS-SEGUE G-dwarfs
Sivertsson, S.; Silverwood, H.; Read, J. I.; Bertone, G.; Steger, P.
2018-04-01
We derive the local dark matter density by applying the integrated Jeans equation method from Silverwood et al. (2016) to SDSS-SEGUE G-dwarf data processed and presented by Büdenbender et al. (2015).. We use the MULTINEST Bayesian nested sampling software to fit a model for the baryon distribution, dark matter and tracer stars, including a model for the `tilt term' that couples the vertical and radial motions, to the data. The α-young population from Büdenbender et al. (2015) yields the most reliable result of ρ _dm= 0.46^{+0.07}_{-0.08} {GeV cm}^{-3}= 0.012^{+0.002}_{-0.002} M_⊙ pc^{-3}. Our analyses yield inconsistent results for the α-young and α-old data, pointing to problems in the tilt term and its modelling, the data itself, the assumption of a flat rotation curve, or the effects of disequilibria.
Constraining self-interacting dark matter with scaling laws of observed halo surface densities
Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia
2018-04-01
The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.
Softness of Nuclear Matter and the Production of Strange Particles in Neutron Stars
Institute of Scientific and Technical Information of China (English)
陈伟; 文德华; 刘良钢
2003-01-01
In the various models, we study the influences of the softness of nuclear matter, the vacuum fluctuation ofnucleons and σ mesons on the production of strange particles in neutron stars. Wefind that the stiffer the nuclear matter is, the more easily the strange particles is produced in neutron stars. The vacuum fluctuation of nucleons has large effect on strange particle production while that of σ meson has little effect on it.
Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia
2011-01-01
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID
Directory of Open Access Journals (Sweden)
Samantha J Fung
Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in
Role of isospin in nuclear-matter liquid-gas phase transition
International Nuclear Information System (INIS)
Ducoin, C.
2006-10-01
Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)
Relativistic analysis of nuclear ground state densities at 135 to 200 ...
Indian Academy of Sciences (India)
fitting of differential cross-section and analyzing power, and the appearance of wine-bottle- ... So, the effect of different nuclear density distributions is quite conspicuous in the relativistic ap- proach. Hence, we have analyzed five different nuclear ground state .... The NEG and FNEG densities have been used to see the effect.
REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING
International Nuclear Information System (INIS)
Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan
2009-01-01
We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.
Long-term meditation is associated with increased gray matter density in the brain stem
DEFF Research Database (Denmark)
Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua
2009-01-01
density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some......Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...
Long-term meditation is associated with increased gray matter density in the brain stem
DEFF Research Database (Denmark)
Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua
2009-01-01
Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...... density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some...... of the cardiorespiratory parasympathetic effects and traits, as well as the cognitive, emotional, and immunoreactive impact reported in several studies of different meditation practices....
Nuclear matter kinetic coefficients and damping of finite nuclear collective modes
International Nuclear Information System (INIS)
Toledo Piza, A.F.R. de.
1986-06-01
By carrying the general description of one-body observables beyond the mean-field approximation, those correlation terms responsible for Kinetic phenomena and those involved in the renormalization of the G-matrix mean-field in finite nuclei are identified. A Kinetic equation for the one-body density is obtained. Estimates for transport coefficients and for the damping of zero sound are obtained which point to the inadequacy of hydrodynamical descriptions of collective nuclear modes and indicate that collisional damping in large nuclei may account for one or a few tenths of the observed widths. (S.D.) [pt
Symmetry breaking, and the effect of matter density on neutrino oscillation
Mohseni Sadjadi, H.; Khosravi Karchi, A. P.
2018-04-01
A proposal for the neutrino mass, based on neutrino-scalar field interaction, is introduced. The scalar field is also non-minimally coupled to the Ricci scalar, and hence relates the neutrino mass to the matter density. In a dense region, the scalar field obeys the Z2 symmetry, and the neutrino is massless. In a dilute region, the Z2 symmetry breaks and neutrino acquires mass from the non-vanishing expectation value of the scalar field. We consider this scenario in the framework of a spherical dense object whose outside is a dilute region. In this background, we study the neutrino flavors oscillation, along with the consequences of the theory on oscillation length and MSW effect. This preliminary model may shed some lights on the existing anomalies within the neutrino data, concerning the different oscillating behavior of the neutrinos in regions with different densities.
International Nuclear Information System (INIS)
Drewes, Marco
2014-01-01
We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model
The management-retrieval code of nuclear level density sub-library (CENPL-NLD)
International Nuclear Information System (INIS)
Ge Zhigang; Su Zongdi; Huang Zhongfu; Dong Liaoyuan
1995-01-01
The management-retrieval code of the Nuclear Level Density (NLD) is presented. It contains two retrieval ways: single nucleus (SN) and neutron reaction (NR). The latter contains four kinds of retrieval types. This code not only can retrieve level density parameter and the data related to the level density, but also can calculate the relevant data by using different level density parameters and do comparison of the calculated results with related data in order to help user to select level density parameters
Nuclear level density of 166Er with static deformation
International Nuclear Information System (INIS)
Nasrabadi, M.N.
2006-01-01
The level densities of 166 Er is calculated using the microscopic theory of interacting fermions and is compared with experimental. It is concluded that the data can be reproduced with level density formalism for nuclei with static deformation
Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter
International Nuclear Information System (INIS)
Pang Jinyi; Wang Jincheng; Wang Qun
2012-01-01
In this review article we give a brief overview on some recent progress in quark pairings in dense quark/nuclear matter mostly developed in the past five years. We focus on following aspects in particular: the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with U A (1) anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC. (physics of elementary particles and fields)
Effects of self-consistency in a Green's function description of saturation in nuclear matter
International Nuclear Information System (INIS)
Dewulf, Y.; Neck, D. van; Waroquier, M.
2002-01-01
The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy
Asymmetric nuclear matter and neutron star properties within the extended Brueckner theory
Energy Technology Data Exchange (ETDEWEB)
Hassaneen, Khaled S.A. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt); Taif University, Physics Department, Faculty of Science, Taif (Saudi Arabia)
2017-01-15
Microscopically, the equation of state (EOS) and other properties of asymmetric nuclear matter at zero temperature have been investigated extensively by adopting the non-relativistic Brueckner-Hartree-Fock (BHF) and the extended BHF approaches by using the self-consistent Green's function approach or by including a phenomenological three-body force. Once three-body forces are introduced, the phenomenological saturation point is reproduced and the theory is applied to the study of neutron star properties. We can calculate the total mass and radius for neutron stars using various equations of state at high densities in β-equilibrium without hyperons. A comparison with other microscopic predictions based on non-relativistic and density-dependent relativistic mean-field calculations has been done. It is found that relativistic EOS yields however larger mass and radius for neutron star than predictions based on non-relativistic approaches. Also the three-body force plays a crucial role to deduce the theoretical value of the maximum mass of neutron stars in agreement with recent measurements of the neutron star mass. (orig.)
Tidal Disruption of Milky Way Satellites with Shallow Dark Matter Density Profiles
Directory of Open Access Journals (Sweden)
Ewa L. Łokas
2016-11-01
Full Text Available Dwarf galaxies of the Local Group provide unique possibilities to test current theories of structure formation. Their number and properties have put the broadly accepted cold dark matter model into question, posing a few problems. These problems now seem close to resolution due to the improved treatment of baryonic processes in dwarf galaxy simulations which now predict cored rather than cuspy dark matter profiles in isolated dwarfs with important consequences for their subsequent environmental evolution. Using N-body simulations, we study the evolution of a disky dwarf galaxy with such a shallow dark matter profile on a typical orbit around the Milky Way. The dwarf survives the first pericenter passage but is disrupted after the second due to tidal forces from the host. We discuss the evolution of the dwarf’s properties in time prior to and at the time of disruption. We demonstrate that the dissolution occurs on a rather short timescale as the dwarf expands from a spheroid into a stream with non-zero mean radial velocity. We point out that the properties of the dwarf at the time of disruption may be difficult to distinguish from bound configurations, such as tidally induced bars, both in terms of surface density and line-of-sight kinematics.
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that in the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
ZHU MingFeng; LIU GuangZhou; YU Zi; XU Yan; SONG WenTao
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied selfconsistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term Is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,Indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that In the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation
van Uitert, Edo; Joachimi, Benjamin
2017-07-01
We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey-Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ˜ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is A_IA^gen=12.6_{-1.2}^{+1.5}. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA.